Sample records for network analyses structure

  1. A Social Network Analysis of Teaching and Research Collaboration in a Teachers' Virtual Learning Community

    ERIC Educational Resources Information Center

    Lin, Xiaofan; Hu, Xiaoyong; Hu, Qintai; Liu, Zhichun

    2016-01-01

    Analysing the structure of a social network can help us understand the key factors influencing interaction and collaboration in a virtual learning community (VLC). Here, we describe the mechanisms used in social network analysis (SNA) to analyse the social network structure of a VLC for teachers and discuss the relationship between face-to-face…

  2. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    PubMed

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  3. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

    ERIC Educational Resources Information Center

    Steyvers, Mark; Tenenbaum, Joshua B.

    2005-01-01

    We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…

  4. Unprotected sex of homeless youth: results from a multilevel dyadic analysis of individual, social network, and relationship factors.

    PubMed

    Kennedy, David P; Tucker, Joan S; Green, Harold D; Golinelli, Daniela; Ewing, Brett

    2012-10-01

    Homeless youth have elevated risk of HIV through sexual behavior. This project investigates the multiple levels of influence on unprotected sex among homeless youth, including social network, individual, and partner level influences. Findings are based on analyses of an exploratory, semi-structured interview (n = 40) and a structured personal network interview (n = 240) with randomly selected homeless youth in Los Angeles. Previous social network studies of risky sex by homeless youth have collected limited social network data from non-random samples and have not distinguished sex partner influences from other network influences. The present analyses have identified significant associations with unprotected sex at multiple levels, including individual, partner, and, to a lesser extent, the social network. Analyses also distinguished between youth who did or did not want to use condoms when they had unprotected sex. Implications for social network based HIV risk interventions with homeless youth are discussed.

  5. Unprotected Sex of Homeless Youth: Results from a Multilevel Analysis of Individual, Social Network, and Relationship Factors

    PubMed Central

    Kennedy, David P.; Tucker, Joan S.; Green, Harold D.; Golinelli, Daniela; Ewing, Brett

    2012-01-01

    Homeless youth have elevated risk of HIV through sexual behavior. This project investigates the multiple levels of influence on unprotected sex among homeless youth, including social network, individual, and partner level influences. Findings are based on analyses of an exploratory, semi-structured interview (n=40) and a structured personal network interview (n=240) with randomly selected homeless youth in Los Angeles. Previous social network studies of risky sex by homeless youth have collected limited social network data from non-random samples and have not distinguished sex partner influences from other network influences. The present analyses have identified significant associations with unprotected sex at multiple levels, including individual, partner, and, to a lesser extent, the social network. Analyses also distinguished between youth who wished they used condoms after having unprotected sex and youth who did not regret having unprotected sex. Implications for social network based HIV risk interventions with homeless youth are discussed. PMID:22610421

  6. Revealing the hidden language of complex networks.

    PubMed

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-04-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists.

  7. Impulsivity and the Modular Organization of Resting-State Neural Networks

    PubMed Central

    Davis, F. Caroline; Knodt, Annchen R.; Sporns, Olaf; Lahey, Benjamin B.; Zald, David H.; Brigidi, Bart D.; Hariri, Ahmad R.

    2013-01-01

    Impulsivity is a complex trait associated with a range of maladaptive behaviors, including many forms of psychopathology. Previous research has implicated multiple neural circuits and neurotransmitter systems in impulsive behavior, but the relationship between impulsivity and organization of whole-brain networks has not yet been explored. Using graph theory analyses, we characterized the relationship between impulsivity and the functional segregation (“modularity”) of the whole-brain network architecture derived from resting-state functional magnetic resonance imaging (fMRI) data. These analyses revealed remarkable differences in network organization across the impulsivity spectrum. Specifically, in highly impulsive individuals, regulatory structures including medial and lateral regions of the prefrontal cortex were isolated from subcortical structures associated with appetitive drive, whereas these brain areas clustered together within the same module in less impulsive individuals. Further exploration of the modular organization of whole-brain networks revealed novel shifts in the functional connectivity between visual, sensorimotor, cortical, and subcortical structures across the impulsivity spectrum. The current findings highlight the utility of graph theory analyses of resting-state fMRI data in furthering our understanding of the neurobiological architecture of complex behaviors. PMID:22645253

  8. Combining network analysis with Cognitive Work Analysis: insights into social organisational and cooperation analysis.

    PubMed

    Houghton, Robert J; Baber, Chris; Stanton, Neville A; Jenkins, Daniel P; Revell, Kirsten

    2015-01-01

    Cognitive Work Analysis (CWA) allows complex, sociotechnical systems to be explored in terms of their potential configurations. However, CWA does not explicitly analyse the manner in which person-to-person communication is performed in these configurations. Consequently, the combination of CWA with Social Network Analysis provides a means by which CWA output can be analysed to consider communication structure. The approach is illustrated through a case study of a military planning team. The case study shows how actor-to-actor and actor-to-function mapping can be analysed, in terms of centrality, to produce metrics of system structure under different operating conditions. In this paper, a technique for building social network diagrams from CWA is demonstrated.The approach allows analysts to appreciate the potential impact of organisational structure on a command system.

  9. Fractal and multifractal analyses of bipartite networks

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-03-01

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.

  10. Fractal and multifractal analyses of bipartite networks.

    PubMed

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-03-31

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.

  11. Fractal and multifractal analyses of bipartite networks

    PubMed Central

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-01-01

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions. PMID:28361962

  12. Revealing the Hidden Language of Complex Networks

    PubMed Central

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-01-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists. PMID:24686408

  13. Kinetic analyses of vasculogenesis inform mechanistic studies

    PubMed Central

    Winfree, Seth; Chu, Chenghao; Tu, Wanzhu; Blue, Emily K.; Gohn, Cassandra R.; Dunn, Kenneth W.

    2017-01-01

    Vasculogenesis is a complex process by which endothelial stem and progenitor cells undergo de novo vessel formation. Quantitative assessment of vasculogenesis is a central readout of endothelial progenitor cell functionality. However, current assays lack kinetic measurements. To address this issue, new approaches were developed to quantitatively assess in vitro endothelial colony-forming cell (ECFC) network formation in real time. Eight parameters of network structure were quantified using novel Kinetic Analysis of Vasculogenesis (KAV) software. KAV assessment of structure complexity identified two phases of network formation. This observation guided the development of additional vasculogenic readouts. A tissue cytometry approach was established to quantify the frequency and localization of dividing ECFCs. Additionally, Fiji TrackMate was used to quantify ECFC displacement and speed at the single-cell level during network formation. These novel approaches were then implemented to identify how intrauterine exposure to maternal diabetes mellitus (DM) impairs fetal ECFC vasculogenesis. Fetal ECFCs exposed to maternal DM form fewer initial network structures, which are not stable over time. Correlation analyses demonstrated that ECFC samples with greater division in branches form fewer closed network structures. Additionally, reductions in average ECFC movement over time decrease structural connectivity. Identification of these novel phenotypes utilizing the newly established methodologies provides evidence for the cellular mechanisms contributing to aberrant ECFC vasculogenesis. PMID:28100488

  14. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    PubMed

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  15. Network analyses based on comprehensive molecular interaction maps reveal robust control structures in yeast stress response pathways

    PubMed Central

    Kawakami, Eiryo; Singh, Vivek K; Matsubara, Kazuko; Ishii, Takashi; Matsuoka, Yukiko; Hase, Takeshi; Kulkarni, Priya; Siddiqui, Kenaz; Kodilkar, Janhavi; Danve, Nitisha; Subramanian, Indhupriya; Katoh, Manami; Shimizu-Yoshida, Yuki; Ghosh, Samik; Jere, Abhay; Kitano, Hiroaki

    2016-01-01

    Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems. PMID:28725465

  16. Structure-function clustering in multiplex brain networks

    NASA Astrophysics Data System (ADS)

    Crofts, J. J.; Forrester, M.; O'Dea, R. D.

    2016-10-01

    A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.

  17. Comments on the use of network structures to analyse commercial companies’ evolution and their impact on economic behaviour

    NASA Astrophysics Data System (ADS)

    Costea, Carmen

    2006-10-01

    Network analysis studies the development of the social structure of relationships around a group or an institutional body, and how it affects beliefs and behaviours. Causal constraints require a special and deeper attention to the social structure. The purpose of this paper is to give a new approach to the idea that this reality should be primarily conceived and investigated from the perspective of the properties of relations between and within units, instead of the properties of these units themselves. The relationship may refer to the exchange of products, labour, information and money. By mapping these relationships, network analysis can help to uncover the emergent and informal communication patterns of commercial companies that may be compared to the formal communication structures. These emergent patterns can be used to explain institutional and individuals’ behaviours. Network analysis techniques focus on the communication structure of an organization that can be subdivided and handled with different approaches. Structural features that can be analysed through the use of network analysis techniques are, for example, the (formal and informal) communication patterns in an organization or the identification of specific groups within an organization. Special attention may be given to specific aspects of communication patterns.

  18. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    PubMed

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Network structure and travel time perception.

    PubMed

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  20. The National Biomedical Communications Network as a Developing Structure *

    PubMed Central

    Davis, Ruth M.

    1971-01-01

    The National Biomedical Communications Network has evolved both from a set of conceptual recommendations over the last twelve years and an accumulation of needs manifesting themselves in the requests of members of the medical community. With a short history of three years this network and its developing structure have exhibited most of the stresses of technology interfacing with customer groups, and of a structure attempting to build itself upon many existing fragmentary unconnected segments of a potentially viable resourcesharing capability. In addition to addressing these topics, the paper treats a design appropriate to any network devoted to information transfer in a special interest user community. It discusses fundamentals of network design, highlighting that network structure most appropriate to a national information network. Examples are given of cost analyses of information services and certain conjectures are offered concerning the roles of national networks. PMID:5542912

  1. Insights into failed lexical retrieval from network science.

    PubMed

    Vitevitch, Michael S; Chan, Kit Ying; Goldstein, Rutherford

    2014-02-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Insights into failed lexical retrieval from network science

    PubMed Central

    Vitevitch, Michael S.; Chan, Kit Ying; Goldstein, Rutherford

    2013-01-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. PMID:24269488

  3. The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness

    PubMed Central

    Mangus, J Michael; Turner, Benjamin O

    2017-01-01

    Abstract While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. PMID:29140500

  4. Network Structure and Travel Time Perception

    PubMed Central

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time. PMID:24204932

  5. A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin.

    PubMed

    Wagner, Andreas

    2014-07-07

    Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Analysing Health Professionals' Learning Interactions in an Online Social Network: A Longitudinal Study.

    PubMed

    Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen

    2016-01-01

    This paper summarises a longitudinal analysis of learning interactions occurring over three years among health professionals in an online social network. The study employs the techniques of Social Network Analysis (SNA) and statistical modeling to identify the changes in patterns of interaction over time and test associated structural network effects. SNA results indicate overall low participation in the network, although some participants became active over time and even led discussions. In particular, the analysis has shown that a change of lead contributor results in a change in learning interaction and network structure. The analysis of structural network effects demonstrates that the interaction dynamics slow down over time, indicating that interactions in the network are more stable. The health professionals may be reluctant to share knowledge and collaborate in groups but were interested in building personal learning networks or simply seeking information.

  7. Origin of the cosmic network in ΛCDM: Nature vs nurture

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei; Habib, Salman; Heitmann, Katrin

    2010-05-01

    The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure formation, we elucidate how the network has its origin in the properties of the initial density field (nature) and how its contrast is then amplified by the nonlinear mapping induced by the gravitational instability (nurture).

  8. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    ERIC Educational Resources Information Center

    Hermans, Frans; Klerkx, Laurens; Roep, Dirk

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the main barriers and enablers eight countries…

  9. The Structure of Informal Social Networks of Persons with Profound Intellectual and Multiple Disabilities

    ERIC Educational Resources Information Center

    Kamstra, A.; van der Putten, A. A. J.; Vlaskamp, C.

    2015-01-01

    Background: Persons with less severe disabilities are able to express their needs and show initiatives in social contacts, persons with profound intellectual and multiple disabilities (PIMD), however, depend on others for this. This study analysed the structure of informal networks of persons with PIMD. Materials and Methods: Data concerning the…

  10. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.

    PubMed

    Steggles, L Jason; Banks, Richard; Shaw, Oliver; Wipat, Anil

    2007-02-01

    New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and function of the molecular processes that mediate adaptive and cell cycle driven changes in gene expression. In order to achieve this biologists require new tools and techniques to allow pathway related data to be modelled and analysed as network structures, providing valuable insights which can then be validated and investigated in the laboratory. We propose a new technique for constructing and analysing qualitative models of genetic regulatory networks based on the Petri net formalism. We take as our starting point the Boolean network approach of treating genes as binary switches and develop a new Petri net model which uses logic minimization to automate the construction of compact qualitative models. Our approach addresses the shortcomings of Boolean networks by providing access to the wide range of existing Petri net analysis techniques and by using non-determinism to cope with incomplete and inconsistent data. The ideas we present are illustrated by a case study in which the genetic regulatory network controlling sporulation in the bacterium Bacillus subtilis is modelled and analysed. The Petri net model construction tool and the data files for the B. subtilis sporulation case study are available at http://bioinf.ncl.ac.uk/gnapn.

  11. Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia.

    PubMed

    Robinson, Lucy F; Atlas, Lauren Y; Wager, Tor D

    2015-03-01

    We present a new method, State-based Dynamic Community Structure, that detects time-dependent community structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is static in time, or differs between task conditions with known timing. Our goal is to determine whether brain network topology remains stationary over time, or if changes in network organization occur at unknown time points. Changes in network organization may be related to shifts in neurological state, such as those associated with learning, drug uptake or experimental conditions. Using a hidden Markov stochastic blockmodel, we define a time-dependent community structure. We apply this approach to data from a functional magnetic resonance imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that networks involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  13. The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness.

    PubMed

    Huskey, Richard; Mangus, J Michael; Turner, Benjamin O; Weber, René

    2017-12-01

    While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. © The Author (2017). Published by Oxford University Press.

  14. The network of concepts in written texts

    NASA Astrophysics Data System (ADS)

    Caldeira, S. M. G.; Petit Lobão, T. C.; Andrade, R. F. S.; Neme, A.; Miranda, J. G. V.

    2006-02-01

    Complex network theory is used to investigate the structure of meaningful concepts in written texts of individual authors. Networks have been constructed after a two phase filtering, where words with less meaning contents are eliminated and all remaining words are set to their canonical form, without any number, gender or time flexion. Each sentence in the text is added to the network as a clique. A large number of written texts have been scrutinised, and it is found that texts have small-world as well as scale-free structures. The growth process of these networks has also been investigated, and a universal evolution of network quantifiers have been found among the set of texts written by distinct authors. Further analyses, based on shuffling procedures taken either on the texts or on the constructed networks, provide hints on the role played by the word frequency and sentence length distributions to the network structure.

  15. Mapping the semantic structure of cognitive neuroscience.

    PubMed

    Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A

    2014-09-01

    Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.

  16. Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function.

    PubMed

    Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger

    2013-04-22

    For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.

  17. A review of structural and functional brain networks: small world and atlas.

    PubMed

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  18. Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management.

    PubMed

    Poudel, R; Jumpponen, A; Schlatter, D C; Paulitz, T C; Gardener, B B McSpadden; Kinkel, L L; Garrett, K A

    2016-10-01

    Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani.

  19. Origin of the cosmic network in {Lambda}CDM: Nature vs nurture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shandarin, Sergei; Habib, Salman; Heitmann, Katrin

    The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure formation, we elucidate how the network has its origin in the properties of the initial density field (nature) and how its contrast is then amplified by the nonlinear mapping induced by themore » gravitational instability (nurture).« less

  20. Understanding Nomophobia: Structural Equation Modeling and Semantic Network Analysis of Smartphone Separation Anxiety.

    PubMed

    Han, Seunghee; Kim, Ki Joon; Kim, Jang Hyun

    2017-07-01

    This study explicates nomophobia by developing a research model that identifies several determinants of smartphone separation anxiety and by conducting semantic network analyses on smartphone users' verbal descriptions of the meaning of their smartphones. Structural equation modeling of the proposed model indicates that personal memories evoked by smartphones encourage users to extend their identity onto their devices. When users perceive smartphones as their extended selves, they are more likely to get attached to the devices, which, in turn, leads to nomophobia by heightening the phone proximity-seeking tendency. This finding is also supplemented by the results of the semantic network analyses revealing that the words related to memory, self, and proximity-seeking are indeed more frequently used in the high, compared with low, nomophobia group.

  1. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    NASA Astrophysics Data System (ADS)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  2. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure☆

    PubMed Central

    Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689

  3. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study.

    PubMed

    Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou

    2017-01-01

    Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  4. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  5. The application of a network approach to Health-Related Quality of Life (HRQoL): introducing a new method for assessing HRQoL in healthy adults and cancer patients.

    PubMed

    Kossakowski, Jolanda J; Epskamp, Sacha; Kieffer, Jacobien M; van Borkulo, Claudia D; Rhemtulla, Mijke; Borsboom, Denny

    2016-04-01

    Health-Related Quality of Life (HRQoL) research has typically adopted either a formative approach, in which HRQoL is the common effect of its observables, or a reflective approach--defining HRQoL as a latent variable that determines observable characteristics of HRQoL. Both approaches, however, do not take into account the complex organization of these characteristics. The objective of this study was to introduce a new approach for analyzing HRQoL data, namely a network model (NM). An NM, as opposed to traditional research strategies, accounts for interactions among observables and offers a complementary analytic approach. We applied the NM to samples of Dutch cancer patients (N = 485) and Dutch healthy adults (N = 1742) who completed the 36-item Short Form Health Survey (SF-36). Networks were constructed for both samples separately and for a combined sample with diagnostic status added as an extra variable. We assessed the network structures and compared the structures of the two separate samples on the item and domain levels. The relative importance of individual items in the network structures was determined using centrality analyses. We found that the global structure of the SF-36 is dominant in all networks, supporting the validity of questionnaire's subscales. Furthermore, results suggest that the network structure of both samples was highly similar. Centrality analyses revealed that maintaining a daily routine despite one's physical health predicts HRQoL levels best. We concluded that the NM provides a fruitful alternative to classical approaches used in the psychometric analysis of HRQoL data.

  6. Basketball Teams as Strategic Networks

    PubMed Central

    Fewell, Jennifer H.; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S.

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as “uphill/downhill” flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness. PMID:23139744

  7. Basketball teams as strategic networks.

    PubMed

    Fewell, Jennifer H; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as "uphill/downhill" flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

  8. Two novel copper(II) complexes constructed from dicarboxylate ligands with different spacer lengths and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP): Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia

    2009-09-01

    Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.

  9. Analyzing heterogeneity in the effects of physical activity in children on social network structure and peer selection dynamics

    PubMed Central

    Henry, Teague; Gesell, Sabina B.; Ip, Edward H.

    2016-01-01

    Background Social networks influence children and adolescents’ physical activity. The focus of this paper is to examine the differences in the effects of physical activity on friendship selection, with eye to the implications on physical activity interventions for young children. Network interventions to increase physical activity are warranted but have not been conducted. Prior to implementing a network intervention in the field, it is important to understand potential heterogeneities in the effects that activity level have on network structure. In this study, the associations between activity level and cross sectional network structure, and activity level and change in network structure are assessed. Methods We studied a real-world friendship network among 81 children (average age 7.96 years) who lived in low SES neighborhoods, attended public schools, and attended one of two structured aftercare programs, of which one has existed and the other was new. We used the exponential random graph model (ERGMs) and its longitudinal extension to evaluate the association between activity level and various demographic factors in having, forming, and dissolving friendship. Due to heterogeneity between the friendship networks within the aftercare programs, separate analyses were conducted for each network. Results There was heterogeneity in the effect of physical activity on both cross sectional network structure and the formation and dissolution processes, both across time and between networks. Conclusions Network analysis could be used to assess the unique structure and dynamics of a social network before an intervention is implemented, so as to optimize the effects of the network intervention for increasing childhood physical activity. Additionally, if peer selection processes are changing within a network, a static network intervention strategy for childhood physical activity could become inefficient as the network evolves. PMID:27867518

  10. Alterations of white matter structural networks in patients with non-neuropsychiatric systemic lupus erythematosus identified by probabilistic tractography and connectivity-based analyses.

    PubMed

    Xu, Man; Tan, Xiangliang; Zhang, Xinyuan; Guo, Yihao; Mei, Yingjie; Feng, Qianjin; Xu, Yikai; Feng, Yanqiu

    2017-01-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.

  11. Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach.

    PubMed

    Akiki, Teddy J; Averill, Christopher L; Wrocklage, Kristen M; Scott, J Cobb; Averill, Lynnette A; Schweinsburg, Brian; Alexander-Bloch, Aaron; Martini, Brenda; Southwick, Steven M; Krystal, John H; Abdallah, Chadi G

    2018-08-01

    Disruption in the default mode network (DMN) has been implicated in numerous neuropsychiatric disorders, including posttraumatic stress disorder (PTSD). However, studies have largely been limited to seed-based methods and involved inconsistent definitions of the DMN. Recent advances in neuroimaging and graph theory now permit the systematic exploration of intrinsic brain networks. In this study, we used resting-state functional magnetic resonance imaging (fMRI), diffusion MRI, and graph theoretical analyses to systematically examine the DMN connectivity and its relationship with PTSD symptom severity in a cohort of 65 combat-exposed US Veterans. We employed metrics that index overall connectivity strength, network integration (global efficiency), and network segregation (clustering coefficient). Then, we conducted a modularity and network-based statistical analysis to identify DMN regions of particular importance in PTSD. Finally, structural connectivity analyses were used to probe whether white matter abnormalities are associated with the identified functional DMN changes. We found decreased DMN functional connectivity strength to be associated with increased PTSD symptom severity. Further topological characterization suggests decreased functional integration and increased segregation in subjects with severe PTSD. Modularity analyses suggest a spared connectivity in the posterior DMN community (posterior cingulate, precuneus, angular gyrus) despite overall DMN weakened connections with increasing PTSD severity. Edge-wise network-based statistical analyses revealed a prefrontal dysconnectivity. Analysis of the diffusion networks revealed no alterations in overall strength or prefrontal structural connectivity. DMN abnormalities in patients with severe PTSD symptoms are characterized by decreased overall interconnections. On a finer scale, we found a pattern of prefrontal dysconnectivity, but increased cohesiveness in the posterior DMN community and relative sparing of connectivity in this region. The DMN measures established in this study may serve as a biomarker of disease severity and could have potential utility in developing circuit-based therapeutics. Published by Elsevier Inc.

  12. Reduced integration and differentiation of the imitation network in autism: A combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study.

    PubMed

    Fishman, Inna; Datko, Michael; Cabrera, Yuliana; Carper, Ruth A; Müller, Ralph-Axel

    2015-12-01

    Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms. Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion. Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology. Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD. © 2015 American Neurological Association.

  13. Geomorphic analyses from space imagery

    NASA Technical Reports Server (NTRS)

    Morisawa, M.

    1985-01-01

    One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment).

  14. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring.

    PubMed

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.

  15. Assessment of Habitat Representation across a Network of Marine Protected Areas with Implications for the Spatial Design of Monitoring

    PubMed Central

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network. PMID:25760858

  16. Monitoring of Students' Interaction in Online Learning Settings by Structural Network Analysis and Indicators.

    PubMed

    Ammenwerth, Elske; Hackl, Werner O

    2017-01-01

    Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.

  17. A systematic approach to infer biological relevance and biases of gene network structures.

    PubMed

    Antonov, Alexey V; Tetko, Igor V; Mewes, Hans W

    2006-01-10

    The development of high-throughput technologies has generated the need for bioinformatics approaches to assess the biological relevance of gene networks. Although several tools have been proposed for analysing the enrichment of functional categories in a set of genes, none of them is suitable for evaluating the biological relevance of the gene network. We propose a procedure and develop a web-based resource (BIOREL) to estimate the functional bias (biological relevance) of any given genetic network by integrating different sources of biological information. The weights of the edges in the network may be either binary or continuous. These essential features make our web tool unique among many similar services. BIOREL provides standardized estimations of the network biases extracted from independent data. By the analyses of real data we demonstrate that the potential application of BIOREL ranges from various benchmarking purposes to systematic analysis of the network biology.

  18. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.

    PubMed

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  19. The Topology of a Discussion: The #Occupy Case.

    PubMed

    Gargiulo, Floriana; Bindi, Jacopo; Apolloni, Andrea

    2015-01-01

    We analyse a large sample of the Twitter activity that developed around the social movement 'Occupy Wall Street', to study the complex interactions between the human communication activity and the semantic content of a debate. We use a network approach based on the analysis of the bipartite graph @Users-#Hashtags and of its projections: the 'semantic network', whose nodes are hashtags, and the 'users interest network', whose nodes are users. In the first instance, we find out that discussion topics (#hashtags) present a high structural heterogeneity, with a relevant role played by the semantic hubs that are responsible to guarantee the continuity of the debate. In the users' case, the self-organisation process of users' activity, leads to the emergence of two classes of communicators: the 'professionals' and the 'amateurs'. Both the networks present a strong community structure, based on the differentiation of the semantic topics, and a high level of structural robustness when certain sets of topics are censored and/or accounts are removed. By analysing the characteristics of the dynamical networks we can distinguish three phases of the discussion about the movement. Each phase corresponds to a specific moment of the movement: from declaration of intent, organisation and development and the final phase of political reactions. Each phase is characterised by the presence of prototypical #hashtags in the discussion.

  20. Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network

    NASA Astrophysics Data System (ADS)

    Kölzsch, A.; Blasius, B.

    2011-12-01

    The transport of huge amounts of small aquatic organisms in the ballast tanks and at the hull of large cargo ships leads to ever increasing rates of marine bioinvasion. In this study, we apply a network theoretic approach to examine the introduction of invasive species into new ports by global shipping. This is the first stage of the invasion process where it is still possible to intervene with regulating measures. We compile a selection of widely used and newly developed network properties and apply these to analyse the structure and spread characteristics of the directed and weighted global cargo ship network (GCSN). Our results reveal that the GCSN is highly efficient, shows small world characteristics and is positive assortative, indicating that quick spread of invasive organisms between ports is likely. The GCSN shows strong community structure and contains two large communities, the Atlantic and Pacific trading groups. Ports that appear as connector hubs and are of high centralities are the Suez and Panama Canal, Singapore and Shanghai. Furthermore, from robustness analyses and the network's percolation behaviour, we evaluate differences of onboard and in-port ballast water treatment, set them into context with previous studies and advise bioinvasion management strategies.

  1. Describing spatial pattern in stream networks: A practical approach

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  2. A geostatistical approach for describing spatial pattern in stream networks

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  3. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  4. Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.

    2006-01-01

    The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.

  5. The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation.

    PubMed

    Blankenship, Elise; Vahedi-Faridi, Ardeschir; Lodowski, David T

    2015-12-01

    Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. We present the 2.3-Å resolution structure of native source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent-mediated hydrogen-bonding network with the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When considered along with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer

    PubMed Central

    Engin, H. Billur; Guney, Emre; Keskin, Ozlem; Oliva, Baldo; Gursoy, Attila

    2013-01-01

    Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the “guilt-by-association” principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis. PMID:24278371

  7. Dermoscopy of accessory nipples in authors’ own study

    PubMed Central

    Szymszal, Jan; Silny, Wojciech

    2014-01-01

    Introduction The accessory nipple (AN) is characterised by its network-like structures, which may suggest the diagnosis of a melanocytic lesion. The knowledge about additional dermoscopic features of AN may greatly minimise the risk of unnecessary surgical excisions. Aim To analyse and present different clinical and dermoscopic forms, in which the AN may appear. Material and methods Ninety AN with dermoscopic features were evaluated in the study, detected in 14 patients between the years 2008 and 2014. Results The most common dermoscopic features of the AN were central, scar-like areas (15/19) and peripheral network-like structures (12/19). A number of cleft-like appearances (8/19) and central network-like structures (7/19) had also been observed. Moreover, among the dermoscopic features, white cobblestone-like structures (7/19), a central round dimpling with a plug (6/19) and fisheye-like structures resembling comedo-like openings (9/19) have all also been noted. There is a statistical significance in the occurrence of white cobblestone-like structures with central network-like structures (Fisher's exact test p = 0.0449). The presence of peripheral network-like structures with the occurrence of central scar-like areas was statistically highly significant (p = 0.0091). The central round dimpling was never observed alongside any central network-like structures in any of the lesions (p = 0.0436). Conclusions Accessory nipples are most commonly characterised by the occurrence of a peripheral network-like structure accompanied by the presence of a scar-like area. PMID:25097482

  8. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity

    NASA Astrophysics Data System (ADS)

    Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard

    2018-04-01

    Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.

  9. Factors which motivate the use of social networks by students.

    PubMed

    González Sanmamed, Mercedes; Muñoz Carril, Pablo C; Dans Álvarez de Sotomayor, Isabel

    2017-05-01

    The aim of this research was to identify those factors which motivate the use of social networks by 4th year students in Secondary Education between the ages of 15 and 18. 1,144 students from 29 public and private schools took part. The data were analysed using Partial Least Squares Structural Equation Modelling technique. Versatility was confirmed to be the variable which most influences the motivation of students in their use of social networks. The positive relationship between versatility in the use of social networks and educational uses was also significant. The characteristics of social networks are analysed according to their versatility and how this aspect makes them attractive to students. The positive effects of social networks are discussed in terms of educational uses and their contribution to school learning. There is also a warning about the risks associated with misuse of social networks, and finally, the characteristics and conditions for the development of good educational practice through social networks are identified.

  10. The perceived causal structures of smoking: Smoker and non-smoker comparisons

    PubMed Central

    Lydon, David M; Howard, Matthew C; Wilson, Stephen J; Geier, Charles F

    2015-01-01

    Despite the detrimental impact of smoking on health, its prevalence remains high. Empirical research has provided insight into the many causes and effects of smoking, yet lay perceptions of smoking remain relatively understudied. The current study used a form of network analysis to gain insight into the causal attributions for smoking of both smoking and non-smoking college students. The analyses resulted in highly endorsed, complex network diagrams that conveyed the perceived causal structures of smoking. Differences in smoker and non-smoker networks emerged with smokers attributing less negative consequences to smoking behaviors. Implications for intervention are discussed. PMID:25690755

  11. XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data

    PubMed Central

    Schweppe, Devin K.; Zheng, Chunxiang; Chavez, Juan D.; Navare, Arti T.; Wu, Xia; Eng, Jimmy K.; Bruce, James E.

    2016-01-01

    Motivation: Large-scale chemical cross-linking with mass spectrometry (XL-MS) analyses are quickly becoming a powerful means for high-throughput determination of protein structural information and protein–protein interactions. Recent studies have garnered thousands of cross-linked interactions, yet the field lacks an effective tool to compile experimental data or access the network and structural knowledge for these large scale analyses. We present XLinkDB 2.0 which integrates tools for network analysis, Protein Databank queries, modeling of predicted protein structures and modeling of docked protein structures. The novel, integrated approach of XLinkDB 2.0 enables the holistic analysis of XL-MS protein interaction data without limitation to the cross-linker or analytical system used for the analysis. Availability and Implementation: XLinkDB 2.0 can be found here, including documentation and help: http://xlinkdb.gs.washington.edu/. Contact: jimbruce@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153666

  12. Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M = Zn(II) and Cd(II))

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur

    2015-12-01

    Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.

  13. The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography

    NASA Astrophysics Data System (ADS)

    Perna, Andrea; Jost, Christian; Couturier, Etienne; Valverde, Sergi; Douady, Stéphane; Theraulaz, Guy

    2008-09-01

    Recent studies have introduced computer tomography (CT) as a tool for the visualisation and characterisation of insect architectures. Here, we use CT to map the three-dimensional networks of galleries inside Cubitermes nests in order to analyse them with tools from graph theory. The structure of these networks indicates that connections inside the nest are rearranged during the whole nest life. The functional analysis reveals that the final network topology represents an excellent compromise between efficient connectivity inside the nest and defence against attacking predators. We further discuss and illustrate the usefulness of CT to disentangle environmental and specific influences on nest architecture.

  14. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure.

    PubMed

    Kemppainen, Petri; Knight, Christopher G; Sarma, Devojit K; Hlaing, Thaung; Prakash, Anil; Maung Maung, Yan Naung; Somboon, Pradya; Mahanta, Jagadish; Walton, Catherine

    2015-09-01

    Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  15. Sociometric network structure and its association with methamphetamine use norms among homeless youth

    PubMed Central

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-01-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. PMID:27194667

  16. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271

  17. Structural health monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  18. Analysis hierarchical model for discrete event systems

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  19. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels

    PubMed Central

    Zero, Victoria H.; Barocas, Adi; Jochimsen, Denim M.; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R.; Castillo, Jessica A.; Evans Mack, Diane; Linnell, Mark A.; Pigg, Rachel M.; Hoisington-Lopez, Jessica; Spear, Stephen F.; Murphy, Melanie A.; Waits, Lisette P.

    2017-01-01

    The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho ground squirrel (U. endemicus), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions. PMID:28659969

  20. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels.

    PubMed

    Zero, Victoria H; Barocas, Adi; Jochimsen, Denim M; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R; Castillo, Jessica A; Evans Mack, Diane; Linnell, Mark A; Pigg, Rachel M; Hoisington-Lopez, Jessica; Spear, Stephen F; Murphy, Melanie A; Waits, Lisette P

    2017-01-01

    The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel ( Urocitellus brunneus) and the southern Idaho ground squirrel ( U. endemicus ), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions.

  1. Sovereign public debt crisis in Europe. A network analysis

    NASA Astrophysics Data System (ADS)

    Matesanz, David; Ortega, Guillermo J.

    2015-10-01

    In this paper we analyse the evolving network structure of the quarterly public debt-to-GDP ratio from 2000 to 2014. By applying tools and concepts coming from complex systems we study the effects of the global financial crisis over public debt network connections and communities. Two main results arise from this analysis: firstly, countries public debts tend to synchronize their evolution, increasing global connectivity in the network and dramatically decreasing the number of communities. Secondly, a disruption in previous structure is observed at the time of the shock, emerging a more centralized and less diversify network topological organization which might be more prone to suffer contagion effects. This last fact is evidenced by an increasing tendency in countries of similar level of public debt to be connected between them, which we have quantified by the network assortativity.

  2. Infrared spectroscopy of phenol-(H2O)(n>10): structural strains in hydrogen bond networks of neutral water clusters.

    PubMed

    Mizuse, Kenta; Hamashima, Toru; Fujii, Asuka

    2009-11-05

    To investigate hydrogen bond network structures of tens of water molecules, we report infrared spectra of moderately size (n)-selected phenol-(H2O)n (approximately 10 < or = n < or = approximately 50), which have essentially the same network structures as (H2O)(n+1). The phenyl group in phenol-(H2O)(n) allows us to apply photoionization-based size selection and infrared-ultraviolet double resonance spectroscopy. The spectra show a clear low-frequency shift of the free OH stretching band with increasing n. Detailed analyses with density functional theory calculations indicate that this shift is accounted for by the hydrogen bond network development from highly strained ones in the small (n < approximately 10) clusters to more relaxed ones in the larger clusters, in addition to the cooperativity of hydrogen bonds.

  3. The Intellectual Structure of Metacognitive Scaffolding in Science Education: A Co-Citation Network Analysis

    ERIC Educational Resources Information Center

    Tang, Kai-Yu; Wang, Chia-Yu; Chang, Hsin-Yi; Chen, Sufen; Lo, Hao-Chang; Tsai, Chin-Chung

    2016-01-01

    The issues of metacognitive scaffolding in science education (MSiSE) have become increasingly popular and important. Differing from previous content reviews, this study proposes a series of quantitative computer-based analyses by integrating document co-citation analysis, social network analysis, and exploratory factor analysis to explore the…

  4. Imaging structural and functional brain networks in temporal lobe epilepsy.

    PubMed

    Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda

    2013-10-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  5. The structural and functional brain networks that support human social networks.

    PubMed

    Noonan, M P; Mars, R B; Sallet, J; Dunbar, R I M; Fellows, L K

    2018-02-20

    Social skills rely on a specific set of cognitive processes, raising the possibility that individual differences in social networks are related to differences in specific brain structural and functional networks. Here, we tested this hypothesis with multimodality neuroimaging. With diffusion MRI (DMRI), we showed that differences in structural integrity of particular white matter (WM) tracts, including cingulum bundle, extreme capsule and arcuate fasciculus were associated with an individual's social network size (SNS). A voxel-based morphology analysis demonstrated correlations between gray matter (GM) volume and SNS in limbic and temporal lobe regions. These structural changes co-occured with functional network differences. As a function of SNS, dorsomedial and dorsolateral prefrontal cortex showed altered resting-state functional connectivity with the default mode network (DMN). Finally, we integrated these three complementary methods, interrogating the relationship between social GM clusters and specific WM and resting-state networks (RSNs). Probabilistic tractography seeded in these GM nodes utilized the SNS-related WM pathways. Further, the spatial and functional overlap between the social GM clusters and the DMN was significantly closer than other control RSNs. These integrative analyses provide convergent evidence of the role of specific circuits in SNS, likely supporting the adaptive behavior necessary for success in extensive social environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  6. Constraints and spandrels of interareal connectomes

    PubMed Central

    Rubinov, Mikail

    2016-01-01

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls. PMID:27924867

  7. Constraints and spandrels of interareal connectomes.

    PubMed

    Rubinov, Mikail

    2016-12-07

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.

  8. Structural and functional social network attributes moderate the association of self-rated health with mental health in midlife and older adults.

    PubMed

    Windsor, Tim D; Rioseco, Pilar; Fiori, Katherine L; Curtis, Rachel G; Booth, Heather

    2016-01-01

    Social relationships are multifaceted, and different social network components can operate via different processes to influence well-being. This study examined associations of social network structure and relationship quality (positive and negative social exchanges) with mental health in midlife and older adults. The focus was on both direct associations of network structure and relationship quality with mental health, and whether these social network attributes moderated the association of self-rated health (SRH) with mental health. Analyses were based on survey data provided by 2001 (Mean age = 65, SD = 8.07) midlife and older adults. We used Latent Class Analysis (LCA) to classify participants into network types based on network structure (partner status, network size, contact frequency, and activity engagement), and used continuous measures of positive and negative social exchanges to operationalize relationship quality. Regression analysis was used to test moderation. LCA revealed network types generally consistent with those reported in previous studies. Participants in more diverse networks reported better mental health than those categorized into a restricted network type after adjustment for age, sex, education, and employment status. Analysis of moderation indicated that those with poorer SRH were less likely to report poorer mental health if they were classified into more diverse networks. A similar moderation effect was also evident for positive exchanges. The findings suggest that both quantity and quality of social relationships can play a role in buffering against the negative implications of physical health decline for mental health.

  9. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    NASA Astrophysics Data System (ADS)

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-03-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.

  10. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  11. Are Student Evaluations of Teaching Effectiveness Valid for Measuring Student Learning Outcomes in Business Related Classes? A Neural Network and Bayesian Analyses

    ERIC Educational Resources Information Center

    Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.

