Sample records for network analysis study

  1. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    ERIC Educational Resources Information Center

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  2. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  3. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  4. Network meta-analysis: an introduction for pharmacists.

    PubMed

    Xu, Yina; Amiche, Mohamed Amine; Tadrous, Mina

    2018-05-21

    Network meta-analysis is a new tool used to summarize and compare studies for multiple interventions, irrespective of whether these interventions have been directly evaluated against each other. Network meta-analysis is quickly becoming the standard in conducting therapeutic reviews and clinical guideline development. However, little guidance is available to help pharmacists review network meta-analysis studies in their practice. Major institutions such as the Cochrane Collaboration, Agency for Healthcare Research and Quality, Canadian Agency for Drugs and Technologies in Health, and National Institute for Health and Care Excellence Decision Support Unit have endorsed utilizing network meta-analysis to establish therapeutic evidence and inform decision making. Our objective is to introduce this novel technique to pharmacy practitioners, and highlight key assumptions behind network meta-analysis studies.

  5. Advantages of Social Network Analysis in Educational Research

    ERIC Educational Resources Information Center

    Ushakov, K. M.; Kukso, K. N.

    2015-01-01

    Currently one of the main tools for the large scale studies of schools is statistical analysis. Although it is the most common method and it offers greatest opportunities for analysis, there are other quantitative methods for studying schools, such as network analysis. We discuss the potential advantages that network analysis has for educational…

  6. A study of the electrical properties of complex resistor network based on NW model

    NASA Astrophysics Data System (ADS)

    Chang, Yunfeng; Li, Yunting; Yang, Liu; Guo, Lu; Liu, Gaochao

    2015-04-01

    The power and resistance of two-port complex resistor network based on NW small world network model are studied in this paper. Mainly, we study the dependence of the network power and resistance on the degree of port vertices, the connection probability and the shortest distance. Qualitative analysis and a simplified formula for network resistance are given out. Finally, we define a branching parameter and give out its physical meaning in the analysis of complex resistor network.

  7. Social Network Analysis as a Methodological Approach to Explore Health Systems: A Case Study Exploring Support among Senior Managers/Executives in a Hospital Network.

    PubMed

    De Brún, Aoife; McAuliffe, Eilish

    2018-03-13

    Health systems research recognizes the complexity of healthcare, and the interacting and interdependent nature of components of a health system. To better understand such systems, innovative methods are required to depict and analyze their structures. This paper describes social network analysis as a methodology to depict, diagnose, and evaluate health systems and networks therein. Social network analysis is a set of techniques to map, measure, and analyze social relationships between people, teams, and organizations. Through use of a case study exploring support relationships among senior managers in a newly established hospital group, this paper illustrates some of the commonly used network- and node-level metrics in social network analysis, and demonstrates the value of these maps and metrics to understand systems. Network analysis offers a valuable approach to health systems and services researchers as it offers a means to depict activity relevant to network questions of interest, to identify opinion leaders, influencers, clusters in the network, and those individuals serving as bridgers across clusters. The strengths and limitations inherent in the method are discussed, and the applications of social network analysis in health services research are explored.

  8. Analysing Health Professionals' Learning Interactions in an Online Social Network: A Longitudinal Study.

    PubMed

    Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen

    2016-01-01

    This paper summarises a longitudinal analysis of learning interactions occurring over three years among health professionals in an online social network. The study employs the techniques of Social Network Analysis (SNA) and statistical modeling to identify the changes in patterns of interaction over time and test associated structural network effects. SNA results indicate overall low participation in the network, although some participants became active over time and even led discussions. In particular, the analysis has shown that a change of lead contributor results in a change in learning interaction and network structure. The analysis of structural network effects demonstrates that the interaction dynamics slow down over time, indicating that interactions in the network are more stable. The health professionals may be reluctant to share knowledge and collaborate in groups but were interested in building personal learning networks or simply seeking information.

  9. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis.

    PubMed

    Ni, Jianhua; Qian, Tianlu; Xi, Changbai; Rui, Yikang; Wang, Jiechen

    2016-08-18

    The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  10. A review of network analysis terminology and its application to foot-and-mouth disease modelling and policy development.

    PubMed

    Dubé, C; Ribble, C; Kelton, D; McNab, B

    2009-04-01

    Livestock movements are important in spreading infectious diseases and many countries have developed regulations that require farmers to report livestock movements to authorities. This has led to the availability of large amounts of data for analysis and inclusion in computer simulation models developed to support policy formulation. Social network analysis has become increasingly popular to study and characterize the networks resulting from the movement of livestock from farm-to-farm and through other types of livestock operations. Network analysis is a powerful tool that allows one to study the relationships created among these operations, providing information on the role that they play in acquiring and spreading infectious diseases, information that is not readily available from more traditional livestock movement studies. Recent advances in the study of real-world complex networks are now being applied to veterinary epidemiology and infectious disease modelling and control. A review of the principles of network analysis and of the relevance of various complex network theories to infectious disease modelling and control is presented in this paper.

  11. A methodological approach to the analysis of egocentric social networks in public health research: a practical example.

    PubMed

    Djomba, Janet Klara; Zaletel-Kragelj, Lijana

    2016-12-01

    Research on social networks in public health focuses on how social structures and relationships influence health and health-related behaviour. While the sociocentric approach is used to study complete social networks, the egocentric approach is gaining popularity because of its focus on individuals, groups and communities. One of the participants of the healthy lifestyle health education workshop 'I'm moving', included in the study of social support for exercise was randomly selected. The participant was denoted as the ego and members of her/his social network as the alteri. Data were collected by personal interviews using a self-made questionnaire. Numerical methods and computer programmes for the analysis of social networks were used for the demonstration of analysis. The size, composition and structure of the egocentric social network were obtained by a numerical analysis. The analysis of composition included homophily and homogeneity. Moreover, the analysis of the structure included the degree of the egocentric network, the strength of the ego-alter ties and the average strength of ties. Visualisation of the network was performed by three freely available computer programmes, namely: Egonet.QF, E-net and Pajek. The computer programmes were described and compared by their usefulness. Both numerical analysis and visualisation have their benefits. The decision what approach to use is depending on the purpose of the social network analysis. While the numerical analysis can be used in large-scale population-based studies, visualisation of personal networks can help health professionals at creating, performing and evaluation of preventive programmes, especially if focused on behaviour change.

  12. PyPathway: Python Package for Biological Network Analysis and Visualization.

    PubMed

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  13. An examination of the relationship between athlete leadership and cohesion using social network analysis.

    PubMed

    Loughead, Todd M; Fransen, Katrien; Van Puyenbroeck, Stef; Hoffmann, Matt D; De Cuyper, Bert; Vanbeselaere, Norbert; Boen, Filip

    2016-11-01

    Two studies investigated the structure of different athlete leadership networks and its relationship to cohesion using social network analysis. In Study 1, we examined the relationship between a general leadership quality network and task and social cohesion as measured by the Group Environment Questionnaire (GEQ). In Study 2, we investigated the leadership networks for four different athlete leadership roles (task, motivational, social and external) and their association with task and social cohesion networks. In Study 1, the results demonstrated that the general leadership quality network was positively related to task and social cohesion. The results from Study 2 indicated positive correlations between the four leadership networks and task and social cohesion networks. Further, the motivational leadership network emerged as the strongest predictor of the task cohesion network, while the social leadership network was the strongest predictor of the social cohesion network. The results complement a growing body of research indicating that athlete leadership has a positive association with cohesion.

  14. On the topological structure of multinationals network

    NASA Astrophysics Data System (ADS)

    Joyez, Charlie

    2017-05-01

    This paper uses a weighted network analysis to examine the structure of multinationals' implantation countries network. Based on French firm-level dataset of multinational enterprises (MNEs) the network analysis provides information on each country position in the network and in internationalization strategies of French MNEs through connectivity preferences among the nodes. The paper also details network-wide features and their recent evolution toward a more decentralized structure. While much has been said on international trade network, this paper shows that multinational firms' studies would also benefit from network analysis, notably by investigating the sensitivity of the network construction to firm heterogeneity.

  15. Mapping Extension's Networks: Using Social Network Analysis to Explore Extension's Outreach

    ERIC Educational Resources Information Center

    Bartholomay, Tom; Chazdon, Scott; Marczak, Mary S.; Walker, Kathrin C.

    2011-01-01

    The University of Minnesota Extension conducted a social network analysis (SNA) to examine its outreach to organizations external to the University of Minnesota. The study found that its outreach network was both broad in its reach and strong in its connections. The study found that SNA offers a unique method for describing and measuring Extension…

  16. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study

    PubMed Central

    Nikolakopoulou, Adriani; Mavridis, Dimitris; Furukawa, Toshi A; Cipriani, Andrea; Tricco, Andrea C; Straus, Sharon E; Siontis, George C M; Egger, Matthias

    2018-01-01

    Abstract Objective To examine whether the continuous updating of networks of prospectively planned randomised controlled trials (RCTs) (“living” network meta-analysis) provides strong evidence against the null hypothesis in comparative effectiveness of medical interventions earlier than the updating of conventional, pairwise meta-analysis. Design Empirical study of the accumulating evidence about the comparative effectiveness of clinical interventions. Data sources Database of network meta-analyses of RCTs identified through searches of Medline, Embase, and the Cochrane Database of Systematic Reviews until 14 April 2015. Eligibility criteria for study selection Network meta-analyses published after January 2012 that compared at least five treatments and included at least 20 RCTs. Clinical experts were asked to identify in each network the treatment comparison of greatest clinical interest. Comparisons were excluded for which direct and indirect evidence disagreed, based on side, or node, splitting test (P<0.10). Outcomes and analysis Cumulative pairwise and network meta-analyses were performed for each selected comparison. Monitoring boundaries of statistical significance were constructed and the evidence against the null hypothesis was considered to be strong when the monitoring boundaries were crossed. A significance level was defined as α=5%, power of 90% (β=10%), and an anticipated treatment effect to detect equal to the final estimate from the network meta-analysis. The frequency and time to strong evidence was compared against the null hypothesis between pairwise and network meta-analyses. Results 49 comparisons of interest from 44 networks were included; most (n=39, 80%) were between active drugs, mainly from the specialties of cardiology, endocrinology, psychiatry, and rheumatology. 29 comparisons were informed by both direct and indirect evidence (59%), 13 by indirect evidence (27%), and 7 by direct evidence (14%). Both network and pairwise meta-analysis provided strong evidence against the null hypothesis for seven comparisons, but for an additional 10 comparisons only network meta-analysis provided strong evidence against the null hypothesis (P=0.002). The median time to strong evidence against the null hypothesis was 19 years with living network meta-analysis and 23 years with living pairwise meta-analysis (hazard ratio 2.78, 95% confidence interval 1.00 to 7.72, P=0.05). Studies directly comparing the treatments of interest continued to be published for eight comparisons after strong evidence had become evident in network meta-analysis. Conclusions In comparative effectiveness research, prospectively planned living network meta-analyses produced strong evidence against the null hypothesis more often and earlier than conventional, pairwise meta-analyses. PMID:29490922

  17. The Complexity of Crime Network Data: A Case Study of Its Consequences for Crime Control and the Study of Networks

    PubMed Central

    Rostami, Amir; Mondani, Hernan

    2015-01-01

    The field of social network analysis has received increasing attention during the past decades and has been used to tackle a variety of research questions, from prevention of sexually transmitted diseases to humanitarian relief operations. In particular, social network analyses are becoming an important component in studies of criminal networks and in criminal intelligence analysis. At the same time, intelligence analyses and assessments have become a vital component of modern approaches in policing, with policy implications for crime prevention, especially in the fight against organized crime. In this study, we have a unique opportunity to examine one specific Swedish street gang with three different datasets. These datasets are the most common information sources in studies of criminal networks: intelligence, surveillance and co-offending data. We use the data sources to build networks, and compare them by computing distance, centrality, and clustering measures. This study shows the complexity factor by which different data sources about the same object of study have a fundamental impact on the results. The same individuals have different importance ranking depending on the dataset and measure. Consequently, the data source plays a vital role in grasping the complexity of the phenomenon under study. Researchers, policy makers, and practitioners should therefore pay greater attention to the biases affecting the sources of the analysis, and be cautious when drawing conclusions based on intelligence assessments and limited network data. This study contributes to strengthening social network analysis as a reliable tool for understanding and analyzing criminality and criminal networks. PMID:25775130

  18. The complexity of crime network data: a case study of its consequences for crime control and the study of networks.

    PubMed

    Rostami, Amir; Mondani, Hernan

    2015-01-01

    The field of social network analysis has received increasing attention during the past decades and has been used to tackle a variety of research questions, from prevention of sexually transmitted diseases to humanitarian relief operations. In particular, social network analyses are becoming an important component in studies of criminal networks and in criminal intelligence analysis. At the same time, intelligence analyses and assessments have become a vital component of modern approaches in policing, with policy implications for crime prevention, especially in the fight against organized crime. In this study, we have a unique opportunity to examine one specific Swedish street gang with three different datasets. These datasets are the most common information sources in studies of criminal networks: intelligence, surveillance and co-offending data. We use the data sources to build networks, and compare them by computing distance, centrality, and clustering measures. This study shows the complexity factor by which different data sources about the same object of study have a fundamental impact on the results. The same individuals have different importance ranking depending on the dataset and measure. Consequently, the data source plays a vital role in grasping the complexity of the phenomenon under study. Researchers, policy makers, and practitioners should therefore pay greater attention to the biases affecting the sources of the analysis, and be cautious when drawing conclusions based on intelligence assessments and limited network data. This study contributes to strengthening social network analysis as a reliable tool for understanding and analyzing criminality and criminal networks.

  19. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research

    PubMed Central

    Wiggins, Benjamin L.; Goodreau, Steven M.

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. PMID:26086650

  20. Social network analysis: Presenting an underused method for nursing research.

    PubMed

    Parnell, James Michael; Robinson, Jennifer C

    2018-06-01

    This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.

  1. Comparing Social Network Analysis of Posts with Counting of Posts as a Measurement of Learners' Participation in Facebook Discussions

    ERIC Educational Resources Information Center

    Lee, Hye Yeon; Lee, Hyeon Woo

    2016-01-01

    With the currently growing interest in social network services, many college courses use social network services as platforms for discussions, and a number of studies have been conducted on the use of social network analysis to measure students' participation in online discussions. This study aims to demonstrate the difference between counting…

  2. Spectral Analysis of Rich Network Topology in Social Networks

    ERIC Educational Resources Information Center

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  3. Study of co-authorship network of papers in the Journal of Research in Medical Sciences using social network analysis

    PubMed Central

    Zare-Farashbandi, Firoozeh; Geraei, Ehsan; Siamaki, Saba

    2014-01-01

    Background: Co-authorship is one of the most tangible forms of research collaboration. A co-authorship network is a social network in which the authors through participation in one or more publication through an indirect path have linked to each other. The present research using the social network analysis studied co-authorship network of 681 articles published in Journal of Research in Medical Sciences (JRMS) during 2008-2012. Materials and Methods: The study was carried out with the scientometrics approach and using co-authorship network analysis of authors. The topology of the co-authorship network of 681 published articles in JRMS between 2008 and 2012 was analyzed using macro-level metrics indicators of network analysis such as density, clustering coefficient, components and mean distance. In addition, in order to evaluate the performance of each authors and countries in the network, the micro-level indicators such as degree centrality, closeness centrality and betweenness centrality as well as productivity index were used. The UCINET and NetDraw softwares were used to draw and analyze the co-authorship network of the papers. Results: The assessment of the authors productivity in this journal showed that the first ranks were belonged to only five authors, respectively. Furthermore, analysis of the co-authorship of the authors in the network demonstrated that in the betweenness centrality index, three authors of them had the good position in the network. They can be considered as the network leaders able to control the flow of information in the network compared with the other members based on the shortest paths. On the other hand, the key role of the network according to the productivity and centrality indexes was belonged to Iran, Malaysia and United States of America. Conclusion: Co-authorship network of JRMS has the characteristics of a small world network. In addition, the theory of 6° separation is valid in this network was also true. PMID:24672564

  4. Co-authorship network analysis in health research: method and potential use.

    PubMed

    Fonseca, Bruna de Paula Fonseca E; Sampaio, Ricardo Barros; Fonseca, Marcus Vinicius de Araújo; Zicker, Fabio

    2016-04-30

    Scientific collaboration networks are a hallmark of contemporary academic research. Researchers are no longer independent players, but members of teams that bring together complementary skills and multidisciplinary approaches around common goals. Social network analysis and co-authorship networks are increasingly used as powerful tools to assess collaboration trends and to identify leading scientists and organizations. The analysis reveals the social structure of the networks by identifying actors and their connections. This article reviews the method and potential applications of co-authorship network analysis in health. The basic steps for conducting co-authorship studies in health research are described and common network metrics are presented. The application of the method is exemplified by an overview of the global research network for Chikungunya virus vaccines.

  5. Investigating Patterns of Interaction in Networked Learning and Computer-Supported Collaborative Learning: A Role for Social Network Analysis

    ERIC Educational Resources Information Center

    de Laat, Maarten; Lally, Vic; Lipponen, Lasse; Simons, Robert-Jan

    2007-01-01

    The focus of this study is to explore the advances that Social Network Analysis (SNA) can bring, in combination with other methods, when studying Networked Learning/Computer-Supported Collaborative Learning (NL/CSCL). We present a general overview of how SNA is applied in NL/CSCL research; we then go on to illustrate how this research method can…

  6. Social Network Analysis for Assessing College-Aged Adults' Health: A Systematic Review.

    PubMed

    Patterson, Megan S; Go Odson, Patricia

    2018-04-13

    Social network analysis (SNA) is a useful, emerging method for studying health. College students are especially prone to social influence when it comes to health. This review aimed to identify network variables related to college student health and determine how SNA was used in the literature. A systematic review of relevant literature was conducted in October 2015. Studies employing egocentric or whole network analysis to study college student health were included. We used Garrard's Matrix Method to extract data from reviewed articles (n = 15). Drinking, smoking, aggression, homesickness, and stress were predicted by network variables in the reviewed literature. Methodological inconsistencies concerning boundary specification, data collection, nomination limits, and statistical analyses were revealed across studies. Results show the consistent relationship between network variables and college health outcomes, justifying further use of SNA to research college health. Suggestions and considerations for future use of SNA are provided.

  7. Visualizing weighted networks: a performance comparison of adjacency matrices versus node-link diagrams

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.

  8. The Study of Development Strategy for Bank Distribution Network through the Analysis of Inter-regional Financial Transaction Network

    NASA Astrophysics Data System (ADS)

    Hong, Jae Weon; Hong, Won Eui; Kwak, Yoon Sik

    This study attempts to shed light on the factors that influence the locations of bank branches in establishing a bank's distribution network from the angle of the network analysis. Whereas the previous studies analyzed the locations of bank branches on the basis of their geographical characteristics and image, the significance of this study rests upon the fact that it endeavors to explore the location factors from a new perspective of the movement path of financial customers. For this analysis, the network between administrative districts, which form the fundamental unit of a location, was analyzed based on the financial transactional data. The important findings of this study are as follows. First, in conformity with the previous studies, the income level, the spending level, the number of businesses, and the size of workforce in the pertinent region were all found to influence the size of a bank's market. Second, the centrality index extracted from the analysis of the network was found to have a significant effect on the locations of bank branches. In particular, the degree centrality was revealed to have a greater influence on the size of a bank's market than does the closeness centrality. Such results of this study clearly suggest the needs for a new approach from the perspective of network in furtherance of other factors that have been considered important in the previous studies of the distribution network strategies.

  9. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    PubMed

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Social network type and morale in old age.

    PubMed

    Litwin, H

    2001-08-01

    The aim of this research was to derive network types among an elderly population and to examine the relationship of network type to morale. Secondary analysis of data compiled by the Israeli Central Bureau of Statistics (n = 2,079) was employed, and network types were derived through K-means cluster analysis. Respondents' morale scores were regressed on network types, controlling for background and health variables. Five network types were derived. Respondents in diverse or friends networks reported the highest morale; those in exclusively family or restricted networks had the lowest. Multivariate regression analysis underscored that certain network types were second among the study variables in predicting respondents' morale, preceded only by disability level (Adjusted R(2) =.41). Classification of network types allows consideration of the interpersonal environments of older people in relation to outcomes of interest. The relative effects on morale of elective versus obligated social ties, evident in the current analysis, is a case in point.

  11. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    PubMed

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  12. An investigation of the impact of using different methods for network meta-analysis: a protocol for an empirical evaluation.

    PubMed

    Karahalios, Amalia Emily; Salanti, Georgia; Turner, Simon L; Herbison, G Peter; White, Ian R; Veroniki, Areti Angeliki; Nikolakopoulou, Adriani; Mckenzie, Joanne E

    2017-06-24

    Network meta-analysis, a method to synthesise evidence from multiple treatments, has increased in popularity in the past decade. Two broad approaches are available to synthesise data across networks, namely, arm- and contrast-synthesis models, with a range of models that can be fitted within each. There has been recent debate about the validity of the arm-synthesis models, but to date, there has been limited empirical evaluation comparing results using the methods applied to a large number of networks. We aim to address this gap through the re-analysis of a large cohort of published networks of interventions using a range of network meta-analysis methods. We will include a subset of networks from a database of network meta-analyses of randomised trials that have been identified and curated from the published literature. The subset of networks will include those where the primary outcome is binary, the number of events and participants are reported for each direct comparison, and there is no evidence of inconsistency in the network. We will re-analyse the networks using three contrast-synthesis methods and two arm-synthesis methods. We will compare the estimated treatment effects, their standard errors, treatment hierarchy based on the surface under the cumulative ranking (SUCRA) curve, the SUCRA value, and the between-trial heterogeneity variance across the network meta-analysis methods. We will investigate whether differences in the results are affected by network characteristics and baseline risk. The results of this study will inform whether, in practice, the choice of network meta-analysis method matters, and if it does, in what situations differences in the results between methods might arise. The results from this research might also inform future simulation studies.

  13. Research on e-commerce transaction networks using multi-agent modelling and open application programming interface

    NASA Astrophysics Data System (ADS)

    Piao, Chunhui; Han, Xufang; Wu, Harris

    2010-08-01

    We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.

  14. Network-based machine learning and graph theory algorithms for precision oncology.

    PubMed

    Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui

    2017-01-01

    Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.

  15. Multidimensional Analysis of Linguistic Networks

    NASA Astrophysics Data System (ADS)

    Araújo, Tanya; Banisch, Sven

    Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

  16. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study.

    PubMed

    Nikolakopoulou, Adriani; Mavridis, Dimitris; Furukawa, Toshi A; Cipriani, Andrea; Tricco, Andrea C; Straus, Sharon E; Siontis, George C M; Egger, Matthias; Salanti, Georgia

    2018-02-28

    To examine whether the continuous updating of networks of prospectively planned randomised controlled trials (RCTs) ("living" network meta-analysis) provides strong evidence against the null hypothesis in comparative effectiveness of medical interventions earlier than the updating of conventional, pairwise meta-analysis. Empirical study of the accumulating evidence about the comparative effectiveness of clinical interventions. Database of network meta-analyses of RCTs identified through searches of Medline, Embase, and the Cochrane Database of Systematic Reviews until 14 April 2015. Network meta-analyses published after January 2012 that compared at least five treatments and included at least 20 RCTs. Clinical experts were asked to identify in each network the treatment comparison of greatest clinical interest. Comparisons were excluded for which direct and indirect evidence disagreed, based on side, or node, splitting test (P<0.10). Cumulative pairwise and network meta-analyses were performed for each selected comparison. Monitoring boundaries of statistical significance were constructed and the evidence against the null hypothesis was considered to be strong when the monitoring boundaries were crossed. A significance level was defined as α=5%, power of 90% (β=10%), and an anticipated treatment effect to detect equal to the final estimate from the network meta-analysis. The frequency and time to strong evidence was compared against the null hypothesis between pairwise and network meta-analyses. 49 comparisons of interest from 44 networks were included; most (n=39, 80%) were between active drugs, mainly from the specialties of cardiology, endocrinology, psychiatry, and rheumatology. 29 comparisons were informed by both direct and indirect evidence (59%), 13 by indirect evidence (27%), and 7 by direct evidence (14%). Both network and pairwise meta-analysis provided strong evidence against the null hypothesis for seven comparisons, but for an additional 10 comparisons only network meta-analysis provided strong evidence against the null hypothesis (P=0.002). The median time to strong evidence against the null hypothesis was 19 years with living network meta-analysis and 23 years with living pairwise meta-analysis (hazard ratio 2.78, 95% confidence interval 1.00 to 7.72, P=0.05). Studies directly comparing the treatments of interest continued to be published for eight comparisons after strong evidence had become evident in network meta-analysis. In comparative effectiveness research, prospectively planned living network meta-analyses produced strong evidence against the null hypothesis more often and earlier than conventional, pairwise meta-analyses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    PubMed

    Zhang, Lingling; Hou, Rui; Su, Hailin; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2012-01-01

    Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  18. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    PubMed

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  19. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-04-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.

  20. Network Analysis in Community Psychology: Looking Back, Looking Forward.

    PubMed

    Neal, Zachary P; Neal, Jennifer Watling

    2017-09-01

    Network analysis holds promise for community psychology given the field's aim to understand the interplay between individuals and their social contexts. Indeed, because network analysis focuses explicitly on patterns of relationships between actors, its theories and methods are inherently extra-individual in nature and particularly well suited to characterizing social contexts. But, to what extent has community psychology taken advantage of this network analysis as a tool for capturing context? To answer these questions, this study provides a review of the use network analysis in articles published in American Journal of Community Psychology. Looking back, we describe and summarize the ways that network analysis has been employed in community psychology research to understand the range of ways community psychologists have found the technique helpful. Looking forward and paying particular attention to analytic issues identified in past applications, we provide some recommendations drawn from the network analysis literature to facilitate future applications of network analysis in community psychology. © 2017 The Authors. American Journal of Community Psychology published by Wiley Periodicals, Inc. on behalf of Society for Community Research and Action.

  1. LENS: web-based lens for enrichment and network studies of human proteins

    PubMed Central

    2015-01-01

    Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011

  2. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    PubMed

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  3. The Current State of Human Performance Technology: A Citation Network Analysis of "Performance Improvement Quarterly," 1988-2010

    ERIC Educational Resources Information Center

    Cho, Yonjoo; Jo, Sung Jun; Park, Sunyoung; Kang, Ingu; Chen, Zengguan

    2011-01-01

    This study conducted a citation network analysis (CNA) of human performance technology (HPT) to examine its current state of the field. Previous reviews of the field have used traditional research methods, such as content analysis, survey, Delphi, and citation analysis. The distinctive features of CNA come from using a social network analysis…

  4. Social Networks, Engagement and Resilience in University Students.

    PubMed

    Fernández-Martínez, Elena; Andina-Díaz, Elena; Fernández-Peña, Rosario; García-López, Rosa; Fulgueiras-Carril, Iván; Liébana-Presa, Cristina

    2017-12-01

    Analysis of social networks may be a useful tool for understanding the relationship between resilience and engagement, and this could be applied to educational methodologies, not only to improve academic performance, but also to create emotionally sustainable networks. This descriptive study was carried out on 134 university students. We collected the network structural variables, degree of resilience (CD-RISC 10), and engagement (UWES-S). The computer programs used were excel, UCINET for network analysis, and SPSS for statistical analysis. The analysis revealed results of means of 28.61 for resilience, 2.98 for absorption, 4.82 for dedication, and 3.13 for vigour. The students had two preferred places for sharing information: the classroom and WhatsApp. The greater the value for engagement, the greater the degree of centrality in the friendship network among students who are beginning their university studies. This relationship becomes reversed as the students move to later academic years. In terms of resilience, the highest values correspond to greater centrality in the friendship networks. The variables of engagement and resilience influenced the university students' support networks.

  5. Social Networks, Engagement and Resilience in University Students

    PubMed Central

    García-López, Rosa; Fulgueiras-Carril, Iván

    2017-01-01

    Analysis of social networks may be a useful tool for understanding the relationship between resilience and engagement, and this could be applied to educational methodologies, not only to improve academic performance, but also to create emotionally sustainable networks. This descriptive study was carried out on 134 university students. We collected the network structural variables, degree of resilience (CD-RISC 10), and engagement (UWES-S). The computer programs used were excel, UCINET for network analysis, and SPSS for statistical analysis. The analysis revealed results of means of 28.61 for resilience, 2.98 for absorption, 4.82 for dedication, and 3.13 for vigour. The students had two preferred places for sharing information: the classroom and WhatsApp. The greater the value for engagement, the greater the degree of centrality in the friendship network among students who are beginning their university studies. This relationship becomes reversed as the students move to later academic years. In terms of resilience, the highest values correspond to greater centrality in the friendship networks. The variables of engagement and resilience influenced the university students’ support networks. PMID:29194361

  6. Complex network analysis of resting-state fMRI of the brain.

    PubMed

    Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman

    2016-08-01

    Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.

  7. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    PubMed

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  8. A brain-region-based meta-analysis method utilizing the Apriori algorithm.

    PubMed

    Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao

    2016-05-18

    Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis.

  9. Using network analysis to study behavioural phenotypes: an example using domestic dogs.

    PubMed

    Goold, Conor; Vas, Judit; Olsen, Christine; Newberry, Ruth C

    2016-10-01

    Phenotypic integration describes the complex interrelationships between organismal traits, traditionally focusing on morphology. Recently, research has sought to represent behavioural phenotypes as composed of quasi-independent latent traits. Concurrently, psychologists have opposed latent variable interpretations of human behaviour, proposing instead a network perspective envisaging interrelationships between behaviours as emerging from causal dependencies. Network analysis could also be applied to understand integrated behavioural phenotypes in animals. Here, we assimilate this cross-disciplinary progression of ideas by demonstrating the use of network analysis on survey data collected on behavioural and motivational characteristics of police patrol and detection dogs ( Canis lupus familiaris ). Networks of conditional independence relationships illustrated a number of functional connections between descriptors, which varied between dog types. The most central descriptors denoted desirable characteristics in both patrol and detection dog networks, with 'Playful' being widely correlated and possessing mediating relationships between descriptors. Bootstrap analyses revealed the stability of network results. We discuss the results in relation to previous research on dog personality, and benefits of using network analysis to study behavioural phenotypes. We conclude that a network perspective offers widespread opportunities for advancing the understanding of phenotypic integration in animal behaviour.

  10. Investigation of Spatial Data with Open Source Social Network Analysis and Geographic Information Systems Applications

    NASA Astrophysics Data System (ADS)

    Sabah, L.; Şimşek, M.

    2017-11-01

    Social networks are the real social experience of individuals in the online environment. In this environment, people use symbolic gestures and mimics, sharing thoughts and content. Social network analysis is the visualization of complex and large quantities of data to ensure that the overall picture appears. It is the understanding, development, quantitative and qualitative analysis of the relations in the social networks of Graph theory. Social networks are expressed in the form of nodes and edges. Nodes are people/organizations, and edges are relationships between nodes. Relations are directional, non-directional, weighted, and weightless. The purpose of this study is to examine the effects of social networks on the evaluation of person data with spatial coordinates. For this, the cluster size and the effect on the geographical area of the circle where the placements of the individual are influenced by the frequently used placeholder feature in the social networks have been studied.

  11. Understanding complex interactions using social network analysis.

    PubMed

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  12. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    PubMed

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with psychosis, suggesting that antipsychotics achieve their effect by enhancing a number of central symptoms, which then facilitate reduction of other highly coupled symptoms in a network-like fashion.

  13. Trauma-Exposed Latina Immigrants’ Networks: A Social Network Analysis Approach

    PubMed Central

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A.; Fernandez, Nicole C.; Cabling, Mark; Kaltman, Stacey

    2015-01-01

    Objective Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. Methods In 2011–2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Results Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Conclusions Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted. PMID:28078194

  14. Trauma-Exposed Latina Immigrants' Networks: A Social Network Analysis Approach.

    PubMed

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A; Fernandez, Nicole C; Cabling, Mark; Kaltman, Stacey

    2016-11-01

    Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. In 2011-2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted.

  15. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    PubMed

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  16. Networking Course Syllabus in Accredited Library and Information Science Programs: A Comparative Analysis Study

    ERIC Educational Resources Information Center

    Abouserie, Hossam Eldin Mohamed Refaat

    2009-01-01

    The study investigated networking courses offered in accredited Library and Information Science schools in the United States in 2009. The study analyzed and compared network syllabi according to Course Syllabus Evaluation Rubric to obtain in-depth understanding of basic features and characteristics of networking courses taught. The study embraced…

  17. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    PubMed

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  18. Understanding the Dynamics of MOOC Discussion Forums with Simulation Investigation for Empirical Network Analysis (SIENA)

    ERIC Educational Resources Information Center

    Zhang, Jingjing; Skryabin, Maxim; Song, Xiongwei

    2016-01-01

    This study attempts to make inferences about the mechanisms that drive network change over time. It adopts simulation investigation for empirical network analysis to examine the patterns and evolution of relationships formed in the context of a massive open online course (MOOC) discussion forum. Four network effects--"homophily,"…

  19. 75 FR 48369 - Notice of Intent To Seek Approval To Establish an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... INFORMATION: Title of Collection: A Social Network Analysis of the National Science Foundation's Research and... Office of Management and Budget (OMB) for review and approval. A Social Network Analysis of the National... programs. The primary objectives of the study are to conduct a social network analysis of the REESE and DR...

  20. Egocentric social network analysis of pathological gambling.

    PubMed

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  1. Establishing the reliability of rhesus macaque social network assessment from video observations

    PubMed Central

    Feczko, Eric; Mitchell, Thomas A. J.; Walum, Hasse; Brooks, Jenna M.; Heitz, Thomas R.; Young, Larry J.; Parr, Lisa A.

    2015-01-01

    Understanding the properties of a social environment is important for understanding the dynamics of social relationships. Understanding such dynamics is relevant for multiple fields, ranging from animal behaviour to social and cognitive neuroscience. To quantify social environment properties, recent studies have incorporated social network analysis. Social network analysis quantifies both the global and local properties of a social environment, such as social network efficiency and the roles played by specific individuals, respectively. Despite the plethora of studies incorporating social network analysis, methods to determine the amount of data necessary to derive reliable social networks are still being developed. Determining the amount of data necessary for a reliable network is critical for measuring changes in the social environment, for example following an experimental manipulation, and therefore may be critical for using social network analysis to statistically assess social behaviour. In this paper, we extend methods for measuring error in acquired data and for determining the amount of data necessary to generate reliable social networks. We derived social networks from a group of 10 male rhesus macaques, Macaca mulatta, for three behaviours: spatial proximity, grooming and mounting. Behaviours were coded using a video observation technique, where video cameras recorded the compound where the 10 macaques resided. We collected, coded and used 10 h of video data to construct these networks. Using the methods described here, we found in our data that 1 h of spatial proximity observations produced reliable social networks. However, this may not be true for other studies due to differences in data acquisition. Our results have broad implications for measuring and predicting the amount of error in any social network, regardless of species. PMID:26392632

  2. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research.

    PubMed

    van Diessen, E; Numan, T; van Dellen, E; van der Kooi, A W; Boersma, M; Hofman, D; van Lutterveld, R; van Dijk, B W; van Straaten, E C W; Hillebrand, A; Stam, C J

    2015-08-01

    Electroencephalogram (EEG) and magnetoencephalogram (MEG) recordings during resting state are increasingly used to study functional connectivity and network topology. Moreover, the number of different analysis approaches is expanding along with the rising interest in this research area. The comparison between studies can therefore be challenging and discussion is needed to underscore methodological opportunities and pitfalls in functional connectivity and network studies. In this overview we discuss methodological considerations throughout the analysis pipeline of recording and analyzing resting state EEG and MEG data, with a focus on functional connectivity and network analysis. We summarize current common practices with their advantages and disadvantages; provide practical tips, and suggestions for future research. Finally, we discuss how methodological choices in resting state research can affect the construction of functional networks. When taking advantage of current best practices and avoid the most obvious pitfalls, functional connectivity and network studies can be improved and enable a more accurate interpretation and comparison between studies. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian

    2015-03-01

    Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.

  4. Default-Mode Network Functional Connectivity in Aphasia: Therapy-Induced Neuroplasticity

    ERIC Educational Resources Information Center

    Marcotte, Karine; Perlbarg, Vincent; Marrelec, Guillaume; Benali, Habib; Ansaldo, Ana Ines

    2013-01-01

    Previous research on participants with aphasia has mainly been based on standard functional neuroimaging analysis. Recent studies have shown that functional connectivity analysis can detect compensatory activity, not revealed by standard analysis. Little is known, however, about the default-mode network in aphasia. In the current study, we studied…

  5. A STUDY ON PREPARING THE BCP FOR LOCAL ADMINISTRATION COSIDERING SUBSISTED RISK ANALYSIS OF ROAD NETWORK

    NASA Astrophysics Data System (ADS)

    Sakata, Akio; Ito, Norio; Kawamoto, Atsushi; Shiraki, Wataru

    For road networks in mountain site which are very important infrastructures for rescue and support operations in disaster, a study on preparing the BCP for local administrations at less favored area considering subsisted risk analysis is performed. As a risk the stop of road networks caused by collapse of natural slop or cut slop is considered. The effects of the stop of road networks are analyzed and the important of preparing the BCP is demonstrated.

  6. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  7. Influence of the time scale on the construction of financial networks.

    PubMed

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-09-30

    In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.

  8. A catalyst for system change: a case study of child health network formation, evolution and sustainability in Canada.

    PubMed

    McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy

    2017-02-01

    The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.

  9. Influence networks among substance abuse treatment clinics: implications for the dissemination of innovations.

    PubMed

    Johnson, Kimberly; Quanbeck, Andrew; Maus, Adam; Gustafson, David H; Dearing, James W

    2015-09-01

    Understanding influence networks among substance abuse treatment clinics may speed the diffusion of innovations. The purpose of this study was to describe influence networks in Massachusetts, Michigan, New York, Oregon, and Washington and test two expectations, using social network analysis: (1) Social network measures can identify influential clinics; and (2) Within a network, some weakly connected clinics access out-of-network sources of innovative evidence-based practices and can spread these innovations through the network. A survey of 201 clinics in a parent study on quality improvement provided the data. Network measures and sociograms were obtained from adjacency matrixes created by UCINet. We used regression analysis to determine whether network status relates to clinics' adopting innovations. Findings suggest that influential clinics can be identified and that loosely linked clinics were likely to join the study sooner than more influential clinics but were not more likely to have improved outcomes than other organizations. Findings identify the structure of influence networks for SUD treatment organizations and have mixed results on how those structures impacted diffusion of the intervention under study. Further study is necessary to test whether use of knowledge of the network structure will have an effect on the pace and breadth of dissemination of innovations.