    2012-01-01

    In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…

  12. Relationship Between Large-Scale Functional and Structural Covariance Networks in Idiopathic Generalized Epilepsy

    PubMed Central

    Zhang, Zhiqiang; Mantini, Dante; Xu, Qiang; Wang, Zhengge; Chen, Guanghui; Jiao, Qing; Zang, Yu-Feng

    2013-01-01

    Abstract The human brain can be modeled as a network, whose structure can be revealed by either anatomical or functional connectivity analyses. Little is known, so far, about the topological features of the large-scale interregional functional covariance network (FCN) in the brain. Further, the relationship between the FCN and the structural covariance network (SCN) has not been characterized yet, in the intact as well as in the diseased brain. Here, we studied 59 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 59 healthy controls. We estimated the FCN and the SCN by measuring amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV), respectively, and then we conducted graph theoretical analyses. Our ALFF-based FCN and GMV-based results revealed that the normal human brain is characterized by specific topological properties such as small worldness and highly-connected hub regions. The patients had an altered overall topology compared to the controls, suggesting that epilepsy is primarily a disorder of the cerebral network organization. Further, the patients had altered nodal characteristics in the subcortical and medial temporal regions and default-mode regions, for both the FCN and SCN. Importantly, the correspondence between the FCN and SCN was significantly larger in patients than in the controls. These results support the hypothesis that the SCN reflects shared long-term trophic mechanisms within functionally synchronous systems. They can also provide crucial information for understanding the interactions between the whole-brain network organization and pathology in generalized tonic–clonic seizures. PMID:23510272

  13. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications

    PubMed Central

    Tadić, Bosiljka; Andjelković, Miroslav; Boshkoska, Biljana Mileva; Levnajić, Zoran

    2016-01-01

    Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener’s concentration to the story, confirmed by self-rating, and closeness to the speaker’s brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener’s group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener’s rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli. PMID:27880802

  14. Total MRI Small Vessel Disease Burden Correlates with Cognitive Performance, Cortical Atrophy, and Network Measures in a Memory Clinic Population.

    PubMed

    Banerjee, Gargi; Jang, Hyemin; Kim, Hee Jin; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Na, Duk L; Seo, Sang Won; Werring, David John

    2018-01-01

    Recent evidence suggests that combining individual imaging markers of cerebral small vessel disease (SVD) may more accurately reflect its overall burden and better correlate with clinical measures. We wished to establish the clinical relevance of the total SVD score in a memory clinic population by investigating the association with SVD score and cognitive performance, cortical atrophy, and structural network measures, after adjusting for amyloid-β burden. We included 243 patients with amnestic mild cognitive impairment (MCI), Alzheimer's disease dementia, subcortical vascular MCI, or subcortical vascular dementia. All underwent MR and [11C] PiB-PET scanning and had standardized cognitive testing. Multiple linear regression was used to evaluate the relationships between SVD score and cognition, cortical thickness, and structural network measures. Path analyses were performed to evaluate whether network disruption mediates the effects of SVD score on cortical thickness and cognition. Total SVD score was associated with the performance of frontal (β - 4.31, SE 2.09, p = 0.040) and visuospatial (β - 0.95, SE 0.44, p = 0.032) tasks, and with reduced cortical thickness in widespread brain regions. Total SVD score was negatively correlated with nodal efficiency, as well as changes in brain network organization, with evidence of reduced integration and increasing segregation. Path analyses showed that the associations between SVD score and frontal and visuospatial scores were partially mediated by decreases in their corresponding nodal efficiency and cortical thickness. Total SVD burden has clinical relevance in a memory clinic population and correlates with cognition, and cortical atrophy, as well as structural network disruption.

  15. Perfusion network shift during seizures in medial temporal lobe epilepsy.

    PubMed

    Sequeira, Karen M; Tabesh, Ali; Sainju, Rup K; DeSantis, Stacia M; Naselaris, Thomas; Joseph, Jane E; Ahlman, Mark A; Spicer, Kenneth M; Glazier, Steve S; Edwards, Jonathan C; Bonilha, Leonardo

    2013-01-01

    Medial temporal lobe epilepsy (MTLE) is associated with limbic atrophy involving the hippocampus, peri-hippocampal and extra-temporal structures. While MTLE is related to static structural limbic compromise, it is unknown whether the limbic system undergoes dynamic regional perfusion network alterations during seizures. In this study, we aimed to investigate state specific (i.e. ictal versus interictal) perfusional limbic networks in patients with MTLE. We studied clinical information and single photon emission computed tomography (SPECT) images obtained with intravenous infusion of the radioactive tracer Technetium- Tc 99 m Hexamethylpropyleneamine Oxime (Tc-99 m HMPAO) during ictal and interictal state confirmed by video-electroencephalography (VEEG) in 20 patients with unilateral MTLE (12 left and 8 right MTLE). Pair-wise voxel-based analyses were used to define global changes in tracer between states. Regional tracer uptake was calculated and state specific adjacency matrices were constructed based on regional correlation of uptake across subjects. Graph theoretical measures were applied to investigate global and regional state specific network reconfigurations. A significant increase in tracer uptake was observed during the ictal state in the medial temporal region, cerebellum, thalamus, insula and putamen. From network analyses, we observed a relative decreased correlation between the epileptogenic temporal region and remaining cortex during the interictal state, followed by a surge of cross-correlated perfusion in epileptogenic temporal-limbic structures during a seizure, corresponding to local network integration. These results suggest that MTLE is associated with a state specific perfusion and possibly functional organization consisting of a surge of limbic cross-correlated tracer uptake during a seizure, with a relative disconnection of the epileptogenic temporal lobe in the interictal period. This pattern of state specific shift in metabolic networks in MTLE may improve the understanding of epileptogenesis and neuropsychological impairments associated with MTLE.

  16. On the role of words in the network structure of texts: Application to authorship attribution

    NASA Astrophysics Data System (ADS)

    Akimushkin, Camilo; Amancio, Diego R.; Oliveira, Osvaldo N.

    2018-04-01

    Well-established automatic analyses of texts mainly consider frequencies of linguistic units, e.g. letters, words, and bigrams. In a recent, alternative approach, medium and large-scale text structures were used in opposition to the belief that text structure is dominated by the language features. In this paper, we introduce a generalized similarity measure to compare texts which accounts for both the network structure of texts and the role of individual words in the networks. The similarity measure is used for authorship attribution of three collections of books, each composed of 8 authors and 10 books per author. High accuracy rates were obtained with typical values between 90% and 98 . 75%, much higher than with the traditional term frequency-inverse document frequency (tf-idf) approach for the same collections. These accuracies are also higher than those obtained solely with the topology of networks. We conclude that the different properties of specific words on the macroscopic scale structure of a whole text are as relevant as their frequency of appearance; conversely, considering the identity of nodes brings further knowledge about a piece of text represented as a network.

  17. Topological data analysis of contagion maps for examining spreading processes on networks.

    PubMed

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  18. Topological data analysis of contagion maps for examining spreading processes on networks

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  19. Compilation and network analyses of cambrian food webs.

    PubMed

    Dunne, Jennifer A; Williams, Richard J; Martinez, Neo D; Wood, Rachel A; Erwin, Douglas H

    2008-04-29

    A rich body of empirically grounded theory has developed about food webs--the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple "niche model," which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences.

  20. Sociometric network structure and its association with methamphetamine use norms among homeless youth.

    PubMed

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-07-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  2. The Impact of Drainage Network Structure on Flooding in a Small Urban Watershed in Metropolitan Baltimore, MD

    NASA Astrophysics Data System (ADS)

    Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.

    2006-12-01

    The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.

  3. Integration of Structural Dynamics and Molecular Evolution via Protein Interaction Networks: A New Era in Genomic Medicine

    PubMed Central

    Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu

    2016-01-01

    Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487

  4. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    PubMed Central

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  5. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    PubMed

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  6. Imaging structural and functional brain networks in temporal lobe epilepsy

    PubMed Central

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  7. Rich club network analysis shows distinct patterns of disruption in frontotemporal dementia and Alzheimer’s disease

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Villalon-Reina, Julio E.; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Joshi, Aditi; Barsuglia, Joseph; Thompson, Paul M.

    2015-01-01

    Diffusion imaging and brain connectivity analyses can reveal the underlying organizational patterns of the human brain, described as complex networks of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-weighted images from 64 participants – 15 patients with behavioral variant frontotemporal (bvFTD) dementia, 19 with early-onset Alzheimer’s disease (EOAD), and 30 healthy elderly controls. Based on whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We examined how bvFTD and EOAD disrupt the weighted ‘rich club’ – a network property where high-degree network nodes are more interconnected than expected by chance. bvFTD disrupts both the nodal and global organization of the network in both low- and high-degree regions of the brain. EOAD targets the global connectivity of the brain, mainly affecting the fiber density of high-degree (highly connected) regions that form the rich club network. These rich club analyses suggest distinct patterns of disruptions among different forms of dementia. PMID:26161050

  8. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research

    PubMed Central

    Wiggins, Benjamin L.; Goodreau, Steven M.

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. PMID:26086650

  9. Unfolding stabilities of two structurally similar proteins as probed by temperature-induced and force-induced molecular dynamics simulations.

    PubMed

    Gorai, Biswajit; Prabhavadhni, Arasu; Sivaraman, Thirunavukkarasu

    2015-09-01

    Unfolding stabilities of two homologous proteins, cardiotoxin III and short-neurotoxin (SNTX) belonging to three-finger toxin (TFT) superfamily, have been probed by means of molecular dynamics (MD) simulations. Combined analysis of data obtained from steered MD and all-atom MD simulations at various temperatures in near physiological conditions on the proteins suggested that overall structural stabilities of the two proteins were different from each other and the MD results are consistent with experimental data of the proteins reported in the literature. Rationalization for the differential structural stabilities of the structurally similar proteins has been chiefly attributed to the differences in the structural contacts between C- and N-termini regions in their three-dimensional structures, and the findings endorse the 'CN network' hypothesis proposed to qualitatively analyse the thermodynamic stabilities of proteins belonging to TFT superfamily of snake venoms. Moreover, the 'CN network' hypothesis has been revisited and the present study suggested that 'CN network' should be accounted in terms of 'structural contacts' and 'structural strengths' in order to precisely describe order of structural stabilities of TFTs.

  10. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  11. Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation.

    PubMed

    Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine

    2005-10-21

    We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.

  12. Network resilience in the face of health system reform.

    PubMed

    Sheaff, Rod; Benson, Lawrence; Farbus, Lou; Schofield, Jill; Mannion, Russell; Reeves, David

    2010-03-01

    Many health systems now use networks as governance structures. Network 'macroculture' is the complex of artefacts, espoused values and unarticulated assumptions through which network members coordinate network activities. Knowledge of how network macroculture during 2006-2008 develops is therefore of value for understanding how health networks operate, how health system reforms affect them, and how networks function (and can be used) as governance structures. To examine how quasi-market reforms impact upon health networks' macrocultures we systematically compared longitudinal case studies of these impacts across two care networks, a programme network and a user-experience network in the English NHS. We conducted interviews with key informants, focus groups, non-participant observations of meetings and analyses of key documents. We found that in these networks, artefacts adapted to health system reform faster than espoused values did, and the latter adapted faster than basic underlying assumptions. These findings contribute to knowledge by providing empirical support for theories which hold that changes in networks' core practical activity are what stimulate changes in other aspects of network macroculture. The most powerful way of using network macroculture to manage the formation and operation of health networks therefore appears to be by focusing managerial activity on the ways in which networks produce their core artefacts. 2009 Elsevier Ltd. All rights reserved.

  13. Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation.

    PubMed

    Detto, Matteo; Muller-Landau, Helene C; Mascaro, Joseph; Asner, Gregory P

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30-600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20-300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling.

  14. Early grey matter changes in structural covariance networks in Huntington's disease.

    PubMed

    Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C

    2016-01-01

    Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n  = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p  < 0.001, in pre-HD p  = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p  < 0.001, in pre-HD p  = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p  = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.

  15. Facebook for Supervision? Research Education Shaped by the Structural Properties of a Social Media Space

    ERIC Educational Resources Information Center

    Pimmer, Christoph; Chipps, Jennifer; Brysiewicz, Petra; Walters, Fiona; Linxen, Sebastian; Gröhbiel, Urs

    2017-01-01

    This study analyses the use of a group space on the social networking site Facebook as a way to facilitate research supervision for teams of learners. Borrowing Lee's framework for research supervision, the goal was to understand how supervision and learning was achieved in, and shaped by, the properties of a social networking space. For this…

  16. Roman and early-medieval routes in north-western Europe: modelling national and international frequent-travel zones in the Netherlands using a multi-proxy approach.

    NASA Astrophysics Data System (ADS)

    van Lanen, Rowin J.; Jansma, Esther

    2016-04-01

    The end of the Roman period in many parts of north-western Europe coincided with severe population decline and collapsing trade routes. To what extent the long-distance transport routes changed from Roman to early-medieval periods and what their exact nature was, is generally unknown. Only few historical sources are available for this period, and archaeological records complex. Traditionally, research on the long-distance exchange of goods therefore generally has focussed on the spatial analyses of archaeologically recognizable goods (e.g. jewellery, religious artefacts). Although these endeavours greatly increase our understanding of long-distance trade networks, they probably in itself do not represent the full spectrum of common exchange networks and transport routes. By using a dendroarchaeological approach we were able to analyse long-distance transport routes of imported timber in the Roman and early-medieval Netherlands. By combining the provenance of exogenous timbers with data on modelled Roman and early-medieval route networks, we were able to reconstruct: (a) Roman and early-medieval trade networks in structural timbers, (b) changing transport routes in structural timbers and (c) model spatially shifting frequent-travel zones in the research area.

  17. Managing cancer care through service delivery networks: The role of professional collaboration in two European cancer networks.

    PubMed

    Prades, Joan; Morando, Verdiana; Tozzi, Valeria D; Verhoeven, Didier; Germà, Jose R; Borras, Josep M

    2017-01-01

    Background The study examines two meso-strategic cancer networks, exploring to what extent collaboration can strengthen or hamper network effectiveness. Unlike macro-strategic networks, meso-strategic networks have no hierarchical governance structures nor are they institutionalised within healthcare services' delivery systems. This study aims to analyse the models of professional cooperation and the tools developed for managing clinical practice within two meso-strategic, European cancer networks. Methods Multiple case study design based on the comparative analysis of two cancer networks: Iridium, in Antwerp, Belgium and the Institut Català d'Oncologia in Catalonia, Spain. The case studies applied mixed methods, with qualitative research based on semi-structured interviews ( n = 35) together with case-site observation and material collection. Results The analysis identified four levels of collaborative intensity within medical specialties as well as in multidisciplinary settings, which became both platforms for crosscutting clinical work between hubs' experts and local care teams and the levers for network-based tools development. The organisation of clinical practice relied on professional-based cooperative processes and tiers, lacking vertical integration mechanisms. Conclusions The intensity of professional linkages largely shaped the potential of meso-strategic cancer networks to influence clinical practice organisation. Conversely, the introduction of managerial techniques or network governance structures, without introducing vertical hierarchies, was found to be critical solutions.

  18. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-09-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  19. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-04-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  20. System data communication structures for active-control transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems.

  1. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting-State Functional MRI

    DTIC Science & Technology

    by the principal investigators are being mined for ASD relevant biomarkers. Structural and (constrained) functional meta-analyses of previously...ASD and typically developing (TD) individuals. These regions-of-interest will be extended through additional functional meta-analyses, network models will be created, and these models will be applied to primary ASD data .

  2. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  3. Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks

    PubMed Central

    Xiao, Min; Ge, Haitao; Khundrakpam, Budhachandra S.; Xu, Junhai; Bezgin, Gleb; Leng, Yuan; Zhao, Lu; Tang, Yuchun; Ge, Xinting; Jeon, Seun; Xu, Wenjian; Evans, Alan C.; Liu, Shuwei

    2016-01-01

    Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with diffusion tensor imaging deterministic tractography was modeled as a structural network comprising 90 nodes defined by the automated anatomical labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior. PMID:27777556

  4. Ontology- and graph-based similarity assessment in biological networks.

    PubMed

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco

    2010-10-15

    A standard systems-based approach to biomarker and drug target discovery consists of placing putative biomarkers in the context of a network of biological interactions, followed by different 'guilt-by-association' analyses. The latter is typically done based on network structural features. Here, an alternative analysis approach in which the networks are analyzed on a 'semantic similarity' space is reported. Such information is extracted from ontology-based functional annotations. We present SimTrek, a Cytoscape plugin for ontology-based similarity assessment in biological networks. http://rosalind.infj.ulst.ac.uk/SimTrek.html francisco.azuaje@crp-sante.lu Supplementary data are available at Bioinformatics online.

  5. Network and Atomistic Simulations Unveil the Structural Determinants of Mutations Linked to Retinal Diseases

    PubMed Central

    Mariani, Simona; Dell'Orco, Daniele; Felline, Angelo; Raimondi, Francesco; Fanelli, Francesca

    2013-01-01

    A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEγ binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions. PMID:24009494

  6. Network collaboration of organisations for homeless individuals in the Montreal region

    PubMed Central

    Fleury, Marie-Josée; Grenier, Guy; Lesage, Alain; Ma, Nan; Ngui, André Ngamini

    2014-01-01

    Introduction We know little about the intensity and determinants of interorganisational collaboration within the homeless network. This study describes the characteristics and relationships (along with the variables predicting their degree of interorganisational collaboration) of 68 organisations of such a network in Montreal (Quebec, Canada). Theory and methods Data were collected primarily through a self-administered questionnaire. Descriptive analyses were conducted followed by social network and multivariate analyses. Results The Montreal homeless network has a high density (50.5%) and a decentralised structure and maintains a mostly informal collaboration with the public and cross-sectorial sectors. The network density showed more frequent contacts among four types of organisations which could point to the existence of cliques. Four variables predicted interorganisational collaboration: organisation type, number of services offered, volume of referrals and satisfaction with the relationships with public organisations. Conclusions and discussion The Montreal homeless network seems adequate to address non-complex homelessness problems. Considering, however, that most homeless individuals present chronic and complex profiles, it appears necessary to have a more formal and better integrated network of homeless organisations, particularly in the health and social service sectors, in order to improve services. PMID:24520216

  7. The evolution of risk and bailout strategy in banking systems

    NASA Astrophysics Data System (ADS)

    De Caux, Robert; McGroarty, Frank; Brede, Markus

    2017-02-01

    In this paper we analyse the long-term costs and benefits of bailout strategies in models of networked banking systems. Unlike much of the current literature on financial contagion that focuses on systemic risk at one point in time, we consider adaptive banks that adjust risk taking in response to internal system dynamics and regulatory intervention, allowing us to analyse the potentially crucial moral hazard aspect associated with frequent bailouts. We demonstrate that whereas bailout generally serves as an effective tool to limit the size of bankruptcy cascades in the short term, inappropriate intervention strategies can encourage risk-taking and thus be inefficient and detrimental to long term system stability. We analyse points of long-term optimal bailout and discuss their dependence on the structure of the banking network. In the second part of the paper, we demonstrate that bailout efficiency can be improved by taking into account information about the topology of and risk allocation on the banking network, and demonstrate that finely tuned intervention strategies aimed at bailing out banks in configurations with some degree of anti-correlated risk have superior performance. These results demonstrate that a suitable intervention policy may be a useful tool for driving the banking system towards a more robust structure.

  8. Integration of structural dynamics and molecular evolution via protein interaction networks: a new era in genomic medicine.

    PubMed

    Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu

    2015-12-01

    Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Analysis of integrated healthcare networks' performance: a contingency-strategic management perspective.

    PubMed

    Lin, B Y; Wan, T T

    1999-12-01

    Few empirical analyses have been done in the organizational researches of integrated healthcare networks (IHNs) or integrated healthcare delivery systems. Using a contingency derived contact-process-performance model, this study attempts to explore the relationships among an IHN's strategic direction, structural design, and performance. A cross-sectional analysis of 100 IHNs suggests that certain contextual factors such as market competition and network age and tax status have statistically significant effects on the implementation of an IHN's service differentiation strategy, which addresses coordination and control in the market. An IHN's service differentiation strategy is positively related to its integrated structural design, which is characterized as integration of administration, patient care, and information system across different settings. However, no evidence supports that the development of integrated structural design may benefit an IHN's performance in terms of clinical efficiency and financial viability.

  10. A network analysis of the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang

    2009-07-01

    In many practical important cases, a massive dataset can be represented as a very large network with certain attributes associated with its vertices and edges. Stock markets generate huge amounts of data, which can be use for constructing the network reflecting the market’s behavior. In this paper, we use a threshold method to construct China’s stock correlation network and then study the network’s structural properties and topological stability. We conduct a statistical analysis of this network and show that it follows a power-law model. We also detect components, cliques and independent sets in this network. These analyses allows one to apply a new data mining technique of classifying financial instruments based on stock price data, which provides a deeper insight into the internal structure of the stock market. Moreover, we test the topological stability of this network and find that it displays a topological robustness against random vertex failures, but it is also fragile to intentional attacks. Such a network stability property would be also useful for portfolio investment and risk management.

  11. Association, roost use and simulated disruption of Myotis septentrionalis maternity colonies

    USGS Publications Warehouse

    Silvis, Alexander; Ford, W. Mark; Britzke, Eric R.; Johnson, Joshua B.

    2014-01-01

    How wildlife social and resource networks are distributed on the landscape and how animals respond to resource loss are important aspects of behavioral ecology. For bats, understanding these responses may improve conservation efforts and provide insights into adaptations to environmental conditions. We tracked maternity colonies of northern bats (Myotis septentrionalis) at Fort Knox, Kentucky, USA to evaluate their social and resource networks and space use. Roost and social network structure differed between maternity colonies. Overall roost availability did not appear to be strongly related to network characteristics or space use. In simulations for our two largest networks, roost removal was related linearly to network fragmentation; despite this, networks were relatively robust, requiring removal of >20% of roosts to cause network fragmentation. Results from our analyses indicate that northern bat behavior and space use may differ among colonies and potentially across the maternity season. Simulation results suggest that colony social structure is robust to fragmentation caused by random loss of small numbers of roosts. Flexible social dynamics and tolerance of roost loss may be adaptive strategies for coping with ephemeral conditions in dynamic forest habitats.

  12. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models

    PubMed Central

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-01-01

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352

  13. The Analysis of Duocentric Social Networks: A Primer.

    PubMed

    Kennedy, David P; Jackson, Grace L; Green, Harold D; Bradbury, Thomas N; Karney, Benjamin R

    2015-02-01

    Marriages and other intimate partnerships are facilitated or constrained by the social networks within which they are embedded. To date, methods used to assess the social networks of couples have been limited to global ratings of social network characteristics or network data collected from each partner separately. In the current article, the authors offer new tools for expanding on the existing literature by describing methods of collecting and analyzing duocentric social networks, that is, the combined social networks of couples. They provide an overview of the key considerations for measuring duocentric networks, such as how and why to combine separate network interviews with partners into one shared duocentric network, the number of network members to assess, and the implications of different network operationalizations. They illustrate these considerations with analyses of social network data collected from 57 low-income married couples, presenting visualizations and quantitative measures of network composition and structure.

  14. Influence maximization in complex networks through optimal percolation

    NASA Astrophysics Data System (ADS)

    Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)

  15. Complex networks untangle competitive advantage in Australian football

    NASA Astrophysics Data System (ADS)

    Braham, Calum; Small, Michael

    2018-05-01

    We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.

  16. Complex networks untangle competitive advantage in Australian football.

    PubMed

    Braham, Calum; Small, Michael

    2018-05-01

    We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R 2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.

  17. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    PubMed

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  18. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.

  19. Decay of interspecific avian flock networks along a disturbance gradient in Amazonia.

    PubMed

    Mokross, Karl; Ryder, Thomas B; Côrtes, Marina Corrêa; Wolfe, Jared D; Stouffer, Philip C

    2014-02-07

    Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.

  20. Heterarchies: Reconciling Networks and Hierarchies.

    PubMed

    Cumming, Graeme S

    2016-08-01

    Social-ecological systems research suffers from a disconnect between hierarchical (top-down or bottom-up) and network (peer-to-peer) analyses. The concept of the heterarchy unifies these perspectives in a single framework. Here, I review the history and application of 'heterarchy' in neuroscience, ecology, archaeology, multiagent control systems, business and organisational studies, and politics. Recognising complex system architecture as a continuum along vertical and lateral axes ('flat versus hierarchical' and 'individual versus networked') suggests four basic types of heterarchy: reticulated, polycentric, pyramidal, and individualistic. Each has different implications for system functioning and resilience. Systems can also shift predictably and abruptly between architectures. Heterarchies suggest new ways of contextualising and generalising from case studies and new methods for analysing complex structure-function relations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Structural vulnerability of the French swine industry trade network to the spread of infectious diseases.

    PubMed

    Rautureau, S; Dufour, B; Durand, B

    2012-07-01

    The networks generated by live animal movements are the principal vector for the propagation of infectious agents between farms, and their topology strongly affects how fast a disease may spread. The structural characteristics of networks may thus provide indicators of network vulnerability to the spread of infectious disease. This study applied social network analysis methods to describe the French swine trade network. Initial analysis involved calculating several parameters to characterize networks and then identifying high-risk subgroups of holdings for different time scales. Holding-specific centrality measurements ('degree', 'betweenness' and 'ingoing infection chain'), which summarize the place and the role of holdings in the network, were compared according to the production type. In addition, network components and communities, areas where connectedness is particularly high and could influence the speed and the extent of a disease, were identified and analysed. Dealer holdings stood out because of their high centrality values suggesting that these holdings may control the flow of animals in part of the network. Herds with growing units had higher values for degree and betweenness centrality, representing central positions for both spreading and receiving disease, whereas herds with finishing units had higher values for in-degree and ingoing infection chain centrality values and appeared more vulnerable with many contacts through live animal movements and thus at potentially higher risk for introduction of contagious diseases. This reflects the dynamics of the swine trade with downward movements along the production chain. But, the significant heterogeneity of farms with several production units did not reveal any particular type of production for targeting disease surveillance or control. Besides, no giant strong connected component was observed, the network being rather organized according to communities of small or medium size (<20% of network size). Because of this fragmentation, the swine trade network appeared less structurally vulnerable than ruminant trade networks. This fragmentation is explained by the hierarchical structure, which thus limits the structural vulnerability of the global trade network. However, inside communities, the hierarchical structure of the swine production system would favour the spread of an infectious agent (especially if introduced in breeding herds).

  2. Associations of a social network typology with physical and mental health risks among older adults in South Korea.

    PubMed

    Park, N S; Jang, Y; Lee, B S; Chiriboga, D A; Chang, S; Kim, S Y

    2018-05-01

    The objectives of this study were to (1) develop an empirical typology of social networks in older Koreans; and (2) examine its effect on physical and mental health. A sample of 6900 community-dwelling older adults in South Korea was drawn from the 2014 Korean National Elderly Survey. Latent profile analysis (LPA) was conducted to derive social network types using eight common social network characteristics (marital status, living arrangement, the number and frequency of contact with close family/relatives, the number and frequency of contact with close friends, frequency of participation in social activities, and frequency of having visitors at home). The identified typologies were then regressed on self-rated health and depressive symptoms to explore the health risks posed by the group membership. The LPA identified a model with five types of social network as being most optimal (BIC = 153,848.34, entropy = .90). The groups were named diverse/family (enriched networks with more engagement with family), diverse/friend (enriched networks with more engagement with friends), friend-focused (high engagement with friends), distant (structurally disengaged), and restricted (structurally engaged but disengaged in family/friends networks). A series of regression analyses showed that membership in the restricted type was associated with more health and mental health risks than all types of social networks except the distant type. Findings demonstrate the importance of family and friends as a source of social network and call attention to not only structural but also non-structural aspects of social isolation. Findings and implications are discussed in cultural contexts.

  3. Money circulation networks reveal emerging geographical communities

    NASA Astrophysics Data System (ADS)

    Brockmann, D.; Theis, F.; David, V.

    2008-03-01

    Geographical communities and their boundaries are key determinants of various spatially extended dynamical phenomena. Examples are migration dynamics of species, the spread of infectious diseases, bioinvasive processes, and the spatial evolution of language. We address the question to what extend multiscale human transportation networks encode geographical community structures, how they differ from geopolitical classifications, whether they are spatially coherent, and analyse their structure as a function of length scale. Our analysis is based on a proxy network for human transportation obtained from the geographic circulation of more than 10 million dollar bills in the United States recorded at the bill tracking website www.wheresgeorge.com. The data extends that of a previous study (Brockmann et al., Nature 2006) on the discovery of scaling laws of human travel by an order of magnitude and permits an approach to multiscale human transportation from a network perspective.

  4. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern.

    PubMed

    Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun

    2018-05-04

    Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.

  5. Infectious disease transmission and contact networks in wildlife and livestock.

    PubMed

    Craft, Meggan E

    2015-05-26

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Infectious disease transmission and contact networks in wildlife and livestock

    PubMed Central

    Craft, Meggan E.

    2015-01-01

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. PMID:25870393

  7. Syntheses, structures and photoluminescence properties of three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) based on a pyridine N-oxide bridging ligand

    NASA Astrophysics Data System (ADS)

    Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin

    2018-06-01

    Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.

  8. How can social network analysis contribute to social behavior research in applied ethology?

    PubMed

    Makagon, Maja M; McCowan, Brenda; Mench, Joy A

    2012-05-01

    Social network analysis is increasingly used by behavioral ecologists and primatologists to describe the patterns and quality of interactions among individuals. We provide an overview of this methodology, with examples illustrating how it can be used to study social behavior in applied contexts. Like most kinds of social interaction analyses, social network analysis provides information about direct relationships (e.g. dominant-subordinate relationships). However, it also generates a more global model of social organization that determines how individual patterns of social interaction relate to individual and group characteristics. A particular strength of this approach is that it provides standardized mathematical methods for calculating metrics of sociality across levels of social organization, from the population and group levels to the individual level. At the group level these metrics can be used to track changes in social network structures over time, evaluate the effect of the environment on social network structure, or compare social structures across groups, populations or species. At the individual level, the metrics allow quantification of the heterogeneity of social experience within groups and identification of individuals who may play especially important roles in maintaining social stability or information flow throughout the network.

  9. Automated analysis of Physarum network structure and dynamics

    NASA Astrophysics Data System (ADS)

    Fricker, Mark D.; Akita, Dai; Heaton, Luke LM; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-06-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015.

  10. A systems biology approach toward understanding seed composition in soybean.

    PubMed

    Li, Ling; Hur, Manhoi; Lee, Joon-Yong; Zhou, Wenxu; Song, Zhihong; Ransom, Nick; Demirkale, Cumhur Yusuf; Nettleton, Dan; Westgate, Mark; Arendsee, Zebulun; Iyer, Vidya; Shanks, Jackie; Nikolau, Basil; Wurtele, Eve Syrkin

    2015-01-01

    The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.

  11. Structural Connectivity Relates to Perinatal Factors and Functional Impairment at 7 Years in Children Born Very Preterm

    PubMed Central

    Thompson, Deanne K.; Chen, Jian; Beare, Richard; Adamson, Christopher L.; Ellis, Rachel; Ahmadzai, Zohra M.; Kelly, Claire E.; Lee, Katherine J.; Zalesky, Andrew; Yang, Joseph Y.M.; Hunt, Rodney W.; Cheong, Jeanie L.Y.; Inder, Terrie E.; Doyle, Lex W.; Seal, Marc L.; Anderson, Peter J.

    2016-01-01

    Objective To use structural connectivity to (1) compare brain networks between typically and atypically developing (very preterm) children, (2) explore associations between potential perinatal developmental disturbances and brain networks, and (3) describe associations between brain networks and functional impairments in very preterm children. Methods 26 full-term and 107 very preterm 7-year-old children (born <30 weeks’ gestational age and/or <1250 g) underwent T1- and diffusion-weighted imaging. Global white matter fiber networks were produced using 80 cortical and subcortical nodes, and edges created using constrained spherical deconvolution-based tractography. Global graph theory metrics were analysed, and regional networks were identified using network-based statistics. Cognitive and motor function were assessed at 7 years of age. Results Compared with full-term children, very preterm children had reduced density, lower global efficiency and higher local efficiency. Those with lower gestational age at birth, infection or higher neonatal brain abnormality score had reduced connectivity. Reduced connectivity within a widespread network was predictive of impaired IQ, while reduced connectivity within the right parietal and temporal lobes was associated with motor impairment in very preterm children. Conclusions This study utilized an innovative structural connectivity pipeline to reveal that children born very preterm have less connected and less complex brain networks compared with typically developing term-born children. Adverse perinatal factors led to disturbances in white matter connectivity, which in turn are associated with impaired functional outcomes, highlighting novel structure-function relationships. PMID:27046108

  12. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction.

    PubMed

    Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R

    2014-08-01

    The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

  13. Detecting hierarchical levels of connectivity in a population of Acacia tortilis at the northern edge of the species' global distribution: Combining classical population genetics and network analyses.

    PubMed

    Rodger, Yael S; Greenbaum, Gili; Silver, Micha; Bar-David, Shirli; Winters, Gidon

    2018-01-01

    Genetic diversity and structure of populations at the edge of the species' spatial distribution are important for potential adaptation to environmental changes and consequently, for the long-term survival of the species. Here, we combined classical population genetic methods with newly developed network analyses to gain complementary insights into the genetic structure and diversity of Acacia tortilis, a keystone desert tree, at the northern edge of its global distribution, where the population is under threat from climatic, ecological, and anthropogenic changes. We sampled A. tortilis from 14 sites along the Dead Sea region and the Arava Valley in Israel and in Jordan. In addition, we obtained samples from Egypt and Sudan, the hypothesized origin of the species. Samples from all sites were genotyped using six polymorphic microsatellite loci.Our results indicate a significant genetic structure in A. tortilis along the Arava Valley. This was detected at different hierarchical levels-from the basic unit of the subpopulation, corresponding to groups of trees within ephemeral rivers (wadis), to groups of subpopulations (communities) that are genetically more connected relative to others. The latter structure mostly corresponds to the partition of the major drainage basins in the area. Network analyses, combined with classical methods, allowed for the identification of key A. tortilis subpopulations in this region, characterized by their relatively high level of genetic diversity and centrality in maintaining gene flow in the population. Characterizing such key subpopulations may enable conservation managers to focus their efforts on certain subpopulations that might be particularly important for the population's long-term persistence, thus contributing to species conservation within its peripheral range.

  14. Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    PubMed Central

    Baskerville, Edward B.; Dobson, Andy P.; Bedford, Trevor; Allesina, Stefano; Anderson, T. Michael; Pascual, Mercedes

    2011-01-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  15. The association between social network relationships and depressive symptoms among older Americans: what matters most?

    PubMed

    Litwin, Howard

    2011-08-01

    Although social network relationships are linked to mental health in late life, it is still unclear whether it is the structure of social networks or their perceived quality that matters. The current study regressed a dichotomous 8-item version of the Center for Epidemiological Studies Depression Scale (CESD-8) score on measures of social network relationships among Americans, aged 65-85 years, from the first wave of the National Social Life, Health and Aging Project. The network indicators included a structural variable - social network type - and a series of relationship quality indicators: perceived positive and negative ties with family, friends and spouse/ partner. Multivariate logistic regression analyses controlled for age, gender, education, income, race/ethnicity, religious affiliation, functional health and physical health. The perceived social network quality variables were unrelated to the presence of a high level of depressive symptoms, but social network type maintained an association with this mental health outcome even after controlling for confounders. Respondents embedded in resourceful social network types in terms of social capital--"diverse," "friend" and "congregant" networks--reported less presence of depressive symptoms, to varying degrees. The results show that the structure of the network seems to matter more than the perceived quality of the ties as an indicator of depressive symptoms. Moreover, the composite network type variable stands out in capturing the differences in mental state. The construct of network type should be incorporated in mental health screening among older people who reside in the community. One's social network type can be an important initial indicator that one is at risk.

  16. Signal Correlations in Ecological Niches Can Shape the Organization and Evolution of Bacterial Gene Regulatory Networks

    PubMed Central

    Dufour, Yann S.; Donohue, Timothy J.

    2015-01-01

    Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950

  17. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.

    PubMed

    de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2017-01-01

    In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2  = 0.070) and p = 0.001 (β = - 0.264, η p 2  = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.

  18. How mutation alters the evolutionary dynamics of cooperation on networks

    NASA Astrophysics Data System (ADS)

    Ichinose, Genki; Satotani, Yoshiki; Sayama, Hiroki

    2018-05-01

    Cooperation is ubiquitous at every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. A recently proposed numerical metric, average gradient of selection (AGoS), a useful tool for interpreting and visualizing evolutionary dynamics on networks, allows simulation results to be visualized on a one-dimensional phase space. However, stochastic mutation of strategies was not considered in the analysis of AGoS. Here we extend AGoS so that it can analyze the evolution of cooperation where mutation may alter strategies of individuals on networks. We show that our extended AGoS correctly visualizes the final states of cooperation with mutation in the individual-based simulations. Our analyses revealed that mutation always has a negative effect on the evolution of cooperation regardless of the payoff functions, fraction of cooperators, and network structures. Moreover, we found that scale-free networks are the most vulnerable to mutation and thus the dynamics of cooperation are altered from bistability to coexistence on those networks, undergoing an imperfect pitchfork bifurcation.

  19. Phylogeny of metabolic networks: a spectral graph theoretical approach.

    PubMed

    Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony

    2015-10-01

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

  20. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    PubMed

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  1. Using structural equation modeling for network meta-analysis.

    PubMed

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.

  2. Robustness of Oscillatory Behavior in Correlated Networks

    PubMed Central

    Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki

    2015-01-01

    Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574

  3. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.

  5. Impact of censoring on learning Bayesian networks in survival modelling.

    PubMed

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from data can be used to learn from censored survival data in the presence of light censoring (up to 20%) by treating censored cases as event-free. Given intermediate or heavy censoring, the learnt models become tuned to the majority class and would thus require a different approach.

  6. Dissortativity and duplications in oral cancer

    NASA Astrophysics Data System (ADS)

    Shinde, Pramod; Yadav, Alok; Rai, Aparna; Jalan, Sarika

    2015-08-01

    More than 300 000 new cases worldwide are being diagnosed with oral cancer annually. Complexity of oral cancer renders designing drug targets very difficult. We analyse protein-protein interaction network for the normal and oral cancer tissue and detect crucial changes in the structural properties of the networks in terms of the interactions of the hub proteins and the degree-degree correlations. Further analysis of the spectra of both the networks, while exhibiting universal statistical behaviour, manifest distinction in terms of the zero degeneracy, providing insight to the complexity of the underlying system.

  7. SBION: A Program for Analyses of Salt-Bridges from Multiple Structure Files.

    PubMed

    Gupta, Parth Sarthi Sen; Mondal, Sudipta; Mondal, Buddhadev; Islam, Rifat Nawaz Ul; Banerjee, Shyamashree; Bandyopadhyay, Amal K

    2014-01-01

    Salt-bridge and network salt-bridge are specific electrostatic interactions that contribute to the overall stability of proteins. In hierarchical protein folding model, these interactions play crucial role in nucleation process. The advent and growth of protein structure database and its availability in public domain made an urgent need for context dependent rapid analysis of salt-bridges. While these analyses on single protein is cumbersome and time-consuming, batch analyses need efficient software for rapid topological scan of a large number of protein for extracting details on (i) fraction of salt-bridge residues (acidic and basic). (ii) Chain specific intra-molecular salt-bridges, (iii) inter-molecular salt-bridges (protein-protein interactions) in all possible binary combinations (iv) network salt-bridges and (v) secondary structure distribution of salt-bridge residues. To the best of our knowledge, such efficient software is not available in public domain. At this juncture, we have developed a program i.e. SBION which can perform all the above mentioned computations for any number of protein with any number of chain at any given distance of ion-pair. It is highly efficient, fast, error-free and user friendly. Finally we would say that our SBION indeed possesses potential for applications in the field of structural and comparative bioinformatics studies. SBION is freely available for non-commercial/academic institutions on formal request to the corresponding author (akbanerjee@biotech.buruniv.ac.in).

  8. Structure-Based Network Analysis of Activation Mechanisms in the ErbB Family of Receptor Tyrosine Kinases: The Regulatory Spine Residues Are Global Mediators of Structural Stability and Allosteric Interactions

    PubMed Central

    James, Kevin A.; Verkhivker, Gennady M.

    2014-01-01

    The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced “superacceptor” activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD) motif in the catalytic loop and the Asp-Phe-Gly (DFG) motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not limited to the ATP site, and may enhance allosteric cooperativity with the substrate binding region by increasing communication capabilities of mediating residues. PMID:25427151

  9. Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.

    PubMed

    Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios

    2018-04-24

    Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.

  10. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    PubMed

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  11. Structural and functional hyperconnectivity within the sensorimotor system in xenomelia.

    PubMed

    Hänggi, Jürgen; Vitacco, Deborah A; Hilti, Leonie M; Luechinger, Roger; Kraemer, Bernd; Brugger, Peter

    2017-03-01

    Xenomelia is a rare condition characterized by the persistent and compulsive desire for the amputation of one or more physically healthy limbs. We highlight the neurological underpinnings of xenomelia by assessing structural and functional connectivity by means of whole-brain connectome and network analyses of regions previously implicated in empirical research in this condition. We compared structural and functional connectivity between 13 xenomelic men with matched controls using diffusion tensor imaging combined with fiber tractography and resting state functional magnetic resonance imaging. Altered connectivity in xenomelia within the sensorimotor system has been predicted. We found subnetworks showing structural and functional hyperconnectivity in xenomelia compared with controls. These subnetworks were lateralized to the right hemisphere and mainly comprised by nodes belonging to the sensorimotor system. In the connectome analyses, the paracentral lobule, supplementary motor area, postcentral gyrus, basal ganglia, and the cerebellum were hyperconnected to each other, whereas in the xenomelia-specific network analyses, hyperconnected nodes have been found in the superior parietal lobule, primary and secondary somatosensory cortex, premotor cortex, basal ganglia, thalamus, and insula. Our study provides empirical evidence of structural and functional hyperconnectivity within the sensorimotor system including those regions that are core for the reconstruction of a coherent body image. Aberrant connectivity is a common response to focal neurological damage. As exemplified here, it may affect different brain regions differentially. Due to the small sample size, our findings must be interpreted cautiously and future studies are needed to elucidate potential associations between hyperconnectivity and limb disownership reported in xenomelia.

  12. Concepts to Support HRP Integration Using Publications and Modeling

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Lumpkins, S.; Shelhamer, M.

    2014-01-01

    Initial efforts are underway to enhance the Human Research Program (HRP)'s identification and support of potential cross-disciplinary scientific collaborations. To increase the emphasis on integration in HRP's science portfolio management, concepts are being explored through the development of a set of tools. These tools are intended to enable modeling, analysis, and visualization of the state of the human system in the spaceflight environment; HRP's current understanding of that state with an indication of uncertainties; and how that state changes due to HRP programmatic progress and design reference mission definitions. In this talk, we will discuss proof-of-concept work performed using a subset of publications captured in the HRP publications database. The publications were tagged in the database with words representing factors influencing health and performance in spaceflight, as well as with words representing the risks HRP research is reducing. Analysis was performed on the publication tag data to identify relationships between factors and between risks. Network representations were then created as one type of visualization of these relationships. This enables future analyses of the structure of the networks based on results from network theory. Such analyses can provide insights into HRP's current human system knowledge state as informed by the publication data. The network structure analyses can also elucidate potential improvements by identifying network connections to establish or strengthen for maximized information flow. The relationships identified in the publication data were subsequently used as inputs to a model captured in the Systems Modeling Language (SysML), which functions as a repository for relationship information to be gleaned from multiple sources. Example network visualization outputs from a simple SysML model were then also created to compare to the visualizations based on the publication data only. We will also discuss ideas for building upon this proof-of-concept work to further support an integrated approach to human spaceflight risk reduction.

  13. Insights into a spatially embedded social network from a large-scale snowball sample

    NASA Astrophysics Data System (ADS)

    Illenberger, J.; Kowald, M.; Axhausen, K. W.; Nagel, K.

    2011-12-01

    Much research has been conducted to obtain insights into the basic laws governing human travel behaviour. While the traditional travel survey has been for a long time the main source of travel data, recent approaches to use GPS data, mobile phone data, or the circulation of bank notes as a proxy for human travel behaviour are promising. The present study proposes a further source of such proxy-data: the social network. We collect data using an innovative snowball sampling technique to obtain details on the structure of a leisure-contacts network. We analyse the network with respect to its topology, the individuals' characteristics, and its spatial structure. We further show that a multiplication of the functions describing the spatial distribution of leisure contacts and the frequency of physical contacts results in a trip distribution that is consistent with data from the Swiss travel survey.

  14. Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function.

    PubMed

    Lefort-Besnard, Jérémy; Bassett, Danielle S; Smallwood, Jonathan; Margulies, Daniel S; Derntl, Birgit; Gruber, Oliver; Aleman, Andre; Jardri, Renaud; Varoquaux, Gaël; Thirion, Bertrand; Eickhoff, Simon B; Bzdok, Danilo

    2018-02-01

    Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients. © 2017 Wiley Periodicals, Inc.

  15. Cross-border Portfolio Investment Networks and Indicators for Financial Crises

    PubMed Central

    Joseph, Andreas C.; Joseph, Stephan E.; Chen, Guanrong

    2014-01-01

    Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk. PMID:24510060

  16. The Community Structure of the European Network of Interlocking Directorates 2005–2010

    PubMed Central

    Heemskerk, Eelke M.; Daolio, Fabio; Tomassini, Marco

    2013-01-01

    The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer. PMID:23894318

  17. Cross-border Portfolio Investment Networks and Indicators for Financial Crises

    NASA Astrophysics Data System (ADS)

    Joseph, Andreas C.; Joseph, Stephan E.; Chen, Guanrong

    2014-02-01

    Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk.

  18. Cross-border portfolio investment networks and indicators for financial crises.

    PubMed

    Joseph, Andreas C; Joseph, Stephan E; Chen, Guanrong

    2014-02-10

    Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk.

  19. The community structure of the European network of interlocking directorates 2005-2010.

    PubMed

    Heemskerk, Eelke M; Daolio, Fabio; Tomassini, Marco

    2013-01-01

    The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer.

  20. Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei

    2015-09-01

    Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.

  1. A quantitative meta-analysis and review of motor learning in the human brain

    PubMed Central

    Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.

    2013-01-01

    Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819

  2. How plants connect pollination and herbivory networks and their contribution to community stability.

    PubMed

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  3. Evaluating Florida's Medicaid Provider Services Network Demonstration

    PubMed Central

    Paul Duncan, R; Lemak, Christy H; Bruce Vogel, W; Johnson, Christopher E; Hall, Allyson G; Porter, Colleen K

    2008-01-01

    Research Objective To evaluate the design, development, and implementation of Florida's Medicaid provider service network (PSN) demonstration, and the implications of that demonstration for subsequent Medicaid Reform in Florida. Data Sources, Data Collection Organizational analyses were based on archival and enrollment data obtained from Florida's Medicaid program and the South Florida Community Care Network, as well as key informant interviews. Closely related fiscal analyses utilized Medicaid claims data from March 1999 through October 2001 extracted from the Florida Medicaid Management Information System. Study Design The organizational analyses reported here were based on a structured case study research design. Principal Findings Almost every aspect of the development of the new organizational form (PSN) took longer and was more difficult than anticipated. Prior organizational experience with insurance functions proved to be an asset. While fiscal analyses indicated that the program saved the state of Florida a significant amount of money, tracking the precise origin of the savings proved to be challenging. Conclusions By most standards, the PSN program was observed to meet its stated objectives. Based in part on this conclusion, the state chose to extend the use of PSNs within its 2006 Medicaid Reform initiative. PMID:18199192

  4. Revealing hidden insect-fungus interactions; moderately specialized, modular and anti-nested detritivore networks.

    PubMed

    Jacobsen, Rannveig M; Sverdrup-Thygeson, Anne; Kauserud, Håvard; Birkemoe, Tone

    2018-04-11

    Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered from a network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect-fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate. © 2018 The Author(s).

  5. Co-expression networks reveal the tissue-specific regulation of transcription and splicing

    PubMed Central

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D.H.; Jo, Brian; Gao, Chuan; McDowell, Ian C.; Engelhardt, Barbara E.

    2017-01-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. PMID:29021288

  6. Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation

    PubMed Central

    Detto, Matteo; Muller-Landau, Helene C.; Mascaro, Joseph; Asner, Gregory P.

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10–1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30–600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20–300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling. PMID:24204610

  7. Opinion formation and distribution in a bounded-confidence model on various networks

    NASA Astrophysics Data System (ADS)

    Meng, X. Flora; Van Gorder, Robert A.; Porter, Mason A.

    2018-02-01

    In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form. Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both on how one models opinions and on the network structure on which opinions evolve. One model that was created to study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population along with social influence, we study the Deffuant model on various network structures (deterministic synthetic networks, random synthetic networks, and social networks constructed from Facebook data). We numerically simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach steady states on various model parameters, including a confidence bound for opinion updates, the number of participating entities, and their willingness to compromise. We find that network structure and parameter values both have important effects on the convergence time and the number of steady-state opinion groups. For some network architectures, we observe that the relationship between the convergence time and model parameters undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion distribution also changes from consensus to multiple opinion groups at this critical value.

  8. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    PubMed

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  9. Brain network connectivity in women exposed to intimate partner violence: a graph theory analysis study.

    PubMed

    Roos, Annerine; Fouche, Jean-Paul; Stein, Dan J

    2017-12-01

    Evidence suggests that women who suffer from intimate partner violence (IPV) and posttraumatic stress disorder (PTSD) have structural and functional alterations in specific brain regions. Yet, little is known about how brain connectivity may be altered in individuals with IPV, but without PTSD. Women exposed to IPV (n = 18) and healthy controls (n = 18) underwent structural brain imaging using a Siemens 3T MRI. Global and regional brain network connectivity measures were determined, using graph theory analyses. Structural covariance networks were created using volumetric and cortical thickness data after controlling for intracranial volume, age and alcohol use. Nonparametric permutation tests were used to investigate group differences. Findings revealed altered connectivity on a global and regional level in the IPV group of regions involved in cognitive-emotional control, with principal involvement of the caudal anterior cingulate, the middle temporal gyrus, left amygdala and ventral diencephalon that includes the thalamus. To our knowledge, this is the first evidence showing different brain network connectivity in global and regional networks in women exposed to IPV, and without PTSD. Altered cognitive-emotional control in IPV may underlie adaptive neural mechanisms in environments characterized by potentially dangerous cues.

  10. Communication, advice exchange and job satisfaction of nursing staff: a social network analyses of 35 long-term care units.

    PubMed

    van Beek, Adriana P A; Wagner, Cordula; Spreeuwenberg, Peter P M; Frijters, Dinnus H M; Ribbe, Miel W; Groenewegen, Peter P

    2011-06-01

    The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction.

  11. Communication, advice exchange and job satisfaction of nursing staff: a social network analyses of 35 long-term care units

    PubMed Central

    2011-01-01

    Background The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. Methods We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Results Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Conclusions Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction. PMID:21631936

  12. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  13. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.

    PubMed

    Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs. © 2015 Wiley Periodicals, Inc.

  14. Evaluating the stability of DSM-5 PTSD symptom network structure in a national sample of U.S. military veterans.

    PubMed

    von Stockert, Sophia H H; Fried, Eiko I; Armour, Cherie; Pietrzak, Robert H

    2018-03-15

    Previous studies have used network models to investigate how PTSD symptoms associate with each other. However, analyses examining the degree to which these networks are stable over time, which are critical to identifying symptoms that may contribute to the chronicity of this disorder, are scarce. In the current study, we evaluated the temporal stability of DSM-5 PTSD symptom networks over a three-year period in a nationally representative sample of trauma-exposed U.S. military veterans. Data were analyzed from 611 trauma-exposed U.S. military veterans who participated in the National Health and Resilience in Veterans Study (NHRVS). We estimated regularized partial correlation networks of DSM-5 PTSD symptoms at baseline (Time 1) and at three-year follow-up (Time 2), and examined their temporal stability. Evaluation of the network structure of PTSD symptoms at Time 1 and Time 2 using a formal network comparison indicated that the Time 1 network did not differ significantly from the Time 2 network with regard to network structure (p = 0.12) or global strength (sum of all absolute associations, i.e. connectivity; p = 0.25). Centrality estimates of both networks (r = 0.86) and adjacency matrices (r = 0.69) were highly correlated. In both networks, avoidance, intrusive, and negative cognition and mood symptoms were among the more central nodes. This study is limited by the use of a self-report instrument to assess PTSD symptoms and recruitment of a relatively homogeneous sample of predominantly older, Caucasian veterans. Results of this study demonstrate the three-year stability of DSM-5 PTSD symptom network structure in a nationally representative sample of trauma-exposed U.S. military veterans. They further suggest that trauma-related avoidance, intrusive, and dysphoric symptoms may contribute to the chronicity of PTSD symptoms in this population. Published by Elsevier B.V.

  15. [Development and Use of Hidrosig

    NASA Technical Reports Server (NTRS)

    Gupta, Vijay K.; Milne, Bruce T.

    2003-01-01

    The NASA portion of this joint NSF-NASA grant consists of objective 2 and a part of objective 3. A major effort was made on objective 2, and it consisted of developing a numerical GIs environment called Hidrosig. This major research tool is being developed by the University of Colorado for conducting river-network-based scaling analyses of coupled water-energy-landform-vegetation interactions including water and energy balances, and floods and droughts, at multiple space-time scales.Objective 2: To analyze the relevant remotely sensed products from satellites, radars and ground measurements to compute the transported water mass for each complete Strahler stream using an 'assimilated water balance equation' at daily and other appropriate time scales. This objective requires analysis of concurrent data sets for Precipitation (PPT), Evapotranspiration (ET) and stream flows (Q) on river networks. To solve this major problem, our decision was to develop Hidrosig, a new Open-Source GIs software. A research group in Colombia, South America, developed the first version of Hidrosig, and Ricardo Mantilla was part of this effort as an undergraduate student before joining the graduate program at the University of Colorado in 2001. Hydrosig automatically extracts river networks from large DEMs and creates a "link-based" data structure, which is required to conduct a variety of analyses under objective 2. It is programmed in Java, which is a multi-platform programming language freely distributed by SUN under a GPL license. Some existent commercial tools like Arc-Info, RiverTools and others are not suitable for our purpose for two reasons. First, the source code is not available that is needed to build on the network data structure. Second, these tools use different programming languages that are not most versatile for our purposes. For example, RiverTools uses an IDL platform that is not very efficient for organizing diverse data sets on river networks. Hidrosig establishes a clear data organization framework that allows a simultaneous analysis of spatial fields along river network structures involving Horton- Strahler framework. Software tools for network extraction from DEMs and network-based analysis of geomorphologic and topologic variables were developed during the first year and a part of second year.

  16. Advancing the application of systems thinking in health: analysing the contextual and social network factors influencing the use of sustainability indicators in a health system--a comparative study in Nepal and Somaliland.

    PubMed

    Blanchet, Karl; Palmer, Jennifer; Palanchowke, Raju; Boggs, Dorothy; Jama, Ali; Girois, Susan

    2014-08-26

    Health systems strengthening is becoming a key component of development agendas for low-income countries worldwide. Systems thinking emphasizes the role of diverse stakeholders in designing solutions to system problems, including sustainability. The objective of this paper is to compare the definition and use of sustainability indicators developed through the Sustainability Analysis Process in two rehabilitation sectors, one in Nepal and one in Somaliland, and analyse the contextual factors (including the characteristics of system stakeholder networks) influencing the use of sustainability data. Using the Sustainability Analysis Process, participants collectively clarified the boundaries of their respective systems, defined sustainability, and identified sustainability indicators. Baseline indicator data was gathered, where possible, and then researched again 2 years later. As part of the exercise, system stakeholder networks were mapped at baseline and at the 2-year follow-up. We compared stakeholder networks and interrelationships with baseline and 2-year progress toward self-defined sustainability goals. Using in-depth interviews and observations, additional contextual factors affecting the use of sustainability data were identified. Differences in the selection of sustainability indicators selected by local stakeholders from Nepal and Somaliland reflected differences in the governance and structure of the present rehabilitation system. At 2 years, differences in the structure of social networks were more marked. In Nepal, the system stakeholder network had become more dense and decentralized. Financial support by an international organization facilitated advancement toward self-identified sustainability goals. In Somaliland, the small, centralised stakeholder network suffered a critical rupture between the system's two main information brokers due to competing priorities and withdrawal of international support to one of these. Progress toward self-defined sustainability was nil. The structure of the rehabilitation system stakeholder network characteristics in Nepal and Somaliland evolved over time and helped understand the changing nature of relationships between actors and their capacity to work as a system rather than a sum of actors. Creating consensus on a common vision of sustainability requires additional system-level interventions such as identification of and support to stakeholders who promote systems thinking above individual interests.

  17. Equilibria of perceptrons for simple contingency problems.

    PubMed

    Dawson, Michael R W; Dupuis, Brian

    2012-08-01

    The contingency between cues and outcomes is fundamentally important to theories of causal reasoning and to theories of associative learning. Researchers have computed the equilibria of Rescorla-Wagner models for a variety of contingency problems, and have used these equilibria to identify situations in which the Rescorla-Wagner model is consistent, or inconsistent, with normative models of contingency. Mathematical analyses that directly compare artificial neural networks to contingency theory have not been performed, because of the assumed equivalence between the Rescorla-Wagner learning rule and the delta rule training of artificial neural networks. However, recent results indicate that this equivalence is not as straightforward as typically assumed, suggesting a strong need for mathematical accounts of how networks deal with contingency problems. One such analysis is presented here, where it is proven that the structure of the equilibrium for a simple network trained on a basic contingency problem is quite different from the structure of the equilibrium for a Rescorla-Wagner model faced with the same problem. However, these structural differences lead to functionally equivalent behavior. The implications of this result for the relationships between associative learning, contingency theory, and connectionism are discussed.

  18. Barreloid Borders and Neuronal Activity Shape Panglial Gap Junction-Coupled Networks in the Mouse Thalamus.

    PubMed

    Claus, Lena; Philippot, Camille; Griemsmann, Stephanie; Timmermann, Aline; Jabs, Ronald; Henneberger, Christian; Kettenmann, Helmut; Steinhäuser, Christian

    2018-01-01

    The ventral posterior nucleus of the thalamus plays an important role in somatosensory information processing. It contains elongated cellular domains called barreloids, which are the structural basis for the somatotopic organization of vibrissae representation. So far, the organization of glial networks in these barreloid structures and its modulation by neuronal activity has not been studied. We have developed a method to visualize thalamic barreloid fields in acute slices. Combining electrophysiology, immunohistochemistry, and electroporation in transgenic mice with cell type-specific fluorescence labeling, we provide the first structure-function analyses of barreloidal glial gap junction networks. We observed coupled networks, which comprised both astrocytes and oligodendrocytes. The spread of tracers or a fluorescent glucose derivative through these networks was dependent on neuronal activity and limited by the barreloid borders, which were formed by uncoupled or weakly coupled oligodendrocytes. Neuronal somata were distributed homogeneously across barreloid fields with their processes running in parallel to the barreloid borders. Many astrocytes and oligodendrocytes were not part of the panglial networks. Thus, oligodendrocytes are the cellular elements limiting the communicating panglial network to a single barreloid, which might be important to ensure proper metabolic support to active neurons located within a particular vibrissae signaling pathway. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Information filtering on coupled social networks.

    PubMed

    Nie, Da-Cheng; Zhang, Zi-Ke; Zhou, Jun-Lin; Fu, Yan; Zhang, Kui

    2014-01-01

    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks.

  20. Structural fatigue in the 34-meter HA-dec antennas

    NASA Technical Reports Server (NTRS)

    Van Hek, Ronald A.; Saldua, Benjamin P.

    1991-01-01

    Three 26-m hour-angle/declination (HA-dec) antennas, designed for a life span of 20 years, were built in the early 1960s for the NASA Deep Space Network. After 16 years the antennas were upgraded. The design required a structural weight increase of about 50 percent in both the HA and dec structures to achieve the desired improvements. The fatigue caused by the resulting stress-reversal conditions is discussed. The structural failures and their analyses are described.

  1. Structural Bioinformatics of the Interactome

    PubMed Central

    Petrey, Donald; Honig, Barry

    2014-01-01

    The last decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information, and to analyze this information so as to infer both the function of individual molecules and how they interact to modulate the behavior of biological systems. Here we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance the basic understanding of biological systems and their disregulation, and how they are being applied in drug development. PMID:24895853

  2. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence.

    PubMed

    Latkin, Carl A; Davey-Rothwell, Melissa A; Knowlton, Amy R; Alexander, Kamila A; Williams, Chyvette T; Boodram, Basmattee

    2013-06-01

    This article reviews the current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates, treatment access, and outcomes. Social network analysis is a valuable tool to link social structural factors to individual behaviors. Social networks provide an avenue for low-cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social networks can be utilized as a viable approach to recruitment for HIV testing and counseling, HIV prevention interventions, optimizing HIV medical care, and medication adherence. Social network interventions may be face-to-face or through social media. Key issues in designing social network interventions are contamination due to social diffusion, network stability, density, and the choice and training of network members. There are also ethical issues involved in the development and implementation of social network interventions. Social network analyses can also be used to understand HIV transmission dynamics.

  3. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses.

    PubMed

    Hurwitz, Bonnie L; Westveld, Anton H; Brum, Jennifer R; Sullivan, Matthew B

    2014-07-22

    Long-standing questions in marine viral ecology are centered on understanding how viral assemblages change along gradients in space and time. However, investigating these fundamental ecological questions has been challenging due to incomplete representation of naturally occurring viral diversity in single gene- or morphology-based studies and an inability to identify up to 90% of reads in viral metagenomes (viromes). Although protein clustering techniques provide a significant advance by helping organize this unknown metagenomic sequence space, they typically use only ∼75% of the data and rely on assembly methods not yet tuned for naturally occurring sequence variation. Here, we introduce an annotation- and assembly-free strategy for comparative metagenomics that combines shared k-mer and social network analyses (regression modeling). This robust statistical framework enables visualization of complex sample networks and determination of ecological factors driving community structure. Application to 32 viromes from the Pacific Ocean Virome dataset identified clusters of samples broadly delineated by photic zone and revealed that geographic region, depth, and proximity to shore were significant predictors of community structure. Within subsets of this dataset, depth, season, and oxygen concentration were significant drivers of viral community structure at a single open ocean station, whereas variability along onshore-offshore transects was driven by oxygen concentration in an area with an oxygen minimum zone and not depth or proximity to shore, as might be expected. Together these results demonstrate that this highly scalable approach using complete metagenomic network-based comparisons can both test and generate hypotheses for ecological investigation of viral and microbial communities in nature.

  4. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses

    PubMed Central

    Hurwitz, Bonnie L.; Westveld, Anton H.; Brum, Jennifer R.; Sullivan, Matthew B.

    2014-01-01

    Long-standing questions in marine viral ecology are centered on understanding how viral assemblages change along gradients in space and time. However, investigating these fundamental ecological questions has been challenging due to incomplete representation of naturally occurring viral diversity in single gene- or morphology-based studies and an inability to identify up to 90% of reads in viral metagenomes (viromes). Although protein clustering techniques provide a significant advance by helping organize this unknown metagenomic sequence space, they typically use only ∼75% of the data and rely on assembly methods not yet tuned for naturally occurring sequence variation. Here, we introduce an annotation- and assembly-free strategy for comparative metagenomics that combines shared k-mer and social network analyses (regression modeling). This robust statistical framework enables visualization of complex sample networks and determination of ecological factors driving community structure. Application to 32 viromes from the Pacific Ocean Virome dataset identified clusters of samples broadly delineated by photic zone and revealed that geographic region, depth, and proximity to shore were significant predictors of community structure. Within subsets of this dataset, depth, season, and oxygen concentration were significant drivers of viral community structure at a single open ocean station, whereas variability along onshore–offshore transects was driven by oxygen concentration in an area with an oxygen minimum zone and not depth or proximity to shore, as might be expected. Together these results demonstrate that this highly scalable approach using complete metagenomic network-based comparisons can both test and generate hypotheses for ecological investigation of viral and microbial communities in nature. PMID:25002514

  5. Brain Anatomical Network and Intelligence

    PubMed Central

    Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi

    2009-01-01

    Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086

  6. Building managed primary care practice networks to deliver better clinical care: a qualitative semi-structured interview study.

    PubMed

    Pawa, Jasmine; Robson, John; Hull, Sally

    2017-11-01

    Primary care practices are increasingly working in larger groups. In 2009, all 36 primary care practices in the London borough of Tower Hamlets were grouped geographically into eight managed practice networks to improve the quality of care they delivered. Quantitative evaluation has shown improved clinical outcomes. To provide insight into the process of network implementation, including the aims, facilitating factors, and barriers, from both the clinical and managerial perspectives. A qualitative study of network implementation in the London borough of Tower Hamlets, which serves a socially disadvantaged and ethnically diverse population. Nineteen semi-structured interviews were carried out with doctors, nurses, and managers, and were informed by existing literature on integrated care and GP networks. Interviews were recorded and transcribed, and thematic analysis used to analyse emerging themes. Interviewees agreed that networks improved clinical care and reduced variation in practice performance. Network implementation was facilitated by the balance struck between 'a given structure' and network autonomy to adopt local solutions. Improved use of data, including patient recall and peer performance indicators, were viewed as critical key factors. Targeted investment provided the necessary resources to achieve this. Barriers to implementing networks included differences in practice culture, a reluctance to share data, and increased workload. Commissioners and providers were positive about the implementation of GP networks as a way to improve the quality of clinical care in Tower Hamlets. The issues that arose may be of relevance to other areas implementing similar quality improvement programmes at scale. © British Journal of General Practice 2017.

  7. Effective Network Size Predicted From Simulations of Pathogen Outbreaks Through Social Networks Provides a Novel Measure of Structure-Standardized Group Size.

    PubMed

    McCabe, Collin M; Nunn, Charles L

    2018-01-01

    The transmission of infectious disease through a population is often modeled assuming that interactions occur randomly in groups, with all individuals potentially interacting with all other individuals at an equal rate. However, it is well known that pairs of individuals vary in their degree of contact. Here, we propose a measure to account for such heterogeneity: effective network size (ENS), which refers to the size of a maximally complete network (i.e., unstructured, where all individuals interact with all others equally) that corresponds to the outbreak characteristics of a given heterogeneous, structured network. We simulated susceptible-infected (SI) and susceptible-infected-recovered (SIR) models on maximally complete networks to produce idealized outbreak duration distributions for a disease on a network of a given size. We also simulated the transmission of these same diseases on random structured networks and then used the resulting outbreak duration distributions to predict the ENS for the group or population. We provide the methods to reproduce these analyses in a public R package, "enss." Outbreak durations of simulations on randomly structured networks were more variable than those on complete networks, but tended to have similar mean durations of disease spread. We then applied our novel metric to empirical primate networks taken from the literature and compared the information represented by our ENSs to that by other established social network metrics. In AICc model comparison frameworks, group size and mean distance proved to be the metrics most consistently associated with ENS for SI simulations, while group size, centralization, and modularity were most consistently associated with ENS for SIR simulations. In all cases, ENS was shown to be associated with at least two other independent metrics, supporting its use as a novel metric. Overall, our study provides a proof of concept for simulation-based approaches toward constructing metrics of ENS, while also revealing the conditions under which this approach is most promising.

  8. Long-distance travel behaviours accelerate and aggravate the large-scale spatial spreading of infectious diseases.

    PubMed

    Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie

    2014-01-01

    The study analyses the role of long-distance travel behaviours on the large-scale spatial spreading of directly transmitted infectious diseases, focusing on two different travel types in terms of the travellers travelling to a specific group or not. For this purpose, we have formulated and analysed a metapopulation model in which the individuals in each subpopulation are organised into a scale-free contact network. The long-distance travellers between the subpopulations will temporarily change the network structure of the destination subpopulation through the "merging effects (MEs)," which indicates that the travellers will be regarded as either connected components or isolated nodes in the contact network. The results show that the presence of the MEs has constantly accelerated the transmission of the diseases and aggravated the outbreaks compared to the scenario in which the diversity of the long-distance travel types is arbitrarily discarded. Sensitivity analyses show that these results are relatively constant regarding a wide range variation of several model parameters. Our study has highlighted several important causes which could significantly affect the spatiotemporal disease dynamics neglected by the present studies.

  9. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    NASA Astrophysics Data System (ADS)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  10. Self-reference, emotion inhibition and somatosensory disturbance: preliminary investigation of network perturbations in conversion disorder.

    PubMed

    Monsa, R; Peer, M; Arzy, S

    2018-06-01

    Conversion disorder (CD), or functional neurological disorder, is manifested as a neurological disturbance that is not macroscopically visible on clinical structural neuroimaging and is instead ascribed to underlying psychological stress. Known for many years in neuropsychiatry, a comprehensive explanation of the way in which psychological stress leads to a neurological deficit of a structural-like origin is still lacking. We applied whole-brain network-based data-driven analyses on resting-state functional magnetic resonance imaging, recorded in seven patients with acute-onset, stroke-like CD with unilateral paresis and hypoesthesia as compared with 15 age-matched healthy controls. We used a clustering analysis to measure functional connectivity (FC) strength within 10 different brain networks, as well as between these networks. Finally, we tested FC of specific brain regions that are known to be involved in CD. We found a significant increase in FC strength only within the default-mode network (DMN), which manages self-referential processing. Examination of inter-connectivity between networks showed a structure of disturbed connectivity, which included decreased connectivity between the DMN and limbic/salience network, increased connectivity between the limbic/salience network and body-related temporo-parieto-occipital junction network, decreased connectivity between the temporo-parieto-occipital junction and memory-related medial temporal lobe, and decreased connectivity between the medial temporal lobe and sensorimotor network. Region-specific FC analysis showed increased connectivity between the hippocampus and DMN. These preliminary results of disturbances in brain networks related to memory, emotions and self-referential processing, and networks involved in motor planning and execution, suggest a role of these cognitive functions in the psychopathology of CD. © 2018 EAN.

  11. New methodologies for multi-scale time-variant reliability analysis of complex lifeline networks

    NASA Astrophysics Data System (ADS)

    Kurtz, Nolan Scot

    The cost of maintaining existing civil infrastructure is enormous. Since the livelihood of the public depends on such infrastructure, its state must be managed appropriately using quantitative approaches. Practitioners must consider not only which components are most fragile to hazard, e.g. seismicity, storm surge, hurricane winds, etc., but also how they participate on a network level using network analysis. Focusing on particularly damaged components does not necessarily increase network functionality, which is most important to the people that depend on such infrastructure. Several network analyses, e.g. S-RDA, LP-bounds, and crude-MCS, and performance metrics, e.g. disconnection bounds and component importance, are available for such purposes. Since these networks are existing, the time state is also important. If networks are close to chloride sources, deterioration may be a major issue. Information from field inspections may also have large impacts on quantitative models. To address such issues, hazard risk analysis methodologies for deteriorating networks subjected to seismicity, i.e. earthquakes, have been created from analytics. A bridge component model has been constructed for these methodologies. The bridge fragilities, which were constructed from data, required a deeper level of analysis as these were relevant for specific structures. Furthermore, chloride-induced deterioration network effects were investigated. Depending on how mathematical models incorporate new information, many approaches are available, such as Bayesian model updating. To make such procedures more flexible, an adaptive importance sampling scheme was created for structural reliability problems. Additionally, such a method handles many kinds of system and component problems with singular or multiple important regions of the limit state function. These and previously developed analysis methodologies were found to be strongly sensitive to the network size. Special network topologies may be more or less computationally difficult, while the resolution of the network also has large affects. To take advantage of some types of topologies, network hierarchical structures with super-link representation have been used in the literature to increase the computational efficiency by analyzing smaller, densely connected networks; however, such structures were based on user input and subjective at times. To address this, algorithms must be automated and reliable. These hierarchical structures may indicate the structure of the network itself. This risk analysis methodology has been expanded to larger networks using such automated hierarchical structures. Component importance is the most important objective from such network analysis; however, this may only provide the information of which bridges to inspect/repair earliest and little else. High correlations influence such component importance measures in a negative manner. Additionally, a regional approach is not appropriately modelled. To investigate a more regional view, group importance measures based on hierarchical structures have been created. Such structures may also be used to create regional inspection/repair approaches. Using these analytical, quantitative risk approaches, the next generation of decision makers may make both component and regional-based optimal decisions using information from both network function and further effects of infrastructure deterioration.

  12. Evaluating structural connectomics in relation to different Q-space sampling techniques.

    PubMed

    Rodrigues, Paulo; Prats-Galino, Alberto; Gallardo-Pujol, David; Villoslada, Pablo; Falcon, Carles; Prckovska, Vesna

    2013-01-01

    Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.

  13. Effects of spatial scale of sampling on food web structure

    PubMed Central

    Wood, Spencer A; Russell, Roly; Hanson, Dieta; Williams, Richard J; Dunne, Jennifer A

    2015-01-01

    This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. PMID:26380704

  14. Inference and Analysis of Population Structure Using Genetic Data and Network Theory

    PubMed Central

    Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli

    2016-01-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080

  15. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.

  16. Middle school sexual harassment, violence and social networks.

    PubMed

    Mumford, Elizabeth A; Okamoto, Janet; Taylor, Bruce G; Stein, Nan

    2013-11-01

    To pilot a study of social networks informing contextual analyses of sexual harassment and peer violence (SH/PV). Seventh and 8th grade students (N = 113) in an urban middle school were surveyed via a Web-based instrument. Boys and girls reported SH/PV victimization and perpetration at comparable rates. The proportion of nominated friends who reported SH/ PV outcomes was greater in boys' than in girls' social networks. Structural descriptors of social networks were not significant predictors of SH/PV outcomes. Collection of sensitive relationship data via a school-based Web survey is feasible. Full-scale studies and greater flexibility regarding the number of friendship nominations are recommended for subsequent investigations of potential sex differences.

  17. DELINQUENCY AND THE STRUCTURE OF ADOLESCENT PEER GROUPS*

    PubMed Central

    Kreager, Derek A.; Rulison, Kelly; Moody, James

    2010-01-01

    Gangs and group-level processes were once central phenomena for criminological theory and research. By the mid-1970's, however, gang research was primarily displaced by studies of individual behavior using randomized self-report surveys, a shift that also removed groups from the theoretical foreground. In this project, we return to the group level to test competing theoretical claims about delinquent group structure. We use network-based clustering methods to identify 897 friendship groups in two ninth grade cohorts of 27 Pennsylvania and Iowa schools. We then relate group-level measures of delinquency and drinking to network measures of group size, friendship reciprocity, transitivity, structural cohesion, stability, average popularity, and network centrality. We find significant negative correlations between group delinquency and all of our network measures, suggesting that delinquent groups are less solidary and less central to school networks than non-delinquent groups. Further analyses, however, reveal that these correlations are primarily explained by other group characteristics, such as gender composition and socioeconomic status. Drinking behaviors, on the other hand, show net positive associations with most of the network measures, suggesting that drinking groups have higher status and are more internally cohesive than non-drinking groups. Our findings shed light on a longstanding criminological debate by suggesting that any structural differences between delinquent and non-delinquent groups may be attributable to other attributes coincidental with delinquency. In contrast, drinking groups appear to provide peer contexts of greater social capital and cohesion. PMID:21572969

  18. A portable structural analysis library for reaction networks.

    PubMed

    Bedaso, Yosef; Bergmann, Frank T; Choi, Kiri; Medley, Kyle; Sauro, Herbert M

    2018-07-01

    The topology of a reaction network can have a significant influence on the network's dynamical properties. Such influences can include constraints on network flows and concentration changes or more insidiously result in the emergence of feedback loops. These effects are due entirely to mass constraints imposed by the network configuration and are important considerations before any dynamical analysis is made. Most established simulation software tools usually carry out some kind of structural analysis of a network before any attempt is made at dynamic simulation. In this paper, we describe a portable software library, libStructural, that can carry out a variety of popular structural analyses that includes conservation analysis, flux dependency analysis and enumerating elementary modes. The library employs robust algorithms that allow it to be used on large networks with more than a two thousand nodes. The library accepts either a raw or fully labeled stoichiometry matrix or models written in SBML format. The software is written in standard C/C++ and comes with extensive on-line documentation and a test suite. The software is available for Windows, Mac OS X, and can be compiled easily on any Linux operating system. A language binding for Python is also available through the pip package manager making it simple to install on any standard Python distribution. The bulk of the source code is licensed under the open source BSD license with other parts using as either the MIT license or more simply public domain. All source is available on GitHub (https://github.com/sys-bio/Libstructural). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. "You've got a friend in me": can social networks mediate the relationship between mood and MCI?

    PubMed

    Yates, Jennifer A; Clare, Linda; Woods, Robert T

    2017-07-13

    Social networks can change with age, for reasons that are adaptive or unwanted. Social engagement is beneficial to both mental health and cognition, and represents a potentially modifiable factor. Consequently this study explored this association and assessed whether the relationship between mild cognitive impairment (MCI) and mood problems was mediated by social networks. This study includes an analysis of data from the Cognitive Function and Ageing Study Wales (CFAS Wales). CFAS Wales Phase 1 data were collected from 2010 to 2013 by conducting structured interviews with older people aged over 65 years of age living in urban and rural areas of Wales, and included questions that assessed cognitive functioning, mood, and social networks. Regression analyses were used to investigate the associations between individual variables and the mediating role of social networks. Having richer social networks was beneficial to both mood and cognition. Participants in the MCI category had weaker social networks than participants without cognitive impairment, whereas stronger social networks were associated with a decrease in the odds of experiencing mood problems, suggesting that they may offer a protective effect against anxiety and depression. Regression analyses revealed that social networks are a significant mediator of the relationship between MCI and mood problems. These findings are important, as mood problems are a risk factor for progression from MCI to dementia, so interventions that increase and strengthen social networks may have beneficial effects on slowing the progression of cognitive decline.

  20. Synthesis and photoluminescence properties of silver(I) complexes based on N-benzoyl-L-glutamic acid and N-donor ligands with different flexibility

    NASA Astrophysics Data System (ADS)

    Yan, Ming-Jie; Feng, Qi; Song, Hui-Hua

    2016-05-01

    By changing the N-donor ancillary ligand, three novel silver (I) complexes {[Ag(HbzgluO) (4,4‧-bipy)]·H2O}n (1), {[Ag2(HbzgluO)2 (bpe)2]·2H2O}n (2) and {[Ag(HbzgluO)(bpp)]·2H2O}n (3) (H2bzgluO = N-benzoyl-L-glutamic acid, 4,4‧-bipy = 4,4ˊ-bipyridine, bpe = 1,2-di(4-pyridyl)ethane, bpp = 1,3-di(4-pyridyl)propane) were synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). In this study, the N-donor ligands are changed from rigidity (4,4‧-bipy), quasi-flexibility (bpe) to flexibility (bpp), the structures of complexes also change. Complex 1 features a 1D chain structure which is further linked together to construct a 2D supramolecular structure through hydrogen bonds. Complex 2 is a 1D double-chains configuration which eventually forms a 3D supramolecular network via hydrogen bonding interactions. Whereas, complex 3 exhibits a 2D pleated grid structure which is linked by hydrogen bonding interactions into a 3D supramolecular network. The present observations demonstrate that the modulation of coordination polymers with different structures can accomplish by changing the spacer length of N-donor ligands. In addition, the solid-state circular dichroism (CD) spectra indicated that compound 2 exhibited negative cotton effect which originated from the chiral ligands H2bzgluO and the solid-state fluorescence spectra of the three complexes demonstrated the auxiliary ligands have influence on the photoluminescence properties of the complexes.

  1. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    PubMed

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  2. “Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks

    PubMed Central

    Gillis, Jesse; Pavlidis, Paul

    2012-01-01

    Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks. PMID:22479173

  3. What Information Does Your EHR Contain? Automatic Generation of a Clinical Metadata Warehouse (CMDW) to Support Identification and Data Access Within Distributed Clinical Research Networks.