  10. [Analysis of researchers' implication in a research-intervention in the Stork Network: a tool for institutional analysis].

    PubMed

    Fortuna, Cinira Magali; Mesquita, Luana Pinho de; Matumoto, Silvia; Monceau, Gilles

    2016-09-19

    This qualitative study is based on institutional analysis as the methodological theoretical reference with the objective of analyzing researchers' implication during a research-intervention and the interferences caused by this analysis. The study involved researchers from courses in medicine, nursing, and dentistry at two universities and workers from a Regional Health Department in follow-up on the implementation of the Stork Network in São Paulo State, Brazil. The researchers worked together in the intervention and in analysis workshops, supported by an external institutional analysis. Two institutions stood out in the analysis: the research, established mainly with characteristics of neutrality, and management, with Taylorist characteristics. Differences between researchers and difficulties in identifying actions proper to network management and research were some of the interferences that were identified. The study concludes that implication analysis is a powerful tool for such studies.

  11. Friendship Group Composition and Juvenile Institutional Misconduct.

    PubMed

    Reid, Shannon E

    2017-02-01

    The present study examines both the patterns of friendship networks and how these network characteristics relate to the risk factors of institutional misconduct for incarcerated youth. Using friendship networks collected from males incarcerated with California's Division of Juvenile Justice (DJJ), latent profile analysis was utilized to create homogeneous groups of friendship patterns based on alter attributes and network structure. The incarcerated youth provided 144 egocentric networks reporting 558 social network relationships. Latent profile analysis identified three network profiles: expected group (67%), new breed group (20%), and model citizen group (13%). The three network profiles were integrated into a multiple group analysis framework to examine the relative influence of individual-level risk factors on their rate of institutional misconduct. The analysis finds variation in predictors of institutional misconduct across profile types. These findings suggest that the close friendships of incarcerated youth are patterned across the individual characteristics of the youth's friends and that the friendship network can act as a moderator for individual risk factors for institutional misconduct.

  12. A social network analysis of alcohol-impaired drivers in Maryland : an egocentric approach.

    DOT National Transportation Integrated Search

    2011-04-01

    This study examined the personal, household, and social structural attributes of alcoholimpaired : drivers in Maryland. The study used an egocentric approach of social network : analysis. This approach concentrated on specific actors (alcohol-impaire...

  13. "I'll See You on IM, Text, or Call You": A Social Network Approach of Adolescents' Use of Communication Media

    ERIC Educational Resources Information Center

    Van Cleemput, Katrien

    2010-01-01

    This study explores some possibilities of social network analysis for studying adolescents' communication patterns. A full network analysis was conducted on third-grade high school students (15 year olds, 137 students) in Belgium. The results pointed out that face-to-face communication was still the most prominent way for information to flow…

  14. An iterative network partition algorithm for accurate identification of dense network modules

    PubMed Central

    Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong

    2012-01-01

    A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225

  15. Topology design and performance analysis of an integrated communication network

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  16. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks.

    PubMed

    Ruppin, Eytan; Papin, Jason A; de Figueiredo, Luis F; Schuster, Stefan

    2010-08-01

    With the advent of modern omics technologies, it has become feasible to reconstruct (quasi-) whole-cell metabolic networks and characterize them in more and more detail. Computer simulations of the dynamic behavior of such networks are difficult due to a lack of kinetic data and to computational limitations. In contrast, network analysis based on appropriate constraints such as the steady-state condition (constraint-based analysis) is feasible and allows one to derive conclusions about the system's metabolic capabilities. Here, we review methods for the reconstruction of metabolic networks, modeling techniques such as flux balance analysis and elementary flux modes and current progress in their development and applications. Game-theoretical methods for studying metabolic networks are discussed as well. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  18. Centrality measures in temporal networks with time series analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  19. Description of a method to support public health information management: organizational network analysis

    PubMed Central

    Merrill, Jacqueline; Bakken, Suzanne; Rockoff, Maxine; Gebbie, Kristine; Carley, Kathleen

    2007-01-01

    In this case study we describe a method that has potential to provide systematic support for public health information management. Public health agencies depend on specialized information that travels throughout an organization via communication networks among employees. Interactions that occur within these networks are poorly understood and are generally unmanaged. We applied organizational network analysis, a method for studying communication networks, to assess the method’s utility to support decision making for public health managers, and to determine what links existed between information use and agency processes. Data on communication links among a health department’s staff was obtained via survey with a 93% response rate, and analyzed using Organizational Risk Analyzer (ORA) software. The findings described the structure of information flow in the department’s communication networks. The analysis succeeded in providing insights into organizational processes which informed public health managers’ strategies to address problems and to take advantage of network strengths. PMID:17098480

  20. Graph theoretical analysis of complex networks in the brain

    PubMed Central

    Stam, Cornelis J; Reijneveld, Jaap C

    2007-01-01

    Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336

  1. Visual analysis of large heterogeneous social networks by semantic and structural abstraction.

    PubMed

    Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina

    2006-01-01

    Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.

  2. Masculinity, Educational Achievement and Social Status: A Social Network Analysis

    ERIC Educational Resources Information Center

    Lusher, Dean

    2011-01-01

    This study utilises a quantitative case study social network approach to explore the connection between masculinity and scholastic achievement in two secondary, all-boys schools in Australia. In both schools two social networks representing social status are explored: the "friendship" network as a measure of status that includes…

  3. Graphical tools for network meta-analysis in STATA.

    PubMed

    Chaimani, Anna; Higgins, Julian P T; Mavridis, Dimitris; Spyridonos, Panagiota; Salanti, Georgia

    2013-01-01

    Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.

  4. Graphical Tools for Network Meta-Analysis in STATA

    PubMed Central

    Chaimani, Anna; Higgins, Julian P. T.; Mavridis, Dimitris; Spyridonos, Panagiota; Salanti, Georgia

    2013-01-01

    Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results. PMID:24098547

  5. atBioNet--an integrated network analysis tool for genomics and biomarker discovery.

    PubMed

    Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-07-20

    Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.

  6. Network-assisted crop systems genetics: network inference and integrative analysis.

    PubMed

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling

    PubMed Central

    Shin, Junha; Lee, Insuk

    2015-01-01

    Phylogenetic profiling, a network inference method based on gene inheritance profiles, has been widely used to construct functional gene networks in microbes. However, its utility for network inference in higher eukaryotes has been limited. An improved algorithm with an in-depth understanding of pathway evolution may overcome this limitation. In this study, we investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 reference species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens. We observed three clusters of reference species based on a principal component analysis of the phylogenetic profiles, which correspond to the three domains of life—Archaea, Bacteria, and Eukaryota—suggesting that pathways inherit primarily within specific domains or lower-ranked taxonomic groups during speciation. Hence, the co-inheritance pattern within a taxonomic group may be eroded by confounding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-inheritance analysis within domains substantially improved network inference not only in microbe species but also in the higher eukaryotes, including humans. Although we observed two sub-domain clusters of reference species within Eukaryota, co-inheritance analysis within these sub-domain taxonomic groups only marginally improved network inference. Therefore, we conclude that co-inheritance analysis within domains is the optimal approach to network inference with the given reference species. The construction of a series of human gene networks with increasing sample sizes of the reference species for each domain revealed that the size of the high-accuracy networks increased as additional reference species genomes were included, suggesting that within-domain co-inheritance analysis will continue to expand human gene networks as genomes of additional species are sequenced. Taken together, we propose that co-inheritance analysis within the domains of life will greatly potentiate the use of the expected onslaught of sequenced genomes in the study of molecular pathways in higher eukaryotes. PMID:26394049

  8. Minimum spanning tree analysis of the human connectome

    PubMed Central

    Sommer, Iris E.; Bohlken, Marc M.; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A.; Douw, Linda; Otte, Willem M.; Mandl, René C.W.; Stam, Cornelis J.

    2018-01-01

    Abstract One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion‐weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null‐model. The MST of individual subjects matched this reference MST for a mean 58%–88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so‐called rich club nodes (a subset of high‐degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical–subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. PMID:29468769

  9. Geographical Network Analysis and Spatial Econometrics as Tools to Enhance Our Understanding of Student Migration Patterns and Benefits in the U.S. Higher Education Network

    ERIC Educational Resources Information Center

    González Canché, Manuel S.

    2018-01-01

    This study measures the extent to which student outmigration outside the 4-year sector takes place and posits that the benefits from attracting non-resident students exist regardless of sector of enrollment. The study also provides empirical evidence about the relevance of employing geographical network analysis (GNA) and spatial econometrics in…

  10. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  11. Introduction to Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Zaphiris, Panayiotis; Ang, Chee Siang

    Social Network analysis focuses on patterns of relations between and among people, organizations, states, etc. It aims to describe networks of relations as fully as possible, identify prominent patterns in such networks, trace the flow of information through them, and discover what effects these relations and networks have on people and organizations. Social network analysis offers a very promising potential for analyzing human-human interactions in online communities (discussion boards, newsgroups, virtual organizations). This Tutorial provides an overview of this analytic technique and demonstrates how it can be used in Human Computer Interaction (HCI) research and practice, focusing especially on Computer Mediated Communication (CMC). This topic acquires particular importance these days, with the increasing popularity of social networking websites (e.g., youtube, myspace, MMORPGs etc.) and the research interest in studying them.

  12. Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.

    PubMed

    van Helden, Jacques; Toussaint, Ariane; Thieffry, Denis

    2012-01-01

    This introductory review synthesizes the contents of the volume Bacterial Molecular Networks of the series Methods in Molecular Biology. This volume gathers 9 reviews and 16 method chapters describing computational protocols for the analysis of metabolic pathways, protein interaction networks, and regulatory networks. Each protocol is documented by concrete case studies dedicated to model bacteria or interacting populations. Altogether, the chapters provide a representative overview of state-of-the-art methods for data integration and retrieval, network visualization, graph analysis, and dynamical modelling.

  13. Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2.

    PubMed

    Hoaglin, David C; Hawkins, Neil; Jansen, Jeroen P; Scott, David A; Itzler, Robbin; Cappelleri, Joseph C; Boersma, Cornelis; Thompson, David; Larholt, Kay M; Diaz, Mireya; Barrett, Annabel

    2011-06-01

    Evidence-based health care decision making requires comparison of all relevant competing interventions. In the absence of randomized controlled trials involving a direct comparison of all treatments of interest, indirect treatment comparisons and network meta-analysis provide useful evidence for judiciously selecting the best treatment(s). Mixed treatment comparisons, a special case of network meta-analysis, combine direct evidence and indirect evidence for particular pairwise comparisons, thereby synthesizing a greater share of the available evidence than traditional meta-analysis. This report from the International Society for Pharmacoeconomics and Outcomes Research Indirect Treatment Comparisons Good Research Practices Task Force provides guidance on technical aspects of conducting network meta-analyses (our use of this term includes most methods that involve meta-analysis in the context of a network of evidence). We start with a discussion of strategies for developing networks of evidence. Next we briefly review assumptions of network meta-analysis. Then we focus on the statistical analysis of the data: objectives, models (fixed-effects and random-effects), frequentist versus Bayesian approaches, and model validation. A checklist highlights key components of network meta-analysis, and substantial examples illustrate indirect treatment comparisons (both frequentist and Bayesian approaches) and network meta-analysis. A further section discusses eight key areas for future research. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  15. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Strategic Environment Assessment bibliographic network: A quantitative literature review analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caschili, Simone, E-mail: s.caschili@ucl.ac.uk; De Montis, Andrea; Ganciu, Amedeo

    2014-07-01

    Academic literature has been continuously growing at such a pace that it can be difficult to follow the progression of scientific achievements; hence, the need to dispose of quantitative knowledge support systems to analyze the literature of a subject. In this article we utilize network analysis tools to build a literature review of scientific documents published in the multidisciplinary field of Strategic Environment Assessment (SEA). The proposed approach helps researchers to build unbiased and comprehensive literature reviews. We collect information on 7662 SEA publications and build the SEA Bibliographic Network (SEABN) employing the basic idea that two publications are interconnectedmore » if one cites the other. We apply network analysis at macroscopic (network architecture), mesoscopic (sub graph) and microscopic levels (node) in order to i) verify what network structure characterizes the SEA literature, ii) identify the authors, disciplines and journals that are contributing to the international discussion on SEA, and iii) scrutinize the most cited and important publications in the field. Results show that the SEA is a multidisciplinary subject; the SEABN belongs to the class of real small world networks with a dominance of publications in Environmental studies over a total of 12 scientific sectors. Christopher Wood, Olivia Bina, Matthew Cashmore, and Andrew Jordan are found to be the leading authors while Environmental Impact Assessment Review is by far the scientific journal with the highest number of publications in SEA studies. - Highlights: • We utilize network analysis to analyze scientific documents in the SEA field. • We build the SEA Bibliographic Network (SEABN) of 7662 publications. • We apply network analysis at macroscopic, mesoscopic and microscopic network levels. • We identify SEABN architecture, relevant publications, authors, subjects and journals.« less

  17. Influence of the Time Scale on the Construction of Financial Networks

    PubMed Central

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-01-01

    Background In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis. PMID:20949124

  18. Applications of Temporal Graph Metrics to Real-World Networks

    NASA Astrophysics Data System (ADS)

    Tang, John; Leontiadis, Ilias; Scellato, Salvatore; Nicosia, Vincenzo; Mascolo, Cecilia; Musolesi, Mirco; Latora, Vito

    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.

  19. What Online Networks Offer: "Online Network Compositions and Online Learning Experiences of Three Ethnic Groups"

    ERIC Educational Resources Information Center

    Lecluijze, Suzanne Elisabeth; de Haan, Mariëtte; Ünlüsoy, Asli

    2015-01-01

    This exploratory study examines ethno-cultural diversity in youth's narratives regarding their "online" learning experiences while also investigating how these narratives can be understood from the analysis of their online network structure and composition. Based on ego-network data of 79 respondents this study compared the…

  20. Social Network Analysis to Evaluate an Interdisciplinary Research Center

    ERIC Educational Resources Information Center

    Aboelela, Sally W.; Merrill, Jacqueline A.; Carley, Kathleen M.; Larson, Elaine

    2007-01-01

    We sought to examine the growth of an interdisciplinary center using social network analysis techniques. Specific aims were to examine the patterns of growth and interdisciplinary connectedness of the Center and to identify the social network characteristics of its productive members. The setting for this study was The Center for Interdisciplinary…

  1. Fractal Inequality: A Social Network Analysis of Global and Regional International Student Mobility

    ERIC Educational Resources Information Center

    Macrander, Ashley

    2017-01-01

    Literature on global international student mobility (ISM) highlights the uneven nature of student flows--from the developing to the developed world--however, studies have yet to address whether this pattern is replicated within expanding regional networks. Utilizing social network analysis, UNESCO ISM data, and World Bank income classifications,…

  2. Using Social Network Measures in Wildlife Disease Ecology, Epidemiology, and Management

    PubMed Central

    Silk, Matthew J.; Croft, Darren P.; Delahay, Richard J.; Hodgson, David J.; Boots, Mike; Weber, Nicola; McDonald, Robbie A.

    2017-01-01

    Abstract Contact networks, behavioral interactions, and shared use of space can all have important implications for the spread of disease in animals. Social networks enable the quantification of complex patterns of interactions; therefore, network analysis is becoming increasingly widespread in the study of infectious disease in animals, including wildlife. We present an introductory guide to using social-network-analytical approaches in wildlife disease ecology, epidemiology, and management. We focus on providing detailed practical guidance for the use of basic descriptive network measures by suggesting the research questions to which each technique is best suited and detailing the software available for each. We also discuss how using network approaches can be used beyond the study of social contacts and across a range of spatial and temporal scales. Finally, we integrate these approaches to examine how network analysis can be used to inform the implementation and monitoring of effective disease management strategies. PMID:28596616

  3. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-09-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  4. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-04-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  5. Combinatorial complexity of pathway analysis in metabolic networks.

    PubMed

    Klamt, Steffen; Stelling, Jörg

    2002-01-01

    Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.

  6. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  7. Thermostability of In Vitro Evolved Bacillus subtilis Lipase A: A Network and Dynamics Perspective

    PubMed Central

    Srivastava, Ashutosh; Sinha, Somdatta

    2014-01-01

    Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure. PMID:25122499

  8. Reciprocal Family, Friendship and Church Support Networks of African Americans: Findings from the National Survey of American Life.

    PubMed

    Taylor, Robert Joseph; Mouzon, Dawne M; Nguyen, Ann W; Chatters, Linda M

    2016-12-01

    This study examined reciprocal support networks involving extended family, friends and church members among African Americans. Our analysis examined specific patterns of reciprocal support (i.e., received only, gave only, both gave and received, neither gave or received), as well as network characteristics (i.e., contact and subjective closeness) as correlates of reciprocal support. The analysis is based on the African American sub-sample of the National Survey of American Life (NSAL). Overall, our findings indicate that African Americans are very involved in reciprocal support networks with their extended family, friends and church members. Respondents were most extensively involved in reciprocal supports with extended family members, followed closely by friends and church networks. Network characteristics (i.e., contact and subjective closeness) were significantly and consistently associated with involvement with reciprocal support exchanges for all three networks. These and other findings are discussed in detail. This study complements previous work on the complementary roles of family, friend and congregational support networks, as well as studies of racial differences in informal support networks.

  9. Egocentric Social Network Analysis of Pathological Gambling

    PubMed Central

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  10. A network analysis of DSM-5 posttraumatic stress disorder and functional impairment in UK treatment-seeking veterans.

    PubMed

    Ross, Jana; Murphy, Dominic; Armour, Cherie

    2018-05-28

    Network analysis is a relatively new methodology for studying psychological disorders. It focuses on the associations between individual symptoms which are hypothesized to mutually interact with each other. The current study represents the first network analysis conducted with treatment-seeking military veterans in UK. The study aimed to examine the network structure of posttraumatic stress disorder (PTSD) symptoms and four domains of functional impairment by identifying the most central (i.e., important) symptoms of PTSD and by identifying those symptoms of PTSD that are related to functional impairment. Participants were 331 military veterans with probable PTSD. In the first step, a network of PTSD symptoms based on the PTSD Checklist for DSM-5 was estimated. In the second step, functional impairment items were added to the network. The most central symptoms of PTSD were recurrent thoughts, nightmares, negative emotional state, detachment and exaggerated startle response. Functional impairment was related to a number of different PTSD symptoms. Impairments in close relationships were associated primarily with the negative alterations in cognitions and mood symptoms and impairments in home management were associated primarily with the reexperiencing symptoms. The results are discussed in relation to previous PTSD network studies and include implications for clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Social networks dynamics revealed by temporal analysis: An example in a non-human primate (Macaca sylvanus) in "La Forêt des Singes".

    PubMed

    Sosa, Sebastian; Zhang, Peng; Cabanes, Guénaël

    2017-06-01

    This study applied a temporal social network analysis model to describe three affiliative social networks (allogrooming, sleep in contact, and triadic interaction) in a non-human primate species, Macaca sylvanus. Three main social mechanisms were examined to determine interactional patterns among group members, namely preferential attachment (i.e., highly connected individuals are more likely to form new connections), triadic closure (new connections occur via previous close connections), and homophily (individuals interact preferably with others with similar attributes). Preferential attachment was only observed for triadic interaction network. Triadic closure was significant in allogrooming and triadic interaction networks. Finally, gender homophily was seasonal for allogrooming and sleep in contact networks, and observed in each period for triadic interaction network. These individual-based behaviors are based on individual reactions, and their analysis can shed light on the formation of the affiliative networks determining ultimate coalition networks, and how these networks may evolve over time. A focus on individual behaviors is necessary for a global interactional approach to understanding social behavior rules and strategies. When combined, these social processes could make animal social networks more resilient, thus enabling them to face drastic environmental changes. This is the first study to pinpoint some of the processes underlying the formation of a social structure in a non-human primate species, and identify common mechanisms with humans. The approach used in this study provides an ideal tool for further research seeking to answer long-standing questions about social network dynamics. © 2017 Wiley Periodicals, Inc.

  12. Multiscale complex network analysis: An approach to study spatiotemporal rainfall pattern in south Germany

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankit; Marwan, Norbert; Rathinasamy, Maheswaran; Oeztuerk, Ugur; Merz, Bruno; Kurths, Jürgen

    2017-04-01

    Understanding of the climate sytems has been of tremendous importance to different branches such as agriculture, flood, drought and water resources management etc. In this regard, complex networks analysis and time series analysis attracted considerable attention, owing to their potential role in understanding the climate system through characteristic properties. One of the basic requirements in studying climate network dynamics is to identify connections in space or time or space-time, depending upon the purpose. Although a wide variety of approaches have been developed and applied to identify and analyse spatio-temporal relationships by climate networks, there is still further need for improvements in particular when considering precipitation time series or interactions on different scales. In this regard, recent developments in the area of network theory, especially complex networks, offer new avenues, both for their generality about systems and for their holistic perspective about spatio-temporal relationships. The present study has made an attempt to apply the ideas developed in the field of complex networks to examine connections in regional climate networks with particular focus on multiscale spatiotemporal connections. This paper proposes a novel multiscale understanding of regional climate networks using wavelets. The proposed approach is applied to daily precipitation records observed at 543 selected stations from south Germany for a period of 110 years (1901-2010). Further, multiscale community mining is performed on the same study region to shed more light on the underlying processes at different time scales. Various network measure and tools so far employed provide micro-level (individual station) and macro-level (community structure) information of the network. It is interesting to investigate how the result of this study can be useful for future climate predictions and for evaluating climate models on their implementation regarding heavy precipitation. Keywords: Complex network, event synchronization, wavelet, regional climate network, multiscale community mining

  13. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research.

    PubMed

    Grunspan, Daniel Z; Wiggins, Benjamin L; Goodreau, Steven M

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. © 2014 D. Z. Grunspan et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. A new cross-correlation algorithm for the analysis of "in vitro" neuronal network activity aimed at pharmacological studies.

    PubMed

    Biffi, E; Menegon, A; Regalia, G; Maida, S; Ferrigno, G; Pedrocchi, A

    2011-08-15

    Modern drug discovery for Central Nervous System pathologies has recently focused its attention to in vitro neuronal networks as models for the study of neuronal activities. Micro Electrode Arrays (MEAs), a widely recognized tool for pharmacological investigations, enable the simultaneous study of the spiking activity of discrete regions of a neuronal culture, providing an insight into the dynamics of networks. Taking advantage of MEAs features and making the most of the cross-correlation analysis to assess internal parameters of a neuronal system, we provide an efficient method for the evaluation of comprehensive neuronal network activity. We developed an intra network burst correlation algorithm, we evaluated its sensitivity and we explored its potential use in pharmacological studies. Our results demonstrate the high sensitivity of this algorithm and the efficacy of this methodology in pharmacological dose-response studies, with the advantage of analyzing the effect of drugs on the comprehensive correlative properties of integrated neuronal networks. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Two new methods to fit models for network meta-analysis with random inconsistency effects.

    PubMed

    Law, Martin; Jackson, Dan; Turner, Rebecca; Rhodes, Kirsty; Viechtbauer, Wolfgang

    2016-07-28

    Meta-analysis is a valuable tool for combining evidence from multiple studies. Network meta-analysis is becoming more widely used as a means to compare multiple treatments in the same analysis. However, a network meta-analysis may exhibit inconsistency, whereby the treatment effect estimates do not agree across all trial designs, even after taking between-study heterogeneity into account. We propose two new estimation methods for network meta-analysis models with random inconsistency effects. The model we consider is an extension of the conventional random-effects model for meta-analysis to the network meta-analysis setting and allows for potential inconsistency using random inconsistency effects. Our first new estimation method uses a Bayesian framework with empirically-based prior distributions for both the heterogeneity and the inconsistency variances. We fit the model using importance sampling and thereby avoid some of the difficulties that might be associated with using Markov Chain Monte Carlo (MCMC). However, we confirm the accuracy of our importance sampling method by comparing the results to those obtained using MCMC as the gold standard. The second new estimation method we describe uses a likelihood-based approach, implemented in the metafor package, which can be used to obtain (restricted) maximum-likelihood estimates of the model parameters and profile likelihood confidence intervals of the variance components. We illustrate the application of the methods using two contrasting examples. The first uses all-cause mortality as an outcome, and shows little evidence of between-study heterogeneity or inconsistency. The second uses "ear discharge" as an outcome, and exhibits substantial between-study heterogeneity and inconsistency. Both new estimation methods give results similar to those obtained using MCMC. The extent of heterogeneity and inconsistency should be assessed and reported in any network meta-analysis. Our two new methods can be used to fit models for network meta-analysis with random inconsistency effects. They are easily implemented using the accompanying R code in the Additional file 1. Using these estimation methods, the extent of inconsistency can be assessed and reported.

  16. The use of network analysis to study complex animal communication systems: a study on nightingale song.

    PubMed

    Weiss, Michael; Hultsch, Henrike; Adam, Iris; Scharff, Constance; Kipper, Silke

    2014-06-22

    The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the 'small-world' character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval.

  17. The use of network analysis to study complex animal communication systems: a study on nightingale song

    PubMed Central

    Weiss, Michael; Hultsch, Henrike; Adam, Iris; Scharff, Constance; Kipper, Silke

    2014-01-01

    The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the ‘small-world’ character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval. PMID:24807258

  18. Network Analysis: A Novel Approach to Understand Suicidal Behaviour

    PubMed Central

    de Beurs, Derek

    2017-01-01

    Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.

  19. In Search of Practitioner-Based Social Capital: A Social Network Analysis Tool for Understanding and Facilitating Teacher Collaboration in a US-Based STEM Professional Development Program

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.; Yoon, Susan A.

    2011-01-01

    This paper presents the first in a series of studies on the informal advice networks of a community of teachers in an in-service professional development program. The aim of the research was to use Social Network Analysis as a methodological tool to reveal the social networks developed by the teachers, and to examine whether these networks…

  20. A systematic review of nurse-related social network analysis studies.

    PubMed

    Benton, D C; Pérez-Raya, F; Fernández-Fernández, M P; González-Jurado, M A

    2015-09-01

    Nurses frequently work as part of both uni- and multidisciplinary teams. Communication between team members is critical in the delivery of quality care. Social network analysis is increasingly being used to explore such communication. To explore the use of social network analysis involving nurses either as subjects of the study or as researchers. Standard systematic review procedures were applied to identify nurse-related studies that utilize social network analysis. A comparative thematic approach to synthesis was used. Both published and grey literature written in English, Spanish and Portuguese between January 1965 and December 2013 were identified via a structured search of CINAHL, SciELO and PubMed. In addition, Google and Yahoo search engines were used to identify additional grey literature using the same search strategy. Forty-three primary studies were identified with literature from North America dominating the published work. So far it would appear that no author or group of authors have developed a programme of research in the nursing field using the social network analysis approach although several authors may be in the process of doing so. The dominance of literature from North America may be viewed as problematic as the underlying structures and themes may be an artefact of cultural communication norms from this region. The use of social network analysis in relation to nursing and by nurse researchers has increased rapidly over the past two decades. The lack of longitudinal studies and the absence of replication across multiple sites should be seen as an opportunity for further research. This analytical approach is relatively new in the field of nursing but does show considerable promise in offering insights into the way information flows between individuals, teams, institutions and other structures. An understanding of these structures provides a means of improving communication. © 2014 International Council of Nurses.

  1. Naturally-Emerging Technology-Based Leadership Roles in Three Independent Schools: A Social Network-Based Case Study Using Fuzzy Set Qualitative Comparative Analysis

    ERIC Educational Resources Information Center

    Velastegui, Pamela J.

    2013-01-01

    This hypothesis-generating case study investigates the naturally emerging roles of technology brokers and technology leaders in three independent schools in New York involving 92 school educators. A multiple and mixed method design utilizing Social Network Analysis (SNA) and fuzzy set Qualitative Comparative Analysis (FSQCA) involved gathering…

  2. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells.

    PubMed

    Nadadhur, Aishwarya G; Emperador Melero, Javier; Meijer, Marieke; Schut, Desiree; Jacobs, Gerbren; Li, Ka Wan; Hjorth, J J Johannes; Meredith, Rhiannon M; Toonen, Ruud F; Van Kesteren, Ronald E; Smit, August B; Verhage, Matthijs; Heine, Vivi M

    2017-01-01

    Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.

  3. Minimum spanning tree analysis of the human connectome.

    PubMed

    van Dellen, Edwin; Sommer, Iris E; Bohlken, Marc M; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A; Douw, Linda; Otte, Willem M; Mandl, René C W; Stam, Cornelis J

    2018-06-01

    One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion-weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null-model. The MST of individual subjects matched this reference MST for a mean 58%-88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so-called rich club nodes (a subset of high-degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical-subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Narcissism and Social Networking Behavior: A Meta-Analysis.

    PubMed

    Gnambs, Timo; Appel, Markus

    2018-04-01

    The increasing popularity of social networking sites (SNS) such as Facebook and Twitter has given rise to speculations that the intensity of using these platforms is associated with narcissistic tendencies. However, recent research on this issue has been all but conclusive. We present a three-level, random effects meta-analysis including 289 effect sizes from 57 studies (total N = 25,631) on the association between trait narcissism and social networking behavior. The meta-analysis identified a small to moderate effect of ρ = .17 (τ = .11), 95% CI [.13, .21], for grandiose narcissism that replicated across different social networking platforms, respondent characteristics, and time. Moderator analyses revealed pronounced cultural differences, with stronger associations in power-distant cultures. Moreover, social networking behaviors geared toward self-presentation and the number of SNS friends exhibited stronger effects than usage durations. Overall, the study not only supported but also refined the notion of a relationship between engaging in social networking sites and narcissistic personality traits. © 2017 Wiley Periodicals, Inc.

  5. Functional neural networks of honesty and dishonesty in children: Evidence from graph theory analysis.

    PubMed

    Ding, Xiao Pan; Wu, Si Jia; Liu, Jiangang; Fu, Genyue; Lee, Kang

    2017-09-21

    The present study examined how different brain regions interact with each other during spontaneous honest vs. dishonest communication. More specifically, we took a complex network approach based on the graph-theory to analyze neural response data when children are spontaneously engaged in honest or dishonest acts. Fifty-nine right-handed children between 7 and 12 years of age participated in the study. They lied or told the truth out of their own volition. We found that lying decreased both the global and local efficiencies of children's functional neural network. This finding, for the first time, suggests that lying disrupts the efficiency of children's cortical network functioning. Further, it suggests that the graph theory based network analysis is a viable approach to study the neural development of deception.

  6. Core psychopathology in anorexia nervosa and bulimia nervosa: A network analysis.

    PubMed

    Forrest, Lauren N; Jones, Payton J; Ortiz, Shelby N; Smith, April R

    2018-04-25

    The cognitive-behavioral theory of eating disorders (EDs) proposes that shape and weight overvaluation are the core ED psychopathology. Core symptoms can be statistically identified using network analysis. Existing ED network studies support that shape and weight overvaluation are the core ED psychopathology, yet no studies have estimated AN core psychopathology and concerns exist about the replicability of network analysis findings. The current study estimated ED symptom networks among people with anorexia nervosa (AN) and bulimia nervosa (BN) and among a combined group of people with AN and BN. Participants were girls and women with AN (n = 604) and BN (n = 477) seeking residential ED treatment. ED symptoms were assessed with the Eating Disorder Examination-Questionnaire (EDE-Q); 27 of the EDE-Q items were included as nodes in symptom networks. Core symptoms were determined by expected influence and strength values. In all networks, desiring weight loss, restraint, shape and weight preoccupation, and shape overvaluation emerged as the most important symptoms. In addition, in the AN and combined networks, fearing weight gain emerged as an important symptom. In the BN network, weight overvaluation emerged as another important symptom. Findings support the cognitive-behavioral premise that shape and weight overvaluation are at the core of AN psychopathology. Our BN and combined network findings provide a high degree of replication of previous findings. Clinically, findings highlight the importance of considering shape and weight overvaluation as a severity specifier and primary treatment target for people with EDs. © 2018 Wiley Periodicals, Inc.

  7. An Examination of Research Collaboration in Psychometrics Utilizing Social Network Analysis Methods

    ERIC Educational Resources Information Center

    DiCrecchio, Nicole C.

    2016-01-01

    Co-authorship networks have been studied in many fields as a way to understand collaboration patterns. However, a comprehensive exploration of the psychometrics field has not been conducted. Also, few studies on co-author networks have included longitudinal analyses as well as data on the characteristics of authors in the network. Including both…

  8. Information seeking for making evidence-informed decisions: a social network analysis on the staff of a public health department in Canada.

    PubMed

    Yousefi-Nooraie, Reza; Dobbins, Maureen; Brouwers, Melissa; Wakefield, Patricia

    2012-05-16

    Social network analysis is an approach to study the interactions and exchange of resources among people. It can help understanding the underlying structural and behavioral complexities that influence the process of capacity building towards evidence-informed decision making. A social network analysis was conducted to understand if and how the staff of a public health department in Ontario turn to peers to get help incorporating research evidence into practice. The staff were invited to respond to an online questionnaire inquiring about information seeking behavior, identification of colleague expertise, and friendship status. Three networks were developed based on the 170 participants. Overall shape, key indices, the most central people and brokers, and their characteristics were identified. The network analysis showed a low density and localized information-seeking network. Inter-personal connections were mainly clustered by organizational divisions; and people tended to limit information-seeking connections to a handful of peers in their division. However, recognition of expertise and friendship networks showed more cross-divisional connections. Members of the office of the Medical Officer of Health were located at the heart of the department, bridging across divisions. A small group of professional consultants and middle managers were the most-central staff in the network, also connecting their divisions to the center of the information-seeking network. In each division, there were some locally central staff, mainly practitioners, who connected their neighboring peers; but they were not necessarily connected to other experts or managers. The methods of social network analysis were useful in providing a systems approach to understand how knowledge might flow in an organization. The findings of this study can be used to identify early adopters of knowledge translation interventions, forming Communities of Practice, and potential internal knowledge brokers.

  9. An Exploratory Study Examining the Feasibility of Using Bayesian Networks to Predict Circuit Analysis Understanding

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.

    2006-01-01

    Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…

  10. Hybrid network defense model based on fuzzy evaluation.

    PubMed

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  11. Statistical Analysis of Bus Networks in India

    PubMed Central

    2016-01-01

    In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future. PMID:27992590

  12. The Intellectual Structure of Metacognitive Scaffolding in Science Education: A Co-Citation Network Analysis

    ERIC Educational Resources Information Center

    Tang, Kai-Yu; Wang, Chia-Yu; Chang, Hsin-Yi; Chen, Sufen; Lo, Hao-Chang; Tsai, Chin-Chung

    2016-01-01

    The issues of metacognitive scaffolding in science education (MSiSE) have become increasingly popular and important. Differing from previous content reviews, this study proposes a series of quantitative computer-based analyses by integrating document co-citation analysis, social network analysis, and exploratory factor analysis to explore the…

  13. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  14. Assembling the puzzle for promoting physical activity in Brazil: a social network analysis.

    PubMed

    Brownson, Ross C; Parra, Diana C; Dauti, Marsela; Harris, Jenine K; Hallal, Pedro C; Hoehner, Christine; Malta, Deborah Carvalho; Reis, Rodrigo S; Ramos, Luiz Roberto; Ribeiro, Isabela C; Soares, Jesus; Pratt, Michael

    2010-07-01

    Physical inactivity is a significant public health problem in Brazil that may be addressed by partnerships and networks. In conjunction with Project GUIA (Guide for Useful Interventions for Physical Activity in Brazil and Latin America), the aim of this study was to conduct a social network analysis of physical activity in Brazil. An online survey was completed by 28 of 35 organizations contacted from December 2008 through March 2009. Network analytic methods examined measures of collaboration, importance, leadership, and attributes of the respondent and organization. Leadership nominations for organizations studied ranged from 0 to 23. Positive predictors of collaboration included: south region, GUIA membership, years working in physical activity, and research, education, and promotion/practice areas of physical activity. The most frequently reported barrier to collaboration was bureaucracy. Social network analysis identified factors that are likely to improve collaboration among organizations in Brazil.

  15. Data communication network at the ASRM facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Robert J., III; Smith, Wayne D.; Nirgudkar, Ravi; Dement, James

    1994-01-01

    This three-year project (February 1991 to February 1994) has involved analyzing and helping to design the communication network for the Advanced Solid Rocket Motor (ASRM) facility at Yellow Creek, near Iuka, MS. The principal concerns in the analysis were the bandwidth (both on average and in the worst case) and the expandability of the network. As the communication network was designed and modified, a careful evaluation of the bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network was required. The overall network, which was heterogeneous in protocol and bandwidth, needed to be modeled, analyzed, and simulated to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of our analysis did have an impact on the design and operation of the ASRM facility. During 1993 we analyzed many configurations of this basic network structure. The analyses are described in detail in Section 2 and 3 herein. Section 2 reports on an analysis of the whole network. The preliminary results of that research indicated that the most likely bottleneck as the network traffic increased would be the hubs. Thus a study of Cabletron hubs was initiated. The results of that study are in Section 3. Section 4 herein reports on the final network configuration analyzed. When the ASRM facility was mothballed in December of 1993, this was basically the planned and partially installed network. A briefing was held at NASA/MSFC on December 7, 1993, at which time our final analysis and conclusions were disseminated. This report contains a written record of most of the information disseminated at that briefing.

  16. Transportation networks : data, analysis, methodology development and visualization.

    DOT National Transportation Integrated Search

    2007-12-29

    This project provides data compilation, analysis methodology and visualization methodology for the current network : data assets of the Alabama Department of Transportation (ALDOT). This study finds that ALDOT is faced with a : considerable number of...

  17. Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application.