    PubMed

    Bruland, Philipp; Doods, Justin; Storck, Michael; Dugas, Martin

    2017-01-01

    Data dictionaries provide structural meta-information about data definitions in health information technology (HIT) systems. In this regard, reusing healthcare data for secondary purposes offers several advantages (e.g. reduce documentation times or increased data quality). Prerequisites for data reuse are its quality, availability and identical meaning of data. In diverse projects, research data warehouses serve as core components between heterogeneous clinical databases and various research applications. Given the complexity (high number of data elements) and dynamics (regular updates) of electronic health record (EHR) data structures, we propose a clinical metadata warehouse (CMDW) based on a metadata registry standard. Metadata of two large hospitals were automatically inserted into two CMDWs containing 16,230 forms and 310,519 data elements. Automatic updates of metadata are possible as well as semantic annotations. A CMDW allows metadata discovery, data quality assessment and similarity analyses. Common data models for distributed research networks can be established based on similarity analyses.

  4. Interplay between gut microbiota metabolism and inflammation in HIV infection.

    PubMed

    Vázquez-Castellanos, Jorge F; Serrano-Villar, Sergio; Jiménez-Hernández, Nuria; Soto Del Rio, María Dolores; Gayo, Sara; Rojo, David; Ferrer, Manuel; Barbas, Coral; Moreno, Santiago; Estrada, Vicente; Rattei, Tomas; Latorre, Amparo; Moya, Andrés; Gosalbes, María José

    2018-05-23

    HIV infection causes a disruption of gut-associated lymphoid tissue, driving a shift in the composition of gut microbiota. A deeper understanding of the metabolic changes and how they affect the interplay with the host is needed. Here, we assessed functional modifications of HIV-associated microbiota by combining metagenomic and metatranscriptomic analyses. The transcriptionally active microbiota was well-adapted to the inflamed environment, overexpressing pathways related to resistance to oxidative stress. Furthermore, gut inflammation was maintained by the Gram-negative nature of the HIV-associated microbiota and underexpression of anti-inflammatory processes, such as short chain fatty acid biosynthesis or indole production. We performed co-occurrence and metabolic network analyses that showed relevance in the microbiota structure of both taxonomic and metabolic HIV-associated biomarkers. The Bayesian network revealed the most determinant pathways for maintaining the structure stability of the bacterial community. In addition, we identified the taxa's contribution to metabolic activities and their interactions with host health.

  5. The Regional Structure of Technical Innovation

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion

    2014-03-01

    There is strong evidence that the productivity per capita of cities and regions increases with population. One likely explanation for this phenomenon is that densely populated regions bring together otherwise unlikely combinations of individuals and organisations with diverse, specialised capabilities, leading to increased innovation and productivity. We have used the REGPAT patent database to construct a bipartite network of geographic regions and the patent classes for which those regions display a revealed comparative advantage. By analysing this network, we can infer relationships between different types of patent classes - and hence the structure of (patentable) technology. The network also provides a novel perspective for studying the combinations of technical capabilities in different geographic regions. We investigate measures such as the diversity and ubiquity of innovations within regions and find that diversity (resp. ubiquity) is positively (resp. negatively) correlated with population. We also find evidence of a nested structure for technical innovation. That is, specialised innovations tend to occur only when other more general innovations are already present.

  6. Topology of Innovation Spaces in the Knowledge Networks Emerging through Questions-And-Answers

    PubMed Central

    Andjelković, Miroslav; Tadić, Bosiljka; Mitrović Dankulov, Marija; Rajković, Milan; Melnik, Roderick

    2016-01-01

    The communication processes of knowledge creation represent a particular class of human dynamics where the expertise of individuals plays a substantial role, thus offering a unique possibility to study the structure of knowledge networks from online data. Here, we use the empirical evidence from questions-and-answers in mathematics to analyse the emergence of the network of knowledge contents (or tags) as the individual experts use them in the process. After removing extra edges from the network-associated graph, we apply the methods of algebraic topology of graphs to examine the structure of higher-order combinatorial spaces in networks for four consecutive time intervals. We find that the ranking distributions of the suitably scaled topological dimensions of nodes fall into a unique curve for all time intervals and filtering levels, suggesting a robust architecture of knowledge networks. Moreover, these networks preserve the logical structure of knowledge within emergent communities of nodes, labeled according to a standard mathematical classification scheme. Further, we investigate the appearance of new contents over time and their innovative combinations, which expand the knowledge network. In each network, we identify an innovation channel as a subgraph of triangles and larger simplices to which new tags attach. Our results show that the increasing topological complexity of the innovation channels contributes to network’s architecture over different time periods, and is consistent with temporal correlations of the occurrence of new tags. The methodology applies to a wide class of data with the suitable temporal resolution and clearly identified knowledge-content units. PMID:27171149

  7. Global network structure of dominance hierarchy of ant workers.

    PubMed

    Shimoji, Hiroyuki; Abe, Masato S; Tsuji, Kazuki; Masuda, Naoki

    2014-10-06

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Global network structure of dominance hierarchy of ant workers

    PubMed Central

    Shimoji, Hiroyuki; Abe, Masato S.; Tsuji, Kazuki; Masuda, Naoki

    2014-01-01

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. PMID:25100318

  9. An ANOVA approach for statistical comparisons of brain networks.

    PubMed

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  10. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lun, Huijie; Yang, Jinghe; Jin, Linyu

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagneticmore » behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.« less

  11. GENERAL: Epidemic spreading on networks with vaccination

    NASA Astrophysics Data System (ADS)

    Shi, Hong-Jing; Duan, Zhi-Sheng; Chen, Guan-Rong; Li, Rong

    2009-08-01

    In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.

  12. On characterizing population commonalities and subject variations in brain networks.

    PubMed

    Ghanbari, Yasser; Bloy, Luke; Tunc, Birkan; Shankar, Varsha; Roberts, Timothy P L; Edgar, J Christopher; Schultz, Robert T; Verma, Ragini

    2017-05-01

    Brain networks based on resting state connectivity as well as inter-regional anatomical pathways obtained using diffusion imaging have provided insight into pathology and development. Such work has underscored the need for methods that can extract sub-networks that can accurately capture the connectivity patterns of the underlying population while simultaneously describing the variation of sub-networks at the subject level. We have designed a multi-layer graph clustering method that extracts clusters of nodes, called 'network hubs', which display higher levels of connectivity within the cluster than to the rest of the brain. The method determines an atlas of network hubs that describes the population, as well as weights that characterize subject-wise variation in terms of within- and between-hub connectivity. This lowers the dimensionality of brain networks, thereby providing a representation amenable to statistical analyses. The applicability of the proposed technique is demonstrated by extracting an atlas of network hubs for a population of typically developing controls (TDCs) as well as children with autism spectrum disorder (ASD), and using the structural and functional networks of a population to determine the subject-level variation of these hubs and their inter-connectivity. These hubs are then used to compare ASD and TDCs. Our method is generalizable to any population whose connectivity (structural or functional) can be captured via non-negative network graphs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes.

    PubMed

    Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J

    2014-07-21

    Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.

  14. Communications network design and costing model technical manual

    NASA Technical Reports Server (NTRS)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    This computer model provides the capability for analyzing long-haul trunking networks comprising a set of user-defined cities, traffic conditions, and tariff rates. Networks may consist of all terrestrial connectivity, all satellite connectivity, or a combination of terrestrial and satellite connectivity. Network solutions provide the least-cost routes between all cities, the least-cost network routing configuration, and terrestrial and satellite service cost totals. The CNDC model allows analyses involving three specific FCC-approved tariffs, which are uniquely structured and representative of most existing service connectivity and pricing philosophies. User-defined tariffs that can be variations of these three tariffs are accepted as input to the model and allow considerable flexibility in network problem specification. The resulting model extends the domain of network analysis from traditional fixed link cost (distance-sensitive) problems to more complex problems involving combinations of distance and traffic-sensitive tariffs.

  15. Barriers to healthcare coordination in market-based and decentralized public health systems: a qualitative study in healthcare networks of Colombia and Brazil

    PubMed Central

    Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa

    2016-01-01

    Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel’ perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive–interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives, strengthen the state planning and supervision functions and improve professional working conditions and skills. PMID:26874327

  16. The effects of graded levels of calorie restriction: VII. Topological rearrangement of hypothalamic aging networks.

    PubMed

    Derous, Davina; Mitchell, Sharon E; Green, Cara L; Wang, Yingchun; Han, Jing Dong J; Chen, Luonan; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex

    2016-05-01

    Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels.

  17. The effects of graded levels of calorie restriction: VII. Topological rearrangement of hypothalamic aging networks

    PubMed Central

    Derous, Davina; Mitchell, Sharon E.; Green, Cara L.; Wang, Yingchun; Han, Jing Dong J.; Chen, Luonan; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex

    2016-01-01

    Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels. PMID:27115072

  18. Emergence of Multiplex Communities in Collaboration Networks.

    PubMed

    Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito

    2016-01-01

    Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.

  19. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions

    PubMed Central

    Von Der Heide, Rebecca; Vyas, Govinda

    2014-01-01

    The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846

  20. Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network

    PubMed Central

    Büttner, Kathrin; Krieter, Joachim; Traulsen, Arne; Traulsen, Imke

    2013-01-01

    Centrality parameters in animal trade networks typically have right-skewed distributions, implying that these networks are highly resistant against the random removal of holdings, but vulnerable to the targeted removal of the most central holdings. In the present study, we analysed the structural changes of an animal trade network topology based on the targeted removal of holdings using specific centrality parameters in comparison to the random removal of holdings. Three different time periods were analysed: the three-year network, the yearly and the monthly networks. The aim of this study was to identify appropriate measures for the targeted removal, which lead to a rapid fragmentation of the network. Furthermore, the optimal combination of the removal of three holdings regardless of their centrality was identified. The results showed that centrality parameters based on ingoing trade contacts, e.g. in-degree, ingoing infection chain and ingoing closeness, were not suitable for a rapid fragmentation in all three time periods. More efficient was the removal based on parameters considering the outgoing trade contacts. In all networks, a maximum percentage of 7.0% (on average 5.2%) of the holdings had to be removed to reduce the size of the largest component by more than 75%. The smallest difference from the optimal combination for all three time periods was obtained by the removal based on out-degree with on average 1.4% removed holdings, followed by outgoing infection chain and outgoing closeness. The targeted removal using the betweenness centrality differed the most from the optimal combination in comparison to the other parameters which consider the outgoing trade contacts. Due to the pyramidal structure and the directed nature of the pork supply chain the most efficient interruption of the infection chain for all three time periods was obtained by using the targeted removal based on out-degree. PMID:24069293

  1. Information Filtering on Coupled Social Networks

    PubMed Central

    Nie, Da-Cheng; Zhang, Zi-Ke; Zhou, Jun-Lin; Fu, Yan; Zhang, Kui

    2014-01-01

    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks. PMID:25003525

  2. Generating community-built tools for data sharing and analysis in environmental networks

    USGS Publications Warehouse

    Read, Jordan S.; Gries, Corinna; Read, Emily K.; Klug, Jennifer; Hanson, Paul C.; Hipsey, Matthew R.; Jennings, Eleanor; O'Reilley, Catherine; Winslow, Luke A.; Pierson, Don; McBride, Christopher G.; Hamilton, David

    2016-01-01

    Rapid data growth in many environmental sectors has necessitated tools to manage and analyze these data. The development of tools often lags behind the proliferation of data, however, which may slow exploratory opportunities and scientific progress. The Global Lake Ecological Observatory Network (GLEON) collaborative model supports an efficient and comprehensive data–analysis–insight life cycle, including implementations of data quality control checks, statistical calculations/derivations, models, and data visualizations. These tools are community-built and openly shared. We discuss the network structure that enables tool development and a culture of sharing, leading to optimized output from limited resources. Specifically, data sharing and a flat collaborative structure encourage the development of tools that enable scientific insights from these data. Here we provide a cross-section of scientific advances derived from global-scale analyses in GLEON. We document enhancements to science capabilities made possible by the development of analytical tools and highlight opportunities to expand this framework to benefit other environmental networks.

  3. Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug.

    PubMed

    Iza, M; Stoianovici, G; Viora, L; Grossiord, J L; Couarraze, G

    1998-03-02

    Thermosensitive polymer networks were synthesized from poly(ethylene glycol), hexamethylene diisocyanate and 1,2,6-hexanetriol in stoichiometric proportions. By varying the amount of 1,2,6-hexanetriol and the molar mass of the poly(ethylene glycol), a wide range of networks with different crosslinking densities was prepared. The networks obtained were characterized by the temperature dependence of their degree of equilibrium swelling in water and by their Young's moduli. For each network, the molecular weight between crosslinks was estimated. The structure of the hydrogels was analysed with respect to scaling laws, and it was found that the results obtained with PEG 1500 and PEG 6000 hydrogels are in agreement with theoretical predictions, whereas those obtained with PEG 400 hydrogels are in disagreement. The release properties of PEG hydrogels were studied by the determination of the diffusion coefficient for acebutolol chlorhydrate and by an analysis of the effect of temperature on these coefficients. Finally, these release properties were correlated with the swelling and structural properties of the hydrogels.

  4. Characterization of chaotic attractors under noise: A recurrence network perspective

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2016-12-01

    We undertake a detailed numerical investigation to understand how the addition of white and colored noise to a chaotic time series changes the topology and the structure of the underlying attractor reconstructed from the time series. We use the methods and measures of recurrence plot and recurrence network generated from the time series for this analysis. We explicitly show that the addition of noise obscures the property of recurrence of trajectory points in the phase space which is the hallmark of every dynamical system. However, the structure of the attractor is found to be robust even upto high noise levels of 50%. An advantage of recurrence network measures over the conventional nonlinear measures is that they can be applied on short and non stationary time series data. By using the results obtained from the above analysis, we go on to analyse the light curves from a dominant black hole system and show that the recurrence network measures are capable of identifying the nature of noise contamination in a time series.

  5. GOOD HEALTH AND THE BRIDGING OF STRUCTURAL HOLES

    PubMed Central

    Cornwell, Benjamin

    2009-01-01

    Bridges that span structural holes are often explained in terms of the entrepreneurial personalities or rational motivations of brokers, or structural processes that lead to the intersection of social foci. I argue that the existence and use of bridges in interpersonal networks also depends on individuals’ health. Poor health may make it more difficult to withstand the pressures and to execute some of the common tasks associated with bridging (e.g., brokerage). I examine this possibility using egocentric network data on over 2,500 older adults drawn from the recent National Social Life, Health, and Aging Project (NSHAP). Multivariate regression analyses show that both cognitive and functional health are significantly positively associated with bridging, net of sociodemographic and life-course controls. The relationship between functional (kinesthetic) health and bridging appears to be partially mediated by network composition, as older adults who have poorer functional health also tend to have networks that are richer in strong ties. Several potential mediation mechanisms are discussed. Cognitive function remains significantly associated with bridging net of network composition, suggesting that the inherent challenges of maintaining bridging positions may be more difficult to cope with for those who have cognitive impairments than for those who have functional impairments such as limited mobility. An alternative explanation is that cognitively impaired individuals have more difficulty recognizing (and thus strategically using) bridges in their networks. Theoretical implications and possibilities for future research are discussed. PMID:20046998

  6. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    PubMed

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  7. Structural and functional cerebral correlates of hypnotic suggestibility.

    PubMed

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

  8. Molecular Dynamics Study of HIV-1 RT-DNA-Nevirapine Complexes Explains NNRTI Inhibition, and Resistance by Connection Mutations

    PubMed Central

    Vijayan, R.S.K.; Arnold, Eddy; Das, Kalyan

    2015-01-01

    HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that is targeted by nucleoside analogs (NRTIs) and nonnucleoside inhibitors (NNRTIs). NNRTIs are allosteric inhibitors of RT, and constitute an integral part of the highly active antiretroviral therapy (HAART) regimen. Under selective pressure, HIV-1 acquires resistance against NNRTIs primarily by selecting mutations around the NNRTI pocket. Complete RT sequencing of clinical isolates revealed that spatially distal mutations arising in connection and the RNase H domain also confer NNRTI resistance and contribute to NRTI resistance. However, the precise structural mechanism by which the connection domain mutations confer NNRTI resistance is poorly understood. We performed 50-ns MD simulations, followed by essential dynamics, free-energy landscape analyses and network analyses of RT-DNA, RT-DNA-nevirapine, and N348I/T369I mutant RT-DNA-nevirapine complexes. MD simulation studies revealed altered global motions and restricted conformational landscape of RT upon nevirapine binding. Analysis of protein structure network parameters demonstrated a dissortative hub pattern in the RT-DNA complex and an assortative hub pattern in the RT-DNA-nevirapine complex suggesting enhanced rigidity of RT upon nevirapine binding. The connection subdomain mutations N348I/T369I did not induce any significant structural change; rather, these mutations modulate the conformational dynamics and alter the long-range allosteric communication network between the connection subdomain and NNRTI pocket. Insights from the present study provide a structural basis for the biochemical and clinical findings on drug resistance caused by the connection and RNase H mutations. PMID:24174331

  9. A general modeling framework for describing spatially structured population dynamics

    USGS Publications Warehouse

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles

  10. An exploratory comparison of name generator content: Data from rural India.

    PubMed

    Shakya, Holly B; Christakis, Nicholas A; Fowler, James H

    2017-01-01

    Since the 1970s sociologists have explored the best means for measuring social networks, although few name generator analyses have used sociocentric data or data from developing countries, partly because sociocentric studies in developing countries have been scant. Here, we analyze 12 different name generators used in a sociocentric network study conducted in 75 villages in rural Karnataka, India. Having unusual sociocentric data from a non-Western context allowed us to extend previous name generator research through the unique analyses of network structural measures, an extensive consideration of homophily, and investigation of status difference between egos and alters. We found that domestic interaction questions generated networks that were highly clustered and highly centralized. Similarity between respondents and their nominated contacts was strongest for gender, caste, and religion. We also found that domestic interaction name generators yielded the most homogeneous ties, while advice questions yielded the most heterogeneous. Participants were generally more likely to nominate those of higher social status, although certain questions, such as who participants talk to uncovered more egalitarian relationships, while other name generators elicited the names of social contacts distinctly higher or lower in status than the respondent. Some questions also seemed to uncover networks that were specific to the cultural context, suggesting that network researchers should balance local relevance with global generalizability when choosing name generators.

  11. A systematic review protocol: social network analysis of tobacco use.

    PubMed

    Maddox, Raglan; Davey, Rachel; Lovett, Ray; van der Sterren, Anke; Corbett, Joan; Cochrane, Tom

    2014-08-08

    Tobacco use is the single most preventable cause of death in the world. Evidence indicates that behaviours such as tobacco use can influence social networks, and that social network structures can influence behaviours. Social network analysis provides a set of analytic tools to undertake methodical analysis of social networks. We will undertake a systematic review to provide a comprehensive synthesis of the literature regarding social network analysis and tobacco use. The review will answer the following research questions: among participants who use tobacco, does social network structure/position influence tobacco use? Does tobacco use influence peer selection? Does peer selection influence tobacco use? We will follow the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) guidelines and search the following databases for relevant articles: CINAHL (Cumulative Index to Nursing and Allied Health Literature); Informit Health Collection; PsycINFO; PubMed/MEDLINE; Scopus/Embase; Web of Science; and the Wiley Online Library. Keywords include tobacco; smoking; smokeless; cigarettes; cigar and 'social network' and reference lists of included articles will be hand searched. Studies will be included that provide descriptions of social network analysis of tobacco use.Qualitative, quantitative and mixed method data that meets the inclusion criteria for the review, including methodological rigour, credibility and quality standards, will be synthesized using narrative synthesis. Results will be presented using outcome statistics that address each of the research questions. This systematic review will provide a timely evidence base on the role of social network analysis of tobacco use, forming a basis for future research, policy and practice in this area. This systematic review will synthesise the evidence, supporting the hypothesis that social network structures can influence tobacco use. This will also include exploring the relationship between social network structure, social network position, peer selection, peer influence and tobacco use across all age groups, and across different demographics. The research will increase our understanding of social networks and their impact on tobacco use, informing policy and practice while highlighting gaps in the literature and areas for further research.

  12. Next generation of network medicine: interdisciplinary signaling approaches.

    PubMed

    Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio

    2017-02-20

    In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.

  13. Introduction to bioinformatics.

    PubMed

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  14. Actors and networks in resource conflict resolution under climate change in rural Kenya

    NASA Astrophysics Data System (ADS)

    Ngaruiya, Grace W.; Scheffran, Jürgen

    2016-05-01

    The change from consensual decision-making arrangements into centralized hierarchical chieftaincy schemes through colonization disrupted many rural conflict resolution mechanisms in Africa. In addition, climate change impacts on land use have introduced additional socio-ecological factors that complicate rural conflict dynamics. Despite the current urgent need for conflict-sensitive adaptation, resolution efficiency of these fused rural institutions has hardly been documented. In this context, we analyse the Loitoktok network for implemented resource conflict resolution structures and identify potential actors to guide conflict-sensitive adaptation. This is based on social network data and processes that are collected using the saturation sampling technique to analyse mechanisms of brokerage. We find that there are three different forms of fused conflict resolution arrangements that integrate traditional institutions and private investors in the community. To effectively implement conflict-sensitive adaptation, we recommend the extension officers, the council of elders, local chiefs and private investors as potential conduits of knowledge in rural areas. In conclusion, efficiency of these fused conflict resolution institutions is aided by the presence of holistic resource management policies and diversification in conflict resolution actors and networks.

  15. Network structure and influence of the climate change counter-movement

    NASA Astrophysics Data System (ADS)

    Farrell, Justin

    2016-04-01

    Anthropogenic climate change represents a global threat to human well-being and ecosystem functioning. Yet despite its importance for science and policy, our understanding of the causes of widespread uncertainty and doubt found among the general public remains limited. The political and social processes driving such doubt and uncertainty are difficult to rigorously analyse, and research has tended to focus on the individual-level, rather than the larger institutions and social networks that produce and disseminate contrarian information. This study presents a new approach by using network science to uncover the institutional and corporate structure of the climate change counter-movement, and machine-learning text analysis to show its influence in the news media and bureaucratic politics. The data include a new social network of all known organizations and individuals promoting contrarian viewpoints, as well as the entirety of all written and verbal texts about climate change from 1993-2013 from every organization, three major news outlets, all US presidents, and every occurrence on the floor of the US Congress. Using network and computational text analysis, I find that the organizational power within the contrarian network, and the magnitude of semantic similarity, are both predicted by ties to elite corporate benefactors.

  16. What are the reasons for clinical network success? A qualitative study.

    PubMed

    McInnes, Elizabeth; Haines, Mary; Dominello, Amanda; Kalucy, Deanna; Jammali-Blasi, Asmara; Middleton, Sandy; Klineberg, Emily

    2015-11-05

    Clinical networks have been established to improve patient outcomes and processes of care by implementing a range of innovations and undertaking projects based on the needs of local health services. Given the significant investment in clinical networks internationally, it is important to assess their effectiveness and sustainability. This qualitative study investigated the views of stakeholders on the factors they thought were influential in terms of overall network success. Ten participants were interviewed using face-to-face, audio-recorded semi-structured interviews about critical factors for networks' successes over the study period 2006-2008. Respondents were purposively selected from two stakeholder groups: i) chairs of networks during the study period of 2006-2008 from high- moderate- and low-impact networks (as previously determined by an independent review panel) and ii) experts in the clinical field of the network who had a connection to the network but who were not network members. Participants were blind to the performance of the network they were interviewed about. Transcribed data were coded and analysed to generate themes relating to the study aims. Themes relating to influential factors critical to network success were: network model principles; leadership; formal organisational structures and processes; nature of network projects; external relationships; profile and credibility of the network. This study provides clinical networks with guidance on essential factors for maximising optimal network outcomes and that may assist networks to move from being a 'low-impact' to 'high-impact' network. Important ingredients for successful clinical networks were visionary and strategic leadership with strong links to external stakeholders; and having formal infrastructure and processes to enable the development and management of work plans aligned with health priorities.

  17. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Enabling Community Through Social Media

    PubMed Central

    Haythornthwaite, Caroline

    2013-01-01

    Background Social network analysis provides a perspective and method for inquiring into the structures that comprise online groups and communities. Traces from interaction via social media provide the opportunity for understanding how a community is formed and maintained online. Objective The paper aims to demonstrate how social network analysis provides a vocabulary and set of techniques for examining interaction patterns via social media. Using the case of the #hcsmca online discussion forum, this paper highlights what has been and can be gained by approaching online community from a social network perspective, as well as providing an inside look at the structure of the #hcsmca community. Methods Social network analysis was used to examine structures in a 1-month sample of Twitter messages with the hashtag #hcsmca (3871 tweets, 486 unique posters), which is the tag associated with the social media–supported group Health Care Social Media Canada. Network connections were considered present if the individual was mentioned, replied to, or had a post retweeted. Results Network analyses revealed patterns of interaction that characterized the community as comprising one component, with a set of core participants prominent in the network due to their connections with others. Analysis showed the social media health content providers were the most influential group based on in-degree centrality. However, there was no preferential attachment among people in the same professional group, indicating that the formation of connections among community members was not constrained by professional status. Conclusions Network analysis and visualizations provide techniques and a vocabulary for understanding online interaction, as well as insights that can help in understanding what, and who, comprises and sustains a network, and whether community emerges from a network of online interactions. PMID:24176835

  19. Visualisation and graph-theoretic analysis of a large-scale protein structural interactome

    PubMed Central

    Bolser, Dan; Dafas, Panos; Harrington, Richard; Park, Jong; Schroeder, Michael

    2003-01-01

    Background Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. Results We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Conclusions Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level. PMID:14531933

  20. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

    NASA Astrophysics Data System (ADS)

    Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich

    2018-04-01

    Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

  1. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2017-11-01

    and activation-based fMRI from the Courchesne lab report the presence of structural and functional abnormality in these structures by ages 1 to 2...young ages. With this invaluable resource, we will identify early developmental patterns of intrinsic functional network abnormalities in ASD infants...all infants and toddlers, analyses also investigate whether there may be subtypes of abnormal intrinsic connectivity patterns based on early clinical

  2. An exploration of the Facebook social networks of smokers and non-smokers.

    PubMed

    Fu, Luella; Jacobs, Megan A; Brookover, Jody; Valente, Thomas W; Cobb, Nathan K; Graham, Amanda L

    2017-01-01

    Social networks influence health behavior, including tobacco use and cessation. To date, little is known about whether and how the networks of online smokers and non-smokers may differ, or the potential implications of such differences with regards to intervention efforts. Understanding how social networks vary by smoking status could inform public health efforts to accelerate cessation or slow the adoption of tobacco use. These secondary analyses explore the structure of ego networks of both smokers and non-smokers collected as part of a randomized control trial conducted within Facebook. During the trial, a total of 14,010 individuals installed a Facebook smoking cessation app: 9,042 smokers who were randomized in the trial, an additional 2,881 smokers who did not meet full eligibility criteria, and 2,087 non-smokers. The ego network for all individuals was constructed out to second-degree connections. Four kinds of networks were constructed: friendship, family, photo, and group networks. From these networks we measured edges, isolates, density, mean betweenness, transitivity, and mean closeness. We also measured diameter, clustering, and modularity without ego and isolates. Logistic regressions were performed with smoking status as the response and network metrics as the primary independent variables and demographics and Facebook utilization metrics as covariates. The four networks had different characteristics, indicated by different multicollinearity issues and by logistic regression output. Among Friendship networks, the odds of smoking were higher in networks with lower betweenness (p = 0.00), lower transitivity (p = 0.00), and larger diameter (p = 0.00). Among Family networks, the odds of smoking were higher in networks with more vertices (p = .01), less transitivity (p = .04), and fewer isolates (p = .01). Among Photo networks, none of the network metrics were predictive of smoking status. Among Group networks, the odds of smoking were higher when diameter was smaller (p = .04). Together, these findings suggested that compared to non-smokers, smokers in this sample had less connected, more dispersed Facebook Friendship networks; larger but more fractured Family networks with fewer isolates; more compact Group networks; and Photo networks that were similar in network structure to those of non-smokers. This study illustrates the importance of examining structural differences in online social networks as a critical component for network-based interventions and lays the foundation for future research that examines the ways that social networks differ based on individual health behavior. Interventions that seek to target the behavior of individuals in the context of their social environment would be well served to understand social network structures of participants.

  3. An exploration of the Facebook social networks of smokers and non-smokers

    PubMed Central

    2017-01-01

    Background Social networks influence health behavior, including tobacco use and cessation. To date, little is known about whether and how the networks of online smokers and non-smokers may differ, or the potential implications of such differences with regards to intervention efforts. Understanding how social networks vary by smoking status could inform public health efforts to accelerate cessation or slow the adoption of tobacco use. Objectives These secondary analyses explore the structure of ego networks of both smokers and non-smokers collected as part of a randomized control trial conducted within Facebook. Methods During the trial, a total of 14,010 individuals installed a Facebook smoking cessation app: 9,042 smokers who were randomized in the trial, an additional 2,881 smokers who did not meet full eligibility criteria, and 2,087 non-smokers. The ego network for all individuals was constructed out to second-degree connections. Four kinds of networks were constructed: friendship, family, photo, and group networks. From these networks we measured edges, isolates, density, mean betweenness, transitivity, and mean closeness. We also measured diameter, clustering, and modularity without ego and isolates. Logistic regressions were performed with smoking status as the response and network metrics as the primary independent variables and demographics and Facebook utilization metrics as covariates. Results The four networks had different characteristics, indicated by different multicollinearity issues and by logistic regression output. Among Friendship networks, the odds of smoking were higher in networks with lower betweenness (p = 0.00), lower transitivity (p = 0.00), and larger diameter (p = 0.00). Among Family networks, the odds of smoking were higher in networks with more vertices (p = .01), less transitivity (p = .04), and fewer isolates (p = .01). Among Photo networks, none of the network metrics were predictive of smoking status. Among Group networks, the odds of smoking were higher when diameter was smaller (p = .04). Together, these findings suggested that compared to non-smokers, smokers in this sample had less connected, more dispersed Facebook Friendship networks; larger but more fractured Family networks with fewer isolates; more compact Group networks; and Photo networks that were similar in network structure to those of non-smokers. Conclusions This study illustrates the importance of examining structural differences in online social networks as a critical component for network-based interventions and lays the foundation for future research that examines the ways that social networks differ based on individual health behavior. Interventions that seek to target the behavior of individuals in the context of their social environment would be well served to understand social network structures of participants. PMID:29095958

  4. Structure determination and characterization of two rare-earth molybdenum borate compounds: LnMoBO(6) (Ln = La, Ce).

    PubMed

    Zhao, Dan; Cheng, Wen-Dan; Zhang, Hao; Hang, Shu-Ping; Fang, Ming

    2008-07-28

    The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.

  5. Analyses of the structure of group correlations in Korean financial markets

    NASA Astrophysics Data System (ADS)

    Ko, Jeung Su; Lim, Gyuchang; Kim, Kyungsik

    2012-12-01

    In this paper, we construct and analyze the structure of cross-correlations in two Korean stock markets, the Korea Composite Stock Price Index (KOSPI) and the Korea Securities Dealers Automated Quotation (KOSDAQ). We investigate a remarkable agreement between the theoretical prediction and the empirical data concerning the density of eigenvalues in the KOSPI and the KOSDAQ. We estimate daily cross-correlations with respect to price fluctuations of 629 KOSPI and 650 KOSDAQ stock entities for the period from 2006 to 2010. The research for the structure of group correlations undress the market-wide effect by using the Markowitz multi-factor model and network-based approach. We find stock entities that involve the same business sectors and verify the structure of group correlations by applying a network-based approach. In particular, the KOSPI has a dense correlation besides overall group correlations for stock entities, whereas both correlations are less for the KOSDAQ than for the KOSPI.

  6. Using Network Analysis to Characterize Biogeographic Data in a Community Archive

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Bristol, S.

    2017-12-01

    Informative measures are needed to evaluate and compare data from multiple providers in a community-driven data archive. This study explores insights from network theory and other descriptive and inferential statistics to examine data content and application across an assemblage of publically available biogeographic data sets. The data are archived in ScienceBase, a collaborative catalog of scientific data supported by the U.S Geological Survey to enhance scientific inquiry and acuity. In gaining understanding through this investigation and other scientific venues our goal is to improve scientific insight and data use across a spectrum of scientific applications. Network analysis is a tool to reveal patterns of non-trivial topological features in the data that do not exhibit complete regularity or randomness. In this work, network analyses are used to explore shared events and dependencies between measures of data content and application derived from metadata and catalog information and measures relevant to biogeographic study. Descriptive statistical tools are used to explore relations between network analysis properties, while inferential statistics are used to evaluate the degree of confidence in these assessments. Network analyses have been used successfully in related fields to examine social awareness of scientific issues, taxonomic structures of biological organisms, and ecosystem resilience to environmental change. Use of network analysis also shows promising potential to identify relationships in biogeographic data that inform programmatic goals and scientific interests.

  7. How transfer flights shape the structure of the airline network.

    PubMed

    Ryczkowski, Tomasz; Fronczak, Agata; Fronczak, Piotr

    2017-07-17

    In this paper, we analyse the gravity model in the global passenger air-transport network. We show that in the standard form, the model is inadequate for correctly describing the relationship between passenger flows and typical geo-economic variables that characterize connected countries. We propose a model for transfer flights that allows exploitation of these discrepancies in order to discover hidden subflows in the network. We illustrate its usefulness by retrieving the distance coefficient in the gravity model, which is one of the determinants of the globalization process. Finally, we discuss the correctness of the presented approach by comparing the distance coefficient to several well-known economic events.

  8. Network meta-analyses performed by contracting companies and commissioned by industry.

    PubMed

    Schuit, Ewoud; Ioannidis, John Pa

    2016-11-25

    Industry commissions contracting companies to perform network meta-analysis for health technology assessment (HTA) and reimbursement submissions. Our objective was to estimate the number of network meta-analyses performed by consulting companies contracted by industry, to assess whether they were published, and to explore reasons for non-publication. We searched MEDLINE for network meta-analyses of randomized trials. Papers were included if they had authors affiliated with any contracting company. All identified contracting companies as well as additional ones from the list of the exhibitors at the International Society for Pharmacoeconomics and Outcomes Research, an annual meeting that representatives from many contracting companies attend and exhibit at, were surveyed regarding conduct and publication of network meta-analyses. In 162 of 822 (20%) network meta-analysis papers, authors were affiliated to 66 contracting companies. Another 36 contracting companies were identified by the exhibitors list. Three companies had no contact information and six merged with others, therefore 93 companies were contacted. Thirty seven out of ninety three (40%) companies responded, and 19 indicated that they had performed a total of 476 network meta-analyses, but only 102 (21%) papers were published. Thirteen companies that disclosed to have conducted 174 network meta-analyses (45 published) provided reasons for non-publication. Of the 129 still unpublished meta-analyses, for 40 there were plans for future publication, for 37 the sponsor did not allow publication, for 16 the contracting companies did not plan to publish the meta-analysis, for another 23 plans were unclear, and the remaining 13 were used as HTA submission. The protocol of the network meta-analysis was publically available from 11/162 (6.8%) network meta-analyses published by authors affiliated with contracting companies. There is a prolific sector of professional contracting companies that perform network meta-analyses. Industry commissions many network meta-analyses, but most are not registered before or published after analyses in the scientific literature. Mechanisms to improve publication rates of network meta-analysis commissioned by industry are warranted.

  9. Applications of graph theory to landscape genetics

    PubMed Central

    Garroway, Colin J; Bowman, Jeff; Carr, Denis; Wilson, Paul J

    2008-01-01

    We investigated the relationships among landscape quality, gene flow, and population genetic structure of fishers (Martes pennanti) in ON, Canada. We used graph theory as an analytical framework considering each landscape as a network node. The 34 nodes were connected by 93 edges. Network structure was characterized by a higher level of clustering than expected by chance, a short mean path length connecting all pairs of nodes, and a resiliency to the loss of highly connected nodes. This suggests that alleles can be efficiently spread through the system and that extirpations and conservative harvest are not likely to affect their spread. Two measures of node centrality were negatively related to both the proportion of immigrants in a node and node snow depth. This suggests that central nodes are producers of emigrants, contain high-quality habitat (i.e., deep snow can make locomotion energetically costly) and that fishers were migrating from high to low quality habitat. A method of community detection on networks delineated five genetic clusters of nodes suggesting cryptic population structure. Our analyses showed that network models can provide system-level insight into the process of gene flow with implications for understanding how landscape alterations might affect population fitness and evolutionary potential. PMID:25567802

  10. Global Dynamics of Proteins: Bridging Between Structure and Function

    PubMed Central

    Bahar, Ivet; Lezon, Timothy R.; Yang, Lee-Wei; Eyal, Eran

    2010-01-01

    Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold. PMID:20192781

  11. Global dynamics of proteins: bridging between structure and function.

    PubMed

    Bahar, Ivet; Lezon, Timothy R; Yang, Lee-Wei; Eyal, Eran

    2010-01-01

    Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold.

  12. PTSD symptomics: network analyses in the field of psychotraumatology.

    PubMed

    Armour, Cherie; Fried, Eiko I; Olff, Miranda

    2017-01-01

    Recent years have seen increasing attention on posttraumatic stress disorder (PTSD) research. While research has largely focused on the dichotomy between patients diagnosed with mental disorders and healthy controls - in other words, investigations at the level of diagnoses - recent work has focused on psychopathology symptoms. Symptomics research in the area of PTSD has been scarce so far, although several studies have focused on investigating the network structures of PTSD symptoms. The present special issue of EJPT adds to the literature by curating additional PTSD network studies, each looking at a different aspect of PTSD. We hope that this special issue encourages researchers to conceptualize and model PTSD data from a network perspective, which arguably has the potential to inform and improve the efficacy of therapeutic interventions.

  13. Network analysis shining light on parasite ecology and diversity.

    PubMed

    Poulin, Robert

    2010-10-01

    The vast number of species making up natural communities, and the myriad interactions among them, pose great difficulties for the study of community structure, dynamics and stability. Borrowed from other fields, network analysis is making great inroads in community ecology and is only now being applied to host-parasite interactions. It allows a complex system to be examined in its entirety, as opposed to one or a few components at a time. This review explores what network analysis is and how it can be used to investigate parasite ecology. It also summarizes the first findings to emerge from network analyses of host-parasite interactions and identifies promising future directions made possible by this approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    PubMed Central

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  15. Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes

    PubMed Central

    Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik

    2014-01-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815

  16. Influence maximization in complex networks through optimal percolation

    NASA Astrophysics Data System (ADS)

    Morone, Flaviano; Makse, Hernán A.

    2015-08-01

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  17. Influence maximization in complex networks through optimal percolation.

    PubMed

    Morone, Flaviano; Makse, Hernán A

    2015-08-06

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  18. Stability and structural properties of gene regulation networks with coregulation rules.

    PubMed

    Warrell, Jonathan; Mhlanga, Musa

    2017-05-07

    Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.

  19. Mean field approximation for biased diffusion on Japanese inter-firm trading network.

    PubMed

    Watanabe, Hayafumi

    2014-01-01

    By analysing the financial data of firms across Japan, a nonlinear power law with an exponent of 1.3 was observed between the number of business partners (i.e. the degree of the inter-firm trading network) and sales. In a previous study using numerical simulations, we found that this scaling can be explained by both the money-transport model, where a firm (i.e. customer) distributes money to its out-edges (suppliers) in proportion to the in-degree of destinations, and by the correlations among the Japanese inter-firm trading network. However, in this previous study, we could not specifically identify what types of structure properties (or correlations) of the network determine the 1.3 exponent. In the present study, we more clearly elucidate the relationship between this nonlinear scaling and the network structure by applying mean-field approximation of the diffusion in a complex network to this money-transport model. Using theoretical analysis, we obtained the mean-field solution of the model and found that, in the case of the Japanese firms, the scaling exponent of 1.3 can be determined from the power law of the average degree of the nearest neighbours of the network with an exponent of -0.7.

  20. Elastin: a representative ideal protein elastomer.

    PubMed Central

    Urry, D W; Hugel, T; Seitz, M; Gaub, H E; Sheiba, L; Dea, J; Xu, J; Parker, T

    2002-01-01

    During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension. PMID:11911774

  1. Intra- and interbrain synchronization and network properties when playing guitar in duets

    PubMed Central

    Sänger, Johanna; Müller, Viktor; Lindenberger, Ulman

    2012-01-01

    To further test and explore the hypothesis that synchronous oscillatory brain activity supports interpersonally coordinated behavior during dyadic music performance, we simultaneously recorded the electroencephalogram (EEG) from the brains of each of 12 guitar duets repeatedly playing a modified Rondo in two voices by C.G. Scheidler. Indicators of phase locking and of within-brain and between-brain phase coherence were obtained from complex time-frequency signals based on the Gabor transform. Analyses were restricted to the delta (1–4 Hz) and theta (4–8 Hz) frequency bands. We found that phase locking as well as within-brain and between-brain phase-coherence connection strengths were enhanced at frontal and central electrodes during periods that put particularly high demands on musical coordination. Phase locking was modulated in relation to the experimentally assigned musical roles of leader and follower, corroborating the functional significance of synchronous oscillations in dyadic music performance. Graph theory analyses revealed within-brain and hyperbrain networks with small-worldness properties that were enhanced during musical coordination periods, and community structures encompassing electrodes from both brains (hyperbrain modules). We conclude that brain mechanisms indexed by phase locking, phase coherence, and structural properties of within-brain and hyperbrain networks support interpersonal action coordination (IAC). PMID:23226120

  2. Structural Covariance Networks in Children with Autism or ADHD

    PubMed Central

    Romero-Garcia, R.; Mak, E.; Bullmore, E. T.; Baron-Cohen, S.

    2017-01-01

    Abstract Background While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Method Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. Results We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Conclusions Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. PMID:28633299

  3. Structural Covariance Networks in Children with Autism or ADHD.

    PubMed

    Bethlehem, R A I; Romero-Garcia, R; Mak, E; Bullmore, E T; Baron-Cohen, S

    2017-08-01

    While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. © The Author 2017. Published by Oxford University Press.

  4. A Situated Analysis of Global Knowledge Networks: Capital Accumulation Strategies of Transnationally Mobile Scientists in Singapore

    ERIC Educational Resources Information Center

    Sidhu, Ravinder; Yeoh, Brenda; Chang, Sushila

    2015-01-01

    This paper investigates the geographic and professional mobility of scientists employed in Singapore's publicly funded research institutes in various techno-and lifescience specialisations. Using Bourdieu's conceptual framework, we analyse the capital portfolios of individual scientists against the structures of power which have informed…

  5. Innovators, Networks, and Structures: Towards a Prosopography of Progressivism.

    ERIC Educational Resources Information Center

    Cunningham, Peter

    2001-01-01

    Responds to the progressive education concepts analyses of Herbert Kliebard and Sol Cohen. Offers the methodology concept of propography, or collective biography, to explain interests perceived as a homogenous progressive movement in education. Demonstrates the promise of prosopography as a methodology to bring agendas of less well-known…

  6. Probabilistic atlases of default mode, executive control and salience network white matter tracts: an fMRI-guided diffusion tensor imaging and tractography study

    PubMed Central

    Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.

    2015-01-01

    Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930

  7. Using the OASES-A to illustrate how network analysis can be applied to understand the experience of stuttering.

    PubMed

    Siew, Cynthia S Q; Pelczarski, Kristin M; Yaruss, J Scott; Vitevitch, Michael S

    Network science uses mathematical and computational techniques to examine how individual entities in a system, represented by nodes, interact, as represented by connections between nodes. This approach has been used by Cramer et al. (2010) to make "symptom networks" to examine various psychological disorders. In the present analysis we examined a network created from the items in the Overall Assessment of the Speaker's Experience of Stuttering-Adult (OASES-A), a commonly used measure for evaluating adverse impact in the lives of people who stutter. The items of the OASES-A were represented as nodes in the network. Connections between nodes were placed if responses to those two items in the OASES-A had a correlation coefficient greater than ±0.5. Several network analyses revealed which nodes were "important" in the network. Several centrally located nodes and "key players" in the network were identified. A community detection analysis found groupings of nodes that differed slightly from the subheadings of the OASES-A. Centrally located nodes and "key players" in the network may help clinicians prioritize treatment. The different community structure found for people who stutter suggests that the way people who stutter view stuttering may differ from the way that scientists and clinicians view stuttering. Finally, the present analyses illustrate how the network approach might be applied to other speech, language, and hearing disorders to better understand how those disorders are experienced and to provide insights for their treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Effects of Peer Group Network Properties on Drug Use Among Homeless Youth

    PubMed Central

    Rice, Eric; Milburn, Norweeta G.; Rotheram-Borus, Mary Jane; Mallett, Shelley; Rosenthal, Doreen

    2010-01-01

    The authors examine how the properties of peer networks affect amphetamine, cocaine, and injection drug use over 3 months among newly homeless adolescents, aged 12 to 20 in Los Angeles (n = 217; 83% retention at 3 months) and Melbourne (n = 119; 72% retention at 3 months). Several hypotheses regarding the effects of social network properties on the peer influence process are developed. Multivariate logistic regression analyses show that higher concentrations of homeless peers in networks at recruitment were associated with increased likelihood of amphetamine and cocaine use at 3-month follow-up. Higher concentrations of injecting peers were associated with increased risk of injection drug use 3 months later. Change in network structure over time toward increased concentrations of homeless peers was associated with increased risk of cocaine use and injecting. Higher density networks at baseline were positively associated with increased likelihood of cocaine and amphetamine use at 3 months. PMID:20539820

  9. Inferring personal economic status from social network location

    NASA Astrophysics Data System (ADS)

    Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A.

    2017-05-01

    It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.

  10. Inferring personal economic status from social network location.

    PubMed

    Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A

    2017-05-16

    It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.

  11. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  12. Structural vascular disease in Africans: Performance of ethnic-specific waist circumference cut points using logistic regression and neural network analyses: The SABPA study.

    PubMed

    Botha, J; de Ridder, J H; Potgieter, J C; Steyn, H S; Malan, L

    2013-10-01

    A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fasting bloods (glucose, high density lipoprotein (HDL) and triglycerides) were obtained in a well-controlled setting. The RPWC male model (LR ROC AUC: 0.71, NN ROC AUC: 0.71) was practically equal to the JSC model (LR ROC AUC: 0.71, NN ROC AUC: 0.69) to predict structural vascular -disease. Similarly, the female RPWC model (LR ROC AUC: 0.84, NN ROC AUC: 0.82) and JSC model (LR ROC AUC: 0.82, NN ROC AUC: 0.81) equally predicted CIMT as surrogate marker for structural vascular disease. Odds ratios supported validity where prediction of CIMT revealed -clinical -significance, well over 1, for both the JSC and RPWC models in African males and females (OR 3.75-13.98). In conclusion, the proposed RPWC model was substantially validated utilizing linear and non-linear analyses. We therefore propose ethnic-specific WC cut points (African males, ≥90 cm; -females, ≥98 cm) to predict a surrogate marker for structural vascular disease. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  13. Trabecular network arrangement within the human patella: how osteoarthritis remodels the 3D trabecular structure

    NASA Astrophysics Data System (ADS)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2016-10-01

    Following the principles of "morphology reveals biomechanics", the anatomical structure of the cartilage-osseous interface and the supporting trabecular network show defined adaptation in their architectural properties to physiological loading. In case of a faulty relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise and disturb the balanced formation and resorption processes. To describe and quantify the changes occurring, 10 human OA patellae were analysed concerning the architectural parameters of the trabecular network within the first five mms by the evaluation of 3Dmicro-CT datasets. The analysed OA-samples showed a strong irregularity for all trabecular parameters across the trabecular network, no regularity in parameter distribution was found. In general, we saw a decrease of material in the OA population as BV/TV, BS/TV, Tb.N and Tb.Th were decreased and the spacing increased. The development into depth showed a logarithmic dependency, which revealed the greatest difference for all parameters within the first mm in comparison to the physiologic samples. The differences decreased towards the 5th mm. The interpretation of the mathematic dependency leads to the conclusion that the main impact of OA is beneath the subchondral bone plate (SBP) and lessens with depth. Next to the clear difference in material, the architectural arrangement is more rod-like and isotropic just beneath the SBP in comparison to the plate-like and more anisotropic physiological arrangement.

  14. Personal support networks, social capital, and risk of relapse among individuals treated for substance use issues.

    PubMed

    Panebianco, Daria; Gallupe, Owen; Carrington, Peter J; Colozzi, Ivo

    2016-01-01

    The success of treatment for substance use issues varies with personal and social factors, including the composition and structure of the individual's personal support network. This paper describes the personal support networks and social capital of a sample of Italian adults after long-term residential therapeutic treatment for substance use issues, and analyses network correlates of post-treatment substance use (relapse). Using a social network analysis approach, data were obtained from structured interviews (90-120 min long) with 80 former clients of a large non-governmental therapeutic treatment agency in Italy providing voluntary residential treatments and rehabilitation services for substance use issues. Participants had concluded the program at least six months prior. Data were collected on socio-demographic variables, addiction history, current drug use status (drug-free or relapsed), and the composition and structure of personal support networks. Factors related to risk of relapse were assessed using bivariate and multivariate logistic regression models. A main goal of this study was to identify differences between the support network profiles of drug free and relapsed participants. Drug free participants had larger, less dense, more heterogeneous and reciprocal support networks, and more brokerage social capital than relapsed participants. Additionally, a lower risk of relapse was associated with higher socio-economic status, being married/cohabiting, and having network members with higher socio-economic status, who have greater occupational heterogeneity, and reciprocate support. Post-treatment relapse was found to be negatively associated with the socioeconomic status and occupational heterogeneity of ego's support network, reciprocity in the ties between ego and network members, and a support network in which the members are relatively loosely connected with one another (i.e., ego possesses "brokerage social capital"). These findings suggest the incorporation into therapeutic programming of interventions that address those aspects of clients' personal support networks. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Molecular ecological network analyses.

    PubMed

    Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong

    2012-05-30

    Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.

  16. Applying graphs and complex networks to football metric interpretation.

    PubMed

    Arriaza-Ardiles, E; Martín-González, J M; Zuniga, M D; Sánchez-Flores, J; de Saa, Y; García-Manso, J M

    2018-02-01

    This work presents a methodology for analysing the interactions between players in a football team, from the point of view of graph theory and complex networks. We model the complex network of passing interactions between players of a same team in 32 official matches of the Liga de Fútbol Profesional (Spain), using a passing/reception graph. This methodology allows us to understand the play structure of the team, by analysing the offensive phases of game-play. We utilise two different strategies for characterising the contribution of the players to the team: the clustering coefficient, and centrality metrics (closeness and betweenness). We show the application of this methodology by analyzing the performance of a professional Spanish team according to these metrics and the distribution of passing/reception in the field. Keeping in mind the dynamic nature of collective sports, in the future we will incorporate metrics which allows us to analyse the performance of the team also according to the circumstances of game-play and to different contextual variables such as, the utilisation of the field space, the time, and the ball, according to specific tactical situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Social Network Structures of Breast Cancer Patients and the Contributing Role of Patient Navigators.

    PubMed

    Gunn, Christine M; Parker, Victoria A; Bak, Sharon M; Ko, Naomi; Nelson, Kerrie P; Battaglia, Tracy A

    2017-08-01

    Minority women in the U.S. continue to experience inferior breast cancer outcomes compared with white women, in part due to delays in care delivery. Emerging cancer care delivery models like patient navigation focus on social barriers, but evidence demonstrating how these models increase social capital is lacking. This pilot study describes the social networks of newly diagnosed breast cancer patients and explores the contributing role of patient navigators. Twenty-five women completed a one hour interview about their social networks related to cancer care support. Network metrics identified important structural attributes and influential individuals. Bivariate associations between network metrics, type of network, and whether the network included a navigator were measured. Secondary analyses explored associations between network structures and clinical outcomes. We identified three types of networks: kin-based, role and/or affect-based, or heterogeneous. Network metrics did not vary significantly by network type. There was a low prevalence of navigators included in the support networks (25%). Network density scores were significantly higher in those networks without a navigator. Network metrics were not predictive of clinical outcomes in multivariate models. Patient navigators were not frequently included in support networks, but provided distinctive types of support. If navigators can identify patients with poorly integrated (less dense) social networks, or who have unmet tangible support needs, the intensity of navigation services could be tailored. Services and systems that address gaps and variations in patient social networks should be explored for their potential to reduce cancer health disparities. This study used a new method to identify the breadth and strength of social support following a diagnosis of breast cancer, especially examining the role of patient navigators in providing support. While navigators were only included in one quarter of patient support networks, they did provide essential supports to some individuals. Health care providers and systems need to better understand the contributions of social supports both within and outside of health care to design and tailor interventions that seek to reduce health care disparities and improve cancer outcomes. © AlphaMed Press 2017.

  18. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  19. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  20. The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites

    PubMed Central

    Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.

    2013-01-01

    Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155

  1. Diffusion tractography and graph theory analysis reveal the disrupted rich-club organization of white matter structural networks in early Tourette Syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.

  2. Robustness of weighted networks

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  3. The Human Thalamus Is an Integrative Hub for Functional Brain Networks

    PubMed Central

    Bertolero, Maxwell A.

    2017-01-01

    The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivity remains largely unknown. By performing graph-theoretic analyses on thalamocortical functional connectivity data collected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multimodal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. SIGNIFICANCE STATEMENT The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate information processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. These findings support the idea that the thalamus is involved in integrating information across cortical networks. PMID:28450543

  4. Brain Connectivity and Visual Attention

    PubMed Central

    Parks, Emily L.

    2013-01-01

    Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177

  5. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  6. Vertical Transmission of Social Roles Drives Resilience to Poaching in Elephant Networks.

    PubMed

    Goldenberg, Shifra Z; Douglas-Hamilton, Iain; Wittemyer, George

    2016-01-11

    Network resilience to perturbation is fundamental to functionality in systems ranging from synthetic communication networks to evolved social organization [1]. While theoretical work offers insight into causes of network robustness, examination of natural networks can identify evolved mechanisms of resilience and how they are related to the selective pressures driving structure. Female African elephants (Loxodonta africana) exhibit complex social networks with node heterogeneity in which older individuals serve as connectivity hubs [2, 3]. Recent ivory poaching targeting older elephants in a well-studied population has mirrored the targeted removal of highly connected nodes in the theoretical literature that leads to structural collapse [4, 5]. Here we tested the response of this natural network to selective knockouts. We find that the hierarchical network topology characteristic of elephant societies was highly conserved across the 16-year study despite ∼70% turnover in individual composition of the population. At a population level, the oldest available individuals persisted to fill socially central positions in the network. For analyses using known mother-daughter pairs, social positions of daughters during the disrupted period were predicted by those of their mothers in years prior, were unrelated to individual histories of family mortality, and were actively built. As such, daughters replicated the social network roles of their mothers, driving the observed network resilience. Our study provides a rare bridge between network theory and an evolved system, demonstrating social redundancy to be the mechanism by which resilience to perturbation occurred in this socially advanced species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  8. Controllability and observability analysis for vertex domination centrality in directed networks

    PubMed Central

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  9. Stochastic analysis of epidemics on adaptive time varying networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2013-06-01

    Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

  10. Communication of brain network core connections altered in behavioral variant frontotemporal dementia but possibly preserved in early-onset Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.

    2015-03-01

    Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.

  11. CIRCAL-2 - General-purpose on-line circuit design.

    NASA Technical Reports Server (NTRS)

    Dertouzos, M. L.; Jessel, G. P.; Stinger, J. R.

    1972-01-01

    CIRCAL-2 is a second-generation general-purpose on-line circuit-design program with the following main features: (1) multiple-analysis capability; (2) uniform and general data structures for handling text editing, network representations, and output results, regardless of analysis; (3) special techniques and structures for minimizing and controlling user-program interaction; (4) use of functionals for the description of hysteresis and heat effects; and (5) ability to define optimization procedures that 'replace' the user. The paper discusses the organization of CIRCAL-2, the aforementioned main features, and their consequences, such as a set of network elements and models general enough for most analyses and a set of functions tailored to circuit-design requirements. The presentation is descriptive, concentrating on conceptual rather than on program implementation details.

  12. A social network analysis of social cohesion in a constructed pride: implications for ex situ reintroduction of the African lion (Panthera leo).

    PubMed

    Abell, Jackie; Kirzinger, Morgan W B; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David

    2013-01-01

    Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride's social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions.

  13. Searching for realism, structure and agency in Actor Network Theory.

    PubMed

    Elder-Vass, Dave

    2008-09-01

    Superficially, Actor Network Theory (ANT) and critical realism (CR) are radically opposed research traditions. Written from a realist perspective, this paper asks whether there might be a basis for finding common ground between these two traditions. It looks in turn at the questions of realism, structure, and agency, analysing the differences between the two perspectives and seeking to identify what each might learn from the other. Overall, the paper argues that there is a great deal that realists can learn from actor network theory; yet ANT remains stunted by its lack of a depth ontology. It fails to recognize the significance of mechanisms, and of their dependence on emergence, and thus lacks both dimensions of the depth that is characteristic of critical realism's ontology. This prevents ANT from recognizing the role and powers of social structure; but on the other hand, realists would do well to heed ANT's call for us to trace the connections through which structures are constantly made and remade. A lack of ontological depth also underpins ANT's practice of treating human and non-human actors symmetrically, yet this remains a valuable provocation to sociologists who neglect non-human entities entirely.

  14. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    PubMed

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted modulation of neurotransmitter networks. Copyright © 2013 Wiley Periodicals, Inc.

  15. Molecular dynamics study of HIV-1 RT-DNA-nevirapine complexes explains NNRTI inhibition and resistance by connection mutations.

    PubMed

    Vijayan, R S K; Arnold, Eddy; Das, Kalyan

    2014-05-01

    HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that is targeted by nucleoside analogs (NRTIs) and non-nucleoside RT inhibitors (NNRTIs). NNRTIs are allosteric inhibitors of RT, and constitute an integral part of several highly active antiretroviral therapy regimens. Under selective pressure, HIV-1 acquires resistance against NNRTIs primarily by selecting mutations around the NNRTI pocket. Complete RT sequencing of clinical isolates revealed that spatially distal mutations arising in connection and the RNase H domain also confer NNRTI resistance and contribute to NRTI resistance. However, the precise structural mechanism by which the connection domain mutations confer NNRTI resistance is poorly understood. We performed 50-ns molecular dynamics (MD) simulations, followed by essential dynamics, free-energy landscape analyses, and network analyses of RT-DNA, RT-DNA-nevirapine (NVP), and N348I/T369I mutant RT-DNA-NVP complexes. MD simulation studies revealed altered global motions and restricted conformational landscape of RT upon NVP binding. Analysis of protein structure network parameters demonstrated a dissortative hub pattern in the RT-DNA complex and an assortative hub pattern in the RT-DNA-NVP complex suggesting enhanced rigidity of RT upon NVP binding. The connection subdomain mutations N348I/T369I did not induce any significant structural change; rather, these mutations modulate the conformational dynamics and alter the long-range allosteric communication network between the connection subdomain and NNRTI pocket. Insights from the present study provide a structural basis for the biochemical and clinical findings on drug resistance caused by the connection and RNase H mutations. Copyright © 2013 Wiley Periodicals, Inc.

  16. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.

    PubMed

    Salami, Alireza; Rieckmann, Anna; Fischer, Håkan; Bäckman, Lars

    2014-02-01

    Functional neuroimaging studies demonstrate age-related differences in recruitment of a large-scale attentional network during interference resolution, especially within dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). These alterations in functional responses have been frequently observed despite equivalent task performance, suggesting age-related reallocation of neural resources, although direct evidence for a facilitating effect in aging is sparse. We used the multi-source interference task and multivariate partial-least-squares to investigate age-related differences in the neuronal signature of conflict resolution, and their behavioral implications in younger and older adults. There were interference-related increases in activity, involving fronto-parietal and basal ganglia networks that generalized across age. In addition an age-by-task interaction was observed within a distributed network, including DLPFC and ACC, with greater activity during interference in the old. Next, we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were present in older adults, using DLPFC and ACC as regions of interest (i.e. seed regions). This analysis revealed two networks differentially related to performance across age groups. A structural analysis revealed age-related gray-matter losses in regions facilitating performance in the young, suggesting that functional reorganization may partly reflect structural alterations in aging. Collectively, these findings suggest that age-related structural changes contribute to reductions in the efficient recruitment of a youth-like interference network, which cascades into instantiation of a different network facilitating conflict resolution in elderly people. © 2013. Published by Elsevier Inc. All rights reserved.

  17. Urban Thermodynamic Island in a Coastal City Analysed from an Optimized Surface Network

    NASA Astrophysics Data System (ADS)

    Pigeon, Grégoire; Lemonsu, Aude; Long, Nathalie; Barrié, Joël; Masson, Valéry; Durand, Pierre

    2006-08-01

    Within the framework of ESCOMPTE, a French experiment performed in June and July 2001 in the south-east of France to study the photo-oxidant pollution at the regional scale, the urban boundary layer (UBL) program focused on the study of the urban atmosphere over the coastal city of Marseille. A methodology developed to optimize a network of 20 stations measuring air temperature and moisture over the city is presented. It is based on the analysis of a numerical simulation, performed with the non-hydrostatic, mesoscale Meso-NH model, run with four nested-grids down to a horizontal resolution of 250 m over the city and including a specific parametrization for the urban surface energy balance. A three-day period was modelled and evaluated against data collected during the preparatory phase for the project in summer 2000. The simulated thermodynamic surface fields were analysed using an empirical orthogonal function (EOF) decomposition in order to determine the optimal network configuration designed to capture the dominant characteristics of the fields. It is the first attempt of application of this kind of methodology to the field of urban meteorology. The network, of 20 temperature and moisture sensors, was implemented during the UBL-ESCOMPTE experiment and continuously recorded data from 12 June to 14 July 2001. The measurements were analysed in order to assess the urban thermodynamic island spatio-temporal structure, also using EOF decomposition. During nighttime, the influence of urbanization on temperature is clear the field is characterized by concentric thermo-pleths around the old core of the city, which is the warmest area of the domain. The moisture field is more influenced by proximity to the sea and airflow patterns. During the day, the sea breeze often moves from west or south-west and consequently the spatial pattern for both parameters is characterized by a gradient perpendicular to the shoreline. Finally, in order to assess the methodology adopted, the spatial structures extracted from the simulation of the 2000 preparatory campaign and observations gathered in 2001 have been compared. They are highly correlated, which is a relevant validation of the methodology proposed. The relations between these spatial structures and geographical characteristics of the site have also been studied. High correlations between temperature spatial structure during nighttime and urban cover fraction or street aspect ratio are observed and simulated. For temperature during daytime or moisture during both daytime and nighttime these geographical factors are not correlated with thermodynamic fields spatial structures.

  18. Structural covariance network centrality in maltreated youth with posttraumatic stress disorder

    PubMed Central

    Sun, Delin; Peverill, Matthew R.; Swanson, Chelsea S.; McLaughlin, Katie A.; Morey, Rajendra A.

    2018-01-01

    Childhood maltreatment is associated with posttraumatic stress disorder (PTSD) and elevated rates of adolescent and adult psychopathology including major depression, bipolar disorder, substance use disorders, and other medical comorbidities. Gray matter volume changes have been found in maltreated youth with (versus without) PTSD. However, little is known about the alterations of brain structural covariance network topology derived from cortical thickness in maltreated youth with PTSD. High-resolution T1-weighted magnetic resonance imaging scans were from demographically matched maltreated youth with PTSD (N = 24), without PTSD (N =64), and non-maltreated healthy controls (n = 67). Cortical thickness data from 148 cortical regions was entered into interregional partial correlation analyses across participants. The supra-threshold correlations constituted connections in a structural brain network derived from four types of centrality measures (degree, betweenness, closeness, and eigenvector) estimated network topology and the importance of nodes. Between-group differences were determined by permutation testing. Maltreated youth with PTSD exhibited larger centrality in left anterior cingulate cortex than the other two groups, suggesting cortical network topology specific to maltreated youth with PTSD. Moreover, maltreated youth with versus without PTSD showed smaller centrality in right orbitofrontal cortex, suggesting that this may represent a vulnerability factor to PTSD following maltreatment. Longitudinal follow-up of the present results will help characterize the role that altered centrality plays in vulnerability and resilience to PTSD following childhood maltreatment. PMID:29294430

  19. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan.

    PubMed

    Davison, Elizabeth N; Turner, Benjamin O; Schlesinger, Kimberly J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Carlson, Jean M

    2016-11-01

    Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism-hypergraph cardinality-we investigate individual variations in two separate, complementary data sets. The first data set ("multi-task") consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set ("age-memory"), in which 95 individuals, aged 18-75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.

  20. Structural and Functional Cerebral Correlates of Hypnotic Suggestibility

    PubMed Central

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity. PMID:24671130

  1. Proceedings of the Government Neural Network Applications Workshop Held at Wright-Patterson AFB, Ohio on August 24-26, 1992. Volume 1

    DTIC Science & Technology

    1992-08-01

    history trace of input u(t). (b) A common network struc- 1 ture makes use of the feedforward tapped delay line. For this structure the memory depth D...theories and analyses that will be used world- wide for a long time to come. The reason for this contribution has generally been the government’s need to...that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural

  2. Neural control and transient analysis of the LCL-type resonant converter

    NASA Astrophysics Data System (ADS)

    Zouggar, S.; Nait Charif, H.; Azizi, M.

    2000-07-01

    This paper proposes a generalised inverse learning structure to control the LCL converter. A feedforward neural network is trained to act as an inverse model of the LCL converter then both are cascaded such that the composed system results in an identity mapping between desired response and the LCL output voltage. Using the large signal model, we analyse the transient output response of the controlled LCL converter in the case of large variation of the load. The simulation results show the efficiency of using neural networks to regulate the LCL converter.

  3. Analyzing big data in social media: Text and network analyses of an eating disorder forum.

    PubMed

    Moessner, Markus; Feldhege, Johannes; Wolf, Markus; Bauer, Stephanie

    2018-05-10

    Social media plays an important role in everyday life of young people. Numerous studies claim negative effects of social media and media in general on eating disorder risk factors. Despite the availability of big data, only few studies have exploited the possibilities so far in the field of eating disorders. Methods for data extraction, computerized content analysis, and network analysis will be introduced. Strategies and methods will be exemplified for an ad-hoc dataset of 4,247 posts and 34,118 comments by 3,029 users of the proed forum on Reddit. Text analysis with latent Dirichlet allocation identified nine topics related to social support and eating disorder specific content. Social network analysis describes the overall communication patterns, and could identify community structures and most influential users. A linear network autocorrelation model was applied to estimate associations in language among network neighbors. The supplement contains R code for data extraction and analyses. This paper provides an introduction to investigating social media data, and will hopefully stimulate big data social media research in eating disorders. When applied in real-time, the methods presented in this manuscript could contribute to improving the safety of ED-related online communication. © 2018 Wiley Periodicals, Inc.

  4. An exploratory comparison of name generator content: Data from rural India

    PubMed Central

    Shakya, Holly B.; Christakis, Nicholas A.; Fowler, James H.

    2017-01-01

    Since the 1970s sociologists have explored the best means for measuring social networks, although few name generator analyses have used sociocentric data or data from developing countries, partly because sociocentric studies in developing countries have been scant. Here, we analyze 12 different name generators used in a sociocentric network study conducted in 75 villages in rural Karnataka, India. Having unusual sociocentric data from a non-Western context allowed us to extend previous name generator research through the unique analyses of network structural measures, an extensive consideration of homophily, and investigation of status difference between egos and alters. We found that domestic interaction questions generated networks that were highly clustered and highly centralized. Similarity between respondents and their nominated contacts was strongest for gender, caste, and religion. We also found that domestic interaction name generators yielded the most homogeneous ties, while advice questions yielded the most heterogeneous. Participants were generally more likely to nominate those of higher social status, although certain questions, such as who participants talk to uncovered more egalitarian relationships, while other name generators elicited the names of social contacts distinctly higher or lower in status than the respondent. Some questions also seemed to uncover networks that were specific to the cultural context, suggesting that network researchers should balance local relevance with global generalizability when choosing name generators. PMID:28845086

  5. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  6. Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method

    NASA Astrophysics Data System (ADS)

    Salajegheh, Eysa; Gholizadeh, Saeed; Khatibinia, Mohsen

    2008-03-01

    The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. To reduce the overall time required for structural optimization, two artificial intelligence strategies are employed. In the first strategy, radial basis function (RBF) neural networks are used to predict the time history responses of structures in the optimization flow. In the second strategy, a binary particle swarm optimization (BPSO) is used to find the optimum design. Combining the RBF and BPSO, a hybrid RBF-BPSO optimization method is proposed in this paper, which achieves fast optimization with high computational performance. Two examples are presented and compared to determine the optimal weight of structures under earthquake loadings using both exact and approximate analyses. The numerical results demonstrate the computational advantages and effectiveness of the proposed hybrid RBF-BPSO optimization method for the seismic design of structures.

  7. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    PubMed

    Schmidt, Christoph; Pester, Britta; Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz

    2016-01-01

    Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  8. Frontostriatal anatomical connections predict age- and difficulty-related differences in reinforcement learning.

    PubMed

    van de Vijver, Irene; Ridderinkhof, K Richard; Harsay, Helga; Reneman, Liesbeth; Cavanagh, James F; Buitenweg, Jessika I V; Cohen, Michael X

    2016-10-01

    Reinforcement learning (RL) is supported by a network of striatal and frontal cortical structures that are connected through white-matter fiber bundles. With age, the integrity of these white-matter connections declines. The role of structural frontostriatal connectivity in individual and age-related differences in RL is unclear, although local white-matter density and diffusivity have been linked to individual differences in RL. Here we show that frontostriatal tract counts in young human adults (aged 18-28), as assessed noninvasively with diffusion-weighted magnetic resonance imaging and probabilistic tractography, positively predicted individual differences in RL when learning was difficult (70% valid feedback). In older adults (aged 63-87), in contrast, learning under both easy (90% valid feedback) and difficult conditions was predicted by tract counts in the same frontostriatal network. Furthermore, network-level analyses showed a double dissociation between the task-relevant networks in young and older adults, suggesting that older adults relied on different frontostriatal networks than young adults to obtain the same task performance. These results highlight the importance of successful information integration across striatal and frontal regions during RL, especially with variable outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures

    NASA Astrophysics Data System (ADS)

    Guo, Wenzhang; Wang, Hao; Wu, Zhengping

    2018-03-01

    Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.

  10. PTSD symptomics: network analyses in the field of psychotraumatology

    PubMed Central

    Armour, Cherie; Fried, Eiko I.; Olff, Miranda

    2017-01-01

    ABSTRACT Recent years have seen increasing attention on posttraumatic stress disorder (PTSD) research. While research has largely focused on the dichotomy between patients diagnosed with mental disorders and healthy controls — in other words, investigations at the level of diagnoses — recent work has focused on psychopathology symptoms. Symptomics research in the area of PTSD has been scarce so far, although several studies have focused on investigating the network structures of PTSD symptoms. The present special issue of EJPT adds to the literature by curating additional PTSD network studies, each looking at a different aspect of PTSD. We hope that this special issue encourages researchers to conceptualize and model PTSD data from a network perspective, which arguably has the potential to inform and improve the efficacy of therapeutic interventions. PMID:29250305

  11. Frailty effects in networks: comparison and identification of individual heterogeneity versus preferential attachment in evolving networks

    PubMed Central

    de Blasio, Birgitte Freiesleben; Seierstad, Taral Guldahl; Aalen, Odd O

    2011-01-01

    Preferential attachment is a proportionate growth process in networks, where nodes receive new links in proportion to their current degree. Preferential attachment is a popular generative mechanism to explain the widespread observation of power-law-distributed networks. An alternative explanation for the phenomenon is a randomly grown network with large individual variation in growth rates among the nodes (frailty). We derive analytically the distribution of individual rates, which will reproduce the connectivity distribution that is obtained from a general preferential attachment process (Yule process), and the structural differences between the two types of graphs are examined by simulations. We present a statistical test to distinguish the two generative mechanisms from each other and we apply the test to both simulated data and two real data sets of scientific citation and sexual partner networks. The findings from the latter analyses argue for frailty effects as an important mechanism underlying the dynamics of complex networks. PMID:21572513

  12. Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography

    PubMed Central

    Loss, Leandro A.; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram

    2016-01-01

    Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides. PMID:28090597

  13. Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography.

    PubMed

    Loss, Leandro A; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram

    2012-10-01

    Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides.

  14. A network approach to policy framing: A case study of the National Aboriginal and Torres Strait Islander Health Plan.

    PubMed

    Browne, Jennifer; de Leeuw, Evelyne; Gleeson, Deborah; Adams, Karen; Atkinson, Petah; Hayes, Rick

    2017-01-01

    Aboriginal health policy in Australia represents a unique policy subsystem comprising a diverse network of Aboriginal-specific and "mainstream" organisations, often with competing interests. This paper describes the network structure of organisations attempting to influence national Aboriginal health policy and examines how the different subgroups within the network approached the policy discourse. Public submissions made as part of a policy development process for the National Aboriginal and Torres Strait Islander Health Plan were analysed using a novel combination of network analysis and qualitative framing analysis. Other organisational actors in the network in each submission were identified, and relationships between them determined; these were used to generate a network map depicting the ties between actors. A qualitative framing analysis was undertaken, using inductive coding of the policy discourses in the submissions. The frames were overlaid with the network map to identify the relationship between the structure of the network and the way in which organisations framed Aboriginal health problems. Aboriginal organisations were central to the network and strongly connected with each other. The network consisted of several densely connected subgroups, whose central nodes were closely connected to one another. Each subgroup deployed a particular policy frame, with a frame of "system dysfunction" also adopted by all but one subgroup. Analysis of submissions revealed that many of the stakeholders in Aboriginal health policy actors are connected to one another. These connections help to drive the policy discourse. The combination of network and framing analysis illuminates competing interests within a network, and can assist advocacy organisations to identify which network members are most influential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Exploring the structure and function of temporal networks with dynamic graphlets

    PubMed Central

    Hulovatyy, Y.; Chen, H.; Milenković, T.

    2015-01-01

    Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/∼cone/DG. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072480

  16. Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis.

    PubMed

    Huang, Huiyuan; Wang, Junjing; Seger, Carol; Lu, Min; Deng, Feng; Wu, Xiaoyan; He, Yuan; Niu, Chen; Wang, Jun; Huang, Ruiwang

    2018-01-01

    Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs' brain associated with long-term motor skill training.

  17. Annotation of Alternatively Spliced Proteins and Transcripts with Protein-Folding Algorithms and Isoform-Level Functional Networks.

    PubMed

    Li, Hongdong; Zhang, Yang; Guan, Yuanfang; Menon, Rajasree; Omenn, Gilbert S

    2017-01-01

    Tens of thousands of splice isoforms of proteins have been catalogued as predicted sequences from transcripts in humans and other species. Relatively few have been characterized biochemically or structurally. With the extensive development of protein bioinformatics, the characterization and modeling of isoform features, isoform functions, and isoform-level networks have advanced notably. Here we present applications of the I-TASSER family of algorithms for folding and functional predictions and the IsoFunc, MIsoMine, and Hisonet data resources for isoform-level analyses of network and pathway-based functional predictions and protein-protein interactions. Hopefully, predictions and insights from protein bioinformatics will stimulate many experimental validation studies.

  18. On the linear stability of blood flow through model capillary networks.

    PubMed

    Davis, Jeffrey M

    2014-12-01

    Under the approximation that blood behaves as a continuum, a numerical implementation is presented to analyze the linear stability of capillary blood flow through model tree and honeycomb networks that are based on the microvascular structures of biological tissues. The tree network is comprised of a cascade of diverging bifurcations, in which a parent vessel bifurcates into two descendent vessels, while the honeycomb network also contains converging bifurcations, in which two parent vessels merge into one descendent vessel. At diverging bifurcations, a cell partitioning law is required to account for the nonuniform distribution of red blood cells as a function of the flow rate of blood into each descendent vessel. A linearization of the governing equations produces a system of delay differential equations involving the discharge hematocrit entering each network vessel and leads to a nonlinear eigenvalue problem. All eigenvalues in a specified region of the complex plane are captured using a transformation based on contour integrals to construct a linear eigenvalue problem with identical eigenvalues, which are then determined using a standard QR algorithm. The predicted value of the dimensionless exponent in the cell partitioning law at the instability threshold corresponds to a supercritical Hopf bifurcation in numerical simulations of the equations governing unsteady blood flow. Excellent agreement is found between the predictions of the linear stability analysis and nonlinear simulations. The relaxation of the assumption of plug flow made in previous stability analyses typically has a small, quantitative effect on the stability results that depends on the specific network structure. This implementation of the stability analysis can be applied to large networks with arbitrary structure provided only that the connectivity among the network segments is known.

  19. Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification.

    PubMed

    Wang, Xindi; Lin, Qixiang; Xia, Mingrui; He, Yong

    2018-04-01

    Very little is known regarding whether structural hubs of human brain networks that enable efficient information communication may be classified into different categories. Using three multimodal neuroimaging data sets, we construct individual structural brain networks and further identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive characteristics and reproducibility analyses. We show the three categories of structural hubs in the brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct categories of hubs are primarily located in the default-mode system and additionally in the visual and limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit various distinct characteristics to support their differentiated roles, involving microstructural organization, wiring costs, topological vulnerability, functional modular integration, and cognitive flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three categories of hubs display high across-session spatial similarities and act as structural fingerprints with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we highlight three categories of brain hubs with differential microstructural, functional and, cognitive associations, which shed light on topological mechanisms of the human connectome. © 2018 Wiley Periodicals, Inc.

  20. Responses to olfactory signals reflect network structure of flower-visitor interactions.

    PubMed

    Junker, Robert R; Höcherl, Nicole; Blüthgen, Nico

    2010-07-01

    1. Network analyses provide insights into the diversity and complexity of ecological interactions and have motivated conclusions about community stability and co-evolution. However, biological traits and mechanisms such as chemical signals regulating the interactions between individual species--the microstructure of a network--are poorly understood. 2. We linked the responses of receivers (flower visitors) towards signals (flower scent) to the structure of a highly diverse natural flower-insect network. For each interaction, we define link temperature--a newly developed metric--as the deviation of the observed interaction strength from neutrality, assuming that animals randomly interact with flowers. 3. Link temperature was positively correlated to the specific visitors' responses to floral scents, experimentally examined in a mobile olfactometer. Thus, communication between plants and consumers via phytochemical signals reflects a significant part of the microstructure in a complex network. Negative as well as positive responses towards floral scents contributed to these results, where individual experience was important apart from innate behaviour. 4. Our results indicate that: (1) biological mechanisms have a profound impact on the microstructure of complex networks that underlies the outcome of aggregate statistics, and (2) floral scents act as a filter, promoting the visitation of some flower visitors, but also inhibiting the visitation of others.

  1. A method of examining the structure and topological properties of public-transport networks

    NASA Astrophysics Data System (ADS)

    Dimitrov, Stavri Dimitri; Ceder, Avishai (Avi)

    2016-06-01

    This work presents a new method of examining the structure of public-transport networks (PTNs) and analyzes their topological properties through a combination of computer programming, statistical data and large-network analyses. In order to automate the extraction, processing and exporting of data, a software program was developed allowing to extract the needed data from General Transit Feed Specification, thus overcoming difficulties occurring in accessing and collecting data. The proposed method was applied to a real-life PTN in Auckland, New Zealand, with the purpose of examining whether it showed characteristics of scale-free networks and exhibited features of ;small-world; networks. As a result, new regression equations were derived analytically describing observed, strong, non-linear relationships among the probabilities of randomly chosen stops in the PTN to be serviced by a given number of routes. The established dependence is best fitted by an exponential rather than a power-law function, showing that the PTN examined is neither random nor scale-free, but a mixture of the two. This finding explains the presence of hubs that are not typical of exponential networks and simultaneously not highly connected to the other nodes as is the case with scale-free networks. On the other hand, the observed values of the topological properties of the network show that although it is highly clustered, owing to its representation as a directed graph, it differs slightly from ;small-world; networks, which are characterized by strong clustering and a short average path length.