    PubMed

    Liu, Shoubing; Lu, Wenke; Zhu, Changchun

    2017-11-01

    The goal of this research is to study two-port network of wavelet transform processor (WTP) using surface acoustic wave (SAW) devices and its application. The motive was prompted by the inconvenience of the long research and design cycle and the huge research funding involved with traditional method in this field, which were caused by the lack of the simulation and emulation method of WTP using SAW devices. For this reason, we introduce the two-port network analysis tool, which has been widely used in the design and analysis of SAW devices with uniform interdigital transducers (IDTs). Because the admittance parameters calculation formula of the two-port network can only be used for the SAW devices with uniform IDTs, this analysis tool cannot be directly applied into the design and analysis of the processor using SAW devices, whose input interdigital transducer (IDT) is apodized weighting. Therefore, in this paper, we propose the channel segmentation method, which can convert the WTP using SAW devices into parallel channels, and also provide with the calculation formula of the number of channels, the number of finger pairs and the static capacitance of an interdigital period in each parallel channel firstly. From the parameters given above, we can calculate the admittance parameters of the two port network for each channel, so that we can obtain the admittance parameter of the two-port network of the WTP using SAW devices on the basis of the simplification rule of parallel two-port network. Through this analysis tool, not only can we get the impulse response function of the WTP using SAW devices but we can also get the matching circuit of it. Large numbers of studies show that the parameters of the two-port network obtained by this paper are consistent with those measured by network analyzer E5061A, and the impulse response function obtained by the two-port network analysis tool is also consistent with that measured by network analyzer E5061A, which can meet the accuracy requirements of the analysis of the WTP using SAW devices. Therefore the two-port network analysis tool discussed in this paper has comparatively higher theoretical and practical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Stability analysis for virus spreading in complex networks with quarantine and non-homogeneous transition rates

    NASA Astrophysics Data System (ADS)

    Alarcon-Ramos, L. A.; Schaum, A.; Rodríguez Lucatero, C.; Bernal Jaquez, R.

    2014-03-01

    Virus propagations in complex networks have been studied in the framework of discrete time Markov process dynamical systems. These studies have been carried out under the assumption of homogeneous transition rates, yielding conditions for virus extinction in terms of the transition probabilities and the largest eigenvalue of the connectivity matrix. Nevertheless the assumption of homogeneous rates is rather restrictive. In the present study we consider non-homogeneous transition rates, assigned according to a uniform distribution, with susceptible, infected and quarantine states, thus generalizing the previous studies. A remarkable result of this analysis is that the extinction depends on the weakest element in the network. Simulation results are presented for large free-scale networks, that corroborate our theoretical findings.

  19. Parameterized centrality metric for network analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Rumi; Lerman, Kristina

    2011-06-01

    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [P. Bonacich, Am. J. Sociol.0002-960210.1086/228631 92, 1170 (1987)], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, for example, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. Studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed metric to several benchmark networks and show that it leads to better insights into network structure than alternative metrics.

  20. Adaptive Topological Configuration of an Integrated Circuit/Packet-Switched Computer Network.

    DTIC Science & Technology

    1984-01-01

    Gitman et al. [45] state that there are basically two approaches to the integrated network design problem: (1) solve the link/capacity problem for...1972), 1385-1397. 33. Frank, H., and Gitman , I. Economic analysis of integrated voice and data networks: a case study. Proc. of IEEE 66 , 11 (Nov. 1978...1974), 1074-1079. 45. Gitman , I., Hsieh, W., and Occhiogrosso, B. J. Analysis and design of hybrid switching networks. IEEE Trans. on Comm. Com-29

  1. Mobilizing Homeless Youth for HIV Prevention: A Social Network Analysis of the Acceptability of a Face-to-Face and Online Social Networking Intervention

    ERIC Educational Resources Information Center

    Rice, Eric; Tulbert, Eve; Cederbaum, Julie; Adhikari, Anamika Barman; Milburn, Norweeta G.

    2012-01-01

    The objective of the study is to use social network analysis to examine the acceptability of a youth-led, hybrid face-to-face and online social networking HIV prevention program for homeless youth. Seven peer leaders (PLs) engaged face-to-face homeless youth (F2F) in the creation of digital media projects (e.g. You Tube videos). PL and F2F…

  2. Lessons from social network analyses for behavioral medicine.

    PubMed

    Rosenquist, James N

    2011-03-01

    This study presents an overview of the rapidly expanding field of social network analysis, with an emphasis placed on work relevant to behavioral health clinicians and researchers. I outline how social network analysis is a distinct empirical methodology within the social sciences that has the potential to deepen our understanding of how mental health and addiction are influenced by social environmental factors. Whereas there have been a number of recent studies in the mental health literature that discuss social influences on mental illness and addiction, and a number of studies looking at how social networks influence health and behaviors, there are still relatively few studies that combine the two. Those that have suggest that mood symptoms as well as alcohol consumption are clustered within, and may travel along, social networks. Social networks appear to have an important influence on a variety of mental health conditions. This avenue of research has the potential to influence both clinical practice and public policy.

  3. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Hybrid Mobile Communication Networks for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Lee, Charles; Walker, Edward; Osenfort, John; Stone, Thom

    2007-01-01

    A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.

  5. Ku-band signal design study. [space shuttle orbiter data processing network

    NASA Technical Reports Server (NTRS)

    Rubin, I.

    1978-01-01

    Analytical tools, methods and techniques for assessing the design and performance of the space shuttle orbiter data processing system (DPS) are provided. The computer data processing network is evaluated in the key areas of queueing behavior synchronization and network reliability. The structure of the data processing network is described as well as the system operation principles and the network configuration. The characteristics of the computer systems are indicated. System reliability measures are defined and studied. System and network invulnerability measures are computed. Communication path and network failure analysis techniques are included.

  6. Strategic Mobility 21: Rail Network Capacity Analysis

    DTIC Science & Technology

    2006-09-30

    of commercial freight and passenger train movements per peak day on the rail main lines in the study area for Year 2000 (actual...levels in Year 2010 and beyond with transit times comparable to Year 2000, at least four main tracks on the south slope of Cajon Pass are required... study . Rail Network Capacity Analysis 1 1.0 INTRODUCTION This document contains the analysis of rail capacity

  7. Managing cancer care through service delivery networks: The role of professional collaboration in two European cancer networks.

    PubMed

    Prades, Joan; Morando, Verdiana; Tozzi, Valeria D; Verhoeven, Didier; Germà, Jose R; Borras, Josep M

    2017-01-01

    Background The study examines two meso-strategic cancer networks, exploring to what extent collaboration can strengthen or hamper network effectiveness. Unlike macro-strategic networks, meso-strategic networks have no hierarchical governance structures nor are they institutionalised within healthcare services' delivery systems. This study aims to analyse the models of professional cooperation and the tools developed for managing clinical practice within two meso-strategic, European cancer networks. Methods Multiple case study design based on the comparative analysis of two cancer networks: Iridium, in Antwerp, Belgium and the Institut Català d'Oncologia in Catalonia, Spain. The case studies applied mixed methods, with qualitative research based on semi-structured interviews ( n = 35) together with case-site observation and material collection. Results The analysis identified four levels of collaborative intensity within medical specialties as well as in multidisciplinary settings, which became both platforms for crosscutting clinical work between hubs' experts and local care teams and the levers for network-based tools development. The organisation of clinical practice relied on professional-based cooperative processes and tiers, lacking vertical integration mechanisms. Conclusions The intensity of professional linkages largely shaped the potential of meso-strategic cancer networks to influence clinical practice organisation. Conversely, the introduction of managerial techniques or network governance structures, without introducing vertical hierarchies, was found to be critical solutions.

  8. Structural and functional social network attributes moderate the association of self-rated health with mental health in midlife and older adults.

    PubMed

    Windsor, Tim D; Rioseco, Pilar; Fiori, Katherine L; Curtis, Rachel G; Booth, Heather

    2016-01-01

    Social relationships are multifaceted, and different social network components can operate via different processes to influence well-being. This study examined associations of social network structure and relationship quality (positive and negative social exchanges) with mental health in midlife and older adults. The focus was on both direct associations of network structure and relationship quality with mental health, and whether these social network attributes moderated the association of self-rated health (SRH) with mental health. Analyses were based on survey data provided by 2001 (Mean age = 65, SD = 8.07) midlife and older adults. We used Latent Class Analysis (LCA) to classify participants into network types based on network structure (partner status, network size, contact frequency, and activity engagement), and used continuous measures of positive and negative social exchanges to operationalize relationship quality. Regression analysis was used to test moderation. LCA revealed network types generally consistent with those reported in previous studies. Participants in more diverse networks reported better mental health than those categorized into a restricted network type after adjustment for age, sex, education, and employment status. Analysis of moderation indicated that those with poorer SRH were less likely to report poorer mental health if they were classified into more diverse networks. A similar moderation effect was also evident for positive exchanges. The findings suggest that both quantity and quality of social relationships can play a role in buffering against the negative implications of physical health decline for mental health.

  9. Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks

    PubMed Central

    2014-01-01

    Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226

  10. An Examination of Not-For-Profit Stakeholder Networks for Relationship Management: A Small-Scale Analysis on Social Media.

    PubMed

    Wyllie, Jessica; Lucas, Benjamin; Carlson, Jamie; Kitchens, Brent; Kozary, Ben; Zaki, Mohamed

    2016-01-01

    Using a small-scale descriptive network analysis approach, this study highlights the importance of stakeholder networks for identifying valuable stakeholders and the management of existing stakeholders in the context of mental health not-for-profit services. We extract network data from the social media brand pages of three health service organizations from the U.S., U.K., and Australia, to visually map networks of 579 social media brand pages (represented by nodes), connected by 5,600 edges. This network data is analyzed using a collection of popular graph analysis techniques to assess the differences in the way each of the service organizations manage stakeholder networks. We also compare node meta-information against basic topology measures to emphasize the importance of effectively managing relationships with stakeholders who have large external audiences. Implications and future research directions are also discussed.

  11. Evaluating the effect of aging on interference resolution with time-varying complex networks analysis

    PubMed Central

    Ariza, Pedro; Solesio-Jofre, Elena; Martínez, Johann H.; Pineda-Pardo, José A.; Niso, Guiomar; Maestú, Fernando; Buldú, Javier M.

    2015-01-01

    In this study we used graph theory analysis to investigate age-related reorganization of functional networks during the active maintenance of information that is interrupted by external interference. Additionally, we sought to investigate network differences before and after averaging network parameters between both maintenance and interference windows. We compared young and older adults by measuring their magnetoencephalographic recordings during an interference-based working memory task restricted to successful recognitions. Data analysis focused on the topology/temporal evolution of functional networks during both the maintenance and interference windows. We observed that: (a) Older adults require higher synchronization between cortical brain sites in order to achieve a successful recognition, (b) The main differences between age groups arise during the interference window, (c) Older adults show reduced ability to reorganize network topology when interference is introduced, and (d) Averaging network parameters leads to a loss of sensitivity to detect age differences. PMID:26029079

  12. An Examination of Not-For-Profit Stakeholder Networks for Relationship Management: A Small-Scale Analysis on Social Media

    PubMed Central

    Carlson, Jamie; Kitchens, Brent; Kozary, Ben; Zaki, Mohamed

    2016-01-01

    Using a small-scale descriptive network analysis approach, this study highlights the importance of stakeholder networks for identifying valuable stakeholders and the management of existing stakeholders in the context of mental health not-for-profit services. We extract network data from the social media brand pages of three health service organizations from the U.S., U.K., and Australia, to visually map networks of 579 social media brand pages (represented by nodes), connected by 5,600 edges. This network data is analyzed using a collection of popular graph analysis techniques to assess the differences in the way each of the service organizations manage stakeholder networks. We also compare node meta-information against basic topology measures to emphasize the importance of effectively managing relationships with stakeholders who have large external audiences. Implications and future research directions are also discussed. PMID:27711236

  13. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  14. Advanced functional network analysis in the geosciences: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  15. Structure and Evolution of Scientific Collaboration Networks in a Modern Research Collaboratory

    ERIC Educational Resources Information Center

    Pepe, Alberto

    2010-01-01

    This dissertation is a study of scientific collaboration at the Center for Embedded Networked Sensing (CENS), a modern, multi-disciplinary, distributed laboratory involved in sensor network research. By use of survey research and network analysis, this dissertation examines the collaborative ecology of CENS in terms of three networks of…

  16. Using Genome-Wide Expression Profiling to Define Gene Networks Relevant to the Study of Complex Traits: From RNA Integrity to Network Topology

    PubMed Central

    O'Brien, M.A.; Costin, B.N.; Miles, M.F.

    2014-01-01

    Postgenomic studies of the function of genes and their role in disease have now become an area of intense study since efforts to define the raw sequence material of the genome have largely been completed. The use of whole-genome approaches such as microarray expression profiling and, more recently, RNA-sequence analysis of transcript abundance has allowed an unprecedented look at the workings of the genome. However, the accurate derivation of such high-throughput data and their analysis in terms of biological function has been critical to truly leveraging the postgenomic revolution. This chapter will describe an approach that focuses on the use of gene networks to both organize and interpret genomic expression data. Such networks, derived from statistical analysis of large genomic datasets and the application of multiple bioinformatics data resources, poten-tially allow the identification of key control elements for networks associated with human disease, and thus may lead to derivation of novel therapeutic approaches. However, as discussed in this chapter, the leveraging of such networks cannot occur without a thorough understanding of the technical and statistical factors influencing the derivation of genomic expression data. Thus, while the catch phrase may be “it's the network … stupid,” the understanding of factors extending from RNA isolation to genomic profiling technique, multivariate statistics, and bioinformatics are all critical to defining fully useful gene networks for study of complex biology. PMID:23195313

  17. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

    PubMed

    Shi, Ran; Guo, Ying

    2016-12-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  18. An Analysis of Density and Degree-Centrality According to the Social Networking Structure Formed in an Online Learning Environment

    ERIC Educational Resources Information Center

    Ergün, Esin; Usluel, Yasemin Koçak

    2016-01-01

    In this study, we assessed the communication structure in an educational online learning environment using social network analysis (SNA). The communication structure was examined with respect to time, and instructor's participation. The course was implemented using ELGG, a network learning environment, blended with face-to-face sessions over a…

  19. Designing Inter-Organizational Networks to Implement Education Reform: An Analysis of State Race to the Top Applications

    ERIC Educational Resources Information Center

    Russell, Jennifer Lin; Meredith, Julie; Childs, Joshua; Stein, Mary Kay; Prine, Deanna Weber

    2015-01-01

    This study sought to understand the opportunities and challenges associated with the implementation of state designed Race to the Top (RttT) funded reform networks. Drawing on a conceptual framework developed from the networked governance literature, we analyzed the 12 state RttT grantees' applications. Our analysis revealed that states designed…

  20. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 2. Requirements Compilation and Analysis. Part 3. Characteristics Summaries and Network Analysis

    DTIC Science & Technology

    1976-03-01

    DB DC DCT DDB DET DF DFS DML DMS DMSP DOD DS DSARC DT EDB EDS EG ESSA ETAC EWO Control and Reporting Post Cathode Ray Tube...National and Aviation Meteorological Facsimile Network NC - Network Control NCA - National Command Authority NCAR - National Center for Atmospheric

  1. Multimedia Network Design Study

    DTIC Science & Technology

    1989-09-30

    manipulation and analysis of the equations involved, thereby providing the application of the great range of powerful mathematical optimization...be treated by this analysis. First, all arrivals to the network have the Poisson distribution, and separate traffic classes may have separate qrrival...different for open and closed networks, so these two situations will be treated separately in the following subsections. 2.3.1 The Computational Process in

  2. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    PubMed

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  3. [Study based on ICA of "dorsal attention network" in patients with temporal lobe epilepsy].

    PubMed

    Yang, Zhigen; Wang, Huinan; Zhang, Zhiqiang; Zhong, Yuan; Chen, Zhili; Lu, Guangming

    2010-02-01

    Many functional magnetic resonance imaging (fMRI) studies have revealed the deactivation phenomenon of default mode network in the patients with epilepsy; however, nearly not any of the reports has focused on the dorsal attention network of epilepsy. In this paper, independent component analysis (ICA) was used to isolate the dorsal attention network of 16 patients with temporal lobe epilepsy (TLE) and of 20 healthy normals; and a goodness-of-fit analysis was applied at the individual subject level to choose the interesting component. Intra-group analysis and inter-group analysis were performed. The results indicated that the dorsal attention network included bilateral intraparietal sulcus, middle frontal gyrus, human frontal eye field, posterior lobe of right cerebellum, etc. The TLE group showed decreased functional connectivity in most of the dorsal attention regions with the predominance in the bilateral intraparietal sulcus, middle frontal gyrus, and posterior lobe of right cerebellum. These data suggested that the intrinsic organization of the brain function might be disrupted in TLE. In addition, the decrease of goodness-of-fit scores suggests that activity in the dorsal attention network may ultimately prove a sensitive biomarker for TLE.

  4. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  5. Multiple contexts and adolescent body mass index: Schools, neighborhoods, and social networks.

    PubMed

    Evans, Clare R; Onnela, Jukka-Pekka; Williams, David R; Subramanian, S V

    2016-08-01

    Adolescent health and behaviors are influenced by multiple contexts, including schools, neighborhoods, and social networks, yet these contexts are rarely considered simultaneously. In this study we combine social network community detection analysis and cross-classified multilevel modeling in order to compare the contributions of each of these three contexts to the total variation in adolescent body mass index (BMI). Wave 1 of the National Longitudinal Study of Adolescent to Adult Health is used, and for robustness we conduct the analysis in both the core sample (122 schools; N = 14,144) and a sub-set of the sample (16 schools; N = 3335), known as the saturated sample due to its completeness of neighborhood data. After adjusting for relevant covariates, we find that the school-level and neighborhood-level contributions to the variance are modest compared with the network community-level (σ(2)school = 0.069, σ(2)neighborhood = 0.144, σ(2)network = 0.463). These results are robust to two alternative algorithms for specifying network communities, and to analysis in the saturated sample. While this study does not determine whether network effects are attributable to social influence or selection, it does highlight the salience of adolescent social networks and indicates that they may be a promising context to address in the design of health promotion programs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.

    PubMed

    Li, Yongsheng; Sahni, Nidhi; Yi, Song

    2016-11-29

    Comprehensive understanding of human cancer mechanisms requires the identification of a thorough list of cancer-associated genes, which could serve as biomarkers for diagnoses and therapies in various types of cancer. Although substantial progress has been made in functional studies to uncover genes involved in cancer, these efforts are often time-consuming and costly. Therefore, it remains challenging to comprehensively identify cancer candidate genes. Network-based methods have accelerated this process through the analysis of complex molecular interactions in the cell. However, the extent to which various interactome networks can contribute to prediction of candidate genes responsible for cancer is still enigmatic. In this study, we evaluated different human protein-protein interactome networks and compared their application to cancer gene prioritization. Our results indicate that network analyses can increase the power to identify novel cancer genes. In particular, such predictive power can be enhanced with the use of unbiased systematic protein interaction maps for cancer gene prioritization. Functional analysis reveals that the top ranked genes from network predictions co-occur often with cancer-related terms in literature, and further, these candidate genes are indeed frequently mutated across cancers. Finally, our study suggests that integrating interactome networks with other omics datasets could provide novel insights into cancer-associated genes and underlying molecular mechanisms.

  7. Concentric network symmetry grasps authors' styles in word adjacency networks

    NASA Astrophysics Data System (ADS)

    Amancio, Diego R.; Silva, Filipi N.; Costa, Luciano da F.

    2015-06-01

    Several characteristics of written texts have been inferred from statistical analysis derived from networked models. Even though many network measurements have been adapted to study textual properties at several levels of complexity, some textual aspects have been disregarded. In this paper, we study the symmetry of word adjacency networks, a well-known representation of text as a graph. A statistical analysis of the symmetry distribution performed in several novels showed that most of the words do not display symmetric patterns of connectivity. More specifically, the merged symmetry displayed a distribution similar to the ubiquitous power-law distribution. Our experiments also revealed that the studied metrics do not correlate with other traditional network measurements, such as the degree or the betweenness centrality. The discriminability power of the symmetry measurements was verified in the authorship attribution task. Interestingly, we found that specific authors prefer particular types of symmetric motifs. As a consequence, the authorship of books could be accurately identified in 82.5% of the cases, in a dataset comprising books written by 8 authors. Because the proposed measurements for text analysis are complementary to the traditional approach, they can be used to improve the characterization of text networks, which might be useful for applications based on stylistic classification.

  8. Surrogate-assisted identification of influences of network construction on evolving weighted functional networks

    NASA Astrophysics Data System (ADS)

    Stahn, Kirsten; Lehnertz, Klaus

    2017-12-01

    We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.

  9. Multiple Resting-State Networks Are Associated With Tremors and Cognitive Features in Essential Tremor.

    PubMed

    Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou

    2015-12-01

    The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.

  10. Stochastic flux analysis of chemical reaction networks

    PubMed Central

    2013-01-01

    Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153

  11. Stochastic flux analysis of chemical reaction networks.

    PubMed

    Kahramanoğulları, Ozan; Lynch, James F

    2013-12-07

    Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.

  12. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  13. Abnormal brain white matter network in young smokers: a graph theory analysis study.

    PubMed

    Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai

    2018-04-01

    Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.

  14. Advanced Fault Diagnosis Methods in Molecular Networks

    PubMed Central

    Habibi, Iman; Emamian, Effat S.; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670

  15. Complex Network Analysis of CA3 Transcriptome Reveals Pathogenic and Compensatory Pathways in Refractory Temporal Lobe Epilepsy

    PubMed Central

    Bando, Silvia Yumi; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre V.; Pimentel-Silva, Luciana R.; Castro, Luiz HM.; Wen, Hung-Tzu; Amaro, Edson; Moreira-Filho, Carlos Alberto

    2013-01-01

    We previously described – studying transcriptional signatures of hippocampal CA3 explants – that febrile (FS) and afebrile (NFS) forms of refractory mesial temporal lobe epilepsy constitute two distinct genomic phenotypes. That network analysis was based on a limited number (hundreds) of differentially expressed genes (DE networks) among a large set of valid transcripts (close to two tens of thousands). Here we developed a methodology for complex network visualization (3D) and analysis that allows the categorization of network nodes according to distinct hierarchical levels of gene-gene connections (node degree) and of interconnection between node neighbors (concentric node degree). Hubs are highly connected nodes, VIPs have low node degree but connect only with hubs, and high-hubs have VIP status and high overall number of connections. Studying the whole set of CA3 valid transcripts we: i) obtained complete transcriptional networks (CO) for FS and NFS phenotypic groups; ii) examined how CO and DE networks are related; iii) characterized genomic and molecular mechanisms underlying FS and NFS phenotypes, identifying potential novel targets for therapeutic interventions. We found that: i) DE hubs and VIPs are evenly distributed inside the CO networks; ii) most DE hubs and VIPs are related to synaptic transmission and neuronal excitability whereas most CO hubs, VIPs and high hubs are related to neuronal differentiation, homeostasis and neuroprotection, indicating compensatory mechanisms. Complex network visualization and analysis is a useful tool for systems biology approaches to multifactorial diseases. Network centrality observed for hubs, VIPs and high hubs of CO networks, is consistent with the network disease model, where a group of nodes whose perturbation leads to a disease phenotype occupies a central position in the network. Conceivably, the chance for exerting therapeutic effects through the modulation of particular genes will be higher if these genes are highly interconnected in transcriptional networks. PMID:24278214

  16. An Exploratory Case Study of PBIS Implementation Using Social Network Analysis

    ERIC Educational Resources Information Center

    Whitcomb, Sara A.; Woodland, Rebecca H.; Barry, Shannon K.

    2017-01-01

    An exploratory case study is presented in which social network analysis (SNA) was used to explore how school teaming structures influence the implementation of School-Wide Positive Behavioral Interventions and Supports (PBIS). The authors theorized that PBIS leadership teams that include members with connections to all other information-sharing…

  17. Geo-Distinctive Comorbidity Networks of Pediatric Asthma.

    PubMed

    Shin, Eun Kyong; Shaban-Nejad, Arash

    2018-01-01

    Most pediatric asthma cases occur in complex interdependencies, exhibiting complex manifestation of multiple symptoms. Studying asthma comorbidities can help to better understand the etiology pathway of the disease. Albeit such relations of co-expressed symptoms and their interactions have been highlighted recently, empirical investigation has not been rigorously applied to pediatric asthma cases. In this study, we use computational network modeling and analysis to reveal the links and associations between commonly co-observed diseases/conditions with asthma among children in Memphis, Tennessee. We present a novel method for geo-parsed comorbidity network analysis to show the distinctive patterns of comorbidity networks in urban and suburban areas in Memphis.

  18. Reliability analysis of interdependent lattices

    NASA Astrophysics Data System (ADS)

    Limiao, Zhang; Daqing, Li; Pengju, Qin; Bowen, Fu; Yinan, Jiang; Zio, Enrico; Rui, Kang

    2016-06-01

    Network reliability analysis has drawn much attention recently due to the risks of catastrophic damage in networked infrastructures. These infrastructures are dependent on each other as a result of various interactions. However, most of the reliability analyses of these interdependent networks do not consider spatial constraints, which are found important for robustness of infrastructures including power grid and transport systems. Here we study the reliability properties of interdependent lattices with different ranges of spatial constraints. Our study shows that interdependent lattices with strong spatial constraints are more resilient than interdependent Erdös-Rényi networks. There exists an intermediate range of spatial constraints, at which the interdependent lattices have minimal resilience.

  19. A Study on Standard Competition with Network Effect Based on Evolutionary Game Model

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Wang, Bingdong; Li, Kangning

    Owing to networks widespread in modern society, standard competition with network effect is now endowed with new connotation. This paper aims to study the impact of network effect on standard competition; it is organized in the mode of "introduction-model setup-equilibrium analysis-conclusion". Starting from a well-structured model of evolutionary game, it is then extended to a dynamic analysis. This article proves both theoretically and empirically that whether or not a standard can lead the market trends depends on the utility it would bring, and the author also discusses some advisable strategies revolving around the two factors of initial position and border break.

  20. A network approach to policy framing: A case study of the National Aboriginal and Torres Strait Islander Health Plan.

    PubMed

    Browne, Jennifer; de Leeuw, Evelyne; Gleeson, Deborah; Adams, Karen; Atkinson, Petah; Hayes, Rick

    2017-01-01

    Aboriginal health policy in Australia represents a unique policy subsystem comprising a diverse network of Aboriginal-specific and "mainstream" organisations, often with competing interests. This paper describes the network structure of organisations attempting to influence national Aboriginal health policy and examines how the different subgroups within the network approached the policy discourse. Public submissions made as part of a policy development process for the National Aboriginal and Torres Strait Islander Health Plan were analysed using a novel combination of network analysis and qualitative framing analysis. Other organisational actors in the network in each submission were identified, and relationships between them determined; these were used to generate a network map depicting the ties between actors. A qualitative framing analysis was undertaken, using inductive coding of the policy discourses in the submissions. The frames were overlaid with the network map to identify the relationship between the structure of the network and the way in which organisations framed Aboriginal health problems. Aboriginal organisations were central to the network and strongly connected with each other. The network consisted of several densely connected subgroups, whose central nodes were closely connected to one another. Each subgroup deployed a particular policy frame, with a frame of "system dysfunction" also adopted by all but one subgroup. Analysis of submissions revealed that many of the stakeholders in Aboriginal health policy actors are connected to one another. These connections help to drive the policy discourse. The combination of network and framing analysis illuminates competing interests within a network, and can assist advocacy organisations to identify which network members are most influential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks.

    PubMed

    Saad, E W; Prokhorov, D V; Wunsch, D C

    1998-01-01

    Three networks are compared for low false alarm stock trend predictions. Short-term trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves the risk/reward ratio by preventing losses. To predict stock trends, we exploit time delay, recurrent, and probabilistic neural networks (TDNN, RNN, and PNN, respectively), utilizing conjugate gradient and multistream extended Kalman filter training for TDNN and RNN. We also discuss different predictability analysis techniques and perform an analysis of predictability based on a history of daily closing price. Our results indicate that all the networks are feasible, the primary preference being one of convenience.

  2. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    NASA Astrophysics Data System (ADS)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  3. Social network changes and life events across the life span: a meta-analysis.

    PubMed

    Wrzus, Cornelia; Hänel, Martha; Wagner, Jenny; Neyer, Franz J

    2013-01-01

    For researchers and practitioners interested in social relationships, the question remains as to how large social networks typically are, and how their size and composition change across adulthood. On the basis of predictions of socioemotional selectivity theory and social convoy theory, we conducted a meta-analysis on age-related social network changes and the effects of life events on social networks using 277 studies with 177,635 participants from adolescence to old age. Cross-sectional as well as longitudinal studies consistently showed that (a) the global social network increased up until young adulthood and then decreased steadily, (b) both the personal network and the friendship network decreased throughout adulthood, (c) the family network was stable in size from adolescence to old age, and (d) other networks with coworkers or neighbors were important only in specific age ranges. Studies focusing on life events that occur at specific ages, such as transition to parenthood, job entry, or widowhood, demonstrated network changes similar to such age-related network changes. Moderator analyses detected that the type of network assessment affected the reported size of global, personal, and family networks. Period effects on network sizes occurred for personal and friendship networks, which have decreased in size over the last 35 years. Together the findings are consistent with the view that a portion of normative, age-related social network changes are due to normative, age-related life events. We discuss how these patterns of normative social network development inform research in social, evolutionary, cultural, and personality psychology. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  4. A latent class analysis of friendship network types and their predictors in the second half of life.

    PubMed

    Miche, Martina; Huxhold, Oliver; Stevens, Nan L

    2013-07-01

    Friendships contribute uniquely to well-being in (late) adulthood. However, studies on friendship often ignore interindividual differences in friendship patterns. The aim of this study was to investigate such differences including their predictors. The study builds on Matthews's qualitative model of friendship styles. Matthews distinguished 3 approaches to friendship differing by number of friends, duration of friendships, and emotional closeness. We used latent class analysis to identify friendship network types in a sample of middle-aged and older adults aged 40-85 years (N = 1,876). Data came from the German Aging Survey (DEAS). Our analysis revealed 4 distinct friendship network types that were in high congruence with Matthews's typology. We identified these as a discerning style, which focuses on few close relationships, an independent style, which refrains from close engagements, and 2 acquisitive styles that both acquire new friends across their whole life course but differ regarding the emotional closeness of their friendships. Socioeconomic status, gender, health, and network-disturbing and network-sustaining variables predicted affiliations with network types. We argue that future studies should consider a holistic view of friendships in order to better understand the association between friendships and well-being in the second half of life.

  5. Methods for network meta-analysis of continuous outcomes using individual patient data: a case study in acupuncture for chronic pain.

    PubMed

    Saramago, Pedro; Woods, Beth; Weatherly, Helen; Manca, Andrea; Sculpher, Mark; Khan, Kamran; Vickers, Andrew J; MacPherson, Hugh

    2016-10-06

    Network meta-analysis methods, which are an extension of the standard pair-wise synthesis framework, allow for the simultaneous comparison of multiple interventions and consideration of the entire body of evidence in a single statistical model. There are well-established advantages to using individual patient data to perform network meta-analysis and methods for network meta-analysis of individual patient data have already been developed for dichotomous and time-to-event data. This paper describes appropriate methods for the network meta-analysis of individual patient data on continuous outcomes. This paper introduces and describes network meta-analysis of individual patient data models for continuous outcomes using the analysis of covariance framework. Comparisons are made between this approach and change score and final score only approaches, which are frequently used and have been proposed in the methodological literature. A motivating example on the effectiveness of acupuncture for chronic pain is used to demonstrate the methods. Individual patient data on 28 randomised controlled trials were synthesised. Consistency of endpoints across the evidence base was obtained through standardisation and mapping exercises. Individual patient data availability avoided the use of non-baseline-adjusted models, allowing instead for analysis of covariance models to be applied and thus improving the precision of treatment effect estimates while adjusting for baseline imbalance. The network meta-analysis of individual patient data using the analysis of covariance approach is advocated to be the most appropriate modelling approach for network meta-analysis of continuous outcomes, particularly in the presence of baseline imbalance. Further methods developments are required to address the challenge of analysing aggregate level data in the presence of baseline imbalance.

  6. Validation of Networks Derived from Snowball Sampling of Municipal Science Education Actors

    ERIC Educational Resources Information Center

    von der Fehr, Ane; Sølberg, Jan; Bruun, Jesper

    2018-01-01

    Social network analysis (SNA) has been used in many educational studies in the past decade, but what these studies have in common is that the populations in question in most cases are defined and known to the researchers studying the networks. Snowball sampling is an SNA methodology most often used to study hidden populations, for example, groups…

  7. Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria

    PubMed Central

    2013-01-01

    Background As one of the most dominant bacterial groups on Earth, cyanobacteria play a pivotal role in the global carbon cycling and the Earth atmosphere composition. Understanding their molecular responses to environmental perturbations has important scientific and environmental values. Since important biological processes or networks are often evolutionarily conserved, the cross-species transcriptional network analysis offers a useful strategy to decipher conserved and species-specific transcriptional mechanisms that cells utilize to deal with various biotic and abiotic disturbances, and it will eventually lead to a better understanding of associated adaptation and regulatory networks. Results In this study, the Weighted Gene Co-expression Network Analysis (WGCNA) approach was used to establish transcriptional networks for four important cyanobacteria species under metal stress, including iron depletion and high copper conditions. Cross-species network comparison led to discovery of several core response modules and genes possibly essential to metal stress, as well as species-specific hub genes for metal stresses in different cyanobacteria species, shedding light on survival strategies of cyanobacteria responding to different environmental perturbations. Conclusions The WGCNA analysis demonstrated that the application of cross-species transcriptional network analysis will lead to novel insights to molecular response to environmental changes which will otherwise not be achieved by analyzing data from a single species. PMID:23421563

  8. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  9. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  10. Graph analysis of functional brain networks: practical issues in translational neuroscience

    PubMed Central

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-01-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

  11. Dynamic Processes in Network Goods: Modeling, Analysis and Applications

    ERIC Educational Resources Information Center

    Paothong, Arnut

    2013-01-01

    The network externality function plays a very important role in the study of economic network industries. Moreover, the consumer group dynamic interactions coupled with network externality concept is going to play a dominant role in the network goods in the 21st century. The existing literature is stemmed on a choice of externality function with…

  12. Hybrid Network Defense Model Based on Fuzzy Evaluation

    PubMed Central

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture. PMID:24574870

  13. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis

    PubMed Central

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay

    2016-01-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  14. Duality between Time Series and Networks

    PubMed Central

    Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.

    2011-01-01

    Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093

  15. Global Electricity Trade Network: Structures and Implications

    PubMed Central

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  16. Global Electricity Trade Network: Structures and Implications.

    PubMed

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S F; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions.

  17. Surface Acoustic Wave Transducer Study.

    DTIC Science & Technology

    1978-05-01

    B. Network Analysis 48 C. Experimental Results 53 D. Conc lusions 56 VI. Analysis of SAW Propagation in Layered Structures . . . 56 A. Introduction...unLdtrect1ona~ transducer and the associated matching networks . The capacity weighted transducer consists of a layered structure in which the lower...CAPACITIVELY WEIGHTED TRANSDUCERS A. Introduction The capacitive tap weight network transducer (CNN) has been pre- .5 sented in the interim as an

  18. Changes in Social Capital and Networks: A Study of Community-Based Environmental Management through a School-Centered Research Program

    ERIC Educational Resources Information Center

    Thornton, Teresa; Leahy, Jessica

    2012-01-01

    Social network analysis (SNA) is a social science research tool that has not been applied to educational programs. This analysis is critical to documenting the changes in social capital and networks that result from community based K-12 educational collaborations. We review SNA and show an application of this technique in a school-centered,…

  19. Functional network connectivity analysis based on partial correlation in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Guan, Xiaoting; Zhang, Yumei; Li, Jingjing; Chen, Hongyan; Chen, Kewei; Fleisher, Adam; Yao, Li; Wu, Xia

    2009-02-01

    Functional network connectivity (FNC) measures the temporal dependency among the time courses of functional networks. However, the marginal correlation between two networks used in the classic FNC analysis approach doesn't separate the FNC from the direct/indirect effects of other networks. In this study, we proposed an alternative approach based on partial correlation to evaluate the FNC, since partial correlation based FNC can reveal the direct interaction between a pair of networks, removing dependencies or influences from others. Previous studies have demonstrated less task-specific activation and less rest-state activity in Alzheimer's disease (AD). We applied present approach to contrast FNC differences of resting state network (RSN) between AD and normal controls (NC). The fMRI data under resting condition were collected from 15 AD and 16 NC. FNC was calculated for each pair of six RSNs identified using Group ICA, thus resulting in 15 (2 out of 6) pairs for each subject. Partial correlation based FNC analysis indicated 6 pairs significant differences between groups, while marginal correlation only revealed 2 pairs (involved in the partial correlation results). Additionally, patients showed lower correlation than controls among most of the FNC differences. Our results provide new evidences for the disconnection hypothesis in AD.

  20. Performance Analysis of a NASA Integrated Network Array

    NASA Technical Reports Server (NTRS)

    Nessel, James A.

    2012-01-01

    The Space Communications and Navigation (SCaN) Program is planning to integrate its individual networks into a unified network which will function as a single entity to provide services to user missions. This integrated network architecture is expected to provide SCaN customers with the capabilities to seamlessly use any of the available SCaN assets to support their missions to efficiently meet the collective needs of Agency missions. One potential optimal application of these assets, based on this envisioned architecture, is that of arraying across existing networks to significantly enhance data rates and/or link availabilities. As such, this document provides an analysis of the transmit and receive performance of a proposed SCaN inter-network antenna array. From the study, it is determined that a fully integrated internetwork array does not provide any significant advantage over an intra-network array, one in which the assets of an individual network are arrayed for enhanced performance. Therefore, it is the recommendation of this study that NASA proceed with an arraying concept, with a fundamental focus on a network-centric arraying.

  1. A Selective Review of Simulated Driving Studies: Combining Naturalistic and Hybrid Paradigms, Analysis Approaches, and Future Directions

    PubMed Central

    Calhoun, V. D.; Pearlson, G. D.