  2. Using a network modularity analysis to inform management of a rare endemic plant in the northern Great Plains, USA

    USGS Publications Warehouse

    Larson, Diane L.; Droege, Sam; Rabie, Paul A.; Larson, Jennifer L.; Devalez, Jelle; Haar, Milton; McDermott-Kubeczko, Margaret

    2014-01-01

    1. Analyses of flower-visitor interaction networks allow application of community-level information to conservation problems, but management recommendations that ensue from such analyses are not well characterized. Results of modularity analyses, which detect groups of species (modules) that interact more with each other than with species outside their module, may be particularly applicable to management concerns. 2. We conducted modularity analyses of networks surrounding a rare endemic annual plant, Eriogonum visheri, at Badlands National Park, USA, in 2010 and 2011. Plant species visited were determined by pollen on insect bodies and by flower species upon which insects were captured. Roles within modules (network hub, module hub, connector and peripheral, in decreasing order of network structural importance) were determined for each species. 3. Relationships demonstrated by the modularity analysis, in concert with knowledge of pollen species carried by insects, allowed us to infer effects of two invasive species on E. visheri. Sharing a module increased risk of interspecific pollen transfer to E. visheri. Control of invasive Salsola tragus, which shared a module with E. visheri, is therefore a prudent management objective, but lack of control of invasive Melilotus officinalis, which occupied a different module, is unlikely to negatively affect pollination of E. visheri. Eriogonum pauciflorum may occupy a key position in this network, supporting insects from the E. visheri module when E. visheri is less abundant. 4. Year-to-year variation in species' roles suggests management decisions must be based on observations over several years. Information on pollen deposition on stigmas would greatly strengthen inferences made from the modularity analysis. 5. Synthesis and applications: Assessing the consequences of pollination, whether at the community or individual level, is inherently time-consuming. A trade-off exists: rather than an estimate of fitness effects, the network approach provides a broad understanding of the relationships among insect visitors and other plant species that may affect the focal rare plant. Knowledge of such relationships allows managers to detect, target and prioritize control of only the important subset of invasive species present and identify other species that may augment a rare species' population stability, such as E. pauciflorum in our study.

  3. Effects of the soil pore network architecture on the soil's physical functionalities

    NASA Astrophysics Data System (ADS)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).

  4. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways

    PubMed Central

    Tse, Amanda; Verkhivker, Gennady M.

    2016-01-01

    The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment. PMID:27861609

  5. Time development in the early history of social networks: link stabilization, group dynamics, and segregation.

    PubMed

    Bruun, Jesper; Bearden, Ian G

    2014-01-01

    Studies of the time development of empirical networks usually investigate late stages where lasting connections have already stabilized. Empirical data on early network history are rare but needed for a better understanding of how social network topology develops in real life. Studying students who are beginning their studies at a university with no or few prior connections to each other offers a unique opportunity to investigate the formation and early development of link patterns and community structure in social networks. During a nine week introductory physics course, first year physics students were asked to identify those with whom they communicated about problem solving in physics during the preceding week. We use these students' self reports to produce time dependent student interaction networks. We investigate these networks to elucidate possible effects of different student attributes in early network formation. Changes in the weekly number of links show that while roughly half of all links change from week to week, students also reestablish a growing number of links as they progress through their first weeks of study. Using the Infomap community detection algorithm, we show that the networks exhibit community structure, and we use non-network student attributes, such as gender and end-of-course grade to characterize communities during their formation. Specifically, we develop a segregation measure and show that students structure themselves according to gender and pre-organized sections (in which students engage in problem solving and laboratory work), but not according to end-of-coure grade. Alluvial diagrams of consecutive weeks' communities show that while student movement between groups are erratic in the beginning of their studies, they stabilize somewhat towards the end of the course. Taken together, the analyses imply that student interaction networks stabilize quickly and that students establish collaborations based on who is immediately available to them and on observable personal characteristics.

  6. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research.

    PubMed

    Grunspan, Daniel Z; Wiggins, Benjamin L; Goodreau, Steven M

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. © 2014 D. Z. Grunspan et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. NETWORK POSITION AND SEXUAL DYSFUNCTION: IMPLICATIONS OF PARTNER BETWEENNESS FOR MEN*

    PubMed Central

    Cornwell, Benjamin; Laumann, Edward O.

    2013-01-01

    This paper combines relational perspectives on gender identity with social network structural perspectives on health to understand men’s sexual functioning. We argue that network positions that afford independence and control over social resources are consistent with traditional masculine roles and may therefore affect men’s sexual performance. For example, when a heterosexual man’s female partner has more frequent contact with his confidants than he does–a situation that we refer to as partner betweenness – his relational autonomy, privacy, and control are constrained. Analyses of data from the National Social Life, Health, and Aging Project (NSHAP) show that about a quarter of men experience partner betweenness, and that these men are 92 percent more likely to report problems getting and/or maintaining an erection (95% CI: 1.274, 2.881). This association is strongest among the youngest men in the sample, which may reflect changing conceptions of masculinity in later life. We close by considering several explanations for these findings, and urge additional research on the linkages between health, gender, and network structure. PMID:22003520

  8. Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future.

    PubMed

    Bestmann, Sven; Feredoes, Eva

    2013-08-01

    Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure-function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure-function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. © 2013 New York Academy of Sciences.

  9. Intervality and coherence in complex networks

    NASA Astrophysics Data System (ADS)

    Domínguez-García, Virginia; Johnson, Samuel; Muñoz, Miguel A.

    2016-06-01

    Food webs—networks of predators and prey—have long been known to exhibit "intervality": species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis—usually identified with a "niche" dimension—has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand. However, we argue here that intervality should not be considered the cause but rather a consequence of food-web structure. First, analysing a set of 46 empirical food webs, we find that they also exhibit predator intervality: the predators of any given species are as likely to be contiguous as the prey are, but in a different ordering. Furthermore, this property is not exclusive of trophic networks: several networks of genes, neurons, metabolites, cellular machines, airports, and words are found to be approximately as interval as food webs. We go on to show that a simple model of food-web assembly which does not make use of a niche axis can nevertheless generate significant intervality. Therefore, the niche dimension (in the sense used for food-web modelling) could in fact be the consequence of other, more fundamental structural traits. We conclude that a new approach to food-web modelling is required for a deeper understanding of ecosystem assembly, structure, and function, and propose that certain topological features thought to be specific of food webs are in fact common to many complex networks.

  10. Age Related Changes in Topological Properties of Brain Functional Network and Structural Connectivity.

    PubMed

    Shah, Chandan; Liu, Jia; Lv, Peilin; Sun, Huaiqiang; Xiao, Yuan; Liu, Jieke; Zhao, Youjin; Zhang, Wenjing; Yao, Li; Gong, Qiyong; Lui, Su

    2018-01-01

    Introduction: There are still uncertainties about the true nature of age related changes in topological properties of the brain functional network and its structural connectivity during various developmental stages. In this cross- sectional study, we investigated the effects of age and its relationship with regional nodal properties of the functional brain network and white matter integrity. Method: DTI and fMRI data were acquired from 458 healthy Chinese participants ranging from age 8 to 81 years. Tractography was conducted on the DTI data using FSL. Graph Theory analyses were conducted on the functional data yielding topological properties of the functional network using SPM and GRETNA toolbox. Two multiple regressions were performed to investigate the effects of age on nodal topological properties of the functional brain network and white matter integrity. Result: For the functional studies, we observed that regional nodal characteristics such as node betweenness were decreased while node degree and node efficiency was increased in relation to increasing age. Perversely, we observed that the relationship between nodal topological properties and fasciculus structures were primarily positive for nodal betweenness but negative for nodal degree and nodal efficiency. Decrease in functional nodal betweenness was primarily located in superior frontal lobe, right occipital lobe and the global hubs. These brain regions also had both direct and indirect anatomical relationships with the 14 fiber bundles. A linear age related decreases in the Fractional anisotropy (FA) value was found in the callosum forceps minor. Conclusion: These results suggests that age related differences were more pronounced in the functional than in structural measure indicating these measures do not have direct one-to-one mapping. Our study also indicates that the fiber bundles with longer fibers exhibited a more pronounced effect on the properties of functional network.

  11. Barriers to healthcare coordination in market-based and decentralized public health systems: a qualitative study in healthcare networks of Colombia and Brazil.

    PubMed

    Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa

    2016-07-01

    Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel' perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive-interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives, strengthen the state planning and supervision functions and improve professional working conditions and skills. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  12. Interest communities and flow roles in directed networks: the Twitter network of the UK riots

    PubMed Central

    Beguerisse-Díaz, Mariano; Garduño-Hernández, Guillermo; Vangelov, Borislav; Yaliraki, Sophia N.; Barahona, Mauricio

    2014-01-01

    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks. PMID:25297320

  13. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity

    PubMed Central

    Taxis, Tasia M.; Wolff, Sara; Gregg, Sarah J.; Minton, Nicholas O.; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D.; Taylor, Jeremy F.; Kerley, Monty S.; Pires, J. Chris; Lamberson, William R.; Conant, Gavin C.

    2015-01-01

    By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. PMID:26420832

  14. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Anomalous Anticipatory Responses in Networked Random Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Roger D.; Bancel, Peter A.

    2006-10-16

    We examine an 8-year archive of synchronized, parallel time series of random data from a world spanning network of physical random event generators (REGs). The archive is a publicly accessible matrix of normally distributed 200-bit sums recorded at 1 Hz which extends from August 1998 to the present. The primary question is whether these data show non-random structure associated with major events such as natural or man-made disasters, terrible accidents, or grand celebrations. Secondarily, we examine the time course of apparently correlated responses. Statistical analyses of the data reveal consistent evidence that events which strongly affect people engender small butmore » significant effects. These include suggestions of anticipatory responses in some cases, leading to a series of specialized analyses to assess possible non-random structure preceding precisely timed events. A focused examination of data collected around the time of earthquakes with Richter magnitude 6 and greater reveals non-random structure with a number of intriguing, potentially important features. Anomalous effects in the REG data are seen only when the corresponding earthquakes occur in populated areas. No structure is found if they occur in the oceans. We infer that an important contributor to the effect is the relevance of the earthquake to humans. Epoch averaging reveals evidence for changes in the data some hours prior to the main temblor, suggestive of reverse causation.« less

  16. A random spatial network model based on elementary postulates

    USGS Publications Warehouse

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  17. Optimal community structure for social contagions

    NASA Astrophysics Data System (ADS)

    Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.

    2018-05-01

    Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.

  18. The RING 2.0 web server for high quality residue interaction networks.

    PubMed

    Piovesan, Damiano; Minervini, Giovanni; Tosatto, Silvio C E

    2016-07-08

    Residue interaction networks (RINs) are an alternative way of representing protein structures where nodes are residues and arcs physico-chemical interactions. RINs have been extensively and successfully used for analysing mutation effects, protein folding, domain-domain communication and catalytic activity. Here we present RING 2.0, a new version of the RING software for the identification of covalent and non-covalent bonds in protein structures, including π-π stacking and π-cation interactions. RING 2.0 is extremely fast and generates both intra and inter-chain interactions including solvent and ligand atoms. The generated networks are very accurate and reliable thanks to a complex empirical re-parameterization of distance thresholds performed on the entire Protein Data Bank. By default, RING output is generated with optimal parameters but the web server provides an exhaustive interface to customize the calculation. The network can be visualized directly in the browser or in Cytoscape. Alternatively, the RING-Viz script for Pymol allows visualizing the interactions at atomic level in the structure. The web server and RING-Viz, together with an extensive help and tutorial, are available from URL: http://protein.bio.unipd.it/ring. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Structural brain network analysis in families multiply affected with bipolar I disorder.

    PubMed

    Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm

    2015-10-30

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Systems biology of the structural proteome.

    PubMed

    Brunk, Elizabeth; Mih, Nathan; Monk, Jonathan; Zhang, Zhen; O'Brien, Edward J; Bliven, Spencer E; Chen, Ke; Chang, Roger L; Bourne, Philip E; Palsson, Bernhard O

    2016-03-11

    The success of genome-scale models (GEMs) can be attributed to the high-quality, bottom-up reconstructions of metabolic, protein synthesis, and transcriptional regulatory networks on an organism-specific basis. Such reconstructions are biochemically, genetically, and genomically structured knowledge bases that can be converted into a mathematical format to enable a myriad of computational biological studies. In recent years, genome-scale reconstructions have been extended to include protein structural information, which has opened up new vistas in systems biology research and empowered applications in structural systems biology and systems pharmacology. Here, we present the generation, application, and dissemination of genome-scale models with protein structures (GEM-PRO) for Escherichia coli and Thermotoga maritima. We show the utility of integrating molecular scale analyses with systems biology approaches by discussing several comparative analyses on the temperature dependence of growth, the distribution of protein fold families, substrate specificity, and characteristic features of whole cell proteomes. Finally, to aid in the grand challenge of big data to knowledge, we provide several explicit tutorials of how protein-related information can be linked to genome-scale models in a public GitHub repository ( https://github.com/SBRG/GEMPro/tree/master/GEMPro_recon/). Translating genome-scale, protein-related information to structured data in the format of a GEM provides a direct mapping of gene to gene-product to protein structure to biochemical reaction to network states to phenotypic function. Integration of molecular-level details of individual proteins, such as their physical, chemical, and structural properties, further expands the description of biochemical network-level properties, and can ultimately influence how to model and predict whole cell phenotypes as well as perform comparative systems biology approaches to study differences between organisms. GEM-PRO offers insight into the physical embodiment of an organism's genotype, and its use in this comparative framework enables exploration of adaptive strategies for these organisms, opening the door to many new lines of research. With these provided tools, tutorials, and background, the reader will be in a position to run GEM-PRO for their own purposes.

  1. New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Du, Ceng-Ceng; Fan, Jian-Zhong; Wang, Xin-Fang; Zhou, Sheng-Bin; Wang, Duo-Zhi

    2017-04-01

    In this paper, a series of new complexes, [Zn2(HL1)2(H2O)4]·H2O (1), [Co2(HL1)2]·TEA (2), [Co3(HL1)2(H2L1)2(H2O)4]n (3), [Cu(HL1)(H2O)2]n (4), {[Cu5(HL2)2(OH)4(ClO4)2]·4H2O}n (5) and [Cu2(L3)]n (6) were successfully prepared by utilizing three bis(tetrazole) ligands [bis-(1H-tetrazol-5-ylmethyl)-amine (H3L1), bis-(1H-tetrazol-5-ylethyl)-amine (H3L2) and 1,5-bis(5-tetrazolo)-3-thiapentane (H2L3)], all of which have been characterized by elemental analyses, FT-IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analyses as well as single-crystal X-ray diffraction analyses showing different dimensionalities (0D, 1D and 3D). Complexes 1 and 2 are 0D structures, 1 shows a dinuclear structure, 2 displays two crystallographically different mononuclear structures, 1 and 2 are further assembled to form 3D supramolecular framework and 2D supramolecular network by hydrogen-bonding interactions, respectively. Complexes 3, 4 and 5 are 1D structures, 3 features a mononuclear unit and a 1D chain, which are arranged into 3D supramolecular architecture by hydrogen-bonding interactions, 4 presents a zigzag chain, 5 shows an infinite chain structure constructed from pentanuclear Cu(II) subunits and ClO4- anions. Complex 6 exhibits a 3D coordination framework based on cyclic [Cu4(L3)2] dimmer subunits as nodes possessing an 8-connected network topology with the point symbol {424·64}. Further, semiconductor behaviors, the solid-state luminescent properties of the complexes 1-3 and 6 were measured and studied seriously at room temperature.

  2. Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses.

    PubMed

    Chen, Vincent Chin-Hung; Shen, Chao-Yu; Liang, Sophie Hsin-Yi; Li, Zhen-Hui; Tyan, Yeu-Sheng; Liao, Yin-To; Huang, Yin-Chen; Lee, Yena; McIntyre, Roger S; Weng, Jun-Cheng

    2016-11-15

    It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (p<0.001). Using GQI, we found decreases in diffusion anisotropy in the superior longitudinal fasciculus and increases in diffusion probability distribution in the frontal lobe among subjects with MDD (p<0.01). In GTA and NBS analyses, we found several disruptions in connectivity among subjects with MDD, particularly in the frontal lobes (p<0.05). In addition, structural alterations were correlated with depressive symptom severity (p<0.01). Small sample size; the cross-sectional design did not allow us to observe treatment effects in the MDD participants. Our results provide further evidence indicating that MDD may be conceptualized as a brain disorder with abnormal circuit structure and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temperature-controlled two new Co(II) compounds with distinct topological networks: Syntheses, crystal structures and catalytic properties

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hua; Long, Xu; Liu, Jing-Li; Zhang, Shuan; Zhang, Guang-Hui

    2018-04-01

    Two new Co(II) coordination compounds, namely [Co2(bptc)(bpp)2]n (1) and [Co(bptc)0.5(bpp)]n (2) (H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, bpp = 1,3-di(4-pyridyl)propane), have been hydrothermally synthesized from the same reactants via tuning the reaction temperature. Single crystal X-ray diffraction analyses revealed that both 1 and 2 feature 2D sheet motifs. Topological analyses revealed that compounds 1 and 2 show distinct topological networks. Under the weak Van der Waals interactions, the 2D sheet motifs of compounds 1 and 2 are further packed into 2D→3D interdigitated supramolecular frameworks. Moreover, the two Co(II) compounds show high catalytic activities for degradation of methyl orange (MO) in a Fenten-like process.

  4. Networks and Models with Heterogeneous Population Structure in Epidemiology

    NASA Astrophysics Data System (ADS)

    Kao, R. R.

    Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear; however, the nature of the network involved is dependent on the scale (e.g. within-host, between-host, or between-population), the nature of the contact, which ranges from the highly specific (e.g. sexual acts or needle sharing at the person-to-person level) to almost completely non-specific (e.g. aerosol transmission, often over long distances as can occur with the highly infectious livestock pathogen foot-and-mouth disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. Interface 6:455-462, 2008), and the timescale of interest (e.g. at the scale of the individual, the typical infectious period of the host). Theoretical approaches to examining the implications of particular network structures on disease transmission have provided critical insight; however, a greater challenge is the integration of network approaches with data on real population structures. In this chapter, some concepts in disease modelling will be introduced, the relevance of selected network phenomena discussed, and then results from real data and their relationship to network analyses summarised. These include examinations of the patterns of air traffic and its relation to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in Proc. Natl. Acad. Sci. USA 101:15124-15129, 2004), the use of the extensively documented Great Britain livestock movements network (Green et al. in J. Theor. Biol. 239:289-297, 2008; Robinson et al. in J. R. Soc. Interface 4:669-674, 2007; Vernon and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469-476, 2009) and the growing interest in combining contact structure data with phylogenetics to identify real contact patterns as they directly relate to diseases of interest (Cottam et al. in PLoS Pathogens 4:1000050, 2007; Hughes et al. in PLoS Pathogens 5:1000590, 2009).

  5. Crystal Structure of Two V-shaped Ligands with N-Heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Gao-Feng; Sun, Shu-Wen; Zhang, Xiao; Sun, Shu-Gang

    2017-12-01

    Two V-shaped ligands with N-heterocycles, bis(4-(1 H-imidazol-1-yl) phenyl)methanone ( 1), and bis(4-(1 H-benzo[d]imidazol-1-yl)phenyl)methanone ( 2) have been synthesized and characterized by elemental analyses, IR and 1 H NMR spectroscopy. Crystal structures of 1 and 2 have been determined by X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. P21/ c, Z = 4. The crystal of 2 is orthorhombic, sp. gr. Fdd2, Z = 8. X-ray diffraction analyses show that the V-shaped angles of 1 and 2 are 122.72(15)° and 120.7(4)°, respectively. Intermolecular C-H···O, C-H···N, C-H···π, and π···π interactions link the components into three-dimensional networks in the crystal structures.

  6. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes

    PubMed Central

    2014-01-01

    Background Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. Methods The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Results Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Conclusions Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately. PMID:25047164

  7. Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns.

    PubMed

    Childs, Dorothee; Grimbs, Sergio; Selbig, Joachim

    2015-06-15

    Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a representation of the system's Jacobian matrix that depends solely on the network structure, steady state measurements, and the elasticities at the steady state. For a measured steady state, stability criteria can be derived by generating a large number of SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The elasticity space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Here, we extend this approach by examining the kinetic feasibility of the elasticity combinations created during Monte Carlo sampling. Using a set of small example systems, we show that the majority of sampled SKMs would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluating the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated to control stability and that the main source for potential instabilities are mutations in the enzyme alpha-ketoglutarate dehydrogenase. © The Author 2015. Published by Oxford University Press.

  8. Fractal multi-level organisation of human groups in a virtual world.

    PubMed

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-06

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  9. Fractal multi-level organisation of human groups in a virtual world

    PubMed Central

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-01-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology. PMID:25283998

  10. Fractal multi-level organisation of human groups in a virtual world

    NASA Astrophysics Data System (ADS)

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  11. Attractor Metabolic Networks

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Pelta, David A.; Veguillas, Juan

    2013-01-01

    Background The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. Methodology/Principal Findings In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. Conclusions/Significance We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed. PMID:23554883

  12. Being around and knowing the players: networks of influence in health policy.

    PubMed

    Lewis, Jenny M

    2006-05-01

    The accumulation and use of power is crucial to the health policy process. This paper examines the power of the medical profession in the health policy arena, by analysing which actors are perceived as influential, and how influence is structured in health policy. It combines an analysis of policy networks and social networks, to examine positional and personal influence in health policy in the state of Victoria, Australia. In the sub-graph of the influence network examined here, those most widely regarded as influential are academics, medically qualified and male. Positional actors (the top politician, political advisor and bureaucrat in health and the top nursing official) form part of a core group within this network structure. A second central group consists of medical influentials working in academia, research institutes and health-related NGOs. In this network locale overall, medical academics appear to combine positional and personal influence, and play significant intermediary roles across the network. While many claim that the medical profession has lost power in health policy and politics, this analysis yields few signs that the power of medicine to shape the health policy process has been greatly diminished in Victoria. Medical expertise is a potent embedded resource connecting actors through ties of association, making it difficult for actors with other resources and different knowledge to be considered influential. The network concepts and analytical techniques used here provide a novel means for uncovering different types of influence in health policy.

  13. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    PubMed

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  14. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  15. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis

    PubMed

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John; Lui, Su

    2017-12-05

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta­-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular ­gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia. 2017 Joule Inc., or its licensors

  16. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

    PubMed

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su

    2018-03-01

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.

  17. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

    PubMed

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su

    2017-12-15

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.

  18. PREFACE: Complex Networks: from Biology to Information Technology

    NASA Astrophysics Data System (ADS)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm for counting large directed loops. This work proposes a belief-propagation algorithm for counting long loops in directed networks, which is then applied to networks of different sizes and loop structure. In The anatomy of a large query graph, Baeza-Yates and Tiberi show that scale invariance is present also in the structure of a graph derived from query logs. This graph is determined not only by the queries but also by the subsequent actions of the users. The graph analysed in this study is generated by more than twenty million queries and is less sparse than suggested by previous studies. A different class of networks is considered by Travençolo and da F Costa in Hierarchical spatial organisation of geographical networks. This work proposes a hierarchical extension of the polygonality index as a means to characterise geographical planar networks and, in particular, to obtain more complete information about the spatial order of the network at progressive spatial scales. The paper Border trees of complex networks by Villas Boas et al focuses instead on the statistical properties of the boundary of graphs, constituted by the vertices of degree one (the leaves of border trees). The authors study the local properties, the depth, and the number of leaves of these border trees, finding that in some real networks more than half of the nodes belong to the border trees. The last contribution to the first section is The generation of random directed networks with prescribed 1-node and 2-node degree correlations by Zamora-López et al. This study deals with the generation of random directed networks and shows that often a large number of links cannot be 'randomised' without altering the degree correlations. This permits fast generation of ensembles of maximally random networks. In the section Methods: The Dynamics, significant attention is given to the study of synchronisation processes on networks: Díaz-Guilera's contribution Dynamics towards synchronisation in hierarchical networks consists of an overview of recent studies on hierarchical networks of phase oscillators. By analysing the evolution of the synchronous dynamics, one can infer details about the underlying network topology. Thus a connection between the dynamical and topological properties of the system is established. The paper Network synchronisation: optimal and pessimal scale-free topologies by Donetti et al explores an optimisation algorithm to study the properties of optimally synchronisable unweighted networks with scale-free degree distribution. It is shown that optimisation leads to a tendency towards disassortativity while networks that are optimally 'un-synchronisable' have a highly assortative string-like structure. The paper Critical line in undirected Kauffman Boolean networks—the role of percolation by Fronczak and Fronczak demonstrates that the percolation underlying the process of damage spreading impacts the position of the critical line in random boolean networks. The critical line results from the fact that the ordered behaviour of small clusters shields the chaotic behaviour of the giant component. In Impact of the updating scheme on stationary states of networks, Radicchi et al explore an interpolation between synchronous and asynchronous updating in a one-dimensional chain of Ising spins to locate a phase transition between phases with an absorbing and a fluctuating stationary state. The properties of attractors in the yeast cell-cycle network are also shown to depend sensitively on the updating mode. As this last contribution shows, a large part of the theoretical activity in the field can be applied to the study of biological systems. The section Biological Applications brings together the following contributions: In Applying weighted network measures to microarray distance matrices, Ahnert et al present a new approach to the analysis of weighted networks, which provides a generalisation to any network measure defined on unweighted networks. The clustering coefficient constructed using this approach is used to identify a number of biologically significant genes in data sets from microarray experiments. The paper Quantifying the taxonomic diversity in real species communities by Caretta Cartozo et al reports on universal statistical properties in taxonomic trees. The results, which are obtained by sampling a large pool of species from all over the world, suggest that it is possible to quantitatively distinguish real species assemblage from random collections. In the contribution Insights into biological information processing: structural and dynamical analysis of a human protein signalling network, de la Fuente et al investigate the dynamical properties of a human protein signalling network while accounting for edge directionality and topological properties both at the local and global scale. The relationship between the node degrees and the distribution of signals through the network is characterised using degree correlation profiles. A study of a brain network is presented by de Vico Fallani et al in Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. The authors introduce an approach based on the estimate of time-varying graph indexes that allows the capture of schemes of communication within the network. The method is applied to a set of high resolution EEG data recorded from a group of subjects performing a simple foot movement. The last section, devoted to Social and Technological Applications, includes nine contributions in the broad area of infrastructure, economic, and social systems: The paper Uncovering individual and collective human dynamics from mobile phone records by Cándia et al explores extensive phone records resolved in both time and space to study collective behaviour and the occurrence of anomalous events. At the individual level, it is shown that the distribution of time intervals between consecutive calls is heavy tailed, which agrees with results previously reported on other human activities. In Mining the inner structure of the Web graph, Donato et al present a series of measurements of the Web, which offer a better understanding of the individual components of its bow-tie structure. The scale-free properties permeate all bow-tie components although they do not exhibit self-similarity and their inner structure is quite distinct. Effects of network topology on wealth distributions, by Garlaschelli and Loffredo, shows that a networked economic system self-organises towards a stationary state whose associated wealth distribution depends crucially on the underlying interaction network. In particular, this study implies that first-order topological properties alone (such as the scale-free property) are not enough to explain the emergence of the empirically observed mixed form of the wealth distribution. In the paper Resource allocation pattern in infrastructure networks, Kim and Motter show that real communication and transportation networks tend to exhibit larger load-to-capacity ratio in nodes and links with larger capacities. This surprising pattern, which is a consequence of decentralised evolution and network traffic fluctuations, suggests that infrastructure networks have evolved to prevent local failures but not necessarily large-scale failures that can be caused by cascading processes. The paper Consensus formation on coevolving networks: groups' formation and structure by Kozma and Barrat addresses the effect of adaptivity on a social model of opinion dynamics and consensus formation. The authors find that on adaptive networks the rewiring process fosters group formation by enhancing communication between agents of similar opinion, though it also makes possible the division of clusters. This result is significantly different from the percolation phenomena observed to govern the process in static networks. Capocci and Caldarelli, in the paper Folksonomies and clustering in the collaborative system CiteULike, analyse an online collaborative tagging system where users bookmark and annotate scientific papers. Such a system can be naturally represented as a tripartite graph whose nodes represent papers, users and tags connected by individual tag assignments. The semantics of tags is studied in order to uncover hidden relationships between tags. The authors find that the clustering coefficient reflects the semantical patterns among tags. Lambiotte's contribution, Majority rule on heterogeneous networks, focuses on the majority rule model for opinion formation when the agents interact through a complex network. It is shown that on networks with modular structures the system may exhibit an asymmetric regime, where nodes in different communities reach opposite average opinions. In addition, the node degree heterogeneity is shown to play an important role in the emergence of collective behaviour. In Structural analysis of behavioural networks from the Internet, Meiss et al analyse the structure of the Internet. The authors present a characterisation of the properties of the behavioural networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. The final contribution, A social network's changing statistical properties and the quality of human innovation by Uzzi, is an analysis of the collaboration network of artists that made Broadway musicals in the post World War II period. It is shown that when the clustering coefficient in this network is low or high, the financial and artistic success of the industry is low while an intermediate level of clustering is associated with successful shows. We hope that this special issue will serve as a reference of the state of the knowledge in this exciting area of interdisciplinary research and that it will appeal to both experts and newcomers to the field. Finally, we would like to thank all participants of the workshop for their very significant contributions and the IOP Publishing team, particularly Rebecca Gillan, for the careful production of this special issue.

  19. Social climber attachment in forming networks produces a phase transition in a measure of connectivity

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Larremore, Daniel B.

    2012-09-01

    The formation and fragmentation of networks are typically studied using percolation theory, but most previous research has been restricted to studying a phase transition in cluster size, examining the emergence of a giant component. This approach does not study the effects of evolving network structure on dynamics that occur at the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal excitations. We introduce and analyze an alternative link-formation rule, called social climber (SC) attachment, that may be combined with arbitrary percolation models to produce a phase transition using the largest eigenvalue of the network adjacency matrix as the order parameter. This eigenvalue is significant in the analyses of many network-coupled dynamical systems in which it measures the quality of global coupling and is hence a natural measure of connectivity. We highlight the important self-organized properties of SC attachment and discuss implications for controlling dynamics on networks.

  20. Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses?

    NASA Astrophysics Data System (ADS)

    Rings, Thorsten; Lehnertz, Klaus

    2016-09-01

    We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.

  1. Stylized facts in social networks: Community-based static modeling

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Murase, Yohsuke; Török, János; Kertész, János; Kaski, Kimmo

    2018-06-01

    The past analyses of datasets of social networks have enabled us to make empirical findings of a number of aspects of human society, which are commonly featured as stylized facts of social networks, such as broad distributions of network quantities, existence of communities, assortative mixing, and intensity-topology correlations. Since the understanding of the structure of these complex social networks is far from complete, for deeper insight into human society more comprehensive datasets and modeling of the stylized facts are needed. Although the existing dynamical and static models can generate some stylized facts, here we take an alternative approach by devising a community-based static model with heterogeneous community sizes and larger communities having smaller link density and weight. With these few assumptions we are able to generate realistic social networks that show most stylized facts for a wide range of parameters, as demonstrated numerically and analytically. Since our community-based static model is simple to implement and easily scalable, it can be used as a reference system, benchmark, or testbed for further applications.

  2. Mapping the Structure and Dynamics of Genomics-Related MeSH Terms Complex Networks

    PubMed Central

    Siqueiros-García, Jesús M.; Hernández-Lemus, Enrique; García-Herrera, Rodrigo; Robina-Galatas, Andrea

    2014-01-01

    It has been proposed that the history and evolution of scientific ideas may reflect certain aspects of the underlying socio-cognitive frameworks in which science itself is developing. Systematic analyses of the development of scientific knowledge may help us to construct models of the collective dynamics of science. Aiming at scientific rigor, these models should be built upon solid empirical evidence, analyzed with formal tools leading to ever-improving results that support the related conclusions. Along these lines we studied the dynamics and structure of the development of research in genomics as represented by the entire collection of genomics-related scientific papers contained in the PubMed database. The analyzed corpus consisted in more than 49,000 articles published in the years 1987 (first appeareance of the term Genomics) to 2011, categorized by means of the Medical Subheadings (MeSH) content-descriptors. Complex networks were built where two MeSH terms were connected if they are descriptors of the same article(s). The analysis of such networks revealed a complex structure and dynamics that to certain extent resembled small-world networks. The evolution of such networks in time reflected interesting phenomena in the historical development of genomic research, including what seems to be a phase-transition in a period marked by the completion of the first draft of the Human Genome Project. We also found that different disciplinary areas have different dynamic evolution patterns in their MeSH connectivity networks. In the case of areas related to science, changes in topology were somewhat fast while retaining a certain core-stucture, whereas in the humanities, the evolution was pretty slow and the structure resulted highly redundant and in the case of technology related issues, the evolution was very fast and the structure remained tree-like with almost no overlapping terms. PMID:24699262

  3. Network biology discovers pathogen contact points in host protein-protein interactomes.

    PubMed

    Ahmed, Hadia; Howton, T C; Sun, Yali; Weinberger, Natascha; Belkhadir, Youssef; Mukhtar, M Shahid

    2018-06-13

    In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1 MAIN ). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1 MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSI LRR ) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.

  4. Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans.

    PubMed

    Bruner, Emiliano; Mantini, Simone; Perna, Agostino; Maffei, Carlotta; Manzi, Giorgio

    2005-01-01

    The middle meningeal vascular network leaves its traces on the endocranial surface because of the tight relationship between neurocranial development and brain growth. Analysing the endocast of fossil specimens, it is therefore possible to describe the morphology of these structures, leading inferences on the cerebral physiology and metabolism in extinct human groups. In this paper, general features of the meningeal vascular traces are described for specimens included in the Homo erectus, Homo neanderthalensis, and Homo sapiens hypodigms. The complexity of the arterial network is quantified by its fractal dimension, calculated through the box-counting method. Modern humans show significant differences from the other two taxa because of the anterior vascular dominance and the larger fractal dimension. Neither the fractal dimension nor the anterior development are merely associated with cranial size increase. Considering the differences between Neanderthals and modern humans, these results may be interpreted in terms of phylogeny, cerebral functions, or cranial structural network.

  5. [Financing Regional Dementia Networks in Germany: Determinants of Sustainable Healthcare Networks].

    PubMed

    Michalowsky, B; Wübbeler, M; Thyrian, J R; Holle, B; Gräske, J; Schäfer-Walkmann, S; Fleßa, S; Hoffmann, W

    2017-12-01

    Analysis of practice-based financing concepts in German dementia networks (DN); Provision of sustainable financing structures and their determinants in DN. Qualitative expert interviews with leaders of 13 DN were conducted. A semi-structured interview guide was used to analyse four main topics: Finance-related organization, cost, sources of funding and financial sustainability. DN were primarily financed by membership fees, earnings of services provided, public funds and payments by municipalities or health care providers. 63% of the DN reported a financial sustainability. Funds to support the interpersonal expanding, a mix of internal and external financing sources and investments of the municipality were determinants of a sustainable financing. Overall, DN in rural areas seemed to be disadvantaged due to a lack of potential linkable service providers. DN in urban regions are more likely able to gather sustainable funding resources. A minimum funding of 50.000 €/year for human resources coordinating the DN, seems to be a threshold for a sustainable DN. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm.

    PubMed

    Kuwae, Tomohiro; Miyoshi, Eiichi; Hosokawa, Shinya; Ichimi, Kazuhiko; Hosoya, Jun; Amano, Tatsuya; Moriya, Toshifumi; Kondoh, Michio; Ydenberg, Ronald C; Elner, Robert W

    2012-04-01

    Food webs are comprised of a network of trophic interactions and are essential to elucidating ecosystem processes and functions. However, the presence of unknown, but critical networks hampers understanding of complex and dynamic food webs in nature. Here, we empirically demonstrate a missing link, both critical and variable, by revealing that direct predator-prey relationships between shorebirds and biofilm are widespread and mediated by multiple ecological and evolutionary determinants. Food source mixing models and energy budget estimates indicate that the strength of the missing linkage is dependent on predator traits (body mass and foraging action rate) and the environment that determines food density. Morphological analyses, showing that smaller bodied species possess more developed feeding apparatus to consume biofilm, suggest that the linkage is also phylogenetically dependent and affords a compelling re-interpretation of niche differentiation. We contend that exploring missing links is a necessity for revealing true network structure and dynamics. © 2012 Blackwell Publishing Ltd/CNRS.

  7. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting.

    PubMed

    Hippert, Henrique S; Taylor, James W

    2010-04-01

    Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Decentralized supply chain network design: monopoly, duopoly and oligopoly competitions under uncertainty

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, Seyed Mohammad; Fahimi, Kaveh; Makui, Ahmad

    2017-12-01

    This paper presents the competitive supply chain network design problem in which n decentralized supply chains simultaneously enter the market with no existing rival chain, shape their networks and set wholesale and retail prices in competitive mode. The customer demand is elastic and price dependent, customer utility function is based on the Hoteling model and the chains produce identical or highly substitutable products. We construct a solution algorithm based on bi-level programming and possibility theory. In the proposed bi-level model, the inner part sets the prices based on simultaneous extra- and Stackleberg intra- chains competitions, and the outer part shapes the networks in cooperative competitions. Finally, we use a real-word study to discuss the effect of the different structures of the competitors on the equilibrium solution. Moreover, sensitivity analyses are conducted and managerial insights are offered.

  9. Globally altered structural brain network topology in grapheme-color synesthesia.

    PubMed

    Hänggi, Jürgen; Wotruba, Diana; Jäncke, Lutz

    2011-04-13

    Synesthesia is a perceptual phenomenon in which stimuli in one particular modality elicit a sensation within the same or another sensory modality (e.g., specific graphemes evoke the perception of particular colors). Grapheme-color synesthesia (GCS) has been proposed to arise from abnormal local cross-activation between grapheme and color areas because of their hyperconnectivity. Recently published studies did not confirm such a hyperconnectivity, although morphometric alterations were found in occipitotemporal, parietal, and frontal regions of synesthetes. We used magnetic resonance imaging surface-based morphometry and graph-theoretical network analyses to investigate the topology of structural brain networks in 24 synesthetes and 24 nonsynesthetes. Connectivity matrices were derived from region-wise cortical thickness correlations of 2366 different cortical parcellations across the whole cortex and from 154 more common brain divisions as well. Compared with nonsynesthetes, synesthetes revealed a globally altered structural network topology as reflected by reduced small-worldness, increased clustering, increased degree, and decreased betweenness centrality. Connectivity of the fusiform gyrus (FuG) and intraparietal sulcus (IPS) was changed as well. Hierarchical modularity analysis revealed increased intramodular and intermodular connectivity of the IPS in GCS. However, connectivity differences in the FuG and IPS showed a low specificity because of global changes. We provide first evidence that GCS is rooted in a reduced small-world network organization that is driven by increased clustering suggesting global hyperconnectivity within the synesthetes' brain. Connectivity alterations were widespread and not restricted to the FuG and IPS. Therefore, synesthetic experience might be only one phenotypic manifestation of the globally altered network architecture in GCS.

  10. Extraction of business relationships in supply networks using statistical learning theory.

    PubMed

    Zuo, Yi; Kajikawa, Yuya; Mori, Junichiro

    2016-06-01

    Supply chain management represents one of the most important scientific streams of operations research. The supply of energy, materials, products, and services involves millions of transactions conducted among national and local business enterprises. To deliver efficient and effective support for supply chain design and management, structural analyses and predictive models of customer-supplier relationships are expected to clarify current enterprise business conditions and to help enterprises identify innovative business partners for future success. This article presents the outcomes of a recent structural investigation concerning a supply network in the central area of Japan. We investigated the effectiveness of statistical learning theory to express the individual differences of a supply chain of enterprises within a certain business community using social network analysis. In the experiments, we employ support vector machine to train a customer-supplier relationship model on one of the main communities extracted from a supply network in the central area of Japan. The prediction results reveal an F-value of approximately 70% when the model is built by using network-based features, and an F-value of approximately 77% when the model is built by using attribute-based features. When we build the model based on both, F-values are improved to approximately 82%. The results of this research can help to dispel the implicit design space concerning customer-supplier relationships, which can be explored and refined from detailed topological information provided by network structures rather than from traditional and attribute-related enterprise profiles. We also investigate and discuss differences in the predictive accuracy of the model for different sizes of enterprises and types of business communities.

  11. Learning in networks: individual teacher learning versus organizational learning in a regional health-promoting schools network.

    PubMed

    Flaschberger, Edith; Gugglberger, Lisa; Dietscher, Christina

    2013-12-01

    To change a school into a health-promoting organization, organizational learning is required. The evaluation of an Austrian regional health-promoting schools network provides qualitative data on the views of the different stakeholders on learning in this network (steering group, network coordinator and representatives of the network schools; n = 26). Through thematic analysis and deep-structure analyses, the following three forms of learning in the network were identified: (A) individual learning through input offered by the network coordination, (B) individual learning between the network schools, i.e. through exchange between the representatives of different schools and (C) learning within the participating schools, i.e. organizational learning. Learning between (B) or within the participating schools (C) seems to be rare in the network; concepts of individual teacher learning are prevalent. Difficulties detected relating to the transfer of information from the network to the member schools included barriers to organizational learning such as the lack of collaboration, coordination and communication in the network schools, which might be effects of the school system in which the observed network is located. To ensure connectivity of the information offered by the network, more emphasis should be put on linking health promotion to school development and the core processes of schools.

  12. When structure affects function--the need for partial volume effect correction in functional and resting state magnetic resonance imaging studies.

    PubMed

    Dukart, Juergen; Bertolino, Alessandro

    2014-01-01

    Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.

  13. Population structure of an endemic vulnerable species, the Jamaican boa (Epicrates subflavus).

    PubMed

    Tzika, Athanasia C; Koenig, Susan; Miller, Ricardo; Garcia, Gerardo; Remy, Christophe; Milinkovitch, Michel C

    2008-01-01

    The Jamaican boa (Epicrates subflavus; also called Yellow boa) is an endemic species whose natural populations greatly and constantly declined since the late 19th century, mainly because of predation by introduced species, human persecution, and habitat destruction. In-situ conservation of the Jamaican boa is seriously hindered by the lack of information on demographic and ecological parameters as well as by a poor understanding of the population structure and species distribution in the wild. Here, using nine nuclear microsatellite loci and a fragment of the mitochondrial cytochrome b gene from 87 wild-born individuals, we present the first molecular genetic analyses focusing on the diversity and structure of the natural populations of the Jamaican boa. A model-based clustering analysis of multilocus microsatellite genotypes identifies three groups that are also significantly differentiated on the basis of F-statistics. Similarly, haplotypic network reconstruction methods applied on the cytochrome b haplotypes isolated here identify two well-differentiated haplogroups separated by four to six fixed mutations. Bayesian and metaGA analyses of the mitochondrial data set combined with sequences from other Boidae species indicate that rooting of the haplotypic network occurs most likely between the two defined haplogroups. Both analyses (based on nuclear and mitochondrial markers) underline an Eastern vs. (Western + Central) pattern of differentiation in agreement with geological data and patterns of differentiation uncovered in other vertebrate and invertebrate Jamaican species. Our results provide important insights for improving management of ex-situ captive populations and for guiding the development of proper in-situ species survival and habitat management plans for this spectacular, yet poorly known and vulnerable, snake.

  14. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments.

    PubMed

    Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana

    2015-10-01

    The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.

  15. Disaster preparedness networks in rural Midwest communities: Organizational roles, collaborations, and support for older residents.

    PubMed

    Ashida, Sato; Zhu, Xi; Robinson, Erin L; Schroer, Audrey

    2018-05-17

    This study investigated the roles and interconnections among community organizations belonging to local disaster coalitions in Midwest in supporting older residents. Representatives from 44 organizations participated in one-time survey. Most were non-profit (68%) or federal/state/local government agencies (23%). The analyses of 761 relationships showed stronger collaborations in assessment (average strength=2.88 on a 5-point scale), emergency response (2.72), and planning (2.61); and weaker collaborations in co-sponsoring programs (1.71) and supporting older residents (2.03). The extent of collaboration (network density) to support older adults was also low. Coalitions may enhance network density and centralization by developing sub-committee structure and strengthening existing collaborations.

  16. An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis.

    PubMed

    Walsh, Logan A; Alvarez, Mariano J; Sabio, Erich Y; Reyngold, Marsha; Makarov, Vladimir; Mukherjee, Suranjit; Lee, Ken-Wing; Desrichard, Alexis; Turcan, Şevin; Dalin, Martin G; Rajasekhar, Vinagolu K; Chen, Shuibing; Vahdat, Linda T; Califano, Andrea; Chan, Timothy A

    2017-08-15

    At the root of most fatal malignancies are aberrantly activated transcriptional networks that drive metastatic dissemination. Although individual metastasis-associated genes have been described, the complex regulatory networks presiding over the initiation and maintenance of metastatic tumors are still poorly understood. There is untapped value in identifying therapeutic targets that broadly govern coordinated transcriptional modules dictating metastatic progression. Here, we reverse engineered and interrogated a breast cancer-specific transcriptional interaction network (interactome) to define transcriptional control structures causally responsible for regulating genetic programs underlying breast cancer metastasis in individual patients. Our analyses confirmed established pro-metastatic transcription factors, and they uncovered TRIM25 as a key regulator of metastasis-related transcriptional programs. Further, in vivo analyses established TRIM25 as a potent regulator of metastatic disease and poor survival outcome. Our findings suggest that identifying and targeting keystone proteins, like TRIM25, can effectively collapse transcriptional hierarchies necessary for metastasis formation, thus representing an innovative cancer intervention strategy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Structural covariance network centrality in maltreated youth with posttraumatic stress disorder.

    PubMed

    Sun, Delin; Peverill, Matthew R; Swanson, Chelsea S; McLaughlin, Katie A; Morey, Rajendra A

    2018-03-01

    Childhood maltreatment is associated with posttraumatic stress disorder (PTSD) and elevated rates of adolescent and adult psychopathology including major depression, bipolar disorder, substance use disorders, and other medical comorbidities. Gray matter volume changes have been found in maltreated youth with (versus without) PTSD. However, little is known about the alterations of brain structural covariance network topology derived from cortical thickness in maltreated youth with PTSD. High-resolution T1-weighted magnetic resonance imaging scans were from demographically matched maltreated youth with PTSD (N = 24), without PTSD (N = 64), and non-maltreated healthy controls (n = 67). Cortical thickness data from 148 cortical regions was entered into interregional partial correlation analyses across participants. The supra-threshold correlations constituted connections in a structural brain network derived from four types of centrality measures (degree, betweenness, closeness, and eigenvector) estimated network topology and the importance of nodes. Between-group differences were determined by permutation testing. Maltreated youth with PTSD exhibited larger centrality in left anterior cingulate cortex than the other two groups, suggesting cortical network topology specific to maltreated youth with PTSD. Moreover, maltreated youth with versus without PTSD showed smaller centrality in right orbitofrontal cortex, suggesting that this may represent a vulnerability factor to PTSD following maltreatment. Longitudinal follow-up of the present results will help characterize the role that altered centrality plays in vulnerability and resilience to PTSD following childhood maltreatment. Copyright © 2017. Published by Elsevier Ltd.

  18. Connectomic correlates of response to treatment in first-episode psychosis

    PubMed Central

    Crossley, Nicolas A; Marques, Tiago Reis; Taylor, Heather; Chaddock, Chris; Dell’Acqua, Flavio; Reinders, Antje A T S; Mondelli, Valeria; DiForti, Marta; Simmons, Andrew; David, Anthony S; Kapur, Shitij; Pariante, Carmine M; Murray, Robin M; Dazzan, Paola

    2017-01-01

    Abstract Connectomic approaches using diffusion tensor imaging have contributed to our understanding of brain changes in psychosis, and could provide further insights into the neural mechanisms underlying response to antipsychotic treatment. We here studied the brain network organization in patients at their first episode of psychosis, evaluating whether connectome-based descriptions of brain networks predict response to treatment, and whether they change after treatment. Seventy-six patients with a first episode of psychosis and 74 healthy controls were included. Thirty-three patients were classified as responders after 12 weeks of antipsychotic treatment. Baseline brain structural networks were built using whole-brain diffusion tensor imaging tractography, and analysed using graph analysis and network-based statistics to explore baseline characteristics of patients who subsequently responded to treatment. A subgroup of 43 patients was rescanned at the 12-week follow-up, to study connectomic changes over time in relation to treatment response. At baseline, those subjects who subsequently responded to treatment, compared to those that did not, showed higher global efficiency in their structural connectomes, a network configuration that theoretically facilitates the flow of information. We did not find specific connectomic changes related to treatment response after 12 weeks of treatment. Our data suggest that patients who have an efficiently-wired connectome at first onset of psychosis show a better subsequent response to antipsychotics. However, response is not accompanied by specific structural changes over time detectable with this method. PMID:28007987

  19. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan

    PubMed Central

    Davison, Elizabeth N.; Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2016-01-01

    Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism—hypergraph cardinality—we investigate individual variations in two separate, complementary data sets. The first data set (“multi-task”) consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set (“age-memory”), in which 95 individuals, aged 18–75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain. PMID:27880785

  20. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  1. The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives

    NASA Astrophysics Data System (ADS)

    De Mazière, Martine; Thompson, Anne M.; Kurylo, Michael J.; Wild, Jeannette D.; Bernhard, Germar; Blumenstock, Thomas; Braathen, Geir O.; Hannigan, James W.; Lambert, Jean-Christopher; Leblanc, Thierry; McGee, Thomas J.; Nedoluha, Gerald; Petropavlovskikh, Irina; Seckmeyer, Gunther; Simon, Paul C.; Steinbrecht, Wolfgang; Strahan, Susan E.

    2018-04-01

    The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson-Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.

  2. The Network for the Detection of Atmospheric Composition Change (NDACC): History, Status and Perspectives

    NASA Technical Reports Server (NTRS)

    Simon, Paul C.; De Maziere, Martine; Bernhard, Germar; Blumenstock, Thomas; McGee, Thomas J.; Petropavlovskikh, Irina; Steinbrecht, Wolfgang; Wild, Jeannette D.; Lambert, Jean-Christopher; Seckmeyer, Gunther; hide

    2018-01-01

    The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson-Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.

  3. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?

    PubMed

    Macfadyen, Sarina; Gibson, Rachel; Polaszek, Andrew; Morris, Rebecca J; Craze, Paul G; Planqué, Robert; Symondson, William O C; Memmott, Jane

    2009-03-01

    While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.

  4. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.

    PubMed

    Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni

    2015-10-01

    Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age. © 2015 Wiley Periodicals, Inc.

  5. A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.

    PubMed

    Maerker, Tina; van Wijk, Erwin; Overlack, Nora; Kersten, Ferry F J; McGee, Joann; Goldmann, Tobias; Sehn, Elisabeth; Roepman, Ronald; Walsh, Edward J; Kremer, Hannie; Wolfrum, Uwe

    2008-01-01

    The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic analyses disclosed the colocalization of all network components in the apical inner segment collar and the ciliary apparatus of mammalian photoreceptor cells. In this complex, whirlin and SANS directly interact. Furthermore, SANS provides a linkage to the microtubule transport machinery, whereas whirlin may anchor USH2A isoform b and VLGR1b (very large G-protein coupled receptor 1b) via binding to their cytodomains at specific membrane domains. The long ectodomains of both transmembrane proteins extend into the gap between the adjacent membranes of the connecting cilium and the apical inner segment. Analyses of Vlgr1/del7TM mice revealed the ectodomain of VLGR1b as a component of fibrous links present in this gap. Comparative analyses of mouse and Xenopus photoreceptors demonstrated that this USH protein network is also part of the periciliary ridge complex in Xenopus. Since this structural specialization in amphibian photoreceptor cells defines a specialized membrane domain for docking and fusion of transport vesicles, we suggest a prominent role of the USH proteins in cargo shipment.

  6. A Social Network Analysis of Social Cohesion in a Constructed Pride: Implications for Ex Situ Reintroduction of the African Lion (Panthera leo)

    PubMed Central

    Abell, Jackie; Kirzinger, Morgan W. B.; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David

    2013-01-01

    Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride’s social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions. PMID:24376544

  7. Mindfulness training induces structural connectome changes in insula networks.

    PubMed

    Sharp, Paul B; Sutton, Bradley P; Paul, Erick J; Sherepa, Nikolai; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F; Prakash, Ruchika Shaurya; Heller, Wendy; Telzer, Eva H; Barbey, Aron K

    2018-05-21

    Although mindfulness meditation is known to provide a wealth of psychological benefits, the neural mechanisms involved in these effects remain to be well characterized. A central question is whether the observed benefits of mindfulness training derive from specific changes in the structural brain connectome that do not result from alternative forms of experimental intervention. Measures of whole-brain and node-level structural connectome changes induced by mindfulness training were compared with those induced by cognitive and physical fitness training within a large, multi-group intervention protocol (n = 86). Whole-brain analyses examined global graph-theoretical changes in structural network topology. A hypothesis-driven approach was taken to investigate connectivity changes within the insula, which was predicted here to mediate interoceptive awareness skills that have been shown to improve through mindfulness training. No global changes were observed in whole-brain network topology. However, node-level results confirmed a priori hypotheses, demonstrating significant increases in mean connection strength in right insula across all of its connections. Present findings suggest that mindfulness strengthens interoception, operationalized here as the mean insula connection strength within the overall connectome. This finding further elucidates the neural mechanisms of mindfulness meditation and motivates new perspectives about the unique benefits of mindfulness training compared to contemporary cognitive and physical fitness interventions.

  8. Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development1[C][W][OA

    PubMed Central

    Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine

    2009-01-01

    Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12–35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality. PMID:19144766

  9. Static network analysis of a pork supply chain in Northern Germany-Characterisation of the potential spread of infectious diseases via animal movements.

    PubMed

    Büttner, Kathrin; Krieter, Joachim; Traulsen, Arne; Traulsen, Imke

    2013-07-01

    Transport of live animals is a major risk factor in the spread of infectious diseases between holdings. The present study analysed the pork supply chain of a producer community in Northern Germany. The structure of trade networks can be characterised by carrying out a network analysis. To identify holdings with a central position in this directed network of pig production, several parameters describing these properties were measured (in-degree, out-degree, ingoing and outgoing infection chain, betweenness centrality and ingoing and outgoing closeness centrality). To obtain the importance of the different holding types (multiplier, farrowing farms, finishing farms and farrow-to-finishing farms) within the pyramidal structure of the pork supply chain, centrality parameters were calculated for the entire network as well as for the individual holding types. Using these centrality parameters, two types of holdings could be identified. In the network studied, finishing and farrow-to-finishing farms were more likely to be infected due to the high number of ingoing trade contacts. Due to the high number of outgoing trade contacts multipliers and farrowing farms had an increased risk to spread a disease to other holdings. However, the results of the centrality parameters degree and infection chain were not always consistent, such that the indirect trade contacts should be taken into consideration to understand the real importance of a holding in spreading or contracting an infection. Furthermore, all calculated parameters showed a highly right-skewed distribution. Networks with such a degree distribution are considered to be highly resistant concerning the random removal of nodes. But by strategic removal of the most central holdings, e.g. by trade restrictions or selective vaccination or culling, the network structure can be changed efficiently and thus decompose into fragments. Such a fragmentation of the trade networks is of particular importance from an epidemiological perspective. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Syntheses, crystal structures and properties of novel copper(II) complexes obtained by reactions of copper(II) sulfate pentahydrate with tripodal ligands.

    PubMed

    Zhao, Wei; Fan, Jian; Song, You; Kawaguchi, Hiroyuki; Okamura, Taka-aki; Sun, Wei-Yin; Ueyama, Norikazu

    2005-04-21

    Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.

  11. Social contagions on time-varying community networks

    NASA Astrophysics Data System (ADS)

    Liu, Mian-Xin; Wang, Wei; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng

    2017-05-01

    Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.

  12. Achieving biopolymer synergy in systems chemistry.

    PubMed

    Bai, Yushi; Chotera, Agata; Taran, Olga; Liang, Chen; Ashkenasy, Gonen; Lynn, David G

    2018-05-31

    Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.

  13. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses--an overview and application of NetMetaXL.

    PubMed

    Brown, Stephen; Hutton, Brian; Clifford, Tammy; Coyle, Doug; Grima, Daniel; Wells, George; Cameron, Chris

    2014-09-29

    The use of network meta-analysis has increased dramatically in recent years. WinBUGS, a freely available Bayesian software package, has been the most widely used software package to conduct network meta-analyses. However, the learning curve for WinBUGS can be daunting, especially for new users. Furthermore, critical appraisal of network meta-analyses conducted in WinBUGS can be challenging given its limited data manipulation capabilities and the fact that generation of graphical output from network meta-analyses often relies on different software packages than the analyses themselves. We developed a freely available Microsoft-Excel-based tool called NetMetaXL, programmed in Visual Basic for Applications, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS from within Microsoft Excel. . This tool allows the user to easily prepare and enter data, set model assumptions, and run the network meta-analysis, with results being automatically displayed in an Excel spreadsheet. It also contains macros that use NetMetaXL's interface to generate evidence network diagrams, forest plots, league tables of pairwise comparisons, probability plots (rankograms), and inconsistency plots within Microsoft Excel. All figures generated are publication quality, thereby increasing the efficiency of knowledge transfer and manuscript preparation. We demonstrate the application of NetMetaXL using data from a network meta-analysis published previously which compares combined resynchronization and implantable defibrillator therapy in left ventricular dysfunction. We replicate results from the previous publication while demonstrating result summaries generated by the software. Use of the freely available NetMetaXL successfully demonstrated its ability to make running network meta-analyses more accessible to novice WinBUGS users by allowing analyses to be conducted entirely within Microsoft Excel. NetMetaXL also allows for more efficient and transparent critical appraisal of network meta-analyses, enhanced standardization of reporting, and integration with health economic evaluations which are frequently Excel-based.

  14. International Space Station Future Correlation Analysis Improvements

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael

    2018-01-01

    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.

  15. Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies.

    PubMed

    Cirillo, Giuseppe; Spataro, Tania; Curcio, Manuela; Spizzirri, U Gianfranco; Nicoletta, Fiore Pasquale; Picci, Nevio; Iemma, Francesca

    2015-03-01

    Thermo-responsive hydrogel films, synthesized by UV-initiated radical polymerization, are proposed as delivery devices for non-steroidal anti-inflammatory drugs (Diclofenac sodium and Naproxen). N-isopropylacrylamide and N,N'-ethylenebisacrylamide were chosen as thermo-sensitive monomer and crosslinker, respectively. Infrared spectroscopy was used to assess the incorporation of monomers into the network, and the network density of hydrogel films was found to strictly depend on both feed composition and film thickness. Calorimetric analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the range 32.8-36.1°C. Equilibrium swelling studies around the LCST allowed the correlation between the structural changes and the temperature variations. The mesh size, indeed, rapidly changed from a collapsed to a swollen state, with beneficial effects in applications such as size-selective permeation or controlled drug delivery, while the crosslinking degree, the film thickness, and the loading method deeply influenced the drug release profiles at 25 and 40°C. The analysis of both 3D-network structure, release kinetics and diffusional constraints at different temperatures was evaluated by mathematical modelling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Contemporary ultrasonic signal processing approaches for nondestructive evaluation of multilayered structures

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Harvey, David M.

    2012-03-01

    Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.

  17. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity.

    PubMed

    Taxis, Tasia M; Wolff, Sara; Gregg, Sarah J; Minton, Nicholas O; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D; Taylor, Jeremy F; Kerley, Monty S; Pires, J Chris; Lamberson, William R; Conant, Gavin C

    2015-11-16

    By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Gender differences in the structural connectome of the teenage brain revealed by generalized q-sampling MRI.

    PubMed

    Tyan, Yeu-Sheng; Liao, Jan-Ray; Shen, Chao-Yu; Lin, Yu-Chieh; Weng, Jun-Cheng

    2017-01-01

    The question of whether there are biological differences between male and female brains is a fraught one, and political positions and prior expectations seem to have a strong influence on the interpretation of scientific data in this field. This question is relevant to issues of gender differences in the prevalence of psychiatric conditions, including autism, attention deficit hyperactivity disorder (ADHD), Tourette's syndrome, schizophrenia, dyslexia, depression, and eating disorders. Understanding how gender influences vulnerability to these conditions is significant. Diffusion magnetic resonance imaging (dMRI) provides a non-invasive method to investigate brain microstructure and the integrity of anatomical connectivity. Generalized q-sampling imaging (GQI) has been proposed to characterize complicated fiber patterns and distinguish fiber orientations, providing an opportunity for more accurate, higher-order descriptions through the water diffusion process. Therefore, we aimed to investigate differences in the brain's structural network between teenage males and females using GQI. This study included 59 (i.e., 33 males and 26 females) age- and education-matched subjects (age range: 13 to 14 years). The structural connectome was obtained by graph theoretical and network-based statistical (NBS) analyses. Our findings show that teenage male brains exhibit better intrahemispheric communication, and teenage female brains exhibit better interhemispheric communication. Our results also suggest that the network organization of teenage male brains is more local, more segregated, and more similar to small-world networks than teenage female brains. We conclude that the use of an MRI study with a GQI-based structural connectomic approach like ours presents novel insights into network-based systems of the brain and provides a new piece of the puzzle regarding gender differences.

  19. Condition-dependent functional connectivity: syntax networks in bilinguals

    PubMed Central

    Dodel, Silke; Golestani, Narly; Pallier, Christophe; ElKouby, Vincent; Le Bihan, Denis; Poline, Jean-Baptiste

    2005-01-01

    This paper introduces a method to study the variation of brain functional connectivity networks with respect to experimental conditions in fMRI data. It is related to the psychophysiological interaction technique introduced by Friston et al. and extends to networks of correlation modulation (CM networks). Extended networks containing several dozens of nodes are determined in which the links correspond to consistent correlation modulation across subjects. In addition, we assess inter-subject variability and determine networks in which the condition-dependent functional interactions can be explained by a subject-dependent variable. We applied the technique to data from a study on syntactical production in bilinguals and analysed functional interactions differentially across tasks (word reading or sentence production) and across languages. We find an extended network of consistent functional interaction modulation across tasks, whereas the network comparing languages shows fewer links. Interestingly, there is evidence for a specific network in which the differences in functional interaction across subjects can be explained by differences in the subjects' syntactical proficiency. Specifically, we find that regions, including ones that have previously been shown to be involved in syntax and in language production, such as the left inferior frontal gyrus, putamen, insula, precentral gyrus, as well as the supplementary motor area, are more functionally linked during sentence production in the second, compared with the first, language in syntactically more proficient bilinguals than in syntactically less proficient ones. Our approach extends conventional activation analyses to the notion of networks, emphasizing functional interactions between regions independently of whether or not they are activated. On the one hand, it gives rise to testable hypotheses and allows an interpretation of the results in terms of the previous literature, and on the other hand, it provides a basis for studying the structure of functional interactions as a whole, and hence represents a further step towards the notion of large-scale networks in functional imaging. PMID:16087437

  20. Disrupted subject-specific gray matter network properties and cognitive dysfunction in type 1 diabetes patients with and without proliferative retinopathy.

    PubMed

    van Duinkerken, Eelco; Ijzerman, Richard G; Klein, Martin; Moll, Annette C; Snoek, Frank J; Scheltens, Philip; Pouwels, Petra J W; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M

    2016-03-01

    Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients. © 2015 Wiley Periodicals, Inc.

  1. Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates.

    PubMed

    Szaleniec, Maciej

    2012-01-01

    Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity relationship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues. Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed. The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted. The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into training and test cases. The obtained models exhibit high correlation between the predicted and experimental values (R(2) > 0.9). Sensitivity analyses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH reaction mechanism. Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to a range of aspects important in drug design and the prediction of biological activity.

  2. Assessing opinions in community leadership networks to address health inequalities: a case study from Project IMPACT

    PubMed Central

    McCauley, M. P.; Ramanadhan, S.; Viswanath, K.

    2015-01-01

    This study demonstrates a novel approach that those engaged in promoting social change in health can use to analyze community power, mobilize it and enhance community capacity to reduce health inequalities. We used community reconnaissance methods to select and interview 33 participants from six leadership sectors in ‘Milltown’, the New England city where the study was conducted. We used UCINET network analysis software to assess the structure of local leadership and NVivo qualitative software to analyze leaders’ views on public health and health inequalities. Our main analyses showed that community power is distributed unequally in Milltown, with our network of 33 divided into an older, largely male and more powerful group, and a younger, largely female group with many ‘grassroots’ sector leaders who focus on reducing health inequalities. Ancillary network analyses showed that grassroots leaders comprise a self-referential cluster that could benefit from greater affiliation with leaders from other sectors and identified leaders who may serve as leverage points in our overall program of public agenda change to address health inequalities. Our innovative approach provides public health practitioners with a method for assessing community leaders’ views, understanding subgroup divides and mobilizing leaders who may be helpful in reducing health inequalities. PMID:26471919

  3. Connectivity patterns during music listening: Evidence for action-based processing in musicians.

    PubMed

    Alluri, Vinoo; Toiviainen, Petri; Burunat, Iballa; Kliuchko, Marina; Vuust, Peter; Brattico, Elvira

    2017-06-01

    Musical expertise is visible both in the morphology and functionality of the brain. Recent research indicates that functional integration between multi-sensory, somato-motor, default-mode (DMN), and salience (SN) networks of the brain differentiates musicians from non-musicians during resting state. Here, we aimed at determining whether brain networks differentially exchange information in musicians as opposed to non-musicians during naturalistic music listening. Whole-brain graph-theory analyses were performed on participants' fMRI responses. Group-level differences revealed that musicians' primary hubs comprised cerebral and cerebellar sensorimotor regions whereas non-musicians' dominant hubs encompassed DMN-related regions. Community structure analyses of the key hubs revealed greater integration of motor and somatosensory homunculi representing the upper limbs and torso in musicians. Furthermore, musicians who started training at an earlier age exhibited greater centrality in the auditory cortex, and areas related to top-down processes, attention, emotion, somatosensory processing, and non-verbal processing of speech. We here reveal how brain networks organize themselves in a naturalistic music listening situation wherein musicians automatically engage neural networks that are action-based while non-musicians use those that are perception-based to process an incoming auditory stream. Hum Brain Mapp 38:2955-2970, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Classroom-Level Predictors of the Social Status of Aggression: Friendship Centralization, Friendship Density, Teacher-Student Attunement, and Gender

    ERIC Educational Resources Information Center

    Ahn, Hai-Jeong; Rodkin, Philip C.

    2014-01-01

    This study investigated moderating effects of classroom friendship network structures (centralization and density), teacher-student attunement on aggression and popularity, and gender on changes in the social status of aggression over 1 school year. Longitudinal multilevel analyses with 2 time points (fall and spring) were conducted on a sample of…

  5. Gender Dimorphism of Brain Reward System Volumes in Alcoholism

    PubMed Central

    Sawyer, Kayle S.; Oscar-Berman, Marlene; Barthelemy, Olivier J.; Papadimitriou, George M.; Harris, Gordon J.; Makris, Nikos

    2017-01-01

    The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy over time. PMID:28285206

  6. Distributed health literacy among people living with type 2 diabetes in Portugal: Defining levels of awareness and support.

    PubMed

    Abreu, Liliana; Nunes, João Arriscado; Taylor, Peter; Silva, Susana

    2018-01-01

    This study embraces a patient-centred and narrative-oriented notion of health literacy, exploring how social networks and personal experiences constitute distributed health literacy (DHL) by mapping out health literacy mediators of each individual and how they enable self-management skills and knowledge of health conditions. Semi-structured interviews with 26 patients with type 2 diabetes were conducted in a Primary Care Center of Porto (Portugal) from October 2014 to December 2015. Data were collected based on McGill Illness Narrative Interview (MINI). Following the grounded theory, interviews were analysed as case-based and process-tracing-oriented. Three awareness narratives emerged: (i) a narrative of minimisation revealing minimal impact of diabetes in patients' lives and daily routines, resignation towards "inevitable" consequences of the diagnosis and dependence of a large network of health literacy mediators; (ii) a narrative of empathy, where patients tended to mention readjustments in their lives by following medical recommendations regarding medication without criticism and with few health literacy mediators; (iii) a narrative of disruption, with patients highlighting the huge impact of diabetes on their lives and their individual responsibility and autonomy with respect to the management of diabetes and the search for alternatives to medication, relying on a very restrictive network of mediators. Exploring meanings given to diagnosis, identifying health mediators and analysing the structure of social networks can contribute to understand the distributed nature of health literacy. Assessing DHL can assist health professionals and those providing care in the community in promoting health literacy and providing models for a more patient-centred health system. © 2017 John Wiley & Sons Ltd.

  7. Fixed Point Learning Based Intelligent Traffic Control System

    NASA Astrophysics Data System (ADS)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  8. Predictability of Extreme Climate Events via a Complex Network Approach

    NASA Astrophysics Data System (ADS)

    Muhkin, D.; Kurths, J.

    2017-12-01

    We analyse climate dynamics from a complex network approach. This leads to an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. This concept is then applied to Monsoon data; in particular, we develop a general framework to predict extreme events by combining a non-linear synchronization technique with complex networks. Applying this method, we uncover a new mechanism of extreme floods in the eastern Central Andes which could be used for operational forecasts. Moreover, we analyze the Indian Summer Monsoon (ISM) and identify two regions of high importance. By estimating an underlying critical point, this leads to an improved prediction of the onset of the ISM; this scheme was successful in 2016 and 2017.

  9. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape.

    PubMed

    Bähner, K W; Zweig, K A; Leal, I R; Wirth, R

    2017-10-01

    Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.

  10. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke

    PubMed Central

    Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.

    2016-01-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794

  11. Network Analyses for Space-Time High Frequency Wind Data

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Kanevski, Mikhail

    2017-04-01

    Recently, network science has shown an important contribution to the analysis, modelling and visualization of complex time series. Numerous existing methods have been proposed for constructing networks. This work studies spatio-temporal wind data by using networks based on the Granger causality test. Furthermore, a visual comparison is carried out with several frequencies of data and different size of moving window. The main attention is paid to the temporal evolution of connectivity intensity. The Hurst exponent is applied on the provided time series in order to explore if there is a long connectivity memory. The results explore the space time structure of wind data and can be applied to other environmental data. The used dataset presents a challenging case study. It consists of high frequency (10 minutes) wind data from 120 measuring stations in Switzerland, for a time period of 2012-2013. The distribution of stations covers different geomorphological zones and elevation levels. The results are compared with the Person correlation network as well.

  12. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    NASA Astrophysics Data System (ADS)

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across intersections in a network, and discuss application to realistic fracture networks using field data of sparsely fractured crystalline rock from the Swedish candidate repository site for spent nuclear fuel.

  13. Power structure among the actors of financial support to the poor to access health services: Social network analysis approach.

    PubMed

    Etemadi, Manal; Gorji, Hasan Abolghasem; Kangarani, Hannaneh Mohammadi; Ashtarian, Kioomars

    2017-12-01

    The extent of universal health coverage in terms of financial protection is worrisome in Iran. There are challenges in health policies to guarantee financial accessibility to health services, especially for poor people. Various institutions offer support to ensure that the poor have financial access to health services. The aim of this study is to investigate the relationship network among the institutions active in this field. This study is a policy document analysis. It evaluates the country's legal documents in the field of financial support to the poor for healthcare after the Islamic Revolution in Iran. The researchers looked for the documents on the related websites and referred to the related organizations. The social network analysis approach was chosen for the analysis of the documents. Block-modelling and multi-dimensional scaling (MDS) was used to determine the network structures. The UCINET software was employed to analyse the data. Most the main actors of this network are chosen from the government budget. There is no legal communication and cooperation among some of the actors because of their improper position in the network. Seven blocks have been clustered by CONCOR in terms of the actor's degree of similarity. The social distance among the actors of the seven blocks is very short. Power distribution in the field of financial support to the poor has a fragmented structure; however, it is mainly run by a dominant block consisting of The Supreme Council of Welfare and Social Security, Health Insurance Organization, and the Ministry of Health and Medical Education. The financial support for the poor network involves multiple actors. This variety has created a series of confusions in terms of the type, level, and scope of responsibilities among the actors. The weak presence legislative and regulatory institutions and also non-governmental institutions are the main weak points of this network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    PubMed

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  15. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    PubMed

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in understanding transmission dynamics, even for environmentally transmitted microbes like E. coli. This study is the first to use microbial genetics to construct and analyse transmission networks in a wildlife population and highlights the potential utility of an approach integrating microbial genetics with network analysis. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  16. Subjective cognitive impairment and brain structural networks in Chinese gynaecological cancer survivors compared with age-matched controls: a cross-sectional study.

    PubMed

    Zeng, Yingchun; Cheng, Andy S K; Song, Ting; Sheng, Xiujie; Zhang, Yang; Liu, Xiangyu; Chan, Chetwyn C H

    2017-11-28

    Subjective cognitive impairment can be a significant and prevalent problem for gynaecological cancer survivors. The aims of this study were to assess subjective cognitive functioning in gynaecological cancer survivors after primary cancer treatment, and to investigate the impact of cancer treatment on brain structural networks and its association with subjective cognitive impairment. This was a cross-sectional survey using a self-reported questionnaire by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) to assess subjective cognitive functioning, and applying DTI (diffusion tensor imaging) and graph theoretical analyses to investigate brain structural networks after primary cancer treatment. A total of 158 patients with gynaecological cancer (mean age, 45.86 years) and 130 age-matched non-cancer controls (mean age, 44.55 years) were assessed. Patients reported significantly greater subjective cognitive functioning on the FACT-Cog total score and two subscales of perceived cognitive impairment and perceived cognitive ability (all p values <0.001). Compared with patients who had received surgery only and non-cancer controls, patients treated with chemotherapy indicated the most altered global brain structural networks, especially in one of properties of small-worldness (p = 0.004). Reduced small-worldness was significantly associated with a lower FACT-Cog total score (r = 0.412, p = 0.024). Increased characteristic path length was also significantly associated with more subjective cognitive impairment (r = -0.388, p = 0.034). When compared with non-cancer controls, a considerable proportion of gynaecological cancer survivors may exhibit subjective cognitive impairment. This study provides the first evidence of brain structural network alteration in gynaecological cancer patients at post-treatment, and offers novel insights regarding the possible neurobiological mechanism of cancer-related cognitive impairment (CRCI) in gynaecological cancer patients. As primary cancer treatment can result in a more random organisation of structural brain networks, this may reduce brain functional specificity and segregation, and have implications for cognitive impairment. Future prospective and longitudinal studies are needed to build upon the study findings in order to assess potentially relevant clinical and psychosocial variables and brain network measures, so as to more accurately understand the specific risk factors related to subjective cognitive impairment in the gynaecological cancer population. Such knowledge could inform the development of appropriate treatment and rehabilitation efforts to ameliorate cognitive impairment in gynaecological cancer survivors.

  17. On the relationship between the “default mode network” and the “social brain”

    PubMed Central

    Mars, Rogier B.; Neubert, Franz-Xaver; Noonan, MaryAnn P.; Sallet, Jerome; Toni, Ivan; Rushworth, Matthew F. S.

    2012-01-01

    The default mode network (DMN) of the brain consists of areas that are typically more active during rest than during active task performance. Recently however, this network has been shown to be activated by certain types of tasks. Social cognition, particularly higher-order tasks such as attributing mental states to others, has been suggested to activate a network of areas at least partly overlapping with the DMN. Here, we explore this claim, drawing on evidence from meta-analyses of functional MRI data and recent studies investigating the structural and functional connectivity of the social brain. In addition, we discuss recent evidence for the existence of a DMN in non-human primates. We conclude by discussing some of the implications of these observations. PMID:22737119

  18. Network Interventions on Physical Activity in an Afterschool Program: An Agent-Based Social Network Study

    PubMed Central

    Zhang, Jun; Shoham, David A.; Tesdahl, Eric

    2015-01-01

    Objectives. We studied simulated interventions that leveraged social networks to increase physical activity in children. Methods. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children’s physical activity. We tested 3 intervention strategies. Results. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Conclusions. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children’s physical activity. PMID:25689202

  19. Social networks of adults with an intellectual disability from South Asian and White communities in the United Kingdom: A comparison.

    PubMed

    Bhardwaj, Anjali K; Forrester-Jones, Rachel V E; Murphy, Glynis H

    2018-03-01

    Little research exists comparing the social networks of people with intellectual disability (ID) from South Asian and White backgrounds. This UK study reports on the barriers that South Asian people with intellectual disability face in relation to social inclusion compared to their White counterparts. A mixed-methods research design was adopted to explore the social lives of 27 men (15 White; 12 South Asian) and 20 women (10 White; 10 South Asian with intellectual disability). Descriptive and parametric tests were used to analyse the quantitative data. The average network size of the whole group was 32 members. South Asian participants had more family members whilst White participants had more service users and staff in their networks; 96% network members from White intellectual disability group were also of White background, whilst the South Asian group had mixed ethnic network members. Social networks of individuals with intellectual disability in this study were found to be larger overall in comparison with previous studies, whilst network structure differed between the White and South Asian population. These differences have implications relating to future service planning and appropriateness of available facilities. © 2017 John Wiley & Sons Ltd.

  20. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL

    PubMed Central

    2014-01-01

    Background The use of network meta-analysis has increased dramatically in recent years. WinBUGS, a freely available Bayesian software package, has been the most widely used software package to conduct network meta-analyses. However, the learning curve for WinBUGS can be daunting, especially for new users. Furthermore, critical appraisal of network meta-analyses conducted in WinBUGS can be challenging given its limited data manipulation capabilities and the fact that generation of graphical output from network meta-analyses often relies on different software packages than the analyses themselves. Methods We developed a freely available Microsoft-Excel-based tool called NetMetaXL, programmed in Visual Basic for Applications, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS from within Microsoft Excel. . This tool allows the user to easily prepare and enter data, set model assumptions, and run the network meta-analysis, with results being automatically displayed in an Excel spreadsheet. It also contains macros that use NetMetaXL’s interface to generate evidence network diagrams, forest plots, league tables of pairwise comparisons, probability plots (rankograms), and inconsistency plots within Microsoft Excel. All figures generated are publication quality, thereby increasing the efficiency of knowledge transfer and manuscript preparation. Results We demonstrate the application of NetMetaXL using data from a network meta-analysis published previously which compares combined resynchronization and implantable defibrillator therapy in left ventricular dysfunction. We replicate results from the previous publication while demonstrating result summaries generated by the software. Conclusions Use of the freely available NetMetaXL successfully demonstrated its ability to make running network meta-analyses more accessible to novice WinBUGS users by allowing analyses to be conducted entirely within Microsoft Excel. NetMetaXL also allows for more efficient and transparent critical appraisal of network meta-analyses, enhanced standardization of reporting, and integration with health economic evaluations which are frequently Excel-based. PMID:25267416

  1. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission.

    PubMed

    Zarrabi, Narges; Prosperi, Mattia; Belleman, Robert G; Colafigli, Manuela; De Luca, Andrea; Sloot, Peter M A

    2012-01-01

    Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of 'peripheral nodes' that have only a few sexual interactions and a minority of 'hub nodes' that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks can have important repercussions in the design of intervention strategies for disease control.