    2011-01-01

    Naturalistic paradigms such as movie watching or simulated driving that mimic closely real-world complex activities are becoming more widely used in functional magnetic resonance imaging (fMRI) studies both because of their ability to robustly stimulate brain connectivity and the availability of analysis methods which are able to capitalize on connectivity within and among intrinsic brain networks identified both during a task and in resting fMRI data. In this paper we review over a decade of work from our group and others on the use of simulated driving paradigms to study both the healthy brain as well as the effects of acute alcohol administration on functional connectivity during such paradigms. We briefly review our initial work focused on the configuration of the driving simulator and the analysis strategies. We then describe in more detail several recent studies from our group including a hybrid study examining distracted driving and compare resulting data with those from a separate visual oddball task. The analysis of these data were performed primarily using a combination of group independent component analysis (ICA) and the general linear model (GLM) and in the various studies we highlight novel findings which result from an analysis of either 1) within-network connectivity, 2) inter-network connectivity, also called functional network connectivity, or 3) the degree to which the modulation of the various intrinsic networks were associated with the alcohol administration and the task context. Despite the fact that the behavioral effects of alcohol intoxication are relatively well known, there is still much to discover on how acute alcohol exposure modulates brain function in a selective manner, associated with behavioral alterations. Through the above studies, we have learned more regarding the impact of acute alcohol intoxication on organization of the brain’s intrinsic connectivity networks during performance of a complex, real-world cognitive operation. Lessons learned from the above studies have broader applicability to designing ecologically valid, complex, functional MRI cognitive paradigms and incorporating pharmacologic challenges into such studies. Overall, the use of hybrid driving studies is a particularly promising area of neuroscience investigation. PMID:21718791

  2. Ciência & Saúde Coletiva: scientific production analysis and collaborative research networks.

    PubMed

    Conner, Norma; Provedel, Attilio; Maciel, Ethel Leonor Noia

    2017-03-01

    The purpose of this metric and descriptive study was to identify the most productive authors and their collaborative research networks from articles published in Ciência & Saúde Coletiva between, 2005, and 2014. Authors meeting the cutoff criteria of at least 10 articles were considered the most productive authors. VOSviewer and Network Workbench technologies were applied for visual representations of collaborative research networks involving the most productive authors in the period. Initial analysis recovered 2511 distinct articles, with 8920 total authors with an average of 3.55 authors per article. Author analysis revealed 6288 distinct authors, 24 of these authors were identified as the most productive. These 24 authors generated 287 articles with an average of 4.31 authors per article, and represented 8 separate collaborative partnerships, the largest of which had 14 authors, indicating a significant degree of collaboration among these authors. This analysis provides a visual representation of networks of knowledge development in public health and demonstrates the usefulness of VOSviewer and Network Workbench technologies in future research.

  3. Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks

    PubMed Central

    2011-01-01

    Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155

  4. Phase-space networks of geometrically frustrated systems.

    PubMed

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  5. Dim Networks: The Utility of Social Network Analysis for Illuminating Partner Security Force Networks

    DTIC Science & Technology

    2015-12-01

    use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations and selectively target key elements...data to improve SC. 14. SUBJECT TERMS social network analysis, dark networks, light networks, dim networks, security cooperation, Southeast Asia...task may already exist. Recently, the use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations

  6. Comparative Performance of Broadcast Bus Local Area Networks with Voice and Data Traffic

    DTIC Science & Technology

    1987-03-01

    networks [Maxemchuk & Netravali 85, Weinstein & Forgie 831. Others have dealt with economic aspects of voice/data networks [ Gitman & Frank 78] and...88. North Holland, Amsterdam, 1981. [ Gitman & Frank 78] I. Gitman & H. Frank. Economic Analysis of Integrated Voice and Data Networks: A Case Study

  7. Mapping the Field of Educational Administration Research: A Journal Citation Network Analysis

    ERIC Educational Resources Information Center

    Wang, Yinying; Bowers, Alex J.

    2016-01-01

    Purpose: The purpose of this paper is to uncover how knowledge is exchanged and disseminated in the educational administration research literature through the journal citation network. Design/ Methodology/Approach: Drawing upon social network theory and citation network studies in other disciplines, the authors constructed an educational…

  8. Diffusion of Messages from an Electronic Cigarette Brand to Potential Users through Twitter

    PubMed Central

    Chu, Kar-Hai; Unger, Jennifer B.; Allem, Jon-Patrick; Pattarroyo, Monica; Soto, Daniel; Cruz, Tess Boley; Yang, Haodong; Jiang, Ling; Yang, Christopher C.

    2015-01-01

    Objective This study explores the presence and actions of an electronic cigarette (e-cigarette) brand, Blu, on Twitter to observe how marketing messages are sent and diffused through the retweet (i.e., message forwarding) functionality. Retweet networks enable messages to reach additional Twitter users beyond the sender’s local network. We follow messages from their origin through multiple retweets to identify which messages have more reach, and the different users who are exposed. Methods We collected three months of publicly available data from Twitter. A combination of techniques in social network analysis and content analysis were applied to determine the various networks of users who are exposed to e-cigarette messages and how the retweet network can affect which messages spread. Results The Blu retweet network expanded during the study period. Analysis of user profiles combined with network cluster analysis showed that messages of certain topics were only circulated within a community of e-cigarette supporters, while other topics spread further, reaching more general Twitter users who may not support or use e-cigarettes. Conclusions Retweet networks can serve as proxy filters for marketing messages, as Twitter users decide which messages they will continue to diffuse among their followers. As certain e-cigarette messages extend beyond their point of origin, the audience being exposed expands beyond the e-cigarette community. Potential implications for health education campaigns include utilizing Twitter and targeting important gatekeepers or hubs that would maximize message diffusion. PMID:26684746

  9. The Earth Science Research Network as Seen Through Network Analysis of the AGU

    NASA Astrophysics Data System (ADS)

    Narock, T.; Hasnain, S.; Stephan, R.

    2017-12-01

    Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.

  10. Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes

    PubMed Central

    Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik

    2014-01-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815

  11. The College Football Student-Athlete's Academic Experience: Network Analysis and Model Development

    ERIC Educational Resources Information Center

    Young, Kyle McLendon

    2010-01-01

    A grounded theory research study employing network analysis as a means of facilitating the latter stages of the coding process was conducted at a selective university that competes at the highest level of college football. The purpose of the study was to develop a better understanding of how interactive dynamics and controlling mechanisms, such as…

  12. "Studies in Higher Education" 1976-2013: A Retrospective Using Citation Network Analysis

    ERIC Educational Resources Information Center

    Calma, Angelito; Davies, Martin

    2015-01-01

    This paper provides a citation network analysis of the publications in "Studies in Higher Education" from 1976 to 2013 inclusive. This represents the entire history of the journal to date. It analyses the most published authors, most cited authors and most discussed topics using keywords. 1056 articles were taken from Web of…

  13. Which is best for osteoporotic vertebral compression fractures: balloon kyphoplasty, percutaneous vertebroplasty or non-surgical treatment? A study protocol for a Bayesian network meta-analysis

    PubMed Central

    Kan, Shun-Li; Yuan, Zhi-Fang; Chen, Ling-Xiao; Sun, Jing-Cheng; Ning, Guang-Zhi; Feng, Shi-Qing

    2017-01-01

    Introduction Osteoporotic vertebral compression fractures (OVCFs) commonly cause both acute and chronic back pain, substantial spinal deformity, functional disability and decreased quality of life and increase the risk of future vertebral fractures and mortality. Percutaneous vertebroplasty (PVP), balloon kyphoplasty (BK) and non-surgical treatment (NST) are mostly used for the treatment of OVCFs. However, which treatment is preferred is unknown. The purpose of this study is to comprehensively review the literature and ascertain the relative efficacy and safety of BK, PVP and NST for patients with OVCFs using a Bayesian network meta-analysis. Methods and analysis We will comprehensively search PubMed, EMBASE and the Cochrane Central Register of Controlled Trials, to include randomided controlled trials that compare BK, PVP or NST for treating OVCFs. The risk of bias for individual studies will be assessed according to the Cochrane Handbook. Bayesian network meta-analysis will be performed to compare the efficacy and safety of BK, PVP and NST. The quality of evidence will be evaluated by GRADE. Ethics and dissemination Ethical approval and patient consent are not required since this study is a meta-analysis based on published studies. The results of this network meta-analysis will be submitted to a peer-reviewed journal for publication. PROSPERO registration number CRD42016039452; Pre-results. PMID:28093431

  14. Complex Dynamics in Information Sharing Networks

    NASA Astrophysics Data System (ADS)

    Cronin, Bruce

    This study examines the roll-out of an electronic knowledge base in a medium-sized professional services firm over a six year period. The efficiency of such implementation is a key business problem in IT systems of this type. Data from usage logs provides the basis for analysis of the dynamic evolution of social networks around the depository during this time. The adoption pattern follows an "s-curve" and usage exhibits something of a power law distribution, both attributable to network effects, and network position is associated with organisational performance on a number of indicators. But periodicity in usage is evident and the usage distribution displays an exponential cut-off. Further analysis provides some evidence of mathematical complexity in the periodicity. Some implications of complex patterns in social network data for research and management are discussed. The study provides a case study demonstrating the utility of the broad methodological approach.

  15. Using Network Analysis to Characterize Biogeographic Data in a Community Archive

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Bristol, S.

    2017-12-01

    Informative measures are needed to evaluate and compare data from multiple providers in a community-driven data archive. This study explores insights from network theory and other descriptive and inferential statistics to examine data content and application across an assemblage of publically available biogeographic data sets. The data are archived in ScienceBase, a collaborative catalog of scientific data supported by the U.S Geological Survey to enhance scientific inquiry and acuity. In gaining understanding through this investigation and other scientific venues our goal is to improve scientific insight and data use across a spectrum of scientific applications. Network analysis is a tool to reveal patterns of non-trivial topological features in the data that do not exhibit complete regularity or randomness. In this work, network analyses are used to explore shared events and dependencies between measures of data content and application derived from metadata and catalog information and measures relevant to biogeographic study. Descriptive statistical tools are used to explore relations between network analysis properties, while inferential statistics are used to evaluate the degree of confidence in these assessments. Network analyses have been used successfully in related fields to examine social awareness of scientific issues, taxonomic structures of biological organisms, and ecosystem resilience to environmental change. Use of network analysis also shows promising potential to identify relationships in biogeographic data that inform programmatic goals and scientific interests.

  16. Stream network analysis and geomorphic flood plain mapping from orbital and suborbital remote sensing imagery application to flood hazard studies in central Texas

    NASA Technical Reports Server (NTRS)

    Baker, V. R. (Principal Investigator); Holz, R. K.; Hulke, S. D.; Patton, P. C.; Penteado, M. M.

    1975-01-01

    The author has identified the following significant results. Development of a quantitative hydrogeomorphic approach to flood hazard evaluation was hindered by (1) problems of resolution and definition of the morphometric parameters which have hydrologic significance, and (2) mechanical difficulties in creating the necessary volume of data for meaningful analysis. Measures of network resolution such as drainage density and basin Shreve magnitude indicated that large scale topographic maps offered greater resolution than small scale suborbital imagery and orbital imagery. The disparity in network resolution capabilities between orbital and suborbital imagery formats depends on factors such as rock type, vegetation, and land use. The problem of morphometric data analysis was approached by developing a computer-assisted method for network analysis. The system allows rapid identification of network properties which can then be related to measures of flood response.

  17. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  18. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    NASA Astrophysics Data System (ADS)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  19. Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison.

    PubMed

    Kim, Hongkeun

    2016-01-08

    It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evaluation of Coordination of Emergency Response Team through the Social Network Analysis. Case Study: Oil and Gas Refinery.

    PubMed

    Mohammadfam, Iraj; Bastani, Susan; Esaghi, Mahbobeh; Golmohamadi, Rostam; Saee, Ali

    2015-03-01

    The purpose of this study was to examine the cohesions status of the coordination within response teams in the emergency response team (ERT) in a refinery. For this study, cohesion indicators of social network analysis (SNA; density, degree centrality, reciprocity, and transitivity) were utilized to examine the coordination of the response teams as a whole network. The ERT of this research, which was a case study, included seven teams consisting of 152 members. The required data were collected through structured interviews and were analyzed using the UCINET 6.0 Social Network Analysis Program. The results reported a relatively low number of triple connections, poor coordination with key members, and a high level of mutual relations in the network with low density, all implying that there were low cohesions of coordination in the ERT. The results showed that SNA provided a quantitative and logical approach for the examination of the coordination status among response teams and it also provided a main opportunity for managers and planners to have a clear understanding of the presented status. The research concluded that fundamental efforts were needed to improve the presented situations.

  1. Using Social Network Methods to Study School Leadership

    ERIC Educational Resources Information Center

    Pitts, Virginia M.; Spillane, James P.

    2009-01-01

    Social network analysis is increasingly used in the study of policy implementation and school leadership. A key question that remains is that of instrument validity--that is, the question of whether these social network survey instruments measure what they purport to measure. In this paper, we describe our work to examine the validity of the…

  2. Reappraisal of Social Network Research in Educational Contexts.

    ERIC Educational Resources Information Center

    Scherer, Jacqueline

    Three network studies in education are reviewed in order to assess the current "state of the art." New directions for developing social network analysis (SNA) in education, based upon experiences from a study of school-community relations in Pontiac, Michigan, are suggested. One concern for the future of SNA stems from the elevation of…

  3. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    DTIC Science & Technology

    2001-10-25

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  4. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    PubMed

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.

  5. Development and psychometric testing of the clinical networks engagement tool

    PubMed Central

    Hecker, Kent G.; Rabatach, Leora; Noseworthy, Tom W.; White, Deborah E.

    2017-01-01

    Background Clinical networks are being used widely to facilitate large system transformation in healthcare, by engagement of stakeholders throughout the health system. However, there are no available instruments that measure engagement in these networks. Methods The study purpose was to develop and assess the measurement properties of a multiprofessional tool to measure engagement in clinical network initiatives. Based on components of the International Association of Public Participation Spectrum and expert panel review, we developed 40 items for testing. The draft instrument was distributed to 1,668 network stakeholders across different governance levels (leaders, members, support, frontline stakeholders) in 9 strategic clinical networks in Alberta (January to July 2014). With data from 424 completed surveys (25.4% response rate), descriptive statistics, exploratory and confirmatory factor analysis, Pearson correlations, linear regression, multivariate analysis, and Cronbach alpha were conducted to assess reliability and validity of the scores. Results Sixteen items were retained in the instrument. Exploratory factor analysis indicated a four-factor solution and accounted for 85.7% of the total variance in engagement with clinical network initiatives: global engagement, inform (provided with information), involve (worked together to address concerns), and empower (given final decision-making authority). All subscales demonstrated acceptable reliability (Cronbach alpha 0.87 to 0.99). Both the confirmatory factor analysis and regression analysis confirmed that inform, involve, and empower were all significant predictors of global engagement, with involve as the strongest predictor. Leaders had higher mean scores than frontline stakeholders, while members and support staff did not differ in mean scores. Conclusions This study provided foundational evidence for the use of this tool for assessing engagement in clinical networks. Further work is necessary to evaluate engagement in broader network functions and activities; to assess barriers and facilitators of engagement; and, to elucidate how the maturity of networks and other factors influence engagement. PMID:28350834

  6. Information seeking for making evidence-informed decisions: a social network analysis on the staff of a public health department in Canada

    PubMed Central

    2012-01-01

    Background Social network analysis is an approach to study the interactions and exchange of resources among people. It can help understanding the underlying structural and behavioral complexities that influence the process of capacity building towards evidence-informed decision making. A social network analysis was conducted to understand if and how the staff of a public health department in Ontario turn to peers to get help incorporating research evidence into practice. Methods The staff were invited to respond to an online questionnaire inquiring about information seeking behavior, identification of colleague expertise, and friendship status. Three networks were developed based on the 170 participants. Overall shape, key indices, the most central people and brokers, and their characteristics were identified. Results The network analysis showed a low density and localized information-seeking network. Inter-personal connections were mainly clustered by organizational divisions; and people tended to limit information-seeking connections to a handful of peers in their division. However, recognition of expertise and friendship networks showed more cross-divisional connections. Members of the office of the Medical Officer of Health were located at the heart of the department, bridging across divisions. A small group of professional consultants and middle managers were the most-central staff in the network, also connecting their divisions to the center of the information-seeking network. In each division, there were some locally central staff, mainly practitioners, who connected their neighboring peers; but they were not necessarily connected to other experts or managers. Conclusions The methods of social network analysis were useful in providing a systems approach to understand how knowledge might flow in an organization. The findings of this study can be used to identify early adopters of knowledge translation interventions, forming Communities of Practice, and potential internal knowledge brokers. PMID:22591757

  7. Social network analysis of stakeholder networks from two community-based obesity prevention interventions

    PubMed Central

    Nichols, Melanie; Korn, Ariella; Millar, Lynne; Marks, Jennifer; Sanigorski, Andrew; Pachucki, Mark; Swinburn, Boyd; Allender, Steven; Economos, Christina

    2018-01-01

    Introduction Studies of community-based obesity prevention interventions have hypothesized that stakeholder networks are a critical element of effective implementation. This paper presents a quantitative analysis of the interpersonal network structures within a sub-sample of stakeholders from two past successful childhood obesity prevention interventions. Methods Participants were recruited from the stakeholder groups (steering committees) of two completed community-based intervention studies, Romp & Chomp (R&C), Australia (2004-2008) and Shape Up Somerville (SUS), USA (2003-2005). Both studies demonstrated significant reductions of overweight and obesity among children. Members of the steering committees were asked to complete a retrospective social network questionnaire using a roster of other committee members and free recall. Each participant was asked to recall the people with whom they discussed issues related to childhood obesity throughout the intervention period, along with providing the closeness and level of influence of each relationship. Results Networks were reported by 13 participants from the SUS steering committee and 8 participants from the R&C steering committee. On average, participants nominated 16 contacts with whom they discussed issues related to childhood obesity through the intervention, with approximately half of the relationships described as ‘close’ and 30% as ‘influential’. The ‘discussion’ and ‘close’ networks had high clustering and reciprocity, with ties directed to other steering committee members, and to individuals external to the committee. In contrast, influential ties were more prominently directed internal to the steering committee, with higher network centralization, lower reciprocity and lower clustering. Discussion and conclusion Social network analysis provides a method to evaluate the ties within steering committees of community-based obesity prevention interventions. In this study, the network characteristics between a sub-set of stakeholders appeared to be supportive of diffused communication. Future work should prospectively examine stakeholder network structures in a heterogeneous sample of community-based interventions to identify elements most strongly associated with intervention effectiveness. PMID:29702660

  8. Uncovering the effective interval of resolution parameter across multiple community optimization measures

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Cheng, Qing; Mao, He-Jin; Wang, Huanian; Chen, Junhua

    2017-03-01

    The study of community structure is a primary focus of network analysis, which has attracted a large amount of attention. In this paper, we focus on two famous functions, i.e., the Hamiltonian function H and the modularity density measure D, and intend to uncover the effective thresholds of their corresponding resolution parameter γ without resolution limit problem. Two widely used example networks are employed, including the ring network of lumps as well as the ad hoc network. In these two networks, we use discrete convex analysis to study the interval of resolution parameter of H and D that will not cause the misidentification. By comparison, we find that in both examples, for Hamiltonian function H, the larger the value of resolution parameter γ, the less resolution limit the network suffers; while for modularity density D, the less resolution limit the network suffers when we decrease the value of γ. Our framework is mathematically strict and efficient and can be applied in a lot of scientific fields.

  9. Optimizing Pedestrian-Friendly Walking Path for the First and Last Mile Transit Journey by Using the Analytical Network Process (anp) Decision Model and GIS Network Analysis

    NASA Astrophysics Data System (ADS)

    Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.

    2017-10-01

    Every transit trip begins and ends with pedestrian travel. People need to walk to access the transit services. However, their choice to walk depends on many factors including the connectivity, level of comfort and safety. These factors can influence the pleasantness of riding the transit itself, especially during the first/last mile (FLM) journey. This had triggered few studies attempting to measure the pedestrian-friendliness a walking environment can offer. There were studies that implement the pedestrian experience on walking to assess the pedestrian-friendliness of a walking environment. There were also studies that use spatial analysis to measure it based on the path connectivity and accessibility to public facilities and amenities. Though both are good, but the perception-based studies and spatial analysis can be combined to derive more holistic results. This paper proposes a framework for selecting a pedestrian-friendly path for the FLM transit journey by using the two techniques (perception-based and spatial analysis). First, the degree of importance for the factors influencing a good walking environment will be aggregated by using Analytical Network Process (ANP) decision rules based on people's preferences on those factors. The weight will then be used as attributes in the GIS network analysis. Next, the network analysis will be performed to find a pedestrian-friendly walking route based on the priorities aggregated by ANP. It will choose routes passing through the preferred attributes accordingly. The final output is a map showing pedestrian-friendly walking path for the FLM transit journey.

  10. A social network analysis of the goal scoring passing networks of the 2016 European Football Championships.

    PubMed

    Mclean, Scott; Salmon, Paul M; Gorman, Adam D; Stevens, Nicholas J; Solomon, Colin

    2018-02-01

    In the current study, social network analysis (SNA) and notational analysis (NA) methods were applied to examine the goal scoring passing networks (GSPN) for all goals scored at the 2016 European Football Championships. The aim of the study was to determine the GSPN characteristics for the overall tournament, between the group and knock out stages, and for the successful and unsuccessful teams. The study also used degree centrality (DC) metrics as a novel method to determine the relative contributions of the pitch locations involved in the GSPN. To determine changes in GSPN characteristics as a function of changing score line, the analysis considered the match status of the game when goals were scored. There were significant differences for SNA metrics as a function of match status, and for the DC metrics in the comparison of the different pitch locations. There were no differences in the SNA metrics for the GSPN between teams in the group and knock out stages, or between the successful and unsuccessful teams. The results indicate that the GSPN had low values for network density, cohesion, connections, and duration. The networks were direct in terms of pitch zones utilised, where 85% of the GSPN included passes that were played within zones or progressed through the zones towards the goal. SNA and NA metrics were significantly different as a function of changing match status. The current study adds to the previous research on goal scoring in football, and demonstrates a novel method to determine the prominent pitch zones involved in the GSPN. These results have implications for match analysis and the coaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Weighted Networks at the Polish Market

    NASA Astrophysics Data System (ADS)

    Chmiel, A. M.; Sienkiewicz, J.; Suchecki, K.; Hołyst, J. A.

    During the last few years various models of networks [1,2] have become a powerful tool for analysis of complex systems in such distant fields as Internet [3], biology [4], social groups [5], ecology [6] and public transport [7]. Modeling behavior of economical agents is a challenging issue that has also been studied from a network point of view. The examples of such studies are models of financial networks [8], supply chains [9, 10], production networks [11], investment networks [12] or collective bank bankrupcies [13, 14]. Relations between different companies have been already analyzed using several methods: as networks of shareholders [15], networks of correlations between stock prices [16] or networks of board directors [17]. In several cases scaling laws for network characteristics have been observed.

  12. Modular thought in the circuit analysis

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    2018-04-01

    Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.

  13. On spectral techniques in analysis of Boolean networks

    NASA Astrophysics Data System (ADS)

    Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli

    2005-06-01

    In this work we present results that can be used for analysis of Boolean networks. The results utilize Fourier spectra of the functions in the network. An accurate formula is given for Derrida plots of networks of finite size N based on a result on Boolean functions presented in another context. Derrida plots are widely used to examine the stability issues of Boolean networks. For the limit N→∞, we give a computationally simple form that can be used as a good approximation for rather small networks as well. A formula for Derrida plots of random Boolean networks (RBNs) presented earlier in the literature is given an alternative derivation. It is shown that the information contained in the Derrida plot is equal to the average Fourier spectrum of the functions in the network. In the case of random networks the mean Derrida plot can be obtained from the mean spectrum of the functions. The method is applied to real data by using the Boolean functions found in genetic regulatory networks of eukaryotic cells in an earlier study. Conventionally, Derrida plots and stability analysis have been computed with statistical sampling resulting in poorer accuracy.

  14. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  15. Exploring mitochondrial evolution and metabolism organization principles by comparative analysis of metabolic networks.

    PubMed

    Chang, Xiao; Wang, Zhuo; Hao, Pei; Li, Yuan-Yuan; Li, Yi-Xue

    2010-06-01

    The endosymbiotic theory proposed that mitochondrial genomes are derived from an alpha-proteobacterium-like endosymbiont, which was concluded from sequence analysis. We rebuilt the metabolic networks of mitochondria and 22 relative species, and studied the evolution of mitochondrial metabolism at the level of enzyme content and network topology. Our phylogenetic results based on network alignment and motif identification supported the endosymbiotic theory from the point of view of systems biology for the first time. It was found that the mitochondrial metabolic network were much more compact than the relative species, probably related to the higher efficiency of oxidative phosphorylation of the specialized organelle, and the network is highly clustered around the TCA cycle. Moreover, the mitochondrial metabolic network exhibited high functional specificity to the modules. This work provided insight to the understanding of mitochondria evolution, and the organization principle of mitochondrial metabolic network at the network level. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Model based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach

    PubMed Central

    Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif

    2017-01-01

    Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383

  17. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    PubMed

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  18. Reliability analysis in interdependent smart grid systems

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  19. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

    PubMed

    Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut

    2014-01-01

    Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.

  20. The use of nodes attributes in social network analysis with an application to an international trade network

    NASA Astrophysics Data System (ADS)

    de Andrade, Ricardo Lopes; Rêgo, Leandro Chaves

    2018-02-01

    The social network analysis (SNA) studies the interactions among actors in a network formed through some relationship (friendship, cooperation, trade, among others). The SNA is constantly approached from a binary point of view, i.e., it is only observed if a link between two actors is present or not regardless of the strength of this link. It is known that different information can be obtained in weighted and unweighted networks and that the information extracted from weighted networks is more accurate and detailed. Another rarely discussed approach in the SNA is related to the individual attributes of the actors (nodes), because such analysis is usually focused on the topological structure of networks. Features of the nodes are not incorporated in the SNA what implies that there is some loss or misperception of information in those analyze. This paper aims at exploring more precisely the complexities of a social network, initially developing a method that inserts the individual attributes in the topological structure of the network and then analyzing the network in four different ways: unweighted, edge-weighted and two methods for using both edge-weights and nodes' attributes. The international trade network was chosen in the application of this approach, where the nodes represent the countries, the links represent the cash flow in the trade transactions and countries' GDP were chosen as nodes' attributes. As a result, it is possible to observe which countries are most connected in the world economy and with higher cash flows, to point out the countries that are central to the intermediation of the wealth flow and those that are most benefited from being included in this network. We also made a principal component analysis to study which metrics are more influential in describing the data variability, which turn out to be mostly the weighted metrics which include the nodes' attributes.

  1. A local structure model for network analysis

    DOE PAGES

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    2017-04-01

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  2. The Reconstruction and Analysis of Gene Regulatory Networks.

    PubMed

    Zheng, Guangyong; Huang, Tao

    2018-01-01

    In post-genomic era, an important task is to explore the function of individual biological molecules (i.e., gene, noncoding RNA, protein, metabolite) and their organization in living cells. For this end, gene regulatory networks (GRNs) are constructed to show relationship between biological molecules, in which the vertices of network denote biological molecules and the edges of network present connection between nodes (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). Biologists can understand not only the function of biological molecules but also the organization of components of living cells through interpreting the GRNs, since a gene regulatory network is a comprehensively physiological map of living cells and reflects influence of genetic and epigenetic factors (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). In this paper, we will review the inference methods of GRN reconstruction and analysis approaches of network structure. As a powerful tool for studying complex diseases and biological processes, the applications of the network method in pathway analysis and disease gene identification will be introduced.

  3. A local structure model for network analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  4. Large-scale network dysfunction in Major Depressive Disorder: Meta-analysis of resting-state functional connectivity

    PubMed Central

    Kaiser, Roselinde H.; Andrews-Hanna, Jessica R.; Wager, Tor D.; Pizzagalli, Diego A.

    2015-01-01

    IMPORTANCE Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. OBJECTIVE To investigate network dysfunction in MDD through the first meta-analysis of rsFC studies. DATA SOURCES Seed-based voxel-wise rsFC studies comparing MDD with healthy individuals (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web-of-Science, EMBASE), and authors contacted for additional data. STUDY SELECTION Twenty-seven datasets from 25 publications (556 MDD adults/teens; 518 controls) were included in the meta-analysis. DATA EXTRACTION AND SYNTHESIS Coordinates of seed regions-of-interest and between-group effects were extracted. Seeds were categorized into “seed-networks” by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive, or reduced negative, connectivity) or hypoconnectivity (increased negative, or reduced positive, connectivity) with each seed-network. RESULTS MDD was characterized by hypoconnectivity within the frontoparietal network (FN), a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network (DAN) involved in attending to the external environment. MDD was also associated with hyperconnectivity within the default network (DN), a network believed to support internally-oriented and self-referential thought, and hyperconnectivity between FN control systems and regions of DN. Finally, MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. CONCLUSIONS AND RELEVANCE Reduced connectivity within frontoparietal control systems, and imbalanced connectivity between control systems and networks involved in internal- or external-attention, may reflect depressive biases towards internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression. PMID:25785575

  5. Combining network analysis with Cognitive Work Analysis: insights into social organisational and cooperation analysis.

    PubMed

    Houghton, Robert J; Baber, Chris; Stanton, Neville A; Jenkins, Daniel P; Revell, Kirsten

    2015-01-01

    Cognitive Work Analysis (CWA) allows complex, sociotechnical systems to be explored in terms of their potential configurations. However, CWA does not explicitly analyse the manner in which person-to-person communication is performed in these configurations. Consequently, the combination of CWA with Social Network Analysis provides a means by which CWA output can be analysed to consider communication structure. The approach is illustrated through a case study of a military planning team. The case study shows how actor-to-actor and actor-to-function mapping can be analysed, in terms of centrality, to produce metrics of system structure under different operating conditions. In this paper, a technique for building social network diagrams from CWA is demonstrated.The approach allows analysts to appreciate the potential impact of organisational structure on a command system.

  6. Social network analysis of sustainable transportation organizations.

    DOT National Transportation Integrated Search

    2012-07-15

    Studying how organizations communicate with each other can provide important insights into the influence, and policy success of different types of organizations. This study examines the communication networks of 121 organizations promoting sustainabl...

  7. Examination of a Social-Networking Site Activities Scale (SNSAS) Using Rasch Analysis

    ERIC Educational Resources Information Center

    Alhaythami, Hassan; Karpinski, Aryn; Kirschner, Paul; Bolden, Edward

    2017-01-01

    This study examined the psychometric properties of a social-networking site (SNS) activities scale (SNSAS) using Rasch Analysis. Items were also examined with Rasch Principal Components Analysis (PCA) and Differential Item Functioning (DIF) across groups of university students (i.e., males and females from the United States [US] and Europe; N =…

  8. Incorporating spatial constraint in co-activation pattern analysis to explore the dynamics of resting-state networks: An application to Parkinson's disease.

    PubMed

    Zhuang, Xiaowei; Walsh, Ryan R; Sreenivasan, Karthik; Yang, Zhengshi; Mishra, Virendra; Cordes, Dietmar

    2018-05-15

    The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity.

    PubMed

    Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Wager, Tor D; Pizzagalli, Diego A

    2015-06-01

    Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. To investigate network dysfunction in MDD through a meta-analysis of rsFC studies. Seed-based voxelwise rsFC studies comparing individuals with MDD with healthy controls (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE) and authors contacted for additional data. Twenty-seven seed-based voxel-wise rsFC data sets from 25 publications (556 individuals with MDD and 518 healthy controls) were included in the meta-analysis. Coordinates of seed regions of interest and between-group effects were extracted. Seeds were categorized into seed-networks by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive or reduced negative connectivity) or hypoconnectivity (increased negative or reduced positive connectivity) with each seed-network. Major depressive disorder was characterized by hypoconnectivity within the frontoparietal network, a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network involved in attending to the external environment. Major depressive disorder was also associated with hyperconnectivity within the default network, a network believed to support internally oriented and self-referential thought, and hyperconnectivity between frontoparietal control systems and regions of the default network. Finally, the MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. Reduced connectivity within frontoparietal control systems and imbalanced connectivity between control systems and networks involved in internal or external attention may reflect depressive biases toward internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression.

  10. Protocol of GLUcose COntrol Safety and Efficacy in type 2 DIabetes, a NETwork meta-analysis: GLUCOSE DINET protocol-Rational and design.

    PubMed

    Grenet, Guillaume; Lajoinie, Audrey; Ribault, Shams; Nguyen, Gia Bao; Linet, Thomas; Metge, Augustin; Cornu, Catherine; Cucherat, Michel; Moulin, Philippe; Gueyffier, François

    2017-06-01

    The aim of this study was to propose a ranking of the currently available antidiabetic drugs, regarding vascular clinical outcomes, in patients with type 2 diabetes, through a network meta-analysis approach. Randomized clinical trials, regardless of the blinding design, testing contemporary antidiabetic drugs, and considering clinically relevant outcomes in patients with type 2 diabetes mellitus will be included. The primary outcomes of this analysis will be overall mortality, cardiovascular mortality, and major cardiovascular events. Diabetic microangiopathy will be a secondary outcome. Adverse events, hypoglycemia, weight evolution, bariatric surgery, and discontinuation of the treatment will also be recorded. Each drug will be analyzed according to its therapeutic class: biguanide, alpha-glucosidase inhibitors, sulfonylureas, glitazones, glinides, insulin, DPP-4 inhibitors, GLP-1 analogs, and gliflozins. The treatment effect of each drug class will be compared using pairwise meta-analysis and a Bayesian random model network meta-analysis. Sensitivity analyses will be conducted according to the quality of the studies and the glycemic control. The report will follow the PRISMA checklist for network meta-analysis. Results of the search strategy and of the study selection will be presented in a PRISMA compliant flowchart. The treatment effects will be summarized with odds ratio (OR) estimates and their 95% credible intervals. A ranking of the drugs will be proposed. Our network meta-analysis should allow a clinically relevant ranking of the contemporary antidiabetic drugs. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  11. How the study of online collaborative learning can guide teachers and predict students' performance in a medical course.

    PubMed

    Saqr, Mohammed; Fors, Uno; Tedre, Matti

    2018-02-06

    Collaborative learning facilitates reflection, diversifies understanding and stimulates skills of critical and higher-order thinking. Although the benefits of collaborative learning have long been recognized, it is still rarely studied by social network analysis (SNA) in medical education, and the relationship of parameters that can be obtained via SNA with students' performance remains largely unknown. The aim of this work was to assess the potential of SNA for studying online collaborative clinical case discussions in a medical course and to find out which activities correlate with better performance and help predict final grade or explain variance in performance. Interaction data were extracted from the learning management system (LMS) forum module of the Surgery course in Qassim University, College of Medicine. The data were analyzed using social network analysis. The analysis included visual as well as a statistical analysis. Correlation with students' performance was calculated, and automatic linear regression was used to predict students' performance. By using social network analysis, we were able to analyze a large number of interactions in online collaborative discussions and gain an overall insight of the course social structure, track the knowledge flow and the interaction patterns, as well as identify the active participants and the prominent discussion moderators. When augmented with calculated network parameters, SNA offered an accurate view of the course network, each user's position, and level of connectedness. Results from correlation coefficients, linear regression, and logistic regression indicated that a student's position and role in information relay in online case discussions, combined with the strength of that student's network (social capital), can be used as predictors of performance in relevant settings. By using social network analysis, researchers can analyze the social structure of an online course and reveal important information about students' and teachers' interactions that can be valuable in guiding teachers, improve students' engagement, and contribute to learning analytics insights.

  12. Centrality Measures and Academic Achievement in Computerized Classroom Social Networks: An Empirical Investigation

    ERIC Educational Resources Information Center

    Reychav, Iris; Raban, Daphne Ruth; McHaney, Roger

    2018-01-01

    The current empirical study examines relationships between network measures and learning performance from a social network analysis perspective. We collected computerized, networking data to analyze how 401 junior high students connected to classroom peers using text- and video-based material on iPads. Following a period of computerized…

  13. Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William

    2014-01-01

    BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679

  14. Network approach towards understanding the crazing in glassy amorphous polymers

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  15. Automated voxel classification used with atlas-guided diffuse optical tomography for assessment of functional brain networks in young and older adults.

    PubMed

    Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli

    2016-10-01

    Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.

  16. Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP

    NASA Astrophysics Data System (ADS)

    Sahiner, Huseyin

    While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.

  17. Social Network Analysis of the Irish Biotech Industry: Implications for Digital Ecosystems

    NASA Astrophysics Data System (ADS)

    van Egeraat, Chris; Curran, Declan

    This paper presents an analysis of the socio-spatial structures of innovation, collaboration and knowledge flow among SMEs in the Irish biotech sector. The study applies social network analysis to determine the structure of networks of company directors and inventors in the biotech sector. In addition, the article discusses the implications of the findings for the role and contours of a biotech digital ecosystem. To distil these lessons, the research team organised a seminar which was attended by representatives of biotech actors and experts.

  18. Exploring Peer Relationships, Friendships and Group Work Dynamics in Higher Education: Applying Social Network Analysis

    ERIC Educational Resources Information Center

    Mamas, Christoforos

    2018-01-01

    This study primarily applied social network analysis (SNA) to explore the relationship between friendships, peer social interactions and group work dynamics within a higher education undergraduate programme in England. A critical case study design was adopted so as to allow for an in-depth exploration of the students' voice. In doing so, the views…

  19. A Content Analysis Comparing Gender Images in Network Television Commercials Aired in Daytime, Evening, and Weekend Telecasts.

    ERIC Educational Resources Information Center

    Craig, R. Stephen

    A content analysis comparing gender portrayals in 2,209 network television commercials was conducted. Many earlier studies treated television advertising's portrayal of men as unproblematic and excluded ads aimed specifically at men from the study sample. To address this shortcoming, the sample was chosen from three different day parts: (1)…

  20. Social Network Analysis as an Analytic Tool for Task Group Research: A Case Study of an Interdisciplinary Community of Practice

    ERIC Educational Resources Information Center

    Lockhart, Naorah C.

    2017-01-01

    Group counselors commonly collaborate in interdisciplinary settings in health care, substance abuse, and juvenile justice. Social network analysis is a methodology rarely used in counseling research yet has potential to examine task group dynamics in new ways. This case study explores the scholarly relationships among 36 members of an…

  1. Analysis of Spatial Autocorrelation for Optimal Observation Network in Korea

    NASA Astrophysics Data System (ADS)

    Park, S.; Lee, S.; Lee, E.; Park, S. K.