  2. A theoretical study of diffusional transport over the alveolar surfactant layer.

    PubMed

    Aberg, Christoffer; Sparr, Emma; Larsson, Marcus; Wennerström, Håkan

    2010-10-06

    In this communication, we analyse the passage of oxygen and carbon dioxide over the respiratory membrane. The lung surfactant membrane at the alveolar interface can have a very special arrangement, which affects the diffusional transport. We present a theoretical model for the diffusion of small molecules in membranes with a complex structure, and we specifically compare a membrane composed of a tubular bilayer network with a membrane consisting of a stack of bilayers. Oxygen and carbon dioxide differ in terms of their solubility in the aqueous and the lipid regions of the membrane, and we show that this difference clearly influences their transport properties in the different membrane structures. During normal respiration, the rate-limiting step for carbon dioxide transport is in the gas phase of the different compartments in the lung. For oxygen, on the other hand, the rate is limited by the transport between alveoli and the capillary blood vessels, including the lung surfactant membrane. In a membrane with a structure of a continuous tubular lipid network, oxygen transport is facilitated to a significant extent compared with the structure of aligned lipid bilayers. The model calculations in the present study show that transport of oxygen through the tubular structure is indeed ca 30 per cent faster than transport through a membrane composed of stacked bilayers. The tubular network will also facilitate the transport of apolar substances between the gas phase and the blood. Important examples are ethanol and other volatile liquids that can leave the blood through the lungs, and gaseous anaesthetics or volatile solvents that are inhaled. This exemplifies a new physiological role of a tubular lipid network in the lung surfactant membrane.

  3. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    PubMed

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  4. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    NASA Astrophysics Data System (ADS)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  5. Applications of Temporal Graph Metrics to Real-World Networks

    NASA Astrophysics Data System (ADS)

    Tang, John; Leontiadis, Ilias; Scellato, Salvatore; Nicosia, Vincenzo; Mascolo, Cecilia; Musolesi, Mirco; Latora, Vito

    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.

  6. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    PubMed

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  7. Effects of temporal correlations in social multiplex networks.

    PubMed

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-08-17

    Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

  8. A mismatch between supply and demand of social support in dementia care: a qualitative study on the perspectives of spousal caregivers and their social network members.

    PubMed

    Dam, Alieske E H; Boots, Lizzy M M; van Boxtel, Martin P J; Verhey, Frans R J; de Vugt, Marjolein E

    2017-06-13

    Access to social support contributes to feelings of independence and better social health. This qualitative study aims to investigate multi-informant perspectives on informal social support in dementia care networks. Ten spousal caregivers of people with dementia (PwD) completed an ecogram, a social network card and a semi-structured interview. The ecogram aimed to trigger subjective experiences regarding social support. Subsequently, 17 network members were interviewed. The qualitative analyses identified codes, categories, and themes. Sixth themes emerged: (1) barriers to ask for support; (2) facilitators to ask for support; (3) barriers to offer support; (4) facilitators to offer support; (5) a mismatch between supply and demand of social support; and (6) openness in communication to repair the imbalance. Integrating social network perspectives resulted in a novel model identifying a mismatch between the supply and demand of social support, strengthened by a cognitive bias: caregivers reported to think for other social network members and vice versa. Openness in communication in formal and informal care systems might repair this mismatch.

  9. Design of special purpose database for credit cooperation bank business processing network system

    NASA Astrophysics Data System (ADS)

    Yu, Yongling; Zong, Sisheng; Shi, Jinfa

    2011-12-01

    With the popularization of e-finance in the city, the construction of e-finance is transfering to the vast rural market, and quickly to develop in depth. Developing the business processing network system suitable for the rural credit cooperative Banks can make business processing conveniently, and have a good application prospect. In this paper, We analyse the necessity of adopting special purpose distributed database in Credit Cooperation Band System, give corresponding distributed database system structure , design the specical purpose database and interface technology . The application in Tongbai Rural Credit Cooperatives has shown that system has better performance and higher efficiency.

  10. Semantic Web and Contextual Information: Semantic Network Analysis of Online Journalistic Texts

    NASA Astrophysics Data System (ADS)

    Lim, Yon Soo

    This study examines why contextual information is important to actualize the idea of semantic web, based on a case study of a socio-political issue in South Korea. For this study, semantic network analyses were conducted regarding English-language based 62 blog posts and 101 news stories on the web. The results indicated the differences of the meaning structures between blog posts and professional journalism as well as between conservative journalism and progressive journalism. From the results, this study ascertains empirical validity of current concerns about the practical application of the new web technology, and discusses how the semantic web should be developed.

  11. Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad

    2018-05-01

    The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.

  12. Adaptive-network models of collective dynamics

    NASA Astrophysics Data System (ADS)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.

  13. Structural Insights into the Phospholipid Binding Specificity of Human Evectin-2

    NASA Astrophysics Data System (ADS)

    Okazaki, Seiji; Kato, Ryuichi; Wakatsuki, Soichi; Uchida, Yasunori; Taguchi, Tomohiko; Arai, Hiroyuki

    Evectin-2 is a recycling endosomal protein and plays an essential role in retrograde transport from recycling endosomes to the trans-Golgi network. The pleckstrin homology (PH) domain of Evectin-2 can specifically binds to phosphatidylserine (PS), which is enriched in recycling endosomes. To elucidate the molecular mechanism how it specifically binds to PS, we solved the crystal structures of human Evectin-2 PH domain for apo and O-phospho-L-serine complexed forms at 1.75 and 1.00 Å resolution, respectively. These structural analyses clearly show that PS-induced conformational change of Evectin-2 PH domain effectively explains the strict phospholipid binding specificity.

  14. Direct and indirect effects of third-party relationships on interpersonal trust.

    PubMed

    Ferrin, Donald L; Dirks, Kurt T; Shah, Pri P

    2006-07-01

    Past studies of the determinants of interpersonal trust have focused primarily on how trust forms in isolated dyads. Yet within organizations, trust typically develops between individuals who are embedded in a complex web of existing and potential relationships. In this article, the authors identify 3 alternative ways in which a trustor and trustee may be linked to each other via third parties: network closure (linked via social interactions with third parties), trust transferability (linked via trusted third parties), and structural equivalence (linked via the similarity of their relationships with all potential third parties within the organization). Each of these is argued to influence interpersonal trust via a distinct social mechanism. The authors hypothesized that network closure and structural equivalence would predict interpersonal trust indirectly via their impact on interpersonal organizational citizenship behaviors performed within the interpersonal relationship, whereas trust transferability would predict trust directly. Social network analyses of data gathered from a medium-sized work organization provide substantial support for the hypotheses and also suggest important directions for future research. ((c) 2006 APA, all rights reserved).

  15. Multimodal Neuroimaging in Schizophrenia: Description and Dissemination.

    PubMed

    Aine, C J; Bockholt, H J; Bustillo, J R; Cañive, J M; Caprihan, A; Gasparovic, C; Hanlon, F M; Houck, J M; Jung, R E; Lauriello, J; Liu, J; Mayer, A R; Perrone-Bizzozero, N I; Posse, S; Stephen, J M; Turner, J A; Clark, V P; Calhoun, Vince D

    2017-10-01

    In this paper we describe an open-access collection of multimodal neuroimaging data in schizophrenia for release to the community. Data were acquired from approximately 100 patients with schizophrenia and 100 age-matched controls during rest as well as several task activation paradigms targeting a hierarchy of cognitive constructs. Neuroimaging data include structural MRI, functional MRI, diffusion MRI, MR spectroscopic imaging, and magnetoencephalography. For three of the hypothesis-driven projects, task activation paradigms were acquired on subsets of ~200 volunteers which examined a range of sensory and cognitive processes (e.g., auditory sensory gating, auditory/visual multisensory integration, visual transverse patterning). Neuropsychological data were also acquired and genetic material via saliva samples were collected from most of the participants and have been typed for both genome-wide polymorphism data as well as genome-wide methylation data. Some results are also presented from the individual studies as well as from our data-driven multimodal analyses (e.g., multimodal examinations of network structure and network dynamics and multitask fMRI data analysis across projects). All data will be released through the Mind Research Network's collaborative informatics and neuroimaging suite (COINS).

  16. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    PubMed

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  17. Integrating sentiment and social structure to determine preference alignments: the Irish Marriage Referendum

    PubMed Central

    O’Sullivan, David J. P.; Garduño-Hernández, Guillermo; Gleeson, James P.

    2017-01-01

    We examine the relationship between social structure and sentiment through the analysis of a large collection of tweets about the Irish Marriage Referendum of 2015. We obtain the sentiment of every tweet with the hashtags #marref and #marriageref that was posted in the days leading to the referendum, and construct networks to aggregate sentiment and use it to study the interactions among users. Our analysis shows that the sentiment of outgoing mention tweets is correlated with the sentiment of incoming mentions, and there are significantly more connections between users with similar sentiment scores than among users with opposite scores in the mention and follower networks. We combine the community structure of the follower and mention networks with the activity level of the users and sentiment scores to find groups that support voting ‘yes’ or ‘no’ in the referendum. There were numerous conversations between users on opposing sides of the debate in the absence of follower connections, which suggests that there were efforts by some users to establish dialogue and debate across ideological divisions. Our analysis shows that social structure can be integrated successfully with sentiment to analyse and understand the disposition of social media users around controversial or polarizing issues. These results have potential applications in the integration of data and metadata to study opinion dynamics, public opinion modelling and polling. PMID:28791141

  18. Tagging cortical networks in emotion: a topographical analysis

    PubMed Central

    Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.

    2013-01-01

    Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087

  19. Ghana's experience in the establishment of a national digital seismic network observatory

    NASA Astrophysics Data System (ADS)

    Ahulu, Sylvanus; Danuor, Sylvester Kojo

    2015-07-01

    The Government of Ghana has established a National Digital Seismic Network Observatory in Ghana with the aim of monitoring events such as earthquakes, blasts from mining and quarrying, nuclear tests, etc. The Digital Observatory was commissioned on 19 December 2012, and was dedicated to Geosciences in Ghana. Previously Ghana did not have any operational, digital seismic network acquisition system with the capability of monitoring and analysing data for planning and research purposes. The Ghana Geological Survey has been monitoring seismic events with an analogue system which was not efficient and does not deliver real-time data. Hence, the importance of setting up the National Digital Seismic Network System which would enable the Geological Survey to constantly monitor, manage and coordinate both natural and man-made seismic activities in the country and around the globe, to some extent on real-time basis. The Network System is made up of six remote digital stations that transmit data via satellite to the central observatory. Sensors used are 3× Trillium Compact and 3× Trillium 120PA with Trident digitizers. The department has also acquired strong motion equipment: Titan accelerometers with Taurus digitizers from Nanometrics. Three of each of these instruments have been installed at the Akosombo and Kpong hydrodams, and also at the Weija water supply dam. These instruments are used to monitor dams. The peak ground acceleration (PGA) values established from the analysed data from the accelerometers will be used to retrofit or carry out maintenance work of the dam structures to avoid collapse. Apart from these, the observatory also assesses and analyses seismic waveforms relevant to its needs from the Global Seismographic Network (GSN) system operated by the US Geological Survey. The Ghana Geological Survey, through its Seismic Network Observatory makes data available to its stakeholder institutions for earthquake disaster mitigation; reports on all aspects of seismic-related disasters to the relevant government agencies that deal with disasters; makes recommendations to the government of Ghana on earthquake safety measures; and provides information to assist government institutions develop appropriate land and building policies. The Geological Survey Department, in collaboration with stakeholder agencies, periodically organises public lectures on earthquake disaster risk mitigation.

  20. Mathematical methods to analysis of topology, functional variability and evolution of metabolic systems based on different decomposition concepts.

    PubMed

    Mrabet, Yassine; Semmar, Nabil

    2010-05-01

    Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.

  1. A Global Comparison of the Human and T. brucei Degradomes Gives Insights about Possible Parasite Drug Targets

    PubMed Central

    Mashiyama, Susan T.; Koupparis, Kyriacos; Caffrey, Conor R.; McKerrow, James H.; Babbitt, Patricia C.

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html. PMID:23236535

  2. A generative model of whole-brain effective connectivity.

    PubMed

    Frässle, Stefan; Lomakina, Ekaterina I; Kasper, Lars; Manjaly, Zina M; Leff, Alex; Pruessmann, Klaas P; Buhmann, Joachim M; Stephan, Klaas E

    2018-05-25

    The development of whole-brain models that can infer effective (directed) connection strengths from fMRI data represents a central challenge for computational neuroimaging. A recently introduced generative model of fMRI data, regression dynamic causal modeling (rDCM), moves towards this goal as it scales gracefully to very large networks. However, large-scale networks with thousands of connections are difficult to interpret; additionally, one typically lacks information (data points per free parameter) for precise estimation of all model parameters. This paper introduces sparsity constraints to the variational Bayesian framework of rDCM as a solution to these problems in the domain of task-based fMRI. This sparse rDCM approach enables highly efficient effective connectivity analyses in whole-brain networks and does not require a priori assumptions about the network's connectivity structure but prunes fully (all-to-all) connected networks as part of model inversion. Following the derivation of the variational Bayesian update equations for sparse rDCM, we use both simulated and empirical data to assess the face validity of the model. In particular, we show that it is feasible to infer effective connection strengths from fMRI data using a network with more than 100 regions and 10,000 connections. This demonstrates the feasibility of whole-brain inference on effective connectivity from fMRI data - in single subjects and with a run-time below 1 min when using parallelized code. We anticipate that sparse rDCM may find useful application in connectomics and clinical neuromodeling - for example, for phenotyping individual patients in terms of whole-brain network structure. Copyright © 2018. Published by Elsevier Inc.

  3. BRAPH: A graph theory software for the analysis of brain connectivity

    PubMed Central

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447

  4. BRAPH: A graph theory software for the analysis of brain connectivity.

    PubMed

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.

  5. Who runs public health? A mixed-methods study combining qualitative and network analyses.

    PubMed

    Oliver, Kathryn; de Vocht, Frank; Money, Annemarie; Everett, Martin

    2013-09-01

    Persistent health inequalities encourage researchers to identify new ways of understanding the policy process. Informal relationships are implicated in finding evidence and making decisions for public health policy (PHP), but few studies use specialized methods to identify key actors in the policy process. We combined network and qualitative data to identify the most influential individuals in PHP in a UK conurbation and describe their strategies to influence policy. Network data were collected by asking for nominations of powerful and influential people in PHP (n = 152, response rate 80%), and 23 semi-structured interviews were analysed using a framework approach. The most influential PHP makers in this conurbation were mid-level managers in the National Health Service and local government, characterized by managerial skills: controlling policy processes through gate keeping key organizations, providing policy content and managing selected experts and executives to lead on policies. Public health professionals and academics are indirectly connected to policy via managers. The most powerful individuals in public health are managers, not usually considered targets for research. As we show, they are highly influential through all stages of the policy process. This study shows the importance of understanding the daily activities of influential policy individuals.

  6. Heterogeniety and Heterarchy: How far can network analyses in Earth and space sciences?

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Fox, P. A.; Eleish, A.; Li, C.; Pan, F.; Zhong, H.

    2017-12-01

    The vast majority of explorations of Earth systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or conceptual/ semantic, level. Recent successes in the application of complex network theory and algorithms to minerology, fossils and proteins over billions of years of Earth's history, raise expectations that more general graph-based approaches offer the opportunity for new discoveries = needles instead of haystacks. In the past 10 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using open-source tools, allow for discovery at the knowledge level. This presentation will cover the fundamentals of data-rich network analyses for geosciences, provide illustrative examples in mineral evolution and offer future paths for consideration.

  7. Assessment of Overlap of Phylogenetic Transmission Clusters and Communities in Simple Sexual Contact Networks: Applications to HIV-1

    PubMed Central

    Villandre, Luc; Günthard, Huldrych F.; Kouyos, Roger; Stadler, Tanja

    2016-01-01

    Background Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters. Methods The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index. Results and Conclusion Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs. PMID:26863322

  8. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

  9. Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa

    PubMed Central

    Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd

    2015-01-01

    Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813

  10. Probing the water distribution in porous model sands with two immiscible fluids: A nuclear magnetic resonance micro-imaging study

    NASA Astrophysics Data System (ADS)

    Lee, Bum Han; Lee, Sung Keun

    2017-10-01

    The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first analyses of the cube-counting fractal dimension (and other structural properties) and convergence rates in porous networks consisting of two fluid components. These results indicate that the convergence rates correlate with the geometric factor that characterizes the porous networks and transport property of the porous networks.

  11. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae) Endemic to Southwest China by Multiple Molecular Markers

    PubMed Central

    Feng, Xiuyan; Liu, Jian; Chiang, Yu-Chung; Gong, Xun

    2017-01-01

    Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida. PMID:28580005

  12. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks

    PubMed Central

    Albrecht, Matthias; Padrón, Benigno; Bartomeus, Ignasi; Traveset, Anna

    2014-01-01

    Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes. PMID:24943368

  13. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    USGS Publications Warehouse

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  14. A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome

    PubMed Central

    Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson’s Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states. PMID:23675425

  15. How does the body representation system develop in the human brain?

    PubMed

    Fontan, Aurelie; Cignetti, Fabien; Nazarian, Bruno; Anton, Jean-Luc; Vaugoyeau, Marianne; Assaiante, Christine

    2017-04-01

    Exploration of the body representation system (BRS) from kinaesthetic illusions in fMRI has revealed a complex network composed of sensorimotor and frontoparietal components. Here, we evaluated the degree of maturity of this network in children aged 7-11 years, and the extent to which structural factors account for network differences with adults. Brain activation following tendon vibration at 100Hz ('illusion') and 30Hz ('no illusion') were analysed using the two-stage random effects model, with or without white and grey matter covariates. The BRS was already well established in children as revealed by the contrast 'illusion' vs 'no illusion', although still immature in some aspects. This included a lower level of activation in primary somatosensory and posterior parietal regions, and the exclusive activation of the frontopolar cortex (FPC) in children compared to adults. The former differences were related to structure, while the latter difference reflected a functional strategy where the FPC may serve as the 'top' in top-down modulation of the activity of the other BRS regions to facilitate the establishment of body representations. Hence, the development of the BRS not only relies on structural maturation, but also involves the disengagement of an executive region not classically involved in body processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Synthesis, structure and optical properties of two isotypic crystals, Na{sub 3}MO{sub 4}Cl (M=W, Mo)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Shujuan; Bai, Chunyan; Zhang, Bingbing

    Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na{sub 3}WO{sub 4}Cl and a=7.4942(12), c=5.3409(18) for Na{sub 3}MoO{sub 4}Cl. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. The structural similarities and differences between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Sr{sub 3}MO{sub 4}F (M=Al, Ga) havemore » been discussed. Meanwhile, detailed structure comparison analyses between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Na{sub 3}MO{sub 4}F (M=W, Mo) indicate that the different connection modes of ClNa{sub 6} and FNa{sub 6} make Na{sub 3}MO{sub 4}Cl and Na{sub 3}MO{sub 4}F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na{sub 3}WO{sub 4}Cl and Na{sub 3}MoO{sub 4}Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na{sub 3}MO{sub 4}Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa{sub 6}, and WO{sub 4} lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.« less

  17. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-01

    Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

  18. Changes in Structural Connectivity Following a Cognitive Intervention in Children With Traumatic Brain Injury.

    PubMed

    Yuan, Weihong; Treble-Barna, Amery; Sohlberg, McKay M; Harn, Beth; Wade, Shari L

    2017-02-01

    Structural connectivity analysis based on graph theory and diffusion tensor imaging tractography is a novel method that quantifies the topological characteristics in the brain network. This study aimed to examine structural connectivity changes following the Attention Intervention and Management (AIM) program designed to improve attention and executive function (EF) in children with traumatic brain injury (TBI). Seventeen children with complicated mild to severe TBI (13.66 ± 2.68 years; >12 months postinjury) completed magnetic resonance imaging (MRI) and neurobehavioral measures at time 1, 10 of whom completed AIM and assessment at time 2. Eleven matched healthy comparison (HC) children (13.37 ± 2.08 years) completed MRI and neurobehavioral assessment at both time points, but did not complete AIM. Network characteristics were analyzed to quantify the structural connectivity before and after the intervention. Mixed model analyses showed that small-worldness was significantly higher in the TBI group than the HC group at time 1, and both small-worldness and normalized clustering coefficient decreased significantly at time 2 in the TBI group whereas the HC group remained relatively unchanged. Reductions in mean local efficiency were significantly correlated with improvements in verbal inhibition and both parent- and child-reported EF. Increased normalized characteristic path length was significantly correlated with improved sustained attention. The results provide preliminary evidence suggesting that graph theoretical analysis may be a sensitive tool in pediatric TBI for detecting ( a) abnormalities of structural connectivity in brain network and ( b) structural neuroplasticity associated with neurobehavioral improvement following a short-term intervention for attention and EF.

  19. Comparison of weighted and unweighted network analysis in the case of a pig trade network in Northern Germany.

    PubMed

    Büttner, Kathrin; Krieter, Joachim

    2018-08-01

    The analysis of trade networks as well as the spread of diseases within these systems focuses mainly on pure animal movements between farms. However, additional data included as edge weights can complement the informational content of the network analysis. However, the inclusion of edge weights can also alter the outcome of the network analysis. Thus, the aim of the study was to compare unweighted and weighted network analyses of a pork supply chain in Northern Germany and to evaluate the impact on the centrality parameters. Five different weighted network versions were constructed by adding the following edge weights: number of trade contacts, number of delivered livestock, average number of delivered livestock per trade contact, geographical distance and reciprocal geographical distance. Additionally, two different edge weight standardizations were used. The network observed from 2013 to 2014 contained 678 farms which were connected by 1,018 edges. General network characteristics including shortest path structure (e.g. identical shortest paths, shortest path lengths) as well as centrality parameters for each network version were calculated. Furthermore, the targeted and the random removal of farms were performed in order to evaluate the structural changes in the networks. All network versions and edge weight standardizations revealed the same number of shortest paths (1,935). Between 94.4 to 98.9% of the unweighted network and the weighted network versions were identical. Furthermore, depending on the calculated centrality parameters and the edge weight standardization used, it could be shown that the weighted network versions differed from the unweighted network (e.g. for the centrality parameters based on ingoing trade contacts) or did not differ (e.g. for the centrality parameters based on the outgoing trade contacts) with regard to the Spearman Rank Correlation and the targeted removal of farms. The choice of standardization method as well as the inclusion or exclusion of specific farm types (e.g. abattoirs) can alter the results significantly. These facts have to be considered when centrality parameters are to be used for the implementation of prevention and control strategies in the case of an epidemic. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The Correlation between Chemical Structures and Antioxidant, Prooxidant, and Antitrypanosomatid Properties of Flavonoids

    PubMed Central

    de Alcântara, Bianca Gonçalves Vasconcelos; Domingos, Olívia da Silva

    2017-01-01

    Flavonoids have demonstrated in vivo and in vitro leishmanicidal, trypanocidal, antioxidant, and prooxidant properties. The chemotherapy of trypanosomiasis and leishmaniasis lacks efficacy, presents high toxicity, and is related to the development of drug resistance. Thus, a series of 40 flavonoids were investigated with the purpose of correlating these properties via structure and activity analyses based on integrated networks and QSAR models. The classical groups for the antioxidant activity of flavonoids were combined in order to explain the influence of antioxidant and prooxidant activities on the antiparasitic properties. These analyses become useful for the development of efficient treatments for leishmaniasis and trypanosomiasis. Finally, the dual activity of flavonoids presenting both anti- and prooxidant activities revealed that the existence of a balance between these two features could be important to the development of adequate therapeutic strategies. PMID:28751930

  1. Neural network analysis for geological interpretation of tomographic images beneath the Japan Islands

    NASA Astrophysics Data System (ADS)

    Kuwatani, T.; Toriumi, M.

    2009-12-01

    Recent advances in methodologies of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us a large amount and a wide variety of data for physical properties of a crust and upper mantle (e.g. Matsubara et al. (2008)). However, it has still been difficult to specify a rock type and its physical conditions, mainly because (1) available data usually have a lot of error and uncertainty, and (2) physical properties of rocks are greatly affected by fluid and microstructures. The objective interpretation and quantitative evaluation for lithology and fluid-related structure require the statistical analyses of integrated geophysical and geological data. Self-Organizing Maps (SOMs) are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data (Kohonen 2001). SOMs are powerful neural network techniques to classify and interpret multiattribute data sets. Results of SOM classifications can be represented as 2D images, called feature maps which illustrate the complexity and interrelationships among input data sets. Recently, some works have used SOM in order to interpret multidimensional, non-linear, and highly noised geophysical data for purposes of geological prediction (e.g. Klose 2006; Tselentis et al. 2007; Bauer et al. 2008). This paper describes the application of SOM to the 3D velocity structure beneath the whole Japan islands (e.g. Matsubara et al. 2008). From the obtained feature maps, we can specify the lithology and qualitatively evaluate the effect of fluid-related structures. Moreover, re-projection of feature maps onto the 3D velocity structures resulted in detailed images of the structures within the plates. The Pacific plate and the Philippine Sea plate subducting beneath the Eurasian plate can be imaged more clearly than the original P- and S-wave velocity structures. In order to understand more precise prediction of lithology and its structure, we will use the additional input data sets, such as tomographic images of random velocity fluctuation (Takahashi et al. 2009) and b-value mapping data. Additionally, different kinds of data sets, including the experimental and petrological results (e.g. Christensen 1991; Hacker et al. 2003) can be applied to our analyses.

  2. An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors

    NASA Astrophysics Data System (ADS)

    Mieloszyk, Magdalena; Krawczuk, Marek; Skarbek, Lukasz; Ostachowicz, Wieslaw

    2011-07-01

    This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS® and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.

  3. Evaluating conducting network based transparent electrodes from geometrical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ankush; Kulkarni, G. U., E-mail: guk@cens.res.in

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained frommore » conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in predicting the properties of a network simply from image analysis and will be helpful in improvisation and comparison of various TEs and better understanding of electrical percolation.« less

  4. Evaluating conducting network based transparent electrodes from geometrical considerations

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush; Kulkarni, G. U.

    2016-01-01

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in predicting the properties of a network simply from image analysis and will be helpful in improvisation and comparison of various TEs and better understanding of electrical percolation.

  5. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale

    PubMed Central

    Monacis, Lucia; de Palo, Valeria; Griffiths, Mark D.; Sinatra, Maria

    2017-01-01

    Aim Research into social networking addiction has greatly increased over the last decade. However, the number of validated instruments assessing addiction to social networking sites (SNSs) remains few, and none have been validated in the Italian language. Consequently, this study tested the psychometric properties of the Italian version of the Bergen Social Media Addiction Scale (BSMAS), as well as providing empirical data concerning the relationship between attachment styles and SNS addiction. Methods A total of 769 participants were recruited to this study. Confirmatory factor analysis (CFA) and multigroup analyses were applied to assess construct validity of the Italian version of the BSMAS. Reliability analyses comprised the average variance extracted, the standard error of measurement, and the factor determinacy coefficient. Results Indices obtained from the CFA showed the Italian version of the BSMAS to have an excellent fit of the model to the data, thus confirming the single-factor structure of the instrument. Measurement invariance was established at configural, metric, and strict invariances across age groups, and at configural and metric levels across gender groups. Internal consistency was supported by several indicators. In addition, the theoretical associations between SNS addiction and attachment styles were generally supported. Conclusion This study provides evidence that the Italian version of the BSMAS is a psychometrically robust tool that can be used in future Italian research into social networking addiction. PMID:28494648

  6. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale.

    PubMed

    Monacis, Lucia; de Palo, Valeria; Griffiths, Mark D; Sinatra, Maria

    2017-06-01

    Aim Research into social networking addiction has greatly increased over the last decade. However, the number of validated instruments assessing addiction to social networking sites (SNSs) remains few, and none have been validated in the Italian language. Consequently, this study tested the psychometric properties of the Italian version of the Bergen Social Media Addiction Scale (BSMAS), as well as providing empirical data concerning the relationship between attachment styles and SNS addiction. Methods A total of 769 participants were recruited to this study. Confirmatory factor analysis (CFA) and multigroup analyses were applied to assess construct validity of the Italian version of the BSMAS. Reliability analyses comprised the average variance extracted, the standard error of measurement, and the factor determinacy coefficient. Results Indices obtained from the CFA showed the Italian version of the BSMAS to have an excellent fit of the model to the data, thus confirming the single-factor structure of the instrument. Measurement invariance was established at configural, metric, and strict invariances across age groups, and at configural and metric levels across gender groups. Internal consistency was supported by several indicators. In addition, the theoretical associations between SNS addiction and attachment styles were generally supported. Conclusion This study provides evidence that the Italian version of the BSMAS is a psychometrically robust tool that can be used in future Italian research into social networking addiction.

  7. Dysfunctional role of parietal lobe during self-face recognition in schizophrenia.

    PubMed

    Yun, Je-Yeon; Hur, Ji-Won; Jung, Wi Hoon; Jang, Joon Hwan; Youn, Tak; Kang, Do-Hyung; Park, Sohee; Kwon, Jun Soo

    2014-01-01

    Anomalous sense of self is central to schizophrenia yet difficult to demonstrate empirically. The present study examined the effective neural network connectivity underlying self-face recognition in patients with schizophrenia (SZ) using [15O]H2O Positron Emission Tomography (PET) and Structural Equation Modeling. Eight SZ and eight age-matched healthy controls (CO) underwent six consecutive [15O]H2O PET scans during self-face (SF) and famous face (FF) recognition blocks, each of which was repeated three times. There were no behavioral performance differences between the SF and FF blocks in SZ. Moreover, voxel-based analyses of data from SZ revealed no significant differences in the regional cerebral blood flow (rCBF) levels between the SF and FF recognition conditions. Further effective connectivity analyses for SZ also showed a similar pattern of effective connectivity network across the SF and FF recognition. On the other hand, comparison of SF recognition effective connectivity network between SZ and CO demonstrated significantly attenuated effective connectivity strength not only between the right supramarginal gyrus and left inferior temporal gyrus, but also between the cuneus and right medial prefrontal cortex in SZ. These findings support a conceptual model that posits a causal relationship between disrupted self-other discrimination and attenuated effective connectivity among the right supramarginal gyrus, cuneus, and prefronto-temporal brain areas involved in the SF recognition network of SZ. © 2013.

  8. Assessing opinions in community leadership networks to address health inequalities: a case study from Project IMPACT.

    PubMed

    McCauley, M P; Ramanadhan, S; Viswanath, K

    2015-12-01

    This study demonstrates a novel approach that those engaged in promoting social change in health can use to analyze community power, mobilize it and enhance community capacity to reduce health inequalities. We used community reconnaissance methods to select and interview 33 participants from six leadership sectors in 'Milltown', the New England city where the study was conducted. We used UCINET network analysis software to assess the structure of local leadership and NVivo qualitative software to analyze leaders' views on public health and health inequalities. Our main analyses showed that community power is distributed unequally in Milltown, with our network of 33 divided into an older, largely male and more powerful group, and a younger, largely female group with many 'grassroots' sector leaders who focus on reducing health inequalities. Ancillary network analyses showed that grassroots leaders comprise a self-referential cluster that could benefit from greater affiliation with leaders from other sectors and identified leaders who may serve as leverage points in our overall program of public agenda change to address health inequalities. Our innovative approach provides public health practitioners with a method for assessing community leaders' views, understanding subgroup divides and mobilizing leaders who may be helpful in reducing health inequalities. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles

    PubMed Central

    Gossner, Martin M.; Grass, Ingo; Arnstadt, Tobias; Hofrichter, Martin; Floren, Andreas; Linsenmair, Karl Eduard; Weisser, Wolfgang W.; Steffan-Dewenter, Ingolf

    2017-01-01

    The specialization of ecological networks provides important insights into possible consequences of biodiversity loss for ecosystem functioning. However, mostly mutualistic and antagonistic interactions of living organisms have been studied, whereas detritivore networks and their successional changes are largely unexplored. We studied the interactions of saproxylic (deadwood-dependent) beetles with their dead host trees. In a large-scale experiment, 764 logs of 13 tree species were exposed to analyse network structure of three trophic groups of saproxylic beetles over 3 successional years. We found remarkably high specialization of deadwood-feeding xylophages and lower specialization of fungivorous and predatory species. During deadwood succession, community composition, network specialization and network robustness changed differently for the functional groups. To reveal potential drivers of network specialization, we linked species' functional traits to their network roles, and tested for trait matching between plant (i.e. chemical compounds) and beetle (i.e. body size) traits. We found that both plant and animal traits are major drivers of species specialization, and that trait matching can be more important in explaining interactions than neutral processes reflecting species abundance distributions. High network specialization in the early successional stage and decreasing network robustness during succession indicate vulnerability of detritivore networks to reduced tree species diversity and beetle extinctions, with unknown consequences for wood decomposition and nutrient cycling. PMID:28469020

  10. Knowledge representation in metabolic pathway databases.

    PubMed

    Stobbe, Miranda D; Jansen, Gerbert A; Moerland, Perry D; van Kampen, Antoine H C

    2014-05-01

    The accurate representation of all aspects of a metabolic network in a structured format, such that it can be used for a wide variety of computational analyses, is a challenge faced by a growing number of researchers. Analysis of five major metabolic pathway databases reveals that each database has made widely different choices to address this challenge, including how to deal with knowledge that is uncertain or missing. In concise overviews, we show how concepts such as compartments, enzymatic complexes and the direction of reactions are represented in each database. Importantly, also concepts which a database does not represent are described. Which aspects of the metabolic network need to be available in a structured format and to what detail differs per application. For example, for in silico phenotype prediction, a detailed representation of gene-protein-reaction relations and the compartmentalization of the network is essential. Our analysis also shows that current databases are still limited in capturing all details of the biology of the metabolic network, further illustrated with a detailed analysis of three metabolic processes. Finally, we conclude that the conceptual differences between the databases, which make knowledge exchange and integration a challenge, have not been resolved, so far, by the exchange formats in which knowledge representation is standardized.

  11. Age-associated changes in rich-club organisation in autistic and neurotypical human brains

    PubMed Central

    Watanabe, Takamitsu; Rees, Geraint

    2015-01-01

    Macroscopic structural networks in the human brain have a rich-club architecture comprising both highly inter-connected central regions and sparsely connected peripheral regions. Recent studies show that disruption of this functionally efficient organisation is associated with several psychiatric disorders. However, despite increasing attention to this network property, whether age-associated changes in rich-club organisation occur during human adolescence remains unclear. Here, analysing a publicly shared diffusion tensor imaging dataset, we found that, during adolescence, brains of typically developing (TD) individuals showed increases in rich-club organisation and inferred network functionality, whereas individuals with autism spectrum disorders (ASD) did not. These differences between TD and ASD groups were statistically significant for both structural and functional properties. Moreover, this typical age-related changes in rich-club organisation were characterised by progressive involvement of the right anterior insula. In contrast, in ASD individuals, did not show typical increases in grey matter volume, and this relative anatomical immaturity was correlated with the severity of ASD social symptoms. These results provide evidence that rich-club architecture is one of the bases of functionally efficient brain networks underpinning complex cognitive functions in adult human brains. Furthermore, our findings suggest that immature rich-club organisation might be associated with some neurodevelopmental disorders. PMID:26537477

  12. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  13. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses

    PubMed Central

    Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295

  14. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.

    PubMed

    Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.

  15. Broca Pars Triangularis Constitutes a "Hub" of the Language-Control Network during Simultaneous Language Translation.

    PubMed

    Elmer, Stefan

    2016-01-01

    Until now, several branches of research have fundamentally contributed to a better understanding of the ramifications of bilingualism, multilingualism, and language expertise on psycholinguistic-, cognitive-, and neural implications. In this context, it is noteworthy to mention that from a cognitive perspective, there is a strong convergence of data pointing to an influence of multilingual speech competence on a variety of cognitive functions, including attention, short-term- and working memory, set shifting, switching, and inhibition. In addition, complementary neuroimaging findings have highlighted a specific set of cortical and subcortical brain regions which fundamentally contribute to administrate cognitive control in the multilingual brain, namely Broca's area, the middle-anterior cingulate cortex, the inferior parietal lobe, and the basal ganglia. However, a disadvantage of focusing on group analyses is that this procedure only enables an approximation of the neural networks shared within a population while at the same time smoothing inter-individual differences. In order to address both commonalities (i.e., within group analyses) and inter-individual variability (i.e., single-subject analyses) in language control mechanisms, here I measured five professional simultaneous interpreters while the participants overtly translated or repeated sentences with a simple subject-verb-object structure. Results demonstrated that pars triangularis was commonly activated across participants during backward translation (i.e., from L2 to L1), whereas the other brain regions of the "control network" showed a strong inter-individual variability during both backward and forward (i.e., from L1 to L2) translation. Thus, I propose that pars triangularis plays a crucial role within the language-control network and behaves as a fundamental processing entity supporting simultaneous language translation.

  16. Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)

    2001-01-01

    New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.

  17. [Buying and distribution of drugs: perceptions of officers of a network of primary health care in the interior of the state of Sao Paulo].

    PubMed

    Juliani, C M

    1995-12-01

    The study present analyse the process to buy and distribution of medicaments for the Basic Unit of Health in municipal district of state São Paulo. To achieve some general considerations about the National Politic of Medicaments in Brazil, to emphasize feature relative the its structuration in the Unique System of Health.

  18. Inferring animal social networks and leadership: applications for passive monitoring arrays.

    PubMed

    Jacoby, David M P; Papastamatiou, Yannis P; Freeman, Robin

    2016-11-01

    Analyses of animal social networks have frequently benefited from techniques derived from other disciplines. Recently, machine learning algorithms have been adopted to infer social associations from time-series data gathered using remote, telemetry systems situated at provisioning sites. We adapt and modify existing inference methods to reveal the underlying social structure of wide-ranging marine predators moving through spatial arrays of passive acoustic receivers. From six months of tracking data for grey reef sharks (Carcharhinus amblyrhynchos) at Palmyra atoll in the Pacific Ocean, we demonstrate that some individuals emerge as leaders within the population and that this behavioural coordination is predicted by both sex and the duration of co-occurrences between conspecifics. In doing so, we provide the first evidence of long-term, spatially extensive social processes in wild sharks. To achieve these results, we interrogate simulated and real tracking data with the explicit purpose of drawing attention to the key considerations in the use and interpretation of inference methods and their impact on resultant social structure. We provide a modified translation of the GMMEvents method for R, including new analyses quantifying the directionality and duration of social events with the aim of encouraging the careful use of these methods more widely in less tractable social animal systems but where passive telemetry is already widespread. © 2016 The Authors.

  19. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Inferring animal social networks and leadership: applications for passive monitoring arrays

    PubMed Central

    Papastamatiou, Yannis P.; Freeman, Robin

    2016-01-01

    Analyses of animal social networks have frequently benefited from techniques derived from other disciplines. Recently, machine learning algorithms have been adopted to infer social associations from time-series data gathered using remote, telemetry systems situated at provisioning sites. We adapt and modify existing inference methods to reveal the underlying social structure of wide-ranging marine predators moving through spatial arrays of passive acoustic receivers. From six months of tracking data for grey reef sharks (Carcharhinus amblyrhynchos) at Palmyra atoll in the Pacific Ocean, we demonstrate that some individuals emerge as leaders within the population and that this behavioural coordination is predicted by both sex and the duration of co-occurrences between conspecifics. In doing so, we provide the first evidence of long-term, spatially extensive social processes in wild sharks. To achieve these results, we interrogate simulated and real tracking data with the explicit purpose of drawing attention to the key considerations in the use and interpretation of inference methods and their impact on resultant social structure. We provide a modified translation of the GMMEvents method for R, including new analyses quantifying the directionality and duration of social events with the aim of encouraging the careful use of these methods more widely in less tractable social animal systems but where passive telemetry is already widespread. PMID:27881803

Top