    2016-12-01

    Many studies for improving prediction of high-impact weather have been implemented, such as THORPEX (The Observing System Research and Predictability Experiment), FASTEX (Fronts and Atlantic Storm-Track Experiment), NORPEX (North Pacific Experiment), WSR/NOAA (Winter Storm Reconnaissance), and DOTSTAR (Dropwindsonde Observations for Typhoon Surveillance near the TAiwan Region). One of most important objectives in these studies is to find effects of observation on forecast, and to establish optimal observation network. However, there are lack of such studies on Korea, although Korean peninsula exhibits a highly complex terrain so it is difficult to predict its weather phenomena. Through building the future optimal observation network, it is necessary to increase utilization of numerical weather prediction and improve monitoring·tracking·prediction skills of high-impact weather in Korea. Therefore, we will perform preliminary study to understand the spatial scale for an expansion of observation system through Spatial Autocorrelation (SAC) analysis. In additions, we will develop a testbed system to design an optimal observation network. Analysis is conducted with Automatic Weather System (AWS) rainfall data, global upper air grid observation (i.e., temperature, pressure, humidity), Himawari satellite data (i.e., water vapor) during 2013-2015 of Korea. This study will provide a guideline to construct observation network for not only improving weather prediction skill but also cost-effectiveness.

  2. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  3. An Investigation of Synchrony in Transport Networks

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Alexandrov, Natalia M.; Holroyd, Michael J.

    2007-01-01

    The cumulative degree distributions of transport networks, such as air transportation networks and respiratory neuronal networks, follow power laws. The significance of power laws with respect to other network performance measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis and design of air transportation networks must address network performance in the face of increasing demands and the need to contain and control local network disturbances, such as congestion. Toward this end, we investigate functional relationships that govern the performance of transport networks; for example, the links between the first nontrivial eigenvalue of a network's Laplacian matrix - a quantitative measure of network synchronizability - and other global network parameters. In particular, among networks with a fixed degree distribution and fixed network assortativity (a measure of a network's preference to attach nodes based on a similarity or difference), those with the small eigenvalue are shown to be poor synchronizers, to have much longer shortest paths and to have greater clustering in comparison to those with large. A simulation of a respiratory network adds data to our investigation. This study is a beginning step in developing metrics and design variables for the analysis and active design of air transport networks.

  4. A study of structural properties of gene network graphs for mathematical modeling of integrated mosaic gene networks.

    PubMed

    Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2017-04-01

    Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.

  5. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  6. An analysis of respondent-driven sampling with injecting drug users in a high HIV prevalent state of India.

    PubMed

    Phukan, Sanjib Kumar; Medhi, Gajendra Kumar; Mahanta, Jagadish; Adhikary, Rajatashuvra; Thongamba, Gay; Paranjape, Ramesh S; Akoijam, Brogen S

    2017-07-03

    Personal networks are significant social spaces to spread of HIV or other blood-borne infections among hard-to-reach population, viz., injecting drug users, female sex workers, etc. Sharing of infected needles or syringes among drug users is one of the major routes of HIV transmission in Manipur, a high HIV prevalence state in India. This study was carried out to describe the network characteristics and recruitment patterns of injecting drug users and to assess the association of personal network with injecting risky behaviors in Manipur. A total of 821 injecting drug users were recruited into the study using respondent-driven sampling (RDS) from Bishnupur and Churachandpur districts of Manipur; data on demographic characteristics, HIV risk behaviors, and network size were collected from them. Transition probability matrices and homophily indices were used to describe the network characteristics, and recruitment patterns of injecting drug users. Univariate and multivariate binary logistic regression models were performed to analyze the association between the personal networks and sharing of needles or syringes. The average network size was similar in both the districts. Recruitment analysis indicates injecting drug users were mostly engaged in mixed age group setting for injecting practice. Ever married and new injectors showed lack of in-group ties. Younger injecting drug users had mainly recruited older injecting drug users from their personal network. In logistic regression analysis, higher personal network was found to be significantly associated with increased likelihood of injecting risky behaviors. Because of mixed personal network of new injectors and higher network density associated with HIV exposure, older injecting drug users may act as a link for HIV transmission or other blood-borne infections to new injectors and also to their sexual partners. The information from this study may be useful to understanding the network pattern of injecting drug users for enriching the HIV prevention in this region.

  7. Borrowing of strength and study weights in multivariate and network meta-analysis.

    PubMed

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2017-12-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).

  8. Borrowing of strength and study weights in multivariate and network meta-analysis

    PubMed Central

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2016-01-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254

  9. Network characteristics and patent value-Evidence from the Light-Emitting Diode industry.

    PubMed

    Huang, Way-Ren; Hsieh, Chia-Jen; Chang, Ke-Chiun; Kiang, Yen-Jo; Yuan, Chien-Chung; Chu, Woei-Chyn

    2017-01-01

    This study proposes a different angle to social network analysis that evaluates patent value and explores its influencing factors using the network centrality and network position. This study utilizes a logistic regression model to explore the relationships in the LED industry between patent value and network centrality as measured from out-degree centrality, in-degree centrality, in-closeness centrality, and network position, which is measured from effect size. The empirical result shows that out-degree centrality and in-degree centrality have significant positive effects on patent value and that effect size has a significant negative effect on patent value.

  10. A Social Network Approach to Understanding an Insurgency

    DTIC Science & Technology

    2007-07-01

    and a framework for testing theories regarding struc- tured social relationships.6 Equally relevant is the understanding of a social network approach...A Social Network Approach to Understanding an Insurgency BRIAN REED The study of networks, interactions, and relationships has a long history...characteristics of social network analysis is often counter-intuitive to traditional military thinking, rooted in the efficiency of a hierarchy that

  11. Distributed Teaching Presence and Communicative Patterns in Asynchronous Learning: Name versus Reply Networks

    ERIC Educational Resources Information Center

    Engel, Anna; Coll, Cesar; Bustos, Alfonso

    2013-01-01

    This work explores some methodological challenges in the application of Social Network Analysis (SNA) to the study of "Asynchronous Learning Networks" (ALN). Our interest in the SNA is situated within the framework of the study of Distributed Teaching Presence (DTP), understood as the exercise of educational influence, through a multi-method…

  12. Wayfinding in Social Networks

    NASA Astrophysics Data System (ADS)

    Liben-Nowell, David

    With the recent explosion of popularity of commercial social-networking sites like Facebook and MySpace, the size of social networks that can be studied scientifically has passed from the scale traditionally studied by sociologists and anthropologists to the scale of networks more typically studied by computer scientists. In this chapter, I will highlight a recent line of computational research into the modeling and analysis of the small-world phenomenon - the observation that typical pairs of people in a social network are connected by very short chains of intermediate friends - and the ability of members of a large social network to collectively find efficient routes to reach individuals in the network. I will survey several recent mathematical models of social networks that account for these phenomena, with an emphasis on both the provable properties of these social-network models and the empirical validation of the models against real large-scale social-network data.

  13. Study of Adversarial and Defensive Components in an Experimental Machinery Control Systems Laboratory Environment

    DTIC Science & Technology

    2014-09-01

    prevention system (IPS), capable of performing real-time traffic analysis and packet logging on IP networks [25]. Snort’s features include protocol... analysis and content searching/matching. Snort can detect a variety of attacks and network probes, such as buffer overflows, port scans and OS...www.digitalbond.com/tools/the- rack/jtr-s7-password-cracking/ Kismet Mike Kershaw Cross- platform Open source wireless network detector and wireless sniffer

  14. Mapping one strong 'Ohana: using network analysis and GIS to enhance the effectiveness of a statewide coalition to prevent child abuse and neglect.

    PubMed

    Cardazone, Gina; U Sy, Angela; Chik, Ivan; Corlew, Laura Kate

    2014-06-01

    Network analysis and GIS enable the presentation of meaningful data about organizational relationships and community characteristics, respectively. Together, these tools can provide a concrete representation of the ecological context in which coalitions operate, and may help coalitions identify opportunities for growth and enhanced effectiveness. This study uses network analysis and GIS mapping as part of an evaluation of the One Strong 'Ohana (OSO) campaign. The OSO campaign was launched in 2012 via a partnership between the Hawai'i Children's Trust Fund (HCTF) and the Joyful Heart Foundation. The OSO campaign uses a collaborative approach aimed at increasing public awareness of child maltreatment and protective factors that can prevent maltreatment, as well as enhancing the effectiveness of the HCTF Coalition. This study focuses on three elements of the OSO campaign evaluation: (1) Network analysis exploring the relationships between 24 active Coalition member organizations, (2) GIS mapping of responses to a randomized statewide phone survey (n = 1,450) assessing awareness of factors contributing to child maltreatment, and (3) Combined GIS maps and network data, illustrating opportunities for geographically-targeted coalition building and public awareness activities.

  15. Improving Family Forest Knowledge Transfer through Social Network Analysis

    ERIC Educational Resources Information Center

    Gorczyca, Erika L.; Lyons, Patrick W.; Leahy, Jessica E.; Johnson, Teresa R.; Straub, Crista L.

    2012-01-01

    To better engage Maine's family forest landowners our study used social network analysis: a computational social science method for identifying stakeholders, evaluating models of engagement, and targeting areas for enhanced partnerships. Interviews with researchers associated with a research center were conducted to identify how social network…

  16. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    NASA Astrophysics Data System (ADS)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  17. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

  18. Mobilizing homeless youth for HIV prevention: a social network analysis of the acceptability of a face-to-face and online social networking intervention.

    PubMed

    Rice, Eric; Tulbert, Eve; Cederbaum, Julie; Barman Adhikari, Anamika; Milburn, Norweeta G

    2012-04-01

    The objective of the study is to use social network analysis to examine the acceptability of a youth-led, hybrid face-to-face and online social networking HIV prevention program for homeless youth.Seven peer leaders (PLs) engaged face-to-face homeless youth (F2F) in the creation of digital media projects (e.g. You Tube videos). PL and F2F recruited online youth (OY) to participate in MySpace and Facebook communities where digital media was disseminated and discussed. The resulting social networks were assessed with respect to size, growth, density, relative centrality of positions and homophily of ties. Seven PL, 53 F2F and 103 OY created two large networks. After the first 50 F2F youth participated, online networks entered a rapid growth phase. OY were among the most central youth in these networks. Younger aged persons and females were disproportionately connected to like youth. The program appears highly acceptable to homeless youth. Social network analysis revealed which PL were the most critical to the program and which types of participants (younger youth and females) may require additional outreach efforts in the future.

  19. Mobilizing homeless youth for HIV prevention: a social network analysis of the acceptability of a face-to-face and online social networking intervention

    PubMed Central

    Rice, Eric; Tulbert, Eve; Cederbaum, Julie; Barman Adhikari, Anamika; Milburn, Norweeta G.

    2012-01-01

    The objective of the study is to use social network analysis to examine the acceptability of a youth-led, hybrid face-to-face and online social networking HIV prevention program for homeless youth.Seven peer leaders (PLs) engaged face-to-face homeless youth (F2F) in the creation of digital media projects (e.g. You Tube videos). PL and F2F recruited online youth (OY) to participate in MySpace and Facebook communities where digital media was disseminated and discussed. The resulting social networks were assessed with respect to size, growth, density, relative centrality of positions and homophily of ties. Seven PL, 53 F2F and 103 OY created two large networks. After the first 50 F2F youth participated, online networks entered a rapid growth phase. OY were among the most central youth in these networks. Younger aged persons and females were disproportionately connected to like youth. The program appears highly acceptable to homeless youth. Social network analysis revealed which PL were the most critical to the program and which types of participants (younger youth and females) may require additional outreach efforts in the future. PMID:22247453

  20. Default and Executive Network Coupling Supports Creative Idea Production

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Barry Kaufman, Scott; Silvia, Paul J.

    2015-01-01

    The role of attention in creative cognition remains controversial. Neuroimaging studies have reported activation of brain regions linked to both cognitive control and spontaneous imaginative processes, raising questions about how these regions interact to support creative thought. Using functional magnetic resonance imaging (fMRI), we explored this question by examining dynamic interactions between brain regions during a divergent thinking task. Multivariate pattern analysis revealed a distributed network associated with divergent thinking, including several core hubs of the default (posterior cingulate) and executive (dorsolateral prefrontal cortex) networks. The resting-state network affiliation of these regions was confirmed using data from an independent sample of participants. Graph theory analysis assessed global efficiency of the divergent thinking network, and network efficiency was found to increase as a function of individual differences in divergent thinking ability. Moreover, temporal connectivity analysis revealed increased coupling between default and salience network regions (bilateral insula) at the beginning of the task, followed by increased coupling between default and executive network regions at later stages. Such dynamic coupling suggests that divergent thinking involves cooperation between brain networks linked to cognitive control and spontaneous thought, which may reflect focused internal attention and the top-down control of spontaneous cognition during creative idea production. PMID:26084037

  1. A comparative analysis of the statistical properties of large mobile phone calling networks.

    PubMed

    Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N

    2014-05-30

    Mobile phone calling is one of the most widely used communication methods in modern society. The records of calls among mobile phone users provide us a valuable proxy for the understanding of human communication patterns embedded in social networks. Mobile phone users call each other forming a directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling network. The preferential communication behavior between two connected users can be statistically tested and it results in two Bonferroni networks with statistically validated edges. We perform a comparative analysis of the statistical properties of these four networks, which are constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that these networks share many common structural properties and also exhibit idiosyncratic features when compared with previously studied large mobile calling networks. The empirical findings provide us an intriguing picture of a representative large social network that might shed new lights on the modelling of large social networks.

  2. Short-term memory capacity in networks via the restricted isometry property.

    PubMed

    Charles, Adam S; Yap, Han Lun; Rozell, Christopher J

    2014-06-01

    Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

  3. An ANOVA approach for statistical comparisons of brain networks.

    PubMed

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  4. A Typology to Explain Changing Social Networks Post Stroke.

    PubMed

    Northcott, Sarah; Hirani, Shashivadan P; Hilari, Katerina

    2018-05-08

    Social network typologies have been used to classify the general population but have not previously been applied to the stroke population. This study investigated whether social network types remain stable following a stroke, and if not, why some people shift network type. We used a mixed methods design. Participants were recruited from two acute stroke units. They completed the Stroke Social Network Scale (SSNS) two weeks and six months post stroke and in-depth interviews 8-15 months following the stroke. Qualitative data was analysed using Framework Analysis; k-means cluster analysis was applied to the six-month data set. Eighty-seven participants were recruited, 71 were followed up at six months, and 29 completed in-depth interviews. It was possible to classify all 29 participants into one of the following network types both prestroke and post stroke: diverse; friends-based; family-based; restricted-supported; restricted-unsupported. The main shift that took place post stroke was participants moving out of a diverse network into a family-based one. The friends-based network type was relatively stable. Two network types became more populated post stroke: restricted-unsupported and family-based. Triangulatory evidence was provided by k-means cluster analysis, which produced a cluster solution (for n = 71) with comparable characteristics to the network types derived from qualitative analysis. Following a stroke, a person's social network is vulnerable to change. Explanatory factors for shifting network type included the physical and also psychological impact of having a stroke, as well as the tendency to lose contact with friends rather than family.

  5. Evolution of the research collaboration network in a productive department.

    PubMed

    Katerndahl, David

    2012-02-01

    Understanding collaboration networks can facilitate the research growth of new or developing departments. The purpose of this study was to use social network analysis to understand how the research collaboration network evolved within a productive department. Over a 13-year period, a departmental faculty completed an annual survey describing their research collaborations. Data were analyzed using social network analysis. Network measures focused on connectedness, distance, groupings and heterogeneity of distribution, while measures for the research director and external collaboration focused on centrality and roles within the network. Longitudinal patterns of network collaboration were assessed using Simulation Investigation for Empirical Network Analysis software (University of Groningen, Groningen, Netherlands). Based upon the number of active research projects, research development can be divided into three phases. The initial development phase was characterized by increasing centralization and collaboration focused within a single subject area. During the maintenance phase, measures went through cycles, possibly because of changes in faculty composition. While the research director was not a 'key player' within the network during the first several years, external collaboration played a central role during all phases. Longitudinal analysis found that forming ties was more likely when the opportunity for network closure existed and when those around you are principal investigators (PIs). Initial development of research relied heavily upon a centralized network involving external collaboration; a central position of the research director during research development was not important. Changes in collaboration depended upon faculty gender and tenure track as well as transitivity and the 'popularity of PIs'. © 2011 Blackwell Publishing Ltd.

  6. Effects of Network Characteristics on Reaching the Payoff-Dominant Equilibrium in Coordination Games: A Simulation study.

    PubMed

    Buskens, Vincent; Snijders, Chris

    2016-01-01

    We study how payoffs and network structure affect reaching the payoff-dominant equilibrium in a [Formula: see text] coordination game that actors play with their neighbors in a network. Using an extensive simulation analysis of over 100,000 networks with 2-25 actors, we show that the importance of network characteristics is restricted to a limited part of the payoff space. In this part, we conclude that the payoff-dominant equilibrium is chosen more often if network density is larger, the network is more centralized, and segmentation of the network is smaller. Moreover, it is more likely that heterogeneity in behavior persists if the network is more segmented and less centralized. Persistence of heterogeneous behavior is not related to network density.

  7. Candidate change agent identification among men at risk for HIV infection

    PubMed Central

    Schneider, John A.; McFadden, Rachel B.; Laumann, Edward O.; Kumar, SG Prem; Gandham, Sabitha R.; Oruganti, Ganesh

    2012-01-01

    Despite limited HIV prevention potency, peer-based programs have become one of the most often used HIV prevention approaches internationally. These programs demonstrate a need for greater specificity in peer change agent (PCA) recruitment and social network evaluation. In the present three-phase study based in India (2009–2010), we first explored the nature of friendship among truck-drivers, a group of men at high risk for HIV infection, in order to develop a thorough understanding of the social forces that contribute to and maintain their personal networks. This was accomplished in the first two study phases, through a combination of focus group discussions (n=5 groups), in-depth qualitative interviews (n=20), and personal network analyses (n=25) of truck-drivers to define friendship and deepen our understanding of friendship across geographic spaces. Measures collected in phases I and II included friend typologies, discussion topics, social network influences, advice-giving, and risk reduction. Outcomes were assessed through an iterative process of qualitative textual analysis and social network analysis. The networks of truck-drivers were found to comprise three typologies: close friends, parking lot friends, and other friends. From these data, we developed an algorithmic approach to the identification of a candidate PCA within a high-risk man’s personal network. In stage III we piloted field-use of this approach to identify and recruit PCAs, and further evaluated their potential for intervention through preliminary analysis of the PCA’s own personal networks. An instrument was developed to translate what social network theory and analysis has taught us about egocentric network dynamics into a real-world methodology for identifying intervention-appropriate peers within an individual’s personal network. Our approach can be tailored to the specifications of any high-risk population, and may serve to enhance current peer-based HIV interventions. PMID:22762951

  8. Findings from an Organizational Network Analysis to Support Local Public Health Management

    PubMed Central

    Caldwell, Michael; Rockoff, Maxine L.; Gebbie, Kristine; Carley, Kathleen M.; Bakken, Suzanne

    2008-01-01

    We assessed the feasibility of using organizational network analysis in a local public health organization. The research setting was an urban/suburban county health department with 156 employees. The goal of the research was to study communication and information flow in the department and to assess the technique for public health management. Network data were derived from survey questionnaires. Computational analysis was performed with the Organizational Risk Analyzer. Analysis revealed centralized communication, limited interdependencies, potential knowledge loss through retirement, and possible informational silos. The findings suggested opportunities for more cross program coordination but also suggested the presences of potentially efficient communication paths and potentially beneficial social connectedness. Managers found the findings useful to support decision making. Public health organizations must be effective in an increasingly complex environment. Network analysis can help build public health capacity for complex system management. PMID:18481183

  9. A user exposure based approach for non-structural road network vulnerability analysis

    PubMed Central

    Jin, Lei; Wang, Haizhong; Yu, Le; Liu, Lin

    2017-01-01

    Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i) the rationality of non-structural road network vulnerability, (ii) the metrics for negative consequences accounting for variant road conditions, and (iii) the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for “emotionally hurt” of topological road network. PMID:29176832

  10. Fuzzy Entropy Method for Quantifying Supply Chain Networks Complexity

    NASA Astrophysics Data System (ADS)

    Zhang, Jihui; Xu, Junqin

    Supply chain is a special kind of complex network. Its complexity and uncertainty makes it very difficult to control and manage. Supply chains are faced with a rising complexity of products, structures, and processes. Because of the strong link between a supply chain’s complexity and its efficiency the supply chain complexity management becomes a major challenge of today’s business management. The aim of this paper is to quantify the complexity and organization level of an industrial network working towards the development of a ‘Supply Chain Network Analysis’ (SCNA). By measuring flows of goods and interaction costs between different sectors of activity within the supply chain borders, a network of flows is built and successively investigated by network analysis. The result of this study shows that our approach can provide an interesting conceptual perspective in which the modern supply network can be framed, and that network analysis can handle these issues in practice.

  11. The neural basis of hand gesture comprehension: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie; Andric, Michael; Mathew, Mili M

    2015-10-01

    Gestures play an important role in face-to-face communication and have been increasingly studied via functional magnetic resonance imaging. Although a large amount of data has been provided to describe the neural substrates of gesture comprehension, these findings have never been quantitatively summarized and the conclusion is still unclear. This activation likelihood estimation meta-analysis investigated the brain networks underpinning gesture comprehension while considering the impact of gesture type (co-speech gestures vs. speech-independent gestures) and task demand (implicit vs. explicit) on the brain activation of gesture comprehension. The meta-analysis of 31 papers showed that as hand actions, gestures involve a perceptual-motor network important for action recognition. As meaningful symbols, gestures involve a semantic network for conceptual processing. Finally, during face-to-face interactions, gestures involve a network for social emotive processes. Our finding also indicated that gesture type and task demand influence the involvement of the brain networks during gesture comprehension. The results highlight the complexity of gesture comprehension, and suggest that future research is necessary to clarify the dynamic interactions among these networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In Abundance: Networked Participatory Practices as Scholarship

    ERIC Educational Resources Information Center

    Stewart, Bonnie E.

    2015-01-01

    In an era of knowledge abundance, scholars have the capacity to distribute and share ideas and artifacts via digital networks, yet networked scholarship often remains unrecognized within institutional spheres of influence. Using ethnographic methods including participant observation, interviews, and document analysis, this study investigates…

  13. Paule‐Mandel estimators for network meta‐analysis with random inconsistency effects

    PubMed Central

    Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose

    2017-01-01

    Network meta‐analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta‐analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between‐study heterogeneity. Models for network meta‐analysis with random inconsistency effects have the dual aim of allowing for inconsistencies and estimating average treatment effects across the whole network. To date, two classical estimation methods for fitting this type of model have been developed: a method of moments that extends DerSimonian and Laird's univariate method and maximum likelihood estimation. However, the Paule and Mandel estimator is another recommended classical estimation method for univariate meta‐analysis. In this paper, we extend the Paule and Mandel method so that it can be used to fit models for network meta‐analysis with random inconsistency effects. We apply all three estimation methods to a variety of examples that have been used previously and we also examine a challenging new dataset that is highly heterogenous. We perform a simulation study based on this new example. We find that the proposed Paule and Mandel method performs satisfactorily and generally better than the previously proposed method of moments because it provides more accurate inferences. Furthermore, the Paule and Mandel method possesses some advantages over likelihood‐based methods because it is both semiparametric and requires no convergence diagnostics. Although restricted maximum likelihood estimation remains the gold standard, the proposed methodology is a fully viable alternative to this and other estimation methods. PMID:28585257

  14. A systematic review protocol: social network analysis of tobacco use.

    PubMed

    Maddox, Raglan; Davey, Rachel; Lovett, Ray; van der Sterren, Anke; Corbett, Joan; Cochrane, Tom

    2014-08-08

    Tobacco use is the single most preventable cause of death in the world. Evidence indicates that behaviours such as tobacco use can influence social networks, and that social network structures can influence behaviours. Social network analysis provides a set of analytic tools to undertake methodical analysis of social networks. We will undertake a systematic review to provide a comprehensive synthesis of the literature regarding social network analysis and tobacco use. The review will answer the following research questions: among participants who use tobacco, does social network structure/position influence tobacco use? Does tobacco use influence peer selection? Does peer selection influence tobacco use? We will follow the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) guidelines and search the following databases for relevant articles: CINAHL (Cumulative Index to Nursing and Allied Health Literature); Informit Health Collection; PsycINFO; PubMed/MEDLINE; Scopus/Embase; Web of Science; and the Wiley Online Library. Keywords include tobacco; smoking; smokeless; cigarettes; cigar and 'social network' and reference lists of included articles will be hand searched. Studies will be included that provide descriptions of social network analysis of tobacco use.Qualitative, quantitative and mixed method data that meets the inclusion criteria for the review, including methodological rigour, credibility and quality standards, will be synthesized using narrative synthesis. Results will be presented using outcome statistics that address each of the research questions. This systematic review will provide a timely evidence base on the role of social network analysis of tobacco use, forming a basis for future research, policy and practice in this area. This systematic review will synthesise the evidence, supporting the hypothesis that social network structures can influence tobacco use. This will also include exploring the relationship between social network structure, social network position, peer selection, peer influence and tobacco use across all age groups, and across different demographics. The research will increase our understanding of social networks and their impact on tobacco use, informing policy and practice while highlighting gaps in the literature and areas for further research.

  15. Machine Learning–Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in Arabidopsis[W

    PubMed Central

    Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A.; Wang, Xiangfeng

    2014-01-01

    Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained “informative” genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154

  16. Nursing teams: behind the charts.

    PubMed

    Bae, Sung-Heui; Farasat, Alireza; Nikolaev, Alex; Seo, Jin Young; Foltz-Ramos, Kelly; Fabry, Donna; Castner, Jessica

    2017-07-01

    To examine the nature and characteristics of both received and provided mutual support in a social network within an acute care hospital unit. Current evidence regarding the social network in the health care workforce reveals the nature of social ties. Most studies of social network-related support that measured the characteristics of social support used self-reported perception from workers receiving support. There is a gap in studies that focus on back-up behaviour. The evaluation included a social network analysis of a nursing unit employing 54 staff members. A 12 item electronic survey was administered. Descriptive statistics were calculated using the Statistical Package for the Social Sciences. Social network analyses were carried out using ucinet, r 3.2.3 and gephi. Based on the study findings, as providers of mutual support the nursing staff claimed to give their peers more help than these peers gave them credit for. Those who worked overtime provided more mutual support. Mutual support is a key teamwork characteristic, essential to quality and safety in hospital nursing teams that can be evaluated using social network analysis. Because of a discrepancy regarding receiving and providing help, examining both receiver and provider networks is a superior approach to understanding mutual support. © 2017 John Wiley & Sons Ltd.

  17. Examining the Emergence of Large-Scale Structures in Collaboration Networks: Methods in Sociological Analysis

    ERIC Educational Resources Information Center

    Ghosh, Jaideep; Kshitij, Avinash

    2017-01-01

    This article introduces a number of methods that can be useful for examining the emergence of large-scale structures in collaboration networks. The study contributes to sociological research by investigating how clusters of research collaborators evolve and sometimes percolate in a collaboration network. Typically, we find that in our networks,…

  18. Go Ask Alice: Uncovering the Role of a University Partner in an Informal Science Curriculum Support Network

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.

    2013-01-01

    This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…

  19. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    PubMed

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  20. Functional connectivity mapping of regions associated with self- and other-processing.

    PubMed

    Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B

    2015-04-01

    Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.

  1. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  2. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  3. Targeted agents for patients with advanced/metastatic pancreatic cancer: A protocol for systematic review and network meta-analysis.

    PubMed

    Di, Baoshan; Pan, Bei; Ge, Long; Ma, Jichun; Wu, Yiting; Guo, Tiankang

    2018-03-01

    Pancreatic cancer (PC) is a devastating malignant tumor. Although surgical resection may offer a good prognosis and prolong survival, approximately 80% patients with PC are always diagnosed as unresectable tumor. National Comprehensive Cancer Network's (NCCN) recommended gemcitabine-based chemotherapy as efficient treatment. While, according to recent studies, targeted agents might be a better available option for advanced or metastatic pancreatic cancer patients. The aim of this systematic review and network meta-analysis will be to examine the differences of different targeted interventions for advanced/metastatic PC patients. We will conduct this systematic review and network meta-analysis using Bayesian method and according to Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) statement. To identify relevant studies, 6 electronic databases including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of science, CNKI (Chinese National Knowledge Infrastructure), and CBM (Chinese Biological Medical Database) will be searched. The risk of bias in included randomized controlled trials (RCTs) will be assessed using the Cochrane Handbook version 5.1.0. And we will use GRADE approach to assess the quality of evidence from network meta-analysis. Data will be analyzed using R 3.4.1 software. To the best of our knowledge, this systematic review and network meta-analysis will firstly use both direct and indirect evidence to compare the differences of different targeted agents and targeted agents plus chemotherapy for advanced/metastatic pancreatic cancer patients. This is a protocol of systematic review and meta-analysis, so the ethical approval and patient consent are not required. We will disseminate the results of this review by submitting to a peer-reviewed journal.

  4. Social Media as a Communication Support for Persons with Mild Acquired Cognitive Impairment: A Social Network Analysis Study.

    PubMed

    Eghdam, Aboozar; Hamidi, Ulrika; Bartfai, Aniko; Koch, Sabine

    2017-01-01

    This study was conducted as a social network analysis of a Facebook group for Swedish speaking persons (1310 members) with perceived brain fatigue after an illness or injury to the brain to address the lack of research examining social media and the potential value of on-line support for persons with mild acquired cognitive impairment.

  5. A Complex Network Approach to Distributional Semantic Models

    PubMed Central

    Utsumi, Akira

    2015-01-01

    A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940

  6. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    PubMed

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. BRAPH: A graph theory software for the analysis of brain connectivity

    PubMed Central

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447

  8. BRAPH: A graph theory software for the analysis of brain connectivity.

    PubMed

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.

  9. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    PubMed

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  10. How to become a superhero

    NASA Astrophysics Data System (ADS)

    Gleiser, Pablo M.

    2007-09-01

    We analyze a collaboration network based on the Marvel Universe comic books. First, we consider the system as a binary network, where two characters are connected if they appear in the same publication. The analysis of degree correlations reveals that, in contrast to most real social networks, the Marvel Universe presents a disassortative mixing on the degree. Then, we use a weight measure to study the system as a weighted network. This allows us to find and characterize well defined communities. Through the analysis of the community structure and the clustering as a function of the degree we show that the network presents a hierarchical structure. Finally, we comment on possible mechanisms responsible for the particular motifs observed.

  11. Observations and analysis of self-similar branching topology in glacier networks

    USGS Publications Warehouse

    Bahr, D.B.; Peckham, S.D.

    1996-01-01

    Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

  12. #LancerHealth: Using Twitter and Instagram as a tool in a campus wide health promotion initiative

    PubMed Central

    Santarossa, Sara; Woodruff, Sarah J.

    2018-01-01

    The present study aimed to explore using popular technology that people already have/use as a health promotion tool, in a campus wide social media health promotion initiative, entitled #LancerHealth. During a two-week period the university community was asked to share photos on Twitter and Instagram of What does being healthy on campus look like to you?, while tagging the image with #LancerHealth. All publically tagged media was collected using the Netlytic software and analysed. Text analysis (N=234 records, Twitter; N=141 records, Instagram) revealed that the majority of the conversation was positive and focused on health and the university. Social network analysis, based on five network properties, showed a small network with little interaction. Lastly, photo coding analysis (N=71 unique image) indicated that the majority of the shared images were of physical activity (52%) and on campus (80%). Further research into this area is warranted. Significance for public healthAs digital media continues to become a popular tool among both public health organizations and those in academia, it is important to understand how, why, and which platforms individuals are using in regards to their health. This campus wide, social media health promotion initiative found that people will use popular social networking sites like Twitter and Instagram to share their healthy behaviours. Online social networks, created through social networking sites, can play a role in social diffusion of public health information and health behaviours. In this study, however, social network analysis revealed that there needs to be influential and highly connected individuals sharing information to generate social diffusion. This study can help guide future public health research in the area of social media and its potential influence on health promotion. PMID:29780763

  13. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

  14. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  15. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  16. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  17. GFD-Net: A novel semantic similarity methodology for the analysis of gene networks.

    PubMed

    Díaz-Montaña, Juan J; Díaz-Díaz, Norberto; Gómez-Vela, Francisco

    2017-04-01

    Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Network analysis shining light on parasite ecology and diversity.

    PubMed

    Poulin, Robert

    2010-10-01

    The vast number of species making up natural communities, and the myriad interactions among them, pose great difficulties for the study of community structure, dynamics and stability. Borrowed from other fields, network analysis is making great inroads in community ecology and is only now being applied to host-parasite interactions. It allows a complex system to be examined in its entirety, as opposed to one or a few components at a time. This review explores what network analysis is and how it can be used to investigate parasite ecology. It also summarizes the first findings to emerge from network analyses of host-parasite interactions and identifies promising future directions made possible by this approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Efficiency disparities among community hospitals in Tennessee: do size, location, ownership, and network matter?

    PubMed

    Roh, Chul-Young; Moon, M Jae; Jung, Kwangho

    2013-11-01

    This study examined the impact of ownership, size, location, and network on the relative technical efficiency of community hospitals in Tennessee for the 2002-2006 period, by applying data envelopment analysis (DEA) to measure technical efficiency (decomposed into scale efficiency and pure technical efficiency). Data envelopment analysis results indicate that medium-size hospitals (126-250 beds) are more efficient than their counterparts. Interestingly, public hospitals are significantly more efficient than private and nonprofit hospitals in Tennessee, and rural hospitals are more efficient than urban hospitals. This is the first study to investigate whether hospital networks with other health care providers affect hospital efficiency. Results indicate that community hospitals with networks are more efficient than non-network hospitals. From a management and policy perspective, this study suggests that public policies should induce hospitals to downsize or upsize into optional size, and private hospitals and nonprofit hospitals should change their organizational objectives from profit-driven to quality-driven.

  20. PLUS highway network analysis: Case of in-coming traffic burden in 2013

    NASA Astrophysics Data System (ADS)

    Asrah, Norhaidah Mohd; Djauhari, Maman Abdurachman; Mohamad, Ismail

    2017-05-01

    PLUS highway is the largest concessionary in Malaysia. The study on PLUS highway development, in order to overcome the demand for efficient road transportation, is crucial. If the highways have better interconnected network, it will help the economic activities such as trade to increase. If economic activities are increasing, the benefit will come to the people and state. In its turn, it will help the leaders to plan and conduct national development program. In this paper, network analysis approach will be used to study the in-coming traffic burden during the year of 2013. The highway network linking all the toll plazas is a dynamic network. The objective of this study is to learn and understand about highway network in terms of the in-coming traffic burden entering to each toll plazas along PLUS highway. For this purpose, the filtered network topology based on the forest of all possible minimum spanning trees is used. The in-coming traffic burden of a city is represented by the number of cars passing through the corresponding toll plaza. To interpret the filtered network, centrality measures such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality are used. An overall centrality will be proposed if those four measures are assumed to have the same role. Based on the results, some suggestions and recommendations for PLUS highway network development will be delivered to PLUS highway management.

  1. A Net of Friends: Investigating Friendship by Integrating Attachment Theory and Social Network Analysis.

    PubMed

    Gillath, Omri; Karantzas, Gery C; Selcuk, Emre

    2017-11-01

    The current article focuses on attachment style-an individual difference widely studied in the field of close relationships-and its application to the study of social networks. Specifically, we investigated whether attachment style predicts perception and management of social networks. In Study 1, we examined the associations of attachment style with perceptions of network tie strength and multiplexity. In Studies 2a and 2b, we investigated the association between attachment style and network management skills (initiating, maintaining, and dissolving ties) and whether network management skills mediated the associations of attachment style with network tie strength and multiplexity. In Study 3, experimentally enhancing attachment security made people more likely to initiate and less likely to dissolve social ties (for the latter, especially among those high on avoidance or anxiety). As for maintenance, security priming also increased maintenance; however, mainly among people high on attachment anxiety or low on attachment avoidance.

  2. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma

    PubMed Central

    Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh

    2015-01-01

    Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID:26558755

  3. Transcatheter closure, mini-invasive closure and open-heart surgical repair for treatment of perimembranous ventricular septal defects in children: a protocol for a network meta-analysis.

    PubMed

    You, Tao; Yi, Kang; Ding, Zhao-Hong; Hou, Xiao-Dong; Liu, Xing-Guang; Wang, Xin-Kuan; Ge, Long; Tian, Jin-Hui

    2017-06-21

    Both transcatheter device closure and surgical repair are effective treatments with excellent midterm outcomes for perimembranous ventricular septal defects (pmVSDs) in children. The mini-invasive periventricular device occlusion technique has become prevalent in research and application, but evidence is limited for the assessment of transcatheter closure, mini-invasive closure and open-heart surgical repair. This study comprehensively compares the efficacy, safety and costs of transcatheter closure, mini-invasive closure and open-heart surgical repair for treatment of pmVSDs in children using Bayesian network meta-analysis. A systematic search will be performed using Chinese Biomedical Literature Database, China National Knowledge Infrastructure, PubMed, EMBASE.com and the Cochrane Central Register of Controlled Trials to include random controlled trials, prospective or retrospective cohort studies comparing the efficacy, safety and costs of transcatheter closure, mini-invasive closure and open-heart surgical repair. The risk of bias for the included prospective or retrospective cohort studies will be evaluated according to the risk of bias in non-randomised studies of interventions (ROBINS-I). For random controlled trials, we will use risk of bias tool from Cochrane Handbook version 5.1.0. A Bayesian network meta-analysis will be conducted using R-3.3.2 software. Ethical approval and patient consent are not required since this study is a network meta-analysis based on published trials. The results of this network meta-analysis will be submitted to a peer-reviewed journal for publication. CRD42016053352. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome.

    PubMed

    Chang, Dong W; Hayashi, Shinichi; Gharib, Sina A; Vaisar, Tomas; King, S Trevor; Tsuchiya, Mitsuhiro; Ruzinski, John T; Park, David R; Matute-Bello, Gustavo; Wurfel, Mark M; Bumgarner, Roger; Heinecke, Jay W; Martin, Thomas R

    2008-10-01

    Acute lung injury causes complex changes in protein expression in the lungs. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of pathogenesis and new targets for treatment. The purpose of this study was to examine the changes in protein expression in the bronchoalveolar lavage fluid (BALF) of patients during the course of the acute respiratory distress syndrome (ARDS). Using two-dimensional difference gel electrophoresis (DIGE), the expression of proteins in the BALF from patients on Days 1 (n = 7), 3 (n = 8), and 7 (n = 5) of ARDS were compared with findings in normal volunteers (n = 9). The patterns of protein expression were analyzed using principal component analysis (PCA). Biological processes that were enriched in the BALF proteins of patients with ARDS were identified using Gene Ontology (GO) analysis. Protein networks that model the protein interactions in the BALF were generated using Ingenuity Pathway Analysis. An average of 991 protein spots were detected using DIGE. Of these, 80 protein spots, representing 37 unique proteins in all of the fluids, were identified using mass spectrometry. PCA confirmed important differences between the proteins in the ARDS and normal samples. GO analysis showed that these differences are due to the enrichment of proteins involved in inflammation, infection, and injury. The protein network analysis showed that the protein interactions in ARDS are complex and redundant, and revealed unexpected central components in the protein networks. Proteomics and protein network analysis reveals the complex nature of lung protein interactions in ARDS. The results provide new insights about protein networks in injured lungs, and identify novel mediators that are likely to be involved in the pathogenesis and progression of acute lung injury.

  5. Controllability of flow-conservation networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu

    2017-07-01

    The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.

  6. Scientific Collaboration in Chinese Nursing Research: A Social Network Analysis Study.

    PubMed

    Hou, Xiao-Ni; Hao, Yu-Fang; Cao, Jing; She, Yan-Chao; Duan, Hong-Mei

    2016-01-01

    Collaboration has become very important in research and in technological progress. Coauthorship networks in different fields have been intensively studied as an important type of collaboration in recent years. Yet there are few published reports about collaboration in the field of nursing. This article aimed to reveal the status and identify the key features of collaboration in the field of nursing in China. Using data from the top 10 nursing journals in China from 2003 to 2013, we constructed a nursing scientific coauthorship network using social network analysis. We found that coauthorship was a common phenomenon in the Chinese nursing field. A coauthorship network with 228 subnetworks formed by 1428 nodes was constructed. The network was relatively loose, and most subnetworks were of small scales. Scholars from Shanghai and from military medical system were at the center of the Chinese nursing scientific coauthorship network. We identified the authors' positions and influences according to the research output and centralities of each author. We also analyzed the microstructure and the evolution over time of the maximum subnetwork.

  7. Social network analysis in identifying influential webloggers: A preliminary study

    NASA Astrophysics Data System (ADS)

    Hasmuni, Noraini; Sulaiman, Nor Intan Saniah; Zaibidi, Nerda Zura

    2014-12-01

    In recent years, second generation of internet-based services such as weblog has become an effective communication tool to publish information on the Web. Weblogs have unique characteristics that deserve users' attention. Some of webloggers have seen weblogs as appropriate medium to initiate and expand business. These webloggers or also known as direct profit-oriented webloggers (DPOWs) communicate and share knowledge with each other through social interaction. However, survivability is the main issue among DPOW. Frequent communication with influential webloggers is one of the way to keep survive as DPOW. This paper aims to understand the network structure and identify influential webloggers within the network. Proper understanding of the network structure can assist us in knowing how the information is exchanged among members and enhance survivability among DPOW. 30 DPOW were involved in this study. Degree centrality and betweenness centrality measurement in Social Network Analysis (SNA) were used to examine the strength relation and identify influential webloggers within the network. Thus, webloggers with the highest value of these measurements are considered as the most influential webloggers in the network.

  8. Time Spent on Social Network Sites and Psychological Well-Being: A Meta-Analysis.

    PubMed

    Huang, Chiungjung

    2017-06-01

    This meta-analysis examines the relationship between time spent on social networking sites and psychological well-being factors, namely self-esteem, life satisfaction, loneliness, and depression. Sixty-one studies consisting of 67 independent samples involving 19,652 participants were identified. The mean correlation between time spent on social networking sites and psychological well-being was low at r = -0.07. The correlations between time spent on social networking sites and positive indicators (self-esteem and life satisfaction) were close to 0, whereas those between time spent on social networking sites and negative indicators (depression and loneliness) were weak. The effects of publication outlet, site on which users spent time, scale of time spent, and participant age and gender were not significant. As most included studies used student samples, future research should be conducted to examine this relationship for adults.

  9. Mining protein-protein interaction networks: denoising effects

    NASA Astrophysics Data System (ADS)

    Marras, Elisabetta; Capobianco, Enrico

    2009-01-01

    A typical instrument to pursue analysis in complex network studies is the analysis of the statistical distributions. They are usually computed for measures which characterize network topology, and are aimed at capturing both structural and dynamics aspects. Protein-protein interaction networks (PPIN) have also been studied through several measures. It is in general observed that a power law is expected to characterize scale-free networks. However, mixing the original noise cover with outlying information and other system-dependent fluctuations makes the empirical detection of the power law a difficult task. As a result the uncertainty level increases when looking at the observed sample; in particular, one may wonder whether the computed features may be sufficient to explain the interactome. We then address noise problems by implementing both decomposition and denoising techniques that reduce the impact of factors known to affect the accuracy of power law detection.

  10. Continuously updated network meta-analysis and statistical monitoring for timely decision-making

    PubMed Central

    Nikolakopoulou, Adriani; Mavridis, Dimitris; Egger, Matthias; Salanti, Georgia

    2016-01-01

    Pairwise and network meta-analysis (NMA) are traditionally used retrospectively to assess existing evidence. However, the current evidence often undergoes several updates as new studies become available. In each update recommendations about the conclusiveness of the evidence and the need of future studies need to be made. In the context of prospective meta-analysis future studies are planned as part of the accumulation of the evidence. In this setting, multiple testing issues need to be taken into account when the meta-analysis results are interpreted. We extend ideas of sequential monitoring of meta-analysis to provide a methodological framework for updating NMAs. Based on the z-score for each network estimate (the ratio of effect size to its standard error) and the respective information gained after each study enters NMA we construct efficacy and futility stopping boundaries. A NMA treatment effect is considered conclusive when it crosses an appended stopping boundary. The methods are illustrated using a recently published NMA where we show that evidence about a particular comparison can become conclusive via indirect evidence even if no further trials address this comparison. PMID:27587588

  11. Decreased functional connectivity to posterior cingulate cortex in major depressive disorder.

    PubMed

    Yang, Rui; Gao, Chengge; Wu, Xiaoping; Yang, Junle; Li, Shengbin; Cheng, Hu

    2016-09-30

    The default mode network (DMN) and its interaction with other key networks such as the salience network and executive network are keys to understand psychiatric and neurological disorders including major depressive disorder (MDD). In this study, we combined independent component analysis and seed based connectivity analysis to study the posterior default mode network between 20 patients with MDD and 25 normal controls, as well as pre-treatment and post-treatment conditions of the patients. Both correlated and anti-correlated networks centered at the posterior cingulate cortex (PCC) were examined (PCC+ and PCC-). Our results showed aberrant functional connectivity of the PCC+ and PCC- networks between patients and normal controls. Specifically, normal controls exhibited significantly higher connectivity between the PCC and frontal/temporal regions for the PCC+ network and stronger connectivity strength between the PCC and the insula/middle frontal cortex for the PCC- network. The overall connectivity strength of the PCC+ and PCC- networks was also significantly lower in MDD. Because the PCC is a hub in the DMN that interacts with other networks, our result suggested a stronger interaction between the DMN and the salience network but a weak interaction between the DMN and the executive network in MDD. The treatment using sertraline did increase the functional connectivity strength, especially in the PCC+ network. Despite a large inter-subject variability in the overall connectivity strengths and change of the PCC network in response to the treatment, a high correlation between change of connectivity strength and the Hamilton depression score was observed for both the PCC+ and PCC- network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Assortativity Patterns in Multi-dimensional Inter-organizational Networks: A Case Study of the Humanitarian Relief Sector

    NASA Astrophysics Data System (ADS)

    Zhao, Kang; Ngamassi, Louis-Marie; Yen, John; Maitland, Carleen; Tapia, Andrea

    We use computational tools to study assortativity patterns in multi-dimensional inter-organizational networks on the basis of different node attributes. In the case study of an inter-organizational network in the humanitarian relief sector, we consider not only macro-level topological patterns, but also assortativity on the basis of micro-level organizational attributes. Unlike assortative social networks, this inter-organizational network exhibits disassortative or random patterns on three node attributes. We believe organizations' seek of complementarity is one of the main reasons for the special patterns. Our analysis also provides insights on how to promote collaborations among the humanitarian relief organizations.

  13. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R

    The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less

  14. Transcriptome profiling analysis reveals biomarkers in colon cancer samples of various differentiation

    PubMed Central

    Yu, Tonghu; Zhang, Huaping; Qi, Hong

    2018-01-01

    The aim of the present study was to investigate more colon cancer-related genes in different stages. Gene expression profile E-GEOD-62932 was extracted for differentially expressed gene (DEG) screening. Series test of cluster analysis was used to obtain significant trending models. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, functional and pathway enrichment analysis were processed and a pathway relation network was constructed. Gene co-expression network and gene signal network were constructed for common DEGs. The DEGs with the same trend were clustered and in total, 16 clusters with statistical significance were obtained. The screened DEGs were enriched into small molecule metabolic process and metabolic pathways. The pathway relation network was constructed with 57 nodes. A total of 328 common DEGs were obtained. Gene signal network was constructed with 71 nodes. Gene co-expression network was constructed with 161 nodes and 211 edges. ABCD3, CPT2, AGL and JAM2 are potential biomarkers for the diagnosis of colon cancer. PMID:29928385

  15. Multiplex network analysis of employee performance and employee social relationships

    NASA Astrophysics Data System (ADS)

    Cai, Meng; Wang, Wei; Cui, Ying; Stanley, H. Eugene

    2018-01-01

    In human resource management, employee performance is strongly affected by both formal and informal employee networks. Most previous research on employee performance has focused on monolayer networks that can represent only single categories of employee social relationships. We study employee performance by taking into account the entire multiplex structure of underlying employee social networks. We collect three datasets consisting of five different employee relationship categories in three firms, and predict employee performance using degree centrality and eigenvector centrality in a superimposed multiplex network (SMN) and an unfolded multiplex network (UMN). We use a quadratic assignment procedure (QAP) analysis and a regression analysis to demonstrate that the different categories of relationship are mutually embedded and that the strength of their impact on employee performance differs. We also use weighted/unweighted SMN/UMN to measure the predictive accuracy of this approach and find that employees with high centrality in a weighted UMN are more likely to perform well. Our results shed new light on how social structures affect employee performance.

  16. Using egocentric analysis to investigate professional networks and productivity of graduate students and faculty in life sciences in Japan, Singapore, and Taiwan.

    PubMed

    Hara, Noriko; Chen, Hui; Ynalvez, Marcus Antonius

    2017-01-01

    Prior studies showed that scientists' professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1) examine what factors predict the formation of international ties between faculty and graduate students and 2) identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students) and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students' development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity.

  17. Using egocentric analysis to investigate professional networks and productivity of graduate students and faculty in life sciences in Japan, Singapore, and Taiwan

    PubMed Central

    Chen, Hui; Ynalvez, Marcus Antonius

    2017-01-01

    Prior studies showed that scientists’ professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1) examine what factors predict the formation of international ties between faculty and graduate students and 2) identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students) and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students’ development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity. PMID:29045500

  18. Large-scale De Novo Prediction of Physical Protein-Protein Association*

    PubMed Central

    Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas

    2011-01-01

    Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163

  19. The influence of management and environment on local health department organizational structure and adaptation: a longitudinal network analysis.

    PubMed

    Keeling, Jonathan W; Pryde, Julie A; Merrill, Jacqueline A

    2013-01-01

    The nation's 2862 local health departments (LHDs) are the primary means for assuring public health services for all populations. The objective of this study is to assess the effect of organizational network analysis on management decisions in LHDs and to demonstrate the technique's ability to detect organizational adaptation over time. We conducted a longitudinal network analysis in a full-service LHD with 113 employees serving about 187,000 persons. Network survey data were collected from employees at 3 times: months 0, 8, and 34. At time 1 the initial analysis was presented to LHD managers as an intervention with information on evidence-based management strategies to address the findings. At times 2 and 3 interviews documented managers' decision making and events in the task environment. Response rates for the 3 network analyses were 90%, 97%, and 83%. Postintervention (time 2) results showed beneficial changes in network measures of communication and integration. Screening and case identification increased for chlamydia and for gonorrhea. Outbreak mitigation was accelerated by cross-divisional teaming. Network measurements at time 3 showed LHD adaptation to H1N1 and budget constraints with increased centralization. Task redundancy increased dramatically after National Incident Management System training. Organizational network analysis supports LHD management with empirical evidence that can be translated into strategic decisions about communication, allocation of resources, and addressing knowledge gaps. Specific population health outcomes were traced directly to management decisions based on network evidence. The technique can help managers improve how LHDs function as organizations and contribute to our understanding of public health systems.

  20. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  1. s-core network decomposition: A generalization of k-core analysis to weighted networks

    NASA Astrophysics Data System (ADS)

    Eidsaa, Marius; Almaas, Eivind

    2013-12-01

    A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.

  2. Does the Type of Event Influence How User Interactions Evolve on Twitter?

    PubMed Central

    del Val, Elena; Rebollo, Miguel; Botti, Vicente

    2015-01-01

    The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events. PMID:25961305

  3. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  4. Google matrix of Twitter

    NASA Astrophysics Data System (ADS)

    Frahm, K. M.; Shepelyansky, D. L.

    2012-10-01

    We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter network compared to the networks of Wikipedia and British Universities studied previously. Our analysis allows to locate the top Twitter users which control the information flow on the network. We argue that this small fraction of the whole number of users, which can be viewed as the social network elite, plays the dominant role in the process of opinion formation on the network.

  5. Network characteristics and patent value—Evidence from the Light-Emitting Diode industry

    PubMed Central

    Huang, Way-Ren; Hsieh, Chia-Jen; Chang, Ke-Chiun; Kiang, Yen-Jo; Yuan, Chien-Chung; Chu, Woei-Chyn

    2017-01-01

    This study proposes a different angle to social network analysis that evaluates patent value and explores its influencing factors using the network centrality and network position. This study utilizes a logistic regression model to explore the relationships in the LED industry between patent value and network centrality as measured from out-degree centrality, in-degree centrality, in-closeness centrality, and network position, which is measured from effect size. The empirical result shows that out-degree centrality and in-degree centrality have significant positive effects on patent value and that effect size has a significant negative effect on patent value. PMID:28817587

  6. Social network analysis of the genetic structure of Pacific islanders.

    PubMed

    Terrell, John Edward

    2010-05-01

    Social network analysis (SNA) is a body of theory and a set of relatively new computer-aided techniques used in the analysis and study of relational data. Recent studies of autosomal markers from over 40 human populations in the south-western Pacific have further documented the remarkable degree of genetic diversity in this part of the world. I report additional analysis using SNA methods contributing new controlled observations on the structuring of genetic diversity among these islanders. These SNA mappings are then compared with model-based network expectations derived from the geographic distances among the same populations. Previous studies found that genetic divergence among island Melanesian populations is organised by island, island size/topography, and position (coastal vs. inland), and that similarities observed correlate only weakly with an isolation-by-distance model. Using SNA methods, however, improves the resolution of among population comparison, and suggests that isolation by distance constrained by social networks together with position (coastal/inland) accounts for much of the population structuring observed. The multilocus data now available is also in accord with current thinking on the impact of major biogeographical transformations on prehistoric colonisation and post-settlement human interaction in Oceania.

  7. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  8. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  9. Integration of Spatial and Social Network Analysis in Disease Transmission Studies.

    PubMed

    Emch, Michael; Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2012-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how.

  10. Integration of Spatial and Social Network Analysis in Disease Transmission Studies

    PubMed Central

    Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2013-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how. PMID:24163443

  11. [Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale].

    PubMed

    Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong

    2013-04-01

    In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.

  12. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  13. Community Structure in Online Collegiate Social Networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  14. A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    NASA Technical Reports Server (NTRS)

    Cui, Zhenqian

    1999-01-01

    In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis.

  15. "Geo-statistics methods and neural networks in geophysical applications: A case study"

    NASA Astrophysics Data System (ADS)

    Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.

    2008-12-01

    The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.

  16. The Effect of Social Network Diagrams on a Virtual Network of Practice: A Korean Case

    ERIC Educational Resources Information Center

    Jo, Il-Hyun

    2009-01-01

    This study investigates the effect of the presentation of social network diagrams on virtual team members' interaction behavior via e-mail. E-mail transaction data from 22 software developers in a Korean IT company was analyzed and depicted as diagrams by social network analysis (SNA), and presented to the members as an intervention. Results…

  17. The Structure of Male Adolescent Peer Networks and Risk for Intimate Partner Violence Perpetration: Findings from a National Sample

    ERIC Educational Resources Information Center

    Casey, Erin A.; Beadnell, Blair

    2010-01-01

    Although peer networks have been implicated as influential in a range of adolescent behaviors, little is known about relationships between peer network structures and risk for intimate partner violence (IPV) among youth. This study is a descriptive analysis of how peer network "types" may be related to subsequent risk for IPV…

  18. Reviewing the Differences in Size, Composition and Structure between the Personal Networks of High-and Low-Performing Students

    ERIC Educational Resources Information Center

    Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel

    2015-01-01

    An interesting aspect in the current literature about learning networks is the shift of focus from the understanding of the "whole network" of a course to the examination of the "personal networks" of individual students. This line of research is relatively new, based on small-scale studies and diverse analysis techniques,…

  19. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen.

    PubMed

    Jiang, Lu; Ball, Graham; Hodgman, Charlie; Coules, Anne; Zhao, Han; Lu, Chungui

    2018-03-08

    Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.

  20. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    PubMed

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  1. Social Networks and Mourning: A Comparative Approach.

    ERIC Educational Resources Information Center

    Rubin, Nissan

    1990-01-01

    Suggests using social network theory to explain varieties of mourning behavior in different societies. Compares participation in funeral ceremonies of members of different social circles in American society and Israeli kibbutz. Concludes that results demonstrated validity of concepts deriving from social network analysis in study of bereavement,…

  2. Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study

    PubMed Central

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies. PMID:22412922

  3. Social network types and well-being among South Korean older adults.

    PubMed

    Park, Sojung; Smith, Jacqui; Dunkle, Ruth E

    2014-01-01

    The social networks of older individuals reflect personal life history and cultural factors. Despite these two sources of variation, four similar network types have been identified in Europe, North America, Japan, and China: namely 'restricted', 'family', 'friend', and 'diverse'. This study identified the social network types of Korean older adults and examined differential associations of the network types with well-being. The analysis used data from the 2008 wave of the Korean Longitudinal Study of Aging (KLoSA: N = 4251, age range 65-108). We used a two-step cluster analytical approach to identify network types from seven indicators of network structure and function. Regression models determined associations between network types and well-being outcomes, including life satisfaction and depressive symptomatology. Cluster analysis of indicators of network structure and function revealed four types, including the restricted, friend, and diverse types. Instead of a family type, we found a couple-focused type. The young-old (age 65-74) were more likely to be in the couple-focused type and more of the oldest old (age 85+) belonged to the restricted type. Compared with the restricted network, older adults in all other networks were more likely to report higher life satisfaction and lower depressive symptomatology. Life course and cohort-related factors contribute to similarities across societies in network types and their associations with well-being. Korean-specific life course and socio-historical factors, however, may contribute to our unique findings about network types.

  4. Identifying major depressive disorder using Hurst exponent of resting-state brain networks.

    PubMed

    Wei, Maobin; Qin, Jiaolong; Yan, Rui; Li, Haoran; Yao, Zhijian; Lu, Qing

    2013-12-30

    Resting-state functional magnetic resonance imaging (fMRI) studies of major depressive disorder (MDD) have revealed abnormalities of functional connectivity within or among the resting-state networks. They provide valuable insight into the pathological mechanisms of depression. However, few reports were involved in the "long-term memory" of fMRI signals. This study was to investigate the "long-term memory" of resting-state networks by calculating their Hurst exponents for identifying depressed patients from healthy controls. Resting-state networks were extracted from fMRI data of 20 MDD and 20 matched healthy control subjects. The Hurst exponent of each network was estimated by Range Scale analysis for further discriminant analysis. 95% of depressed patients and 85% of healthy controls were correctly classified by Support Vector Machine with an accuracy of 90%. The right fronto-parietal and default mode network constructed a deficit network (lower memory and more irregularity in MDD), while the left fronto-parietal, ventromedial prefrontal and salience network belonged to an excess network (longer memory in MDD), suggesting these dysfunctional networks may be related to a portion of the complex of emotional and cognitive disturbances. The abnormal "long-term memory" of resting-state networks associated with depression may provide a new possibility towards the exploration of the pathophysiological mechanisms of MDD. © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Evidence for Functional Networks within the Human Brain's White Matter.

    PubMed

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human brain. However, most fMRI studies ignored a major part of the brain, the white-matter, discarding signals from it as arising from noise. Here we use resting-state fMRI data from 176 subjects to show that signals from the human white-matter contain meaningful information. We identify 12 functional networks composed of interacting long-distance white-matter tracts. Moreover, we show that these networks are highly correlated to resting-state gray-matter networks, highlighting their functional role. Our findings enable reinterpretation of many existing fMRI datasets, and suggest a new way to explore the white-matter role in cognition and its disturbances in neuropsychiatric disorders. Copyright © 2017 the authors 0270-6474/17/376394-14$15.00/0.

  6. Extensive cross-talk and global regulators identified from an analysis of the integrated transcriptional and signaling network in Escherichia coli.

    PubMed

    Antiqueira, Lucas; Janga, Sarath Chandra; Costa, Luciano da Fontoura

    2012-11-01

    To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.

  7. The role of social networks in the governance of health systems: the case of eye care systems in Ghana.

    PubMed

    Blanchet, Karl; James, Philip

    2013-03-01

    Efforts have been increasingly invested to improve local health systems' capacities in developing countries. We describe the application of innovative methods based on a social network analysis approach. The findings presented refer to a study carried out between July 2008 and January 2010 in the Brong Ahafo region of Ghana. Social network analysis methods were applied in five different districts using the software package Ucinet to calculate the various properties of the social network of eye care providers. The study focused on the managerial decisions made by Ghanaian district hospital managers about the governance of the health system. The study showed that the health system in the Brong Ahafo region experienced significant changes specifically after a key shock, the departure of an international organization. Several other actors at different levels of the network disappeared, the positions of nurses and hospital managers changed, creating new relationships and power balances that resulted in a change in the general structure of the network. The system shifted from a centralized and dense hierarchical network towards an enclaved network composed of five sub-networks. The new structure was less able to respond to shocks, circulate information and knowledge across scales and implement multi-scale solutions than that which it replaced. Although the network became less resilient, it responded better to the management needs of the hospital managers who now had better access to information, even if this information was partial. The change of the network over time also showed the influence of the international organization on generating links and creating connections between actors from different levels. The findings of the study reveal the importance of creating international health connections between actors working in different spatial scales of the health system.

  8. Social network properties and self-rated health in later life: comparisons from the Korean social life, health, and aging project and the national social life, health and aging project.

    PubMed

    Youm, Yoosik; Laumann, Edward O; Ferraro, Kenneth F; Waite, Linda J; Kim, Hyeon Chang; Park, Yeong-Ran; Chu, Sang Hui; Joo, Won-Tak; Lee, Jin A

    2014-09-14

    This paper has two objectives. Firstly, it provides an overview of the social network module, data collection procedures, and measurement of ego-centric and complete-network properties in the Korean Social Life, Health, and Aging Project (KSHAP). Secondly, it directly compares the KSHAP structure and results to the ego-centric network structure and results of the National Social Life, Health, and Aging Project (NSHAP), which conducted in-home interviews with 3,005 persons 57 to 85 years of age in the United States. The structure of the complete social network of 814 KSHAP respondents living in Township K was measured and examined at two levels of networks. Ego-centric network properties include network size, composition, volume of contact with network members, density, and bridging potential. Complete-network properties are degree centrality, closeness centrality, betweenness centrality, and brokerage role. We found that KSHAP respondents with a smaller number of social network members were more likely to be older and tended to have poorer self-rated health. Compared to the NSHAP, the KSHAP respondents maintained a smaller network size with a greater network density among their members and lower bridging potential. Further analysis of the complete network properties of KSHAP respondents revealed that more brokerage roles inside the same neighborhood (Ri) were significantly associated with better self-rated health. Socially isolated respondents identified by network components had the worst self-rated health. The findings demonstrate the importance of social network analysis for the study of older adults' health status in Korea. The study also highlights the importance of complete-network data and its ability to reveal mechanisms beyond ego-centric network data.

  9. Social network properties and self-rated health in later life: comparisons from the Korean social life, health, and aging project and the national social life, health and aging project

    PubMed Central

    2014-01-01

    Background This paper has two objectives. Firstly, it provides an overview of the social network module, data collection procedures, and measurement of ego-centric and complete-network properties in the Korean Social Life, Health, and Aging Project (KSHAP). Secondly, it directly compares the KSHAP structure and results to the ego-centric network structure and results of the National Social Life, Health, and Aging Project (NSHAP), which conducted in-home interviews with 3,005 persons 57 to 85 years of age in the United States. Methods The structure of the complete social network of 814 KSHAP respondents living in Township K was measured and examined at two levels of networks. Ego-centric network properties include network size, composition, volume of contact with network members, density, and bridging potential. Complete-network properties are degree centrality, closeness centrality, betweenness centrality, and brokerage role. Results We found that KSHAP respondents with a smaller number of social network members were more likely to be older and tended to have poorer self-rated health. Compared to the NSHAP, the KSHAP respondents maintained a smaller network size with a greater network density among their members and lower bridging potential. Further analysis of the complete network properties of KSHAP respondents revealed that more brokerage roles inside the same neighborhood (Ri) were significantly associated with better self-rated health. Socially isolated respondents identified by network components had the worst self-rated health. Conclusions The findings demonstrate the importance of social network analysis for the study of older adults’ health status in Korea. The study also highlights the importance of complete-network data and its ability to reveal mechanisms beyond ego-centric network data. PMID:25217892

  10. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity

    PubMed Central

    2013-01-01

    Background Graph theory has been recently introduced to characterize complex brain networks, making it highly suitable to investigate altered connectivity in neurologic disorders. A current model proposes autism spectrum disorder (ASD) as a developmental disconnection syndrome, supported by converging evidence in both non-syndromic and syndromic ASD. However, the effects of abnormal connectivity on network properties have not been well studied, particularly in syndromic ASD. To close this gap, brain functional networks of electroencephalographic (EEG) connectivity were studied through graph measures in patients with Tuberous Sclerosis Complex (TSC), a disorder with a high prevalence of ASD, as well as in patients with non-syndromic ASD. Methods EEG data were collected from TSC patients with ASD (n = 14) and without ASD (n = 29), from patients with non-syndromic ASD (n = 16), and from controls (n = 46). First, EEG connectivity was characterized by the mean coherence, the ratio of inter- over intra-hemispheric coherence and the ratio of long- over short-range coherence. Next, graph measures of the functional networks were computed and a resilience analysis was conducted. To distinguish effects related to ASD from those related to TSC, a two-way analysis of covariance (ANCOVA) was applied, using age as a covariate. Results Analysis of network properties revealed differences specific to TSC and ASD, and these differences were very consistent across subgroups. In TSC, both with and without a concurrent diagnosis of ASD, mean coherence, global efficiency, and clustering coefficient were decreased and the average path length was increased. These findings indicate an altered network topology. In ASD, both with and without a concurrent diagnosis of TSC, decreased long- over short-range coherence and markedly increased network resilience were found. Conclusions The altered network topology in TSC represents a functional correlate of structural abnormalities and may play a role in the pathogenesis of neurological deficits. The increased resilience in ASD may reflect an excessively degenerate network with local overconnection and decreased functional specialization. This joint study of TSC and ASD networks provides a unique window to common neurobiological mechanisms in autism. PMID:23445896

  11. Introduction to stream network habitat analysis

    USGS Publications Warehouse

    Bartholow, John M.; Waddle, Terry J.

    1986-01-01

    Increasing demands on stream resources by a variety of users have resulted in an increased emphasis on studies that evaluate the cumulative effects of basinwide water management programs. Network habitat analysis refers to the evaluation of an entire river basin (or network) by predicting its habitat response to alternative management regimes. The analysis principally focuses on the biological and hydrological components of the riv er basin, which include both micro- and macrohabitat. (The terms micro- and macrohabitat are further defined and discussed later in this document.) Both conceptual and analytic models are frequently used for simplifying and integrating the various components of the basin. The model predictions can be used in developing management recommendations to preserve, restore, or enhance instream fish habitat. A network habitat analysis should begin with a clear and concise statement of the study objectives and a thorough understanding of the institutional setting in which the study results will be applied. This includes the legal, social, and political considerations inherent in any water management setting. The institutional environment may dictate the focus and level of detail required of the study to a far greater extent than the technical considerations. After the study objectives, including species on interest, and institutional setting are collectively defined, the technical aspects should be scoped to determine the spatial and temporal requirements of the analysis. A macro level approach should be taken first to identify critical biological elements and requirements. Next, habitat availability is quantified much as in a "standard" river segment analysis, with the likely incorporation of some macrohabitat components, such as stream temperature. Individual river segments may be aggregated to represent the networkwide habitat response of alternative water management schemes. Things learned about problems caused or opportunities generated may be fed back to the design of new alternatives, which themselves may be similarly tested. One may get as sophisticated an analysis as the decisionmaking process demands. Figure 1 shows a decision point that asks whether the results from the micro- or macrohabitat models display cumulative or synergistic effects. If they do, then network habitat analysis is the appropriate tool. We are left, however, in a difficult bind. We may not know a priori whether the effects are cumulative or synergistic unless some network-type questions are investigated as part of the scoping process. The next several sections raise issues designed to alert the modeler to relevant questions necessary to address this paradox.

  12. The evolution analysis of listed companies co-holding non-listed financial companies based on two-mode heterogeneous networks

    NASA Astrophysics Data System (ADS)

    An, Pengli; Li, Huajiao; Zhou, Jinsheng; Chen, Fan

    2017-10-01

    Complex network theory is a widely used tool in the empirical research of financial markets. Two-mode and multi-mode networks are new trends and represent new directions in that they can more accurately simulate relationships between entities. In this paper, we use data for Chinese listed companies holding non-listed financial companies over a ten-year period to construct two networks: a two-mode primitive network in which listed companies and non-listed financial companies are considered actors and events, respectively, and a one-mode network that is constructed based on the decreasing-mode method in which listed companies are considered nodes. We analyze the evolution of the listed company co-holding network from several perspectives, including that of the whole network, of information control ability, of implicit relationships, of community division and of small-world characteristics. The results of the analysis indicate that (1) China's developing stock market affects the share-holding condition of listed companies holding non-listed financial companies; (2) the information control ability of co-holding networks is focused on a few listed companies and the implicit relationship of investment preference between listed companies is determined by the co-holding behavior; (3) the community division of the co-holding network is increasingly obvious, as determined by the investment preferences among listed companies; and (4) the small-world characteristics of the co-holding network are increasingly obvious, resulting in reduced communication costs. In this paper, we conduct an evolution analysis and develop an understanding of the factors that influence the listed companies co-holding network. This study will help illuminate research on evolution analysis.

  13. Agricultural science in the wild: a social network analysis of farmer knowledge exchange.

    PubMed

    Wood, Brennon A; Blair, Hugh T; Gray, David I; Kemp, Peter D; Kenyon, Paul R; Morris, Steve T; Sewell, Alison M

    2014-01-01

    Responding to demands for transformed farming practices requires new forms of knowledge. Given their scale and complexity, agricultural problems can no longer be solved by linear transfers in which technology developed by specialists passes to farmers by way of extension intermediaries. Recent research on alternative approaches has focused on the innovation systems formed by interactions between heterogeneous actors. Rather than linear transfer, systems theory highlights network facilitation as a specialized function. This paper contributes to our understanding of such facilitation by investigating the networks in which farmers discuss science. We report findings based on the study of a pastoral farming experiment collaboratively undertaken by a group of 17 farmers and five scientists. Analysis of prior contact and alter sharing between the group's members indicates strongly tied and decentralized networks. Farmer knowledge exchanges about the experiment have been investigated using a mix of quantitative and qualitative methods. Network surveys identified who the farmers contacted for knowledge before the study began and who they had talked to about the experiment by 18 months later. Open-ended interviews collected farmer statements about their most valuable contacts and these statements have been thematically analysed. The network analysis shows that farmers talked about the experiment with 192 people, most of whom were fellow farmers. Farmers with densely tied and occupationally homogeneous contacts grew their networks more than did farmers with contacts that are loosely tied and diverse. Thematic analysis reveals three general principles: farmers value knowledge delivered by persons rather than roles, privilege farming experience, and develop knowledge with empiricist rather than rationalist techniques. Taken together, these findings suggest that farmers deliberate about science in intensive and durable networks that have significant implications for theorizing agricultural innovation. The paper thus concludes by considering the findings' significance for current efforts to rethink agricultural extension.

  14. Weighted gene co‑expression network analysis in identification of key genes and networks for ischemic‑reperfusion remodeling myocardium.

    PubMed

    Guo, Nan; Zhang, Nan; Yan, Liqiu; Lian, Zheng; Wang, Jiawang; Lv, Fengfeng; Wang, Yunfei; Cao, Xufen

    2018-06-14

    Acute myocardial infarction induces ventricular remodeling, which is implicated in dilated heart and heart failure. The pathogenical mechanism of myocardium remodeling remains to be elucidated. The aim of the present study was to identify key genes and networks for myocardium remodeling following ischemia‑reperfusion (IR). First, the mRNA expression data from the National Center for Biotechnology Information database were downloaded to identify differences in mRNA expression of the IR heart at days 2 and 7. Then, weighted gene co‑expression network analysis, hierarchical clustering, protein‑protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to identify key genes and networks for the heart remodeling process following IR. A total of 3,321 differentially expressed genes were identified during the heart remodeling process. A total of 6 modules were identified through gene co‑expression network analysis. GO and KEGG analysis results suggested that each module represented a different biological function and was associated with different pathways. Finally, hub genes of each module were identified by PPI network construction. The present study revealed that heart remodeling following IR is a complicated process, involving extracellular matrix organization, neural development, apoptosis and energy metabolism. The dysregulated genes, including SRC proto‑oncogene, non‑receptor tyrosine kinase, discs large MAGUK scaffold protein 1, ATP citrate lyase, RAN, member RAS oncogene family, tumor protein p53, and polo like kinase 2, may be essential for heart remodeling following IR and may be used as potential targets for the inhibition of heart remodeling following acute myocardial infarction.

  15. Social Networking Analysis: One of the First Steps in Net-Centric Operations

    DTIC Science & Technology

    2005-01-01

    came to form part of current management thought and is transforming the ways of thinking about social relationships in management and leadership in...about social relationships and leadership in government and commercial organizations. This paper will highlight how network analysis has become...relevant to management studies, how it is transforming how we study social relationships , how it can be used to understand how actors interact (especially

  16. Psychophysiological whole-brain network clustering based on connectivity dynamics analysis in naturalistic conditions.

    PubMed

    Raz, Gal; Shpigelman, Lavi; Jacob, Yael; Gonen, Tal; Benjamini, Yoav; Hendler, Talma

    2016-12-01

    We introduce a novel method for delineating context-dependent functional brain networks whose connectivity dynamics are synchronized with the occurrence of a specific psychophysiological process of interest. In this method of context-related network dynamics analysis (CRNDA), a continuous psychophysiological index serves as a reference for clustering the whole-brain into functional networks. We applied CRNDA to fMRI data recorded during the viewing of a sadness-inducing film clip. The method reliably demarcated networks in which temporal patterns of connectivity related to the time series of reported emotional intensity. Our work successfully replicated the link between network connectivity and emotion rating in an independent sample group for seven of the networks. The demarcated networks have clear common functional denominators. Three of these networks overlap with distinct empathy-related networks, previously identified in distinct sets of studies. The other networks are related to sensorimotor processing, language, attention, and working memory. The results indicate that CRNDA, a data-driven method for network clustering that is sensitive to transient connectivity patterns, can productively and reliably demarcate networks that follow psychologically meaningful processes. Hum Brain Mapp 37:4654-4672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links

    NASA Astrophysics Data System (ADS)

    Türker, Ilker; Sulak, Eyüb Ekmel

    2018-02-01

    Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.

  18. Will HIV Vaccination Reshape HIV Risk Behavior Networks? A Social Network Analysis of Drug Users' Anticipated Risk Compensation

    PubMed Central

    Young, April M.; Halgin, Daniel S.; DiClemente, Ralph J.; Sterk, Claire E.; Havens, Jennifer R.

    2014-01-01

    Background An HIV vaccine could substantially impact the epidemic. However, risk compensation (RC), or post-vaccination increase in risk behavior, could present a major challenge. The methodology used in previous studies of risk compensation has been almost exclusively individual-level in focus, and has not explored how increased risk behavior could affect the connectivity of risk networks. This study examined the impact of anticipated HIV vaccine-related RC on the structure of high-risk drug users' sexual and injection risk network. Methods A sample of 433 rural drug users in the US provided data on their risk relationships (i.e., those involving recent unprotected sex and/or injection equipment sharing). Dyad-specific data were collected on likelihood of increasing/initiating risk behavior if they, their partner, or they and their partner received an HIV vaccine. Using these data and social network analysis, a "post-vaccination network" was constructed and compared to the current network on measures relevant to HIV transmission, including network size, cohesiveness (e.g., diameter, component structure, density), and centrality. Results Participants reported 488 risk relationships. Few reported an intention to decrease condom use or increase equipment sharing (4% and 1%, respectively). RC intent was reported in 30 existing risk relationships and vaccination was anticipated to elicit the formation of five new relationships. RC resulted in a 5% increase in risk network size (n = 142 to n = 149) and a significant increase in network density. The initiation of risk relationships resulted in the connection of otherwise disconnected network components, with the largest doubling in size from five to ten. Conclusions This study demonstrates a new methodological approach to studying RC and reveals that behavior change following HIV vaccination could potentially impact risk network connectivity. These data will be valuable in parameterizing future network models that can determine if network-level change precipitated by RC would appreciably impact the vaccine's population-level effectiveness. PMID:24992659

  19. The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity

    PubMed Central

    Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406

  20. Systems Proteomics for Translational Network Medicine

    PubMed Central

    Arrell, D. Kent; Terzic, Andre

    2012-01-01

    Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016

  1. Extending Topological Approaches to Microseismic-Derived 3D Fracture Networks

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Bosman, K.; Baig, A.; Ardakani, E. P.

    2017-12-01

    Fracture topology is important for determining the fluid-flow characteristics of a fracture network. In most unconventional petroleum applications, flow through subsurface fracture networks is the primary source of production, as matrix permeability is often in the nanodarcy range. Typical models of reservoir discrete fracture networks (DFNs) are constructed using fracture orientation and average spacing, without consideration of how the connectivity of the fracture network aids the percolation of hydrocarbons back to the wellbore. Topological approaches to DFN characterization have been developed and extensively used in analysis of outcrop data and aerial photography. Such study of the surface expression of fracture networks is straight-forward, and the physical form of the observed fractures is directly reflected in the parameters used to describe the topology. However, this analysis largely ignores the three-dimensional nature of natural fracture networks, which is difficult to define accurately in geological studies. SMTI analysis of microseismic event distributions can produce DFNs, where each event is represented by a penny-shaped crack with radius and orientation determined from the frequency content of the waveforms and assessment of the slip instability of the potential fracture planes, respectively. Analysis of the geometric relationships between a set of fractures can provide details of intersections between fractures, and thus the topological characteristics of the fracture network. Extension of existing 2D topology approaches to 3D fracture networks is non-trivial. In the 2D case, a fracture intersection is a single point (node), and branches connect adjacent nodes along fractures. For the 3D case, intersection "nodes" become lines, and connecting nodes to find branches becomes more complicated. There are several parameters defined in 2D topology to quantify the connectivity of the fracture network. Equivalent quantities must be defined and calibrated for the 3D case to provide a meaningful measurement of fracture network connectivity. We have developed an approach to analyze the topology of 3D fracture networks derived from microseismic moment tensors. We illustrate the utility of the approach with applications to example datasets from hydraulic fracturing completions.

  2. Seeking Social Capital and Expertise in a Newly-Formed Research Community: A Co-Author Analysis

    ERIC Educational Resources Information Center

    Forte, Christine E.

    2017-01-01

    This exploratory study applies social network analysis techniques to existing, publicly available data to understand collaboration patterns within the co-author network of a federally-funded, interdisciplinary research program. The central questions asked: What underlying social capital structures can be determined about a group of researchers…

  3. Collaboration Levels in Asynchronous Discussion Forums: A Social Network Analysis Approach

    ERIC Educational Resources Information Center

    Luhrs, Cecilia; McAnally-Salas, Lewis

    2016-01-01

    Computer Supported Collaborative Learning literature relates high levels of collaboration to enhanced learning outcomes. However, an agreement on what is considered a high level of collaboration is unclear, especially if a qualitative approach is taken. This study describes how methods of Social Network Analysis were used to design a collaboration…

  4. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  5. College Students' Uses and Perceptions of Social Networking Sites for Health and Wellness Information

    ERIC Educational Resources Information Center

    Zhang, Yan

    2012-01-01

    Introduction: This study explores college students' use of social networking sites for health and wellness information and their perceptions of this use. Method: Thirty-eight college students were interviewed. Analysis: The interview transcripts were analysed using the qualitative content analysis method. Results: Those who had experience using…

  6. Effects in the network topology due to node aggregation: Empirical evidence from the domestic maritime transportation in Greece

    NASA Astrophysics Data System (ADS)

    Tsiotas, Dimitrios; Polyzos, Serafeim

    2018-02-01

    This article studies the topological consistency of spatial networks due to node aggregation, examining the changes captured between different network representations that result from nodes' grouping and they refer to the same socioeconomic system. The main purpose of this study is to evaluate what kind of topological information remains unalterable due to node aggregation and, further, to develop a framework for linking the data of an empirical network with data of its socioeconomic environment, when the latter are available for hierarchically higher levels of aggregation, in an effort to promote the interdisciplinary research in the field of complex network analysis. The research question is empirically tested on topological and socioeconomic data extracted from the Greek Maritime Network (GMN) that is modeled as a non-directed multilayer (bilayer) graph consisting of a port-layer, where nodes represent ports, and a prefecture-layer, where nodes represent coastal and insular prefectural groups of ports. The analysis highlights that the connectivity (degree) of the GMN is the most consistent aspect of this multilayer network, which preserves both the topological and the socioeconomic information through node aggregation. In terms of spatial analysis and regional science, such effects illustrate the effectiveness of the prefectural administrative division for the functionality of the Greek maritime transportation system. Overall, this approach proposes a methodological framework that can enjoy further applications about the grouping effects induced on the network topology, providing physical, technical, socioeconomic, strategic or political insights.

  7. Impact parameter determination in experimental analysis using a neural network

    NASA Astrophysics Data System (ADS)

    Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J. B.; Wada, R.; Xiao, B.; David, C.; Freslier, M.; Aichelin, J.

    1997-03-01

    A neural network is used to determine the impact parameter in 40Ca+40Ca reactions. The effect of the detection efficiency as well as the model dependence of the training procedure has been studied carefully. An overall improvement of the impact parameter determination of 25% is obtained using this technique. The analysis of Amphora 40Ca+40Ca data at 35 MeV per nucleon using a neural network shows two well-separated classes of events among the selected ``complete'' events.

  8. Graph theoretical analysis of functional network for comprehension of sign language.

    PubMed

    Liu, Lanfang; Yan, Xin; Liu, Jin; Xia, Mingrui; Lu, Chunming; Emmorey, Karen; Chu, Mingyuan; Ding, Guosheng

    2017-09-15

    Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t (24) =2.379, p=0.026), small-worldness (t (24) =2.604, p=0.016) and modularity (t (24) =3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Can Social Network Analysis Help Address the High Rates of Bacterial Sexually Transmitted Infections in Saskatchewan?

    PubMed

    Trecker, Molly A; Dillon, Jo-Anne R; Lloyd, Kathy; Hennink, Maurice; Jolly, Ann; Waldner, Cheryl

    2017-06-01

    Saskatchewan has one of the highest rates of gonorrhea among the Canadian provinces-more than double the national rate. In light of these high rates, and the growing threat of untreatable infections, improved understanding of gonorrhea transmission dynamics in the province and evaluation of the current system and tools for disease control are important. We extracted data from a cross-sectional sample of laboratory-confirmed gonorrhea cases between 2003 and 2012 from the notifiable disease files of the Regina Qu'Appelle Health Region. The database was stratified by calendar year, and social network analysis combined with statistical modeling was used to identify associations between measures of connection within the network and the odds of repeat gonorrhea and risk of coinfection with chlamydia at the time of diagnosis. Networks were highly fragmented. Younger age and component size were positively associated with being coinfected with chlamydia. Being coinfected, reporting sex trade involvement, and component size were all positively associated with repeat infection. This is the first study to apply social network analysis to gonorrhea transmission in Saskatchewan and contributes important information about the relationship of network connections to gonorrhea/chlamydia coinfection and repeat gonorrhea. This study also suggests several areas for change of systems-related factors that could greatly increase understanding of social networks and enhance the potential for bacterial sexually transmitted infection control in Saskatchewan.

  10. [Co-author and keyword networks and their clustering appearance in preventive medicine fields in Korea: analysis of papers in the Journal of Preventive Medicine and Public Health, 1991~2006].

    PubMed

    Jung, Minsoo; Chung, Dongjun

    2008-01-01

    This study evaluated knowledge structure and its effect factor by analysis of co-author and keyword networks in Korea's preventive medicine sector. The data was extracted from 873 papers listed in the Journal of Preventive Medicine and Public Health, and was transformed into a co-author and keyword matrix where the existence of a 'link' was judged by impact factors calculated by the weight value of the role and rate of author participation. Research achievement was dependent upon the author's status and networking index, as analyzed by neighborhood degree, multidimensional scaling, correspondence analysis, and multiple regression. Co-author networks developed as randomness network in the center of a few high-productivity researchers. In particular, closeness centrality was more developed than degree centrality. Also, power law distribution was discovered in impact factor and research productivity by college affiliation. In multiple regression, the effect of the author's role was significant in both the impact factor calculated by the participatory rate and the number of listed articles. However, the number of listed articles varied by sex. This study shows that the small world phenomenon exists in co-author and keyword networks in a journal, as in citation networks. However, the differentiation of knowledge structure in the field of preventive medicine was relatively restricted by specialization.

  11. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    PubMed

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    PubMed

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. A Baseline for the Multivariate Comparison of Resting-State Networks

    PubMed Central

    Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.

    2011-01-01

    As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040

  14. Analysis of connectivity map: Control to glutamate injured and phenobarbital treated neuronal network

    NASA Astrophysics Data System (ADS)

    Kamal, Hassan; Kanhirodan, Rajan; Srinivas, Kalyan V.; Sikdar, Sujit K.

    2010-04-01

    We study the responses of a cultured neural network when it is exposed to epileptogenesis glutamate injury causing epilepsy and subsequent treatment with phenobarbital by constructing connectivity map of neurons using correlation matrix. This study is particularly useful in understanding the pharmaceutical drug induced changes in the neuronal network properties with insights into changes at the systems biology level.

  15. Technology forecasting for space communication. [analysis of systems for application to Spacecraft Data and Tracking Network

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine techniques for application to space communication. The subjects considered are as follows: (1) optical communication systems, (2) laser communications for data acquisition networks, (3) spacecraft data rate requirements, (4) telemetry, command, and data handling, (5) spacecraft tracking and data network antenna and preamplifier cost tradeoff study, and (6) spacecraft communication terminal evaluation.

  16. When is hub gene selection better than standard meta-analysis?

    PubMed

    Langfelder, Peter; Mischel, Paul S; Horvath, Steve

    2013-01-01

    Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.

  17. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  18. The QAP weighted network analysis method and its application in international services trade

    NASA Astrophysics Data System (ADS)

    Xu, Helian; Cheng, Long

    2016-04-01

    Based on QAP (Quadratic Assignment Procedure) correlation and complex network theory, this paper puts forward a new method named QAP Weighted Network Analysis Method. The core idea of the method is to analyze influences among relations in a social or economic group by building a QAP weighted network of networks of relations. In the QAP weighted network, a node depicts a relation and an undirect edge exists between any pair of nodes if there is significant correlation between relations. As an application of the QAP weighted network, we study international services trade by using the QAP weighted network, in which nodes depict 10 kinds of services trade relations. After the analysis of international services trade by QAP weighted network, and by using distance indicators, hierarchy tree and minimum spanning tree, the conclusion shows that: Firstly, significant correlation exists in all services trade, and the development of any one service trade will stimulate the other nine. Secondly, as the economic globalization goes deeper, correlations in all services trade have been strengthened continually, and clustering effects exist in those services trade. Thirdly, transportation services trade, computer and information services trade and communication services trade have the most influence and are at the core in all services trade.

  19. PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification.

    PubMed

    Vadigepalli, Rajanikanth; Chakravarthula, Praveen; Zak, Daniel E; Schwaber, James S; Gonye, Gregory E

    2003-01-01

    We have developed a bioinformatics tool named PAINT that automates the promoter analysis of a given set of genes for the presence of transcription factor binding sites. Based on coincidence of regulatory sites, this tool produces an interaction matrix that represents a candidate transcriptional regulatory network. This tool currently consists of (1) a database of promoter sequences of known or predicted genes in the Ensembl annotated mouse genome database, (2) various modules that can retrieve and process the promoter sequences for binding sites of known transcription factors, and (3) modules for visualization and analysis of the resulting set of candidate network connections. This information provides a substantially pruned list of genes and transcription factors that can be examined in detail in further experimental studies on gene regulation. Also, the candidate network can be incorporated into network identification methods in the form of constraints on feasible structures in order to render the algorithms tractable for large-scale systems. The tool can also produce output in various formats suitable for use in external visualization and analysis software. In this manuscript, PAINT is demonstrated in two case studies involving analysis of differentially regulated genes chosen from two microarray data sets. The first set is from a neuroblastoma N1E-115 cell differentiation experiment, and the second set is from neuroblastoma N1E-115 cells at different time intervals following exposure to neuropeptide angiotensin II. PAINT is available for use as an agent in BioSPICE simulation and analysis framework (www.biospice.org), and can also be accessed via a WWW interface at www.dbi.tju.edu/dbi/tools/paint/.

  20. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  1. Ties that Bind: A Social Network Approach To Understanding Student Integration and Persistence.

    ERIC Educational Resources Information Center

    Thomas, Scott L.

    2000-01-01

    This study used a social network paradigm to examine college student integration of 329 college freshmen at a private liberal arts college. Analysis of the structural aspects of students' on-campus associations found differential effects of various social network characteristics on student commitment and persistence. (DB)

  2. Social Networks, Communication Styles, and Learning Performance in a CSCL Community

    ERIC Educational Resources Information Center

    Cho, Hichang; Gay, Geri; Davidson, Barry; Ingraffea, Anthony

    2007-01-01

    The aim of this study is to empirically investigate the relationships between communication styles, social networks, and learning performance in a computer-supported collaborative learning (CSCL) community. Using social network analysis (SNA) and longitudinal survey data, we analyzed how 31 distributed learners developed collaborative learning…

  3. Transfer of Training: Adding Insight through Social Network Analysis

    ERIC Educational Resources Information Center

    Van den Bossche, Piet; Segers, Mien

    2013-01-01

    This article reviews studies which apply a social network perspective to examine transfer of training. The theory behind social networks focuses on the interpersonal mechanisms and social structures that exist among interacting units such as people within an organization. A premise of this perspective is that individual's behaviors and outcomes…

  4. Hierarchical Network Models for Education Research: Hierarchical Latent Space Models

    ERIC Educational Resources Information Center

    Sweet, Tracy M.; Thomas, Andrew C.; Junker, Brian W.

    2013-01-01

    Intervention studies in school systems are sometimes aimed not at changing curriculum or classroom technique, but rather at changing the way that teachers, teaching coaches, and administrators in schools work with one another--in short, changing the professional social networks of educators. Current methods of social network analysis are…

  5. Sociospatial Knowledge Networks: Appraising Community as Place.

    ERIC Educational Resources Information Center

    Skelly, Anne H.; Arcury, Thomas A.; Gesler, Wilbert M.; Cravey, Altha J.; Dougherty, Molly C.; Washburn, Sarah A.; Nash, Sally

    2002-01-01

    A new theory of geographical analysis--sociospatial knowledge networks--provides a framework for understanding the social and spatial locations of a community's health knowledge and beliefs. This theory is guiding an ethnographic study of health beliefs, knowledge, and knowledge networks in a diverse rural community at high risk for type-2…

  6. Time-Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery.

    PubMed

    Gong, Anmin; Liu, Jianping; Chen, Si; Fu, Yunfa

    2018-01-01

    To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.

  7. Deriving percentage study weights in multi-parameter meta-analysis models: with application to meta-regression, network meta-analysis and one-stage individual participant data models.

    PubMed

    Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L

    2017-01-01

    Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).

  8. Analyzing big data in social media: Text and network analyses of an eating disorder forum.

    PubMed

    Moessner, Markus; Feldhege, Johannes; Wolf, Markus; Bauer, Stephanie

    2018-05-10

    Social media plays an important role in everyday life of young people. Numerous studies claim negative effects of social media and media in general on eating disorder risk factors. Despite the availability of big data, only few studies have exploited the possibilities so far in the field of eating disorders. Methods for data extraction, computerized content analysis, and network analysis will be introduced. Strategies and methods will be exemplified for an ad-hoc dataset of 4,247 posts and 34,118 comments by 3,029 users of the proed forum on Reddit. Text analysis with latent Dirichlet allocation identified nine topics related to social support and eating disorder specific content. Social network analysis describes the overall communication patterns, and could identify community structures and most influential users. A linear network autocorrelation model was applied to estimate associations in language among network neighbors. The supplement contains R code for data extraction and analyses. This paper provides an introduction to investigating social media data, and will hopefully stimulate big data social media research in eating disorders. When applied in real-time, the methods presented in this manuscript could contribute to improving the safety of ED-related online communication. © 2018 Wiley Periodicals, Inc.

  9. [Social Networks of Children with Mentally Ill Parents].

    PubMed

    Stiawa, Maja; Kilian, Reinhold

    2017-10-01

    Social Networks of Children with Mentally Ill Parents Mental illness of parents can be a load situation for children. Supporting social relations might be an important source in such a situation. Social relations can be shown by social network analysis. Studies about social networks and mental health indicate differences regarding structure and potential for support when compared with social networks of healthy individuals. If and how mental illness of parents has an impact on their children's network is widely unknown. This systematic review shows methods and results of studies about social networks of children with mentally ill parents. By systematic search in electronic databases as well as manual search, two studies were found who met the target criteria. Both studies were conducted in the USA. Results of studies indicate that parental mental illness affects the state of mental health and social networks of children. Symptomatology of children changed due to perceived social support of network contacts. Impact of social support and strong network contacts seems to depend on age of children and the family situation. That's why support offers should be adapt to children's age. Focusing on social networks as potential resource for support and needs of the family affected seems appropriate during treatment.

  10. Coarse graining for synchronization in directed networks

    NASA Astrophysics Data System (ADS)

    Zeng, An; Lü, Linyuan

    2011-05-01

    Coarse-graining model is a promising way to analyze and visualize large-scale networks. The coarse-grained networks are required to preserve statistical properties as well as the dynamic behaviors of the initial networks. Some methods have been proposed and found effective in undirected networks, while the study on coarse-graining directed networks lacks of consideration. In this paper we proposed a path-based coarse-graining (PCG) method to coarse grain the directed networks. Performing the linear stability analysis of synchronization and numerical simulation of the Kuramoto model on four kinds of directed networks, including tree networks and variants of Barabási-Albert networks, Watts-Strogatz networks, and Erdös-Rényi networks, we find our method can effectively preserve the network synchronizability.

  11. Three-dimensional evidence network plot system: covariate imbalances and effects in network meta-analysis explored using a new software tool.

    PubMed

    Batson, Sarah; Score, Robert; Sutton, Alex J

    2017-06-01

    The aim of the study was to develop the three-dimensional (3D) evidence network plot system-a novel web-based interactive 3D tool to facilitate the visualization and exploration of covariate distributions and imbalances across evidence networks for network meta-analysis (NMA). We developed the 3D evidence network plot system within an AngularJS environment using a third party JavaScript library (Three.js) to create the 3D element of the application. Data used to enable the creation of the 3D element for a particular topic are inputted via a Microsoft Excel template spreadsheet that has been specifically formatted to hold these data. We display and discuss the findings of applying the tool to two NMA examples considering multiple covariates. These two examples have been previously identified as having potentially important covariate effects and allow us to document the various features of the tool while illustrating how it can be used. The 3D evidence network plot system provides an immediate, intuitive, and accessible way to assess the similarity and differences between the values of covariates for individual studies within and between each treatment contrast in an evidence network. In this way, differences between the studies, which may invalidate the usual assumptions of an NMA, can be identified for further scrutiny. Hence, the tool facilitates NMA feasibility/validity assessments and aids in the interpretation of NMA results. The 3D evidence network plot system is the first tool designed specifically to visualize covariate distributions and imbalances across evidence networks in 3D. This will be of primary interest to systematic review and meta-analysis researchers and, more generally, those assessing the validity and robustness of an NMA to inform reimbursement decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. FUNCTIONAL NETWORK ARCHITECTURE OF READING-RELATED REGIONS ACROSS DEVELOPMENT

    PubMed Central

    Vogel, Alecia C.; Church, Jessica A.; Power, Jonathan D.; Miezin, Fran M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    Reading requires coordinated neural processing across a large number of brain regions. Studying relationships between reading-related regions informs the specificity of information processing performed in each region. Here, regions of interest were defined from a meta-analysis of reading studies, including a developmental study. Relationships between regions were defined as temporal correlations in spontaneous fMRI signal; i.e., resting state functional connectivity MRI (RSFC). Graph theory based network analysis defined the community structure of the “reading-related” regions. Regions sorted into previously defined communities, such as the fronto-parietal and cingulo-opercular control networks, and the default mode network. This structure was similar in children, and no apparent “reading” community was defined in any age group. These results argue against regions, or sets of regions, being specific or preferential for reading, instead indicating that regions used in reading are also used in a number of other tasks. PMID:23506969

  13. Dynamics and nature of support in the personal networks of people with type 2 diabetes living in Europe: qualitative analysis of network properties.

    PubMed

    Kennedy, Anne; Rogers, Anne; Vassilev, Ivaylo; Todorova, Elka; Roukova, Poli; Foss, Christina; Knutsen, Ingrid; Portillo, Mari Carmen; Mujika, Agurtzane; Serrano-Gil, Manuel; Lionis, Christos; Angelaki, Agapi; Ratsika, Nikoleta; Koetsenruijter, Jan; Wensing, Michel

    2015-12-01

    Living with and self-managing a long-term condition implicates a diversity of networked relationships. This qualitative study examines the personal communities of support of people with type 2 diabetes. We conducted 170 biographical interviews in six European countries (Bulgaria, Greece, the Netherlands, Norway, Spain and UK) to explore social support and networks. Analysis was framed with reference to three predetermined social support mechanisms: the negotiation of support enabling engagement with healthy practices, navigation to sources of support and collective efficacy. Each interview was summarized to describe navigation and negotiation of participants' networks and the degree of collective efficacy. Analysis highlighted the similarities and differences between countries and provided insights into capacities of networks to support self-management. The network support mechanisms were identified in all interviews, and losses and gains in networks impacted on diabetes management. There were contextual differences between countries, most notably the impact of financial austerity on network dynamics. Four types of network are suggested: generative, diverse and beneficial to individuals; proxy, network members undertook diabetes management work; avoidant, support not engaged with; and struggling, diabetes management a struggle or not prioritized. It is possible to differentiate types of network input to living with and managing diabetes. Recognizing the nature of active, generative aspects of networks support is likely to have relevance for self-management support interventions either through encouraging continuing development and maintenance of these contacts or intervening to address struggling networks through introducing the means to connect people to additional sources of support. © 2014 John Wiley & Sons Ltd.

  14. Community evolution mining and analysis in social network

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Tian, Yuan; Liu, Xueyan; Jian, Jie

    2017-03-01

    With the development of digital and network technology, various social platforms emerge. These social platforms have greatly facilitated access to information, attracting more and more users. They use these social platforms every day to work, study and communicate, so every moment social platforms are generating massive amounts of data. These data can often be modeled as complex networks, making large-scale social network analysis possible. In this paper, the existing evolution classification model of community has been improved based on community evolution relationship over time in dynamic social network, and the Evolution-Tree structure is proposed which can show the whole life cycle of the community more clearly. The comparative test result shows that the improved model can excavate the evolution relationship of the community well.

  15. Contemporary Network Proteomics and Its Requirements

    PubMed Central

    Goh, Wilson Wen Bin; Wong, Limsoon; Sng, Judy Chia Ghee

    2013-01-01

    The integration of networks with genomics (network genomics) is a familiar field. Conventional network analysis takes advantage of the larger coverage and relative stability of gene expression measurements. Network proteomics on the other hand has to develop further on two critical factors: (1) expanded data coverage and consistency, and (2) suitable reference network libraries, and data mining from them. Concerning (1) we discuss several contemporary themes that can improve data quality, which in turn will boost the outcome of downstream network analysis. For (2), we focus on network analysis developments, specifically, the need for context-specific networks and essential considerations for localized network analysis. PMID:24833333

  16. Evaluation of shoulder function in clavicular fracture patients after six surgical procedures based on a network meta-analysis.

    PubMed

    Huang, Shou-Guo; Chen, Bo; Lv, Dong; Zhang, Yong; Nie, Feng-Feng; Li, Wei; Lv, Yao; Zhao, Huan-Li; Liu, Hong-Mei

    2017-01-01

    Purpose Using a network meta-analysis approach, our study aims to develop a ranking of the six surgical procedures, that is, Plate, titanium elastic nail (TEN), tension band wire (TBW), hook plate (HP), reconstruction plate (RP) and Knowles pin, by comparing the post-surgery constant shoulder scores in patients with clavicular fracture (CF). Methods A comprehensive search of electronic scientific literature databases was performed to retrieve publications investigating surgical procedures in CF, with the stringent eligible criteria, and clinical experimental studies of high quality and relevance to our area of interest were selected for network meta-analysis. Statistical analyses were conducted using Stata 12.0. Results A total of 19 studies met our inclusion criteria were eventually enrolled into our network meta-analysis, representing 1164 patients who had undergone surgical procedures for CF (TEN group = 240; Plate group = 164; TBW group  =  180; RP group  =  168; HP group  =  245; Knowles pin group  =  167). The network meta-analysis results revealed that RP significantly improved constant shoulder score in patients with CF when compared with TEN, and the post-operative constant shoulder scores in patients with CF after Plate, TBW, HP, Knowles pin and TEN were similar with no statistically significant differences. The treatment relative ranking of predictive probabilities of constant shoulder scores in patients with CF after surgery revealed the surface under the cumulative ranking curves (SUCRA) value is the highest in RP. Conclusion The current network meta-analysis suggests that RP may be the optimum surgical treatment among six inventions for patients with CF, and it can improve the shoulder score of patients with CF. Implications for Rehabilitation RP improves shoulder joint function after surgical procedure. RP achieves stability with minimal complications after surgery. RP may be the optimum surgical treatment for rehabilitation of patients with CF.

  17. Robust network data envelopment analysis approach to evaluate the efficiency of regional electricity power networks under uncertainty.

    PubMed

    Fathollah Bayati, Mohsen; Sadjadi, Seyed Jafar

    2017-01-01

    In this paper, new Network Data Envelopment Analysis (NDEA) models are developed to evaluate the efficiency of regional electricity power networks. The primary objective of this paper is to consider perturbation in data and develop new NDEA models based on the adaptation of robust optimization methodology. Furthermore, in this paper, the efficiency of the entire networks of electricity power, involving generation, transmission and distribution stages is measured. While DEA has been widely used to evaluate the efficiency of the components of electricity power networks during the past two decades, there is no study to evaluate the efficiency of the electricity power networks as a whole. The proposed models are applied to evaluate the efficiency of 16 regional electricity power networks in Iran and the effect of data uncertainty is also investigated. The results are compared with the traditional network DEA and parametric SFA methods. Validity and verification of the proposed models are also investigated. The preliminary results indicate that the proposed models were more reliable than the traditional Network DEA model.

  18. Robust network data envelopment analysis approach to evaluate the efficiency of regional electricity power networks under uncertainty

    PubMed Central

    Sadjadi, Seyed Jafar

    2017-01-01

    In this paper, new Network Data Envelopment Analysis (NDEA) models are developed to evaluate the efficiency of regional electricity power networks. The primary objective of this paper is to consider perturbation in data and develop new NDEA models based on the adaptation of robust optimization methodology. Furthermore, in this paper, the efficiency of the entire networks of electricity power, involving generation, transmission and distribution stages is measured. While DEA has been widely used to evaluate the efficiency of the components of electricity power networks during the past two decades, there is no study to evaluate the efficiency of the electricity power networks as a whole. The proposed models are applied to evaluate the efficiency of 16 regional electricity power networks in Iran and the effect of data uncertainty is also investigated. The results are compared with the traditional network DEA and parametric SFA methods. Validity and verification of the proposed models are also investigated. The preliminary results indicate that the proposed models were more reliable than the traditional Network DEA model. PMID:28953900

  19. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  20. Controllability and observability analysis for vertex domination centrality in directed networks

    PubMed Central

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  1. Analysis of critical operating conditions for LV distribution networks with microgrids

    NASA Astrophysics Data System (ADS)

    Zehir, M. A.; Batman, A.; Sonmez, M. A.; Font, A.; Tsiamitros, D.; Stimoniaris, D.; Kollatou, T.; Bagriyanik, M.; Ozdemir, A.; Dialynas, E.

    2016-11-01

    Increase in the penetration of Distributed Generation (DG) in distribution networks, raises the risk of voltage limit violations while contributing to line losses. Especially in low voltage (LV) distribution networks (secondary distribution networks), impacts of active power flows on the bus voltages and on the network losses are more dominant. As network operators must meet regulatory limitations, they have to take into account the most critical operating conditions in their systems. In this study, it is aimed to present the impact of the worst operation cases of LV distribution networks comprising microgrids. Simulation studies are performed on a field data-based virtual test-bed. The simulations are repeated for several cases consisting different microgrid points of connection with different network loading and microgrid supply/demand conditions.

  2. Analysis of structural patterns in the brain with the complex network approach

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.

  3. Selection of neural network structure for system error correction of electro-optical tracker system with horizontal gimbal

    NASA Astrophysics Data System (ADS)

    Liu, Xing-fa; Cen, Ming

    2007-12-01

    Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.

  4. Network meta-analysis of disconnected networks: How dangerous are random baseline treatment effects?

    PubMed

    Béliveau, Audrey; Goring, Sarah; Platt, Robert W; Gustafson, Paul

    2017-12-01

    In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification. However, in disconnected networks, fixed baseline treatment effects do not work (unless extra assumptions are made), as there is not enough information in the data to update the prior distribution on the contrasts between disconnected treatments. In this paper, we investigate to what extent the use of random baseline treatment effects is dangerous in disconnected networks. We take 2 publicly available datasets of connected networks and disconnect them in multiple ways. We then compare the results of treatment comparisons obtained from a Bayesian contrast-based analysis of each disconnected network using random normally distributed and exchangeable baseline treatment effects to those obtained from a Bayesian contrast-based analysis of their initial connected network using fixed baseline treatment effects. For the 2 datasets considered, we found that the use of random baseline treatment effects in disconnected networks was appropriate. Because those datasets were not cherry-picked, there should be other disconnected networks that would benefit from being analyzed using random baseline treatment effects. However, there is also a risk for the normality and exchangeability assumption to be inappropriate in other datasets even though we have not observed this situation in our case study. We provide code, so other datasets can be investigated. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Analyzing Collaborative Governance Through Social Network Analysis: A Case Study of River Management Along the Waal River in The Netherlands.

    PubMed

    Fliervoet, J M; Geerling, G W; Mostert, E; Smits, A J M

    2016-02-01

    Until recently, governmental organizations played a dominant and decisive role in natural resource management. However, an increasing number of studies indicate that this dominant role is developing towards a more facilitating role as equal partner to improve efficiency and create a leaner state. This approach is characterized by complex collaborative relationships between various actors and sectors on multiple levels. To understand this complexity in the field of environmental management, we conducted a social network analysis of floodplain management in the Dutch Rhine delta. We charted the current interorganizational relationships between 43 organizations involved in flood protection (blue network) and nature management (green network) and explored the consequences of abolishing the central actor in these networks. The discontinuation of this actor will decrease the connectedness of actors within the blue and green network and may therefore have a large impact on the exchange of ideas and decision-making processes. Furthermore, our research shows the dependence of non-governmental actors on the main governmental organizations. It seems that the Dutch governmental organizations still have a dominant and controlling role in floodplain management. This challenges the alleged shift from a dominant government towards collaborative governance and calls for detailed analysis of actual governance.

  6. Text mining and network analysis to find functional associations of genes in high altitude diseases.

    PubMed

    Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar

    2018-05-02

    Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Analyzing Collaborative Governance Through Social Network Analysis: A Case Study of River Management Along the Waal River in The Netherlands

    NASA Astrophysics Data System (ADS)

    Fliervoet, J. M.; Geerling, G. W.; Mostert, E.; Smits, A. J. M.

    2016-02-01

    Until recently, governmental organizations played a dominant and decisive role in natural resource management. However, an increasing number of studies indicate that this dominant role is developing towards a more facilitating role as equal partner to improve efficiency and create a leaner state. This approach is characterized by complex collaborative relationships between various actors and sectors on multiple levels. To understand this complexity in the field of environmental management, we conducted a social network analysis of floodplain management in the Dutch Rhine delta. We charted the current interorganizational relationships between 43 organizations involved in flood protection (blue network) and nature management (green network) and explored the consequences of abolishing the central actor in these networks. The discontinuation of this actor will decrease the connectedness of actors within the blue and green network and may therefore have a large impact on the exchange of ideas and decision-making processes. Furthermore, our research shows the dependence of non-governmental actors on the main governmental organizations. It seems that the Dutch governmental organizations still have a dominant and controlling role in floodplain management. This challenges the alleged shift from a dominant government towards collaborative governance and calls for detailed analysis of actual governance.

  8. Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach.

    PubMed

    Pouryahya, Maryam; Oh, Jung Hun; Mathews, James C; Deasy, Joseph O; Tannenbaum, Allen R

    2018-04-23

    In the present work, we apply a geometric network approach to study common biological features of anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis can provide novel insights into drug response and cancer biology. We adopted a discrete notion of Ricci curvature to measure, via a link between Ricci curvature and network robustness established by the theory of optimal mass transport, the robustness of biological networks constructed with a pre-treatment gene expression dataset and coupled the results with the GI50 response of the cell lines to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that are likely associated with individual drug response. For genes identified as important, we performed a gene ontology enrichment analysis using a curated bioinformatics database which resulted in biological processes associated with drug response across cell lines and tissue types which are plausible from the point of view of the biological literature. These results demonstrate the potential of using the mathematical network analysis in assessing drug response and in identifying relevant genomic biomarkers and biological processes for precision medicine.

  9. Social networks of older adults living with HIV in Finland.

    PubMed

    Nobre, Nuno Ribeiro; Kylmä, Jari; Kirsi, Tapio; Pereira, Marco

    2016-01-01

    The aim of this study was to explore the social networks of older adults living with HIV. Interviews were conducted with nine individuals aged 50 or older living with HIV in Helsinki, Finland. Analysis of transcripts was analysed by inductive qualitative content analysis. Results indicated that these participants' networks tended to be large, including those both aware and unaware of the participants' health status. Analysis identified three main themes: large multifaceted social networks, importance of a support group, and downsizing of social networks. Support received appeared to be of great importance in coping with their health condition, especially since the time of diagnosis. Friends and family were the primary source of informal support. The majority of participants relied mostly on friends, some of whom were HIV-positive. Formal support came primarily from the HIV organisation's support group. In this study group, non-disclosure did not impact participants' well-being. In years to come, social networks of older adults living with HIV may shrink due to personal reasons other than HIV-disclosure. What is of primary importance is that healthcare professionals become knowledgeable about psychosocial issues of older adults living with HIV, identifying latent problems and developing adequate interventions in the early stages of the disease; this would help prevent social isolation and foster successful ageing with HIV.

  10. A protein interaction network analysis for yeast integral membrane protein.

    PubMed

    Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling

    2008-01-01

    Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.

  11. Risk factors for Clonorchis sinensis infection transmission in humans in northern Vietnam: A descriptive and social network analysis study.

    PubMed

    Vinh, Hoang Quang; Phimpraphai, Waraphon; Tangkawattana, Sirikachorn; Smith, John F; Kaewkes, Sasithorn; Dung, Do Trung; Duong, Tran Thanh; Sripa, Banchob

    2017-04-01

    Clonorchis sinensis is major fish-borne trematode, endemic in North Vietnam. Risk factors described so far include individual eating behaviors and environmental factors. Here, additional to conventional risk factors, we report on socially influenced liver fluke transmission in endemic communities. A cross-sectional study on risk factors and fish sharing networks was conducted in 4 villages of Gia Thinh Commune, Ninh Binh Province. A total of 510 residents in 272 households were recruited for risk factor analysis while 220 households, 28 fishermen and 10 fish-sellers were enrolled for social network study. Fecal examination for C. sinensis eggs was performed. Average C. sinensis infection rate at Gia Thinh commune was 16.5% (range 2% to 34.4%). Higher infection rates were significantly associated with males, lower educational levels, eating raw fish, and location of the villages. Social network analysis (SNA) showed a strong positive correlation between ego network size (number of households in fish sharing network) and quantity of raw fish consumed (r=0.603, P<0.05). The infection rate in people who ate raw-fish caught from a nearby river was significantly higher than those who consumed fish taken from farmed ponds (P<0.05). The amount of raw-fish meal consumed per resident/year was significantly higher in villages that had a strong network of sharing raw-fish food (P<0.001). This study reports for the first time on fish-food sharing among neighbors, proximity to water bodies, frequency of eating raw fish from natural water bodies and low education were key risk factors in C. sinensis infection transmission in northern Vietnam. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Risk factors for Clonorchis sinensis infection transmission in humans in northern Vietnam: A descriptive and social network analysis study

    PubMed Central

    Vinh, Hoang Quang; Phimpraphai, Waraphon; Tangkawattana, Sirikachorn; Smith, John F.; Kaewkes, Sasithorn; Dung, Do Trung; Duong, Tran Thanh; Sripa, Banchob

    2016-01-01

    Clonorchis sinensis is major fish-borne trematode, endemic in North Vietnam. Risk factors described so far include individual eating behaviors and environmental factors. Here, additional to conventional risk factors, we report on socially influenced liver fluke transmission in endemic communities. A cross-sectional study on risk factors and fish sharing networks was conducted in 4 villages of Gia Thinh Commune, Ninh Binh Province. A total of 510 residents in 272 households were recruited for risk factor analysis while 220 households, 28 fishermen and 10 fish-sellers were enrolled for social network study. Fecal examination for C. sinensis eggs was performed. Average C. sinensis infection rate at Gia Thinh commune was 16.5% (range 2% to 34.4%). Higher infection rates were significantly associated with males, lower educational levels, eating raw fish, and location of the villages. Social network analysis (SNA) showed a strong positive correlation between ego network size (number of households in fish sharing network) and quantity of raw fish consumed (r=0.603, P< 0.05). The infection rate in people who ate raw-fish caught from a nearby river was significantly higher than those who consumed fish taken from farmed ponds (P<0.05). The amount of raw-fish meal consumed per resident/year was significantly higher in villages that had a strong network of sharing raw-fish food (P<0.001). This study reports for the first time on fish-food sharing among neighbors, proximity to water bodies, frequency of eating raw fish from natural water bodies and low education were key risk factors in C. sinensis infection transmission in northern Vietnam. PMID:27939296

  13. [Using social network analysis to examine care for older drug users in three major cities in Germany : Results of a pilot study].

    PubMed

    Kuhn, U; Hofmann, L; Hoff, T; Färber, N

    2018-05-04

    Compared with the general population, chronic drug addicts already start showing typical aging problems by the age of 40 years. The increasing number of older drug addicts leads to questions of what an adequate health and social care should look like. This discussion particularly takes place in the context of a sufficient integration of different care systems. A sufficient integration requires an improvement in the networking of substance treatment, nursing care and medical care services. The purpose of this study was to investigate the care structure of older people who use drugs and the services involved in a social network analysis. This was a descriptive design of the pilot study. The study objective was to gain first-hand knowledge about the health and social care situation, the quality of care concerning this client group and to identify supply gaps. Therefore, the three regions Cologne, Dusseldorf and Frankfurt/Main were exemplarily examined. The data for the social network analysis was gathered by a quantitative online questionnaire. Therefore, especially central network members were contacted and asked to participate. The survey was conducted in two waves. In total, 65 practitioners of all surveyed cities participated in the second wave. The centrality measures assessed indicated that in all regions institutions of the substance abuse service network hold central positions in terms of conveying information. The moderate density values of the networks suggest that there are sufficient cooperation structures. Care deficits were identified most frequently in the areas of housing and nursing care. The results provide the first systematic insights and a description of the cooperation practice in the care system. Because of the limitations, further research and practice issues are raised.

  14. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.

    PubMed

    Navlakha, Saket; Barth, Alison L; Bar-Joseph, Ziv

    2015-07-01

    Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.

  15. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks

    PubMed Central

    Navlakha, Saket; Barth, Alison L.; Bar-Joseph, Ziv

    2015-01-01

    Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains. PMID:26217933

  16. [Social network analysis of interdisciplinary cooperation and networking in early prevention and intervention. A pilot study].

    PubMed

    Künster, A K; Knorr, C; Fegert, J M; Ziegenhain, U

    2010-11-01

    Child protection can only be successfully solved by interdisciplinary cooperation and networking. The individual, heterogeneous, and complex needs of families cannot be met sufficiently by one profession alone. To guarantee efficient interdisciplinary cooperation, there should not be any gaps in the network. In addition, each actor in the network should be placed at an optimal position regarding function, responsibilities, and skills. Actors that serve as allocators, such as pediatricians or youth welfare officers, should be in key player positions within the network. Furthermore, successful child protection is preventive and starts early. Social network analysis is an adequate technique to assess network structures and to plan interventions to improve networking. In addition, it is very useful to evaluate the effectiveness of interventions like round tables. We present data from our pilot project which was part of "Guter Start ins Kinderleben" ("a good start into a child's life"). Exemplary network data from one community show that networking is already quite effective with a satisfactory mean density throughout the network. There is potential for improvement in cooperation, especially at the interface between the child welfare and health systems.

  17. Sovereign public debt crisis in Europe. A network analysis

    NASA Astrophysics Data System (ADS)

    Matesanz, David; Ortega, Guillermo J.

    2015-10-01

    In this paper we analyse the evolving network structure of the quarterly public debt-to-GDP ratio from 2000 to 2014. By applying tools and concepts coming from complex systems we study the effects of the global financial crisis over public debt network connections and communities. Two main results arise from this analysis: firstly, countries public debts tend to synchronize their evolution, increasing global connectivity in the network and dramatically decreasing the number of communities. Secondly, a disruption in previous structure is observed at the time of the shock, emerging a more centralized and less diversify network topological organization which might be more prone to suffer contagion effects. This last fact is evidenced by an increasing tendency in countries of similar level of public debt to be connected between them, which we have quantified by the network assortativity.

  18. Immunotherapy in advanced melanoma: a network meta-analysis.

    PubMed

    Pyo, Jung-Soo; Kang, Guhyun

    2017-05-01

    The aim of this study was to compare the effects of various immunotherapeutic agents and chemotherapy for unresected or metastatic melanomas. We performed a network meta-analysis using a Bayesian statistical model to compare objective response rate (ORR) of various immunotherapies from 12 randomized controlled studies. The estimated ORRs of immunotherapy and chemotherapy were 0.224 and 0.108, respectively. The ORRs of immunotherapy in untreated and pretreated patients were 0.279 and 0.176, respectively. In network meta-analysis, the odds ratios for ORR of nivolumab (1 mg/kg)/ipilmumab (3 mg/kg), pembrolizumab 10 mg/kg and nivolumab 3 mg/kg were 8.54, 5.39 and 4.35, respectively, compared with chemotherapy alone. Our data showed that various immunotherapies had higher ORRs rather than chemotherapy alone.

  19. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  20. Doctoral Students' Identity Positioning in Networked Learning Environments

    ERIC Educational Resources Information Center

    Koole, Marguerite; Stack, Sara

    2016-01-01

    In this study, the authors explored identity positioning as perceived by doctoral learners in online, networked-learning environments. The study examined two distance doctoral programs at a Canadian university. It was a qualitative study based on methodologies involving open coding and discourse analysis. The social positioning cycle, based on…

  1. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  2. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    PubMed

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  3. Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.

    PubMed

    Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris

    2014-01-01

    Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.

  4. The Structure and Characteristics of #PhDChat, an Emergent Online Social Network

    ERIC Educational Resources Information Center

    Ford, Kasey C.; Veletsianos, George; Resta, Paul

    2014-01-01

    #PhDChat is an online network of individuals that has its roots to a group of UK doctoral students who began using Twitter in 2010 to hold discussions. Since then, the network around #PhDchat has evolved and grown. In this study, we examine this network using a mixed methods analysis of the tweets that were labeled with the hashtag over a…

  5. Optimal Design of River Monitoring Network in Taizihe River by Matter Element Analysis

    PubMed Central

    Wang, Hui; Liu, Zhe; Sun, Lina; Luo, Qing

    2015-01-01

    The objective of this study is to optimize the river monitoring network in Taizihe River, Northeast China. The situation of the network and water characteristics were studied in this work. During this study, water samples were collected once a month during January 2009 - December 2010 from seventeen sites. Futhermore, the 16 monitoring indexes were analyzed in the field and laboratory. The pH value of surface water sample was found to be in the range of 6.83 to 9.31, and the average concentrations of NH4 +-N, chemical oxygen demand (COD), volatile phenol and total phosphorus (TP) were found decreasing significantly. The water quality of the river has been improved from 2009 to 2010. Through the calculation of the data availability and the correlation between adjacent sections, it was found that the present monitoring network was inefficient as well as the optimization was indispensable. In order to improve the situation, the matter element analysis and gravity distance were applied in the optimization of river monitoring network, which were proved to be a useful method to optimize river quality monitoring network. The amount of monitoring sections were cut from 17 to 13 for the monitoring network was more cost-effective after being optimized. The results of this study could be used in developing effective management strategies to improve the environmental quality of Taizihe River. Also, the results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems. PMID:26023785

  6. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  7. Non-criticality of interaction network over system's crises: A percolation analysis.

    PubMed

    Shirazi, Amir Hossein; Saberi, Abbas Ali; Hosseiny, Ali; Amirzadeh, Ehsan; Toranj Simin, Pourya

    2017-11-20

    Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extracted from the correlation network of indices, and build a weighted network. In correspondence with the percolation model, we find that away from financial crises the interaction network behaves like a critical random network of Erdős-Rényi, while close to a financial crisis, our model deviates from the critical random network and behaves differently at different size scales. We perform further analysis to clarify that our observation is not a simple consequence of the growth in correlations over the crises.

  8. Educational network comparative analysis of small groups: Short- and long-term communications

    NASA Astrophysics Data System (ADS)

    Berg, D. B.; Zvereva, O. M.; Nazarova, Yu. Yu.; Chepurov, E. G.; Kokovin, A. V.; Ranyuk, S. V.

    2017-11-01

    The present study is devoted to the discussion of small group communication network structures. These communications were observed in student groups, where actors were united with a regular educational activity. The comparative analysis was carried out for networks of short-term (1 hour) and long-term (4 weeks) communications, it was based on seven structural parameters, and consisted of two stages. At the first stage, differences between the network graphs were examined, and the random corresponding Bernoulli graphs were built. At the second stage, revealed differences were compared. Calculations were performed using UCINET software framework. It was found out that networks of long-term and short-term communications are quite different: the structure of a short-term communication network is close to a random one, whereas the most of long-term communication network parameters differ from the corresponding random ones by more than 30%. This difference can be explained by strong "noisiness" of a short-term communication network, and the lack of social in it.

  9. Analysis and Visualization of Relations in eLearning

    NASA Astrophysics Data System (ADS)

    Dráždilová, Pavla; Obadi, Gamila; Slaninová, Kateřina; Martinovič, Jan; Snášel, Václav

    The popularity of eLearning systems is growing rapidly; this growth is enabled by the consecutive development in Internet and multimedia technologies. Web-based education became wide spread in the past few years. Various types of learning management systems facilitate development of Web-based courses. Users of these courses form social networks through the different activities performed by them. This chapter focuses on searching the latent social networks in eLearning systems data. These data consist of students activity records wherein latent ties among actors are embedded. The social network studied in this chapter is represented by groups of students who have similar contacts and interact in similar social circles. Different methods of data clustering analysis can be applied to these groups, and the findings show the existence of latent ties among the group members. The second part of this chapter focuses on social network visualization. Graphical representation of social network can describe its structure very efficiently. It can enable social network analysts to determine the network degree of connectivity. Analysts can easily determine individuals with a small or large amount of relationships as well as the amount of independent groups in a given network. When applied to the field of eLearning, data visualization simplifies the process of monitoring the study activities of individuals or groups, as well as the planning of educational curriculum, the evaluation of study processes, etc.

  10. A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson's disease.

    PubMed

    Su, Lining; Wang, Chunjie; Zheng, Chenqing; Wei, Huiping; Song, Xiaoqing

    2018-04-13

    Parkinson's disease (PD) is a long-term degenerative disease that is caused by environmental and genetic factors. The networks of genes and their regulators that control the progression and development of PD require further elucidation. We examine common differentially expressed genes (DEGs) from several PD blood and substantia nigra (SN) microarray datasets by meta-analysis. Further we screen the PD-specific genes from common DEGs using GCBI. Next, we used a series of bioinformatics software to analyze the miRNAs, lncRNAs and SNPs associated with the common PD-specific genes, and then identify the mTF-miRNA-gene-gTF network. Our results identified 36 common DEGs in PD blood studies and 17 common DEGs in PD SN studies, and five of the genes were previously known to be associated with PD. Further study of the regulatory miRNAs associated with the common PD-specific genes revealed 14 PD-specific miRNAs in our study. Analysis of the mTF-miRNA-gene-gTF network about PD-specific genes revealed two feed-forward loops: one involving the SPRK2 gene, hsa-miR-19a-3p and SPI1, and the second involving the SPRK2 gene, hsa-miR-17-3p and SPI. The long non-coding RNA (lncRNA)-mediated regulatory network identified lncRNAs associated with PD-specific genes and PD-specific miRNAs. Moreover, single nucleotide polymorphism (SNP) analysis of the PD-specific genes identified two significant SNPs, and SNP analysis of the neurodegenerative disease-specific genes identified seven significant SNPs. Most of these SNPs are present in the 3'-untranslated region of genes and are controlled by several miRNAs. Our study identified a total of 53 common DEGs in PD patients compared with healthy controls in blood and brain datasets and five of these genes were previously linked with PD. Regulatory network analysis identified PD-specific miRNAs, associated long non-coding RNA and feed-forward loops, which contribute to our understanding of the mechanisms underlying PD. The SNPs identified in our study can determine whether a genetic variant is associated with PD. Overall, these findings will help guide our study of the complex molecular mechanism of PD.

  11. Co-occurrence correlations of heavy metals in sediments revealed using network analysis.

    PubMed

    Liu, Lili; Wang, Zhiping; Ju, Feng; Zhang, Tong

    2015-01-01

    In this study, the correlation-based study was used to identify the co-occurrence correlations among metals in marine sediment of Hong Kong, based on the long-term (from 1991 to 2011) temporal and spatial monitoring data. 14 stations out of the total 45 marine sediment monitoring stations were selected from three representative areas, including Deep Bay, Victoria Harbour and Mirs Bay. Firstly, Spearman's rank correlation-based network analysis was conducted as the first step to identify the co-occurrence correlations of metals from raw metadata, and then for further analysis using the normalized metadata. The correlations patterns obtained by network were consistent with those obtained by the other statistic normalization methods, including annual ratios, R-squared coefficient and Pearson correlation coefficient. Both Deep Bay and Victoria Harbour have been polluted by heavy metals, especially for Pb and Cu, which showed strong co-occurrence with other heavy metals (e.g. Cr, Ni, Zn and etc.) and little correlations with the reference parameters (Fe or Al). For Mirs Bay, which has better marine sediment quality compared with Deep Bay and Victoria Harbour, the co-occurrence patterns revealed by network analysis indicated that the metals in sediment dominantly followed the natural geography process. Besides the wide applications in biology, sociology and informatics, it is the first time to apply network analysis in the researches of environment pollutions. This study demonstrated its powerful application for revealing the co-occurrence correlations among heavy metals in marine sediments, which could be further applied for other pollutants in various environment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Systematic review of social network analysis in adolescent cigarette smoking behavior.

    PubMed

    Seo, Dong-Chul; Huang, Yan

    2012-01-01

    Social networks are important in adolescent smoking behavior. Previous research indicates that peer context is a major causal factor of adolescent smoking behavior. To date, however, little is known about the influence of peer group structure on adolescent smoking behavior. Studies that examined adolescent social networks with regard to their cigarette smoking behavior were identified through online and manual literature searches. Ten social network analysis studies involving a total of 28,263 adolescents were included in the final review. Of the 10 reviewed studies, 6 identify clique members, liaisons, and isolates as contributing factors to adolescent cigarette smoking. Significantly higher rates of smoking are noted among isolates than clique members or liaisons in terms of peer network structure. Eight of the reviewed studies indicate that peer selection or influence precedes adolescents' smoking behavior and intent to smoke. Such peer selection or influence accounts for a large portion of similarities among smoking adolescents. Adolescents who are identified as isolates are more likely to smoke and engage in risk-taking behaviors than others in the peer network structure. Given that the vast majority of current adult smokers started their smoking habits during adolescence, adolescent smoking prevention efforts will likely benefit from incorporating social network analytic approaches and focusing the efforts on isolates and other vulnerable adolescents from a peer selection and influence perspective. © 2011, American School Health Association.

  13. The application of complex network time series analysis in turbulent heated jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less

  14. The application of complex network time series analysis in turbulent heated jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less

  15. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    PubMed

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Reveal genes functionally associated with ACADS by a network study.

    PubMed

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of households' social networks on lice infestation among vulnerable Mexican children: a qualitative comparative analysis.

    PubMed

    Ortega-Marín, Lydia; Márquez-Serrano, Margarita; Lara-López, Luz M; Moncada, Ligia I; Idrovo, Alvaro J

    2013-10-01

    The prevalence of pediculosis is high among elementary and secondary school children, which favors the belief that infestation occurs more often in schools than in homes. This study explored the role of households' social networks in the transmission of head lice. Seventeen school children and their social networks (n = 22) from Acatlipa (Morelos, Mexico) participated in a prospective observational study during school vacation. The hair of all the school children was washed with shampoo containing permethrin at the beginning of the study and the incidence of pediculosis (O) was evaluated at the beginning of the school term (follow-up at 1.5 months). The sets included in the qualitative comparative analysis were sex (S), length of hair (H), baseline diagnostic of pediculosis (I) and degree (D) and infestation index (N) obtained through the analysis of social networks. The prevalence of pediculosis was the same at the beginning and the end of follow-up (17.6%). The degree of the school children's networks ranged between 2 and 14. There were 8 configurations, the most frequent being F*i*d*n*h. The most parsimonious configuration associated with the incidence of pediculosis was F*I*d*H (female, previous infestation, low degree and long hair), with a coverage of 0.344 and a consistency of 0.941. Indicators of social networks made it possible to identify the role of households' social networks in the transmission of lice. Individual actions such as the use of shampoo containing insecticides are temporary and, therefore, structural actions should be favored.

  18. Network meta-analysis: an introduction for clinicians.

    PubMed

    Rouse, Benjamin; Chaimani, Anna; Li, Tianjing

    2017-02-01

    Network meta-analysis is a technique for comparing multiple treatments simultaneously in a single analysis by combining direct and indirect evidence within a network of randomized controlled trials. Network meta-analysis may assist assessing the comparative effectiveness of different treatments regularly used in clinical practice and, therefore, has become attractive among clinicians. However, if proper caution is not taken in conducting and interpreting network meta-analysis, inferences might be biased. The aim of this paper is to illustrate the process of network meta-analysis with the aid of a working example on first-line medical treatment for primary open-angle glaucoma. We discuss the key assumption of network meta-analysis, as well as the unique considerations for developing appropriate research questions, conducting the literature search, abstracting data, performing qualitative and quantitative synthesis, presenting results, drawing conclusions, and reporting the findings in a network meta-analysis.

  19. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  20. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  1. Meta-connectomics: human brain network and connectivity meta-analyses.

    PubMed

    Crossley, N A; Fox, P T; Bullmore, E T

    2016-04-01

    Abnormal brain connectivity or network dysfunction has been suggested as a paradigm to understand several psychiatric disorders. We here review the use of novel meta-analytic approaches in neuroscience that go beyond a summary description of existing results by applying network analysis methods to previously published studies and/or publicly accessible databases. We define this strategy of combining connectivity with other brain characteristics as 'meta-connectomics'. For example, we show how network analysis of task-based neuroimaging studies has been used to infer functional co-activation from primary data on regional activations. This approach has been able to relate cognition to functional network topology, demonstrating that the brain is composed of cognitively specialized functional subnetworks or modules, linked by a rich club of cognitively generalized regions that mediate many inter-modular connections. Another major application of meta-connectomics has been efforts to link meta-analytic maps of disorder-related abnormalities or MRI 'lesions' to the complex topology of the normative connectome. This work has highlighted the general importance of network hubs as hotspots for concentration of cortical grey-matter deficits in schizophrenia, Alzheimer's disease and other disorders. Finally, we show how by incorporating cellular and transcriptional data on individual nodes with network models of the connectome, studies have begun to elucidate the microscopic mechanisms underpinning the macroscopic organization of whole-brain networks. We argue that meta-connectomics is an exciting field, providing robust and integrative insights into brain organization that will likely play an important future role in consolidating network models of psychiatric disorders.

  2. Exploring Research Topics and Trends in Nursing-related Communication in Intensive Care Units Using Social Network Analysis.

    PubMed

    Son, Youn-Jung; Lee, Soo-Kyoung; Nam, SeJin; Shim, Jae Lan

    2018-05-04

    This study used social network analysis to identify the main research topics and trends in nursing-related communication in intensive care units. Keywords from January 1967 to June 2016 were extracted from PubMed using Medical Subject Headings terms. Social network analysis was performed using Gephi software. Research publications and newly emerging topics in nursing-related communication in intensive care units were classified into five chronological phases. After the weighting was adjusted, the top five keyword searches were "conflict," "length of stay," "nursing continuing education," "family," and "nurses." During the most recent phase, research topics included "critical care nursing," "patient handoff," and "quality improvement." The keywords of the top three groups among the 10 groups identified were related to "neonatal nursing and practice guideline," "infant or pediatric and terminal care," and "family, aged, and nurse-patient relations," respectively. This study can promote a systematic understanding of communication in intensive care units by identifying topic networks. Future studies are needed to conduct large prospective cohort studies and randomized controlled trials to verify the effects of patient-centered communication in intensive care units on patient outcomes, such as length of hospital stay and mortality.

  3. Rhizoma Dioscoreae extract protects against alveolar bone loss by regulating the cell cycle: A predictive study based on the protein‑protein interaction network.

    PubMed

    Zhang, Zhi-Guo; Song, Chang-Heng; Zhang, Fang-Zhen; Chen, Yan-Jing; Xiang, Li-Hua; Xiao, Gary Guishan; Ju, Da-Hong

    2016-06-01

    Rhizoma Dioscoreae extract (RDE) exhibits a protective effect on alveolar bone loss in ovariectomized (OVX) rats. The aim of this study was to predict the pathways or targets that are regulated by RDE, by re‑assessing our previously reported data and conducting a protein‑protein interaction (PPI) network analysis. In total, 383 differentially expressed genes (≥3‑fold) between alveolar bone samples from the RDE and OVX group rats were identified, and a PPI network was constructed based on these genes. Furthermore, four molecular clusters (A‑D) in the PPI network with the smallest P‑values were detected by molecular complex detection (MCODE) algorithm. Using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA) tools, two molecular clusters (A and B) were enriched for biological process in Gene Ontology (GO). Only cluster A was associated with biological pathways in the IPA database. GO and pathway analysis results showed that cluster A, associated with cell cycle regulation, was the most important molecular cluster in the PPI network. In addition, cyclin‑dependent kinase 1 (CDK1) may be a key molecule achieving the cell‑cycle‑regulatory function of cluster A. From the PPI network analysis, it was predicted that delayed cell cycle progression in excessive alveolar bone remodeling via downregulation of CDK1 may be another mechanism underling the anti‑osteopenic effect of RDE on alveolar bone.

  4. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma.

    PubMed

    Pan, Yue; Lu, Lingyun; Chen, Junquan; Zhong, Yong; Dai, Zhehao

    2018-01-01

    This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.

  5. Patent Network Analysis and Quadratic Assignment Procedures to Identify the Convergence of Robot Technologies

    PubMed Central

    Lee, Woo Jin; Lee, Won Kyung

    2016-01-01

    Because of the remarkable developments in robotics in recent years, technological convergence has been active in this area. We focused on finding patterns of convergence within robot technology using network analysis of patents in both the USPTO and KIPO. To identify the variables that affect convergence, we used quadratic assignment procedures (QAP). From our analysis, we observed the patent network ecology related to convergence and found technologies that have great potential to converge with other robotics technologies. The results of our study are expected to contribute to setting up convergence based R&D policies for robotics, which can lead new innovation. PMID:27764196

  6. Convergent evidence from systematic analysis of GWAS revealed genetic basis of esophageal cancer.

    PubMed

    Gao, Xue-Xin; Gao, Lei; Wang, Jiu-Qiang; Qu, Su-Su; Qu, Yue; Sun, Hong-Lei; Liu, Si-Dang; Shang, Ying-Li

    2016-07-12

    Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were found to have significantly differential gene expression in esophageal tissues by eQTL analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were enriched into 38 significant GO terms and 17 significant KEGG pathways, which were significantly grouped into 9 sub-networks by pathway grouped network analysis. The 9 groups of interconnected pathways were mainly involved with muscle cell proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol oxidation, which might participate in the development of EC.Our findings provide genetic evidence and new insight for exploring the molecular mechanisms of EC.

  7. Community partnerships in healthy eating and lifestyle promotion: A network analysis.

    PubMed

    An, Ruopeng; Loehmer, Emily; Khan, Naiman; Scott, Marci K; Rindfleisch, Kimbirly; McCaffrey, Jennifer

    2017-06-01

    Promoting healthy eating and lifestyles among populations with limited resources is a complex undertaking that often requires strong partnerships between various agencies. In local communities, these agencies are typically located in different areas, serve diverse subgroups, and operate distinct programs, limiting their communication and interactions with each other. This study assessed the network of agencies in local communities that promote healthy eating and lifestyles among populations with limited resources. Network surveys were administered in 2016 among 89 agencies located in 4 rural counties in Michigan that served limited-resource audiences. The agencies were categorized into 8 types: K-12 schools, early childhood centers, emergency food providers, health-related agencies, social resource centers, low-income/subsidized housing complexes, continuing education organizations, and others. Network analysis was conducted to examine 4 network structures-communication, funding, cooperation, and collaboration networks between agencies within each county. Agencies had a moderate level of cooperation, but were only loosely connected in the other 3 networks, indicated by low network density. Agencies in a network were decentralized rather than centralized around a few influential agencies, indicated by low centralization. There was evidence regarding homophily in a network, indicated by some significant correlations within agencies of the same type. Agencies connected in any one network were considerably more likely to be connected in all the other networks as well. In conclusion, promoting healthy eating and lifestyles among populations with limited resources warrants strong partnership between agencies in communities. Network analysis serves as a useful tool to evaluate community partnerships and facilitate coalition building.

  8. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  9. Understanding Groups in Outdoor Adventure Education through Social Network Analysis

    ERIC Educational Resources Information Center

    Jostad, Jeremy; Sibthorp, Jim; Paisley, Karen

    2013-01-01

    Relationships are a critical component to the experience of an outdoor adventure education (OAE) program, therefore, more fruitful ways of investigating groups is needed. Social network analysis (SNA) is an effective tool to study the relationship structure of small groups. This paper provides an explanation of SNA and shows how it was used by the…

  10. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

  11. The Mechanisms of Interpersonal Privacy in Social Networking Websites: A Study of Subconscious Processes, Social Network Analysis, and Fear of Social Exclusion

    ERIC Educational Resources Information Center

    Hammer, Bryan

    2013-01-01

    With increasing usage of social networking sites like Facebook there is a need to study privacy. Previous research has placed more emphasis on outcome-oriented contexts, such as e-commerce sites. In process-oriented contexts, like Facebook, privacy has become a source of conflict for users. The majority of architectural privacy (e.g. privacy…

  12. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain.

    PubMed

    Calamante, Fernando; Masterton, Richard A J; Tournier, Jacques-Donald; Smith, Robert E; Willats, Lisa; Raffelt, David; Connelly, Alan

    2013-04-15

    MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.

    PubMed

    Rezvan, Abolfazl; Marashi, Sayed-Amir; Eslahchi, Changiz

    2014-10-01

    A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.

  14. Exploring the networking behaviors of hospital organizations.

    PubMed

    Di Vincenzo, Fausto

    2018-05-08

    Despite an extensive body of knowledge exists on network outcomes and on how hospital network structures may contribute to the creation of outcomes at different levels of analysis, less attention has been paid to understanding how and why hospital organizational networks evolve and change. The aim of this paper is to study the dynamics of networking behaviors of hospital organizations. Stochastic actor-based model for network dynamics was used to quantitatively examine data covering six-years of patient transfer relations among 35 hospital organizations. Specifically, the study investigated about determinants of patient transfer evolution modeling partner selection choice as a combination of multiple organizational attributes and endogenous network-based processes. The results indicate that having overlapping specialties and treating patients with the same case-mix decrease the likelihood of observing network ties between hospitals. Also, results revealed as geographical proximity and membership of the same LHA have a positive impact on the networking behavior of hospitals organizations, there is a propensity in the network to choose larger hospitals as partners, and to transfer patients between hospitals facing similar levels of operational uncertainty. Organizational attributes (overlapping specialties and case-mix), institutional factors (LHA), and geographical proximity matter in the formation and shaping of hospital networks over time. Managers can benefit from the use of these findings by clearly identifying the role and strategic positioning of their hospital with respect to the entire network. Social network analysis can yield novel information and also aid policy makers in the formation of interventions, encouraging alliances among providers as well as planning health system restructuring.

  15. Network Analysis Tools: from biological networks to clusters and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  16. The Intellectual Structure of Research on Educational Technology in Science Education (ETiSE): A Co-citation Network Analysis of Publications in Selected Journals (2008-2013)

    NASA Astrophysics Data System (ADS)

    Tang, Kai-Yu; Tsai, Chin-Chung

    2016-01-01

    The main purpose of this paper is to investigate the intellectual structure of the research on educational technology in science education (ETiSE) within the most recent years (2008-2013). Based on the criteria for educational technology research and the citation threshold for educational co-citation analysis, a total of 137 relevant ETiSE papers were identified from the International Journal of Science Education, the Journal of Research in Science Teaching, Science Education, and the Journal of Science Education and Technology. Then, a series of methodologies were performed to analyze all 137 source documents, including document co-citation analysis, social network analysis, and exploratory factor analysis. As a result, 454 co-citation ties were obtained and then graphically visualized with an undirected network, presenting a global structure of the current ETiSE research network. In addition, four major underlying intellectual subfields within the main component of the ETiSE network were extracted and named as: (1) technology-enhanced science inquiry, (2) simulation and visualization for understanding, (3) technology-enhanced chemistry learning, and (4) game-based science learning. The most influential co-citation pairs and cross-boundary phenomena were then analyzed and visualized in a co-citation network. This is the very first attempt to illuminate the core ideas underlying ETiSE research by integrating the co-citation method, factor analysis, and the networking visualization technique. The findings of this study provide a platform for scholarly discussion of the dissemination and research trends within the current ETiSE literature.

  17. Cooperative spreading processes in multiplex networks.

    PubMed

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  18. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    PubMed

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  19. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  20. A network-analysis-based comparative study of the throughput behavior of polymer melts in barrier screw geometries

    NASA Astrophysics Data System (ADS)

    Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.

    2014-05-01

    Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.

  1. Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity.

    PubMed

    Schmidt, Helmut; Petkov, George; Richardson, Mark P; Terry, John R

    2014-11-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3-6 Hz) and low-alpha (6-9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80% predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics.

  2. Education Networks: Power, Wealth, Cyberspace, and the Digital Mind. Sociocultural, Political, and Historical Studies in Education

    ERIC Educational Resources Information Center

    Spring, Joel

    2012-01-01

    "Education Networks" is a critical analysis of the emerging intersection among the global power elite, information and communication technology, and schools. Joel Spring documents and examines the economic and political interests and forces--including elite networks, the for-profit education industry, data managers, and professional…

  3. Network Financial Support and Conflict as Predictors of Depressive Symptoms among a Highly Disadvantaged Population

    ERIC Educational Resources Information Center

    Knowlton, Amy R.; Latkin, Carl A.

    2007-01-01

    The study examined multiple dimensions of social support as predictors of depressive symptoms among a highly vulnerable population. Social network analysis was used to assess perceived and enacted dimensions of support (emotional, financial, instrumental), network conflict, closeness, and composition. Participants were 393 current and former…

  4. Large-Scale High School Reform through School Improvement Networks: Exploring Possibilities for "Developmental Evaluation"

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Lenhoff, Sarah Winchell; Glazer, Joshua L.

    2016-01-01

    Recognizing school improvement networks as a leading strategy for large-scale high school reform, this analysis examines developmental evaluation as an approach to examining school improvement networks as "learning systems" able to produce, use, and refine practical knowledge in large numbers of schools. Through a case study of one…

  5. Learning in Linguistically Diverse Middle School Classrooms: The Role of the Classroom Peer Network

    ERIC Educational Resources Information Center

    Elreda, Lauren Molloy; Kibler, Amanda; Futch Ehrlich, Valerie A.; Johnson, Haley

    2016-01-01

    The literature suggests there is much to be gained from exploring the role of the peer network in linguistically diverse "mainstream" middle school classrooms (i.e., classrooms that include English language learners alongside fluent English-speakers). The present study uses social network analysis to examine whether between-classroom and…

  6. Systematic Review of Social Network Analysis in Adolescent Cigarette Smoking Behavior

    ERIC Educational Resources Information Center

    Seo, Dong-Chul; Huang, Yan

    2012-01-01

    Background: Social networks are important in adolescent smoking behavior. Previous research indicates that peer context is a major causal factor of adolescent smoking behavior. To date, however, little is known about the influence of peer group structure on adolescent smoking behavior. Methods: Studies that examined adolescent social networks with…

  7. Passivity and Dissipativity as Design and Analysis Tools for Networked Control Systems

    ERIC Educational Resources Information Center

    Yu, Han

    2012-01-01

    In this dissertation, several control problems are studied that arise when passive or dissipative systems are interconnected and controlled over a communication network. Since communication networks can impact the systems' stability and performance, there is a need to extend the results on control of passive or dissipative systems to networked…

  8. A social network-informed latent class analysis of patterns of substance use, sexual behavior, and mental health: Social Network Study III, Winnipeg, Manitoba, Canada.

    PubMed

    Hopfer, Suellen; Tan, Xianming; Wylie, John L

    2014-05-01

    We assessed whether a meaningful set of latent risk profiles could be identified in an inner-city population through individual and network characteristics of substance use, sexual behaviors, and mental health status. Data came from 600 participants in Social Network Study III, conducted in 2009 in Winnipeg, Manitoba, Canada. We used latent class analysis (LCA) to identify risk profiles and, with covariates, to identify predictors of class. A 4-class model of risk profiles fit the data best: (1) solitary users reported polydrug use at the individual level, but low probabilities of substance use or concurrent sexual partners with network members; (2) social-all-substance users reported polydrug use at the individual and network levels; (3) social-noninjection drug users reported less likelihood of injection drug and solvent use; (4) low-risk users reported low probabilities across substances. Unstable housing, preadolescent substance use, age, and hepatitis C status predicted risk profiles. Incorporation of social network variables into LCA can distinguish important subgroups with varying patterns of risk behaviors that can lead to sexually transmitted and bloodborne infections.

  9. Recent development and biomedical applications of probabilistic Boolean networks

    PubMed Central

    2013-01-01

    Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered. A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed. A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. PMID:23815817

  10. Prediction and functional analysis of the sweet orange protein-protein interaction network.

    PubMed

    Ding, Yu-Duan; Chang, Ji-Wei; Guo, Jing; Chen, Dijun; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Cheng, Yun-Jiang; Chen, Ling-Ling

    2014-08-05

    Sweet orange (Citrus sinensis) is one of the most important fruits world-wide. Because it is a woody plant with a long growth cycle, genetic studies of sweet orange are lagging behind those of other species. In this analysis, we employed ortholog identification and domain combination methods to predict the protein-protein interaction (PPI) network for sweet orange. The K-nearest neighbors (KNN) classification method was used to verify and filter the network. The final predicted PPI network, CitrusNet, contained 8,195 proteins with 124,491 interactions. The quality of CitrusNet was evaluated using gene ontology (GO) and Mapman annotations, which confirmed the reliability of the network. In addition, we calculated the expression difference of interacting genes (EDI) in CitrusNet using RNA-seq data from four sweet orange tissues, and also analyzed the EDI distribution and variation in different sub-networks. Gene expression in CitrusNet has significant modular features. Target of rapamycin (TOR) protein served as the central node of the hormone-signaling sub-network. All evidence supported the idea that TOR can integrate various hormone signals and affect plant growth. CitrusNet provides valuable resources for the study of biological functions in sweet orange.

  11. Friendship Dissolution Within Social Networks Modeled Through Multilevel Event History Analysis

    PubMed Central

    Dean, Danielle O.; Bauer, Daniel J.; Prinstein, Mitchell J.

    2018-01-01

    A social network perspective can bring important insight into the processes that shape human behavior. Longitudinal social network data, measuring relations between individuals over time, has become increasingly common—as have the methods available to analyze such data. A friendship duration model utilizing discrete-time multilevel survival analysis with a multiple membership random effect structure is developed and applied here to study the processes leading to undirected friendship dissolution within a larger social network. While the modeling framework is introduced in terms of understanding friendship dissolution, it can be used to understand microlevel dynamics of a social network more generally. These models can be fit with standard generalized linear mixed-model software, after transforming the data to a pair-period data set. An empirical example highlights how the model can be applied to understand the processes leading to friendship dissolution between high school students, and a simulation study is used to test the use of the modeling framework under representative conditions that would be found in social network data. Advantages of the modeling framework are highlighted, and potential limitations and future directions are discussed. PMID:28463022

  12. Computer network environment planning and analysis

    NASA Technical Reports Server (NTRS)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  13. The emerging potential for network analysis to inform precision cancer medicine.

    PubMed

    Ozturk, Kivilcim; Dow, Michelle; Carlin, Daniel E; Bejar, Rafael; Carter, Hannah

    2018-06-14

    Precision cancer medicine promises to tailor clinical decisions to patients using genomic information. Indeed, successes of drugs targeting genetic alterations in tumors, such as imatinib that targets BCR-ABL in chronic myelogenous leukemia, have demonstrated the power of this approach. However biological systems are complex, and patients may differ not only by the specific genetic alterations in their tumor, but by more subtle interactions among such alterations. Systems biology and more specifically, network analysis, provides a framework for advancing precision medicine beyond clinical actionability of individual mutations. Here we discuss applications of network analysis to study tumor biology, early methods for N-of-1 tumor genome analysis and the path for such tools to the clinic. Copyright © 2018. Published by Elsevier Ltd.

  14. A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer's Disease.

    PubMed

    Zanzoni, Andreas

    2016-01-01

    Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer's disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.

  15. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks.

    PubMed

    Deng, De-Ming; Chang, Cheng-Hung

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  16. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.

    PubMed

    Ornostay, Anna; Cowie, Andrew M; Hindle, Matthew; Baker, Christopher J O; Martyniuk, Christopher J

    2013-12-01

    The herbicide linuron (LIN) is an endocrine disruptor with an anti-androgenic mode of action. The objectives of this study were to (1) improve knowledge of androgen and anti-androgen signaling in the teleostean ovary and to (2) assess the ability of gene networks and machine learning to classify LIN as an anti-androgen using transcriptomic data. Ovarian explants from vitellogenic fathead minnows (FHMs) were exposed to three concentrations of either 5α-dihydrotestosterone (DHT), flutamide (FLUT), or LIN for 12h. Ovaries exposed to DHT showed a significant increase in 17β-estradiol (E2) production while FLUT and LIN had no effect on E2. To improve understanding of androgen receptor signaling in the ovary, a reciprocal gene expression network was constructed for DHT and FLUT using pathway analysis and these data suggested that steroid metabolism, translation, and DNA replication are processes regulated through AR signaling in the ovary. Sub-network enrichment analysis revealed that FLUT and LIN shared more regulated gene networks in common compared to DHT. Using transcriptomic datasets from different fish species, machine learning algorithms classified LIN successfully with other anti-androgens. This study advances knowledge regarding molecular signaling cascades in the ovary that are responsive to androgens and anti-androgens and provides proof of concept that gene network analysis and machine learning can classify priority chemicals using experimental transcriptomic data collected from different fish species. © 2013.

  17. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  18. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  19. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  20. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

Top