Sample records for network analysis suggested

  1. The Sea Dragon Network: Implications of the International Expansion of China’s Maritime Shipping Industry.

    DTIC Science & Technology

    1998-06-01

    SFT enhance Beijing’s regional ability to advance China’s economic, political, and security interests. The analysis suggests China’s foreign policy...trades in China’s favor. The analysis also suggests China’s dependencies on regional MSI and SFT networks increase Beijing’s sense of economic... analysis suggests China’s foreign policy and overseas investment in strategic resources increase levels of SFT and transportation requirements for

  2. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  3. Findings from an Organizational Network Analysis to Support Local Public Health Management

    PubMed Central

    Caldwell, Michael; Rockoff, Maxine L.; Gebbie, Kristine; Carley, Kathleen M.; Bakken, Suzanne

    2008-01-01

    We assessed the feasibility of using organizational network analysis in a local public health organization. The research setting was an urban/suburban county health department with 156 employees. The goal of the research was to study communication and information flow in the department and to assess the technique for public health management. Network data were derived from survey questionnaires. Computational analysis was performed with the Organizational Risk Analyzer. Analysis revealed centralized communication, limited interdependencies, potential knowledge loss through retirement, and possible informational silos. The findings suggested opportunities for more cross program coordination but also suggested the presences of potentially efficient communication paths and potentially beneficial social connectedness. Managers found the findings useful to support decision making. Public health organizations must be effective in an increasingly complex environment. Network analysis can help build public health capacity for complex system management. PMID:18481183

  4. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    PubMed

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  5. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    PubMed Central

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  6. Functional neural networks of honesty and dishonesty in children: Evidence from graph theory analysis.

    PubMed

    Ding, Xiao Pan; Wu, Si Jia; Liu, Jiangang; Fu, Genyue; Lee, Kang

    2017-09-21

    The present study examined how different brain regions interact with each other during spontaneous honest vs. dishonest communication. More specifically, we took a complex network approach based on the graph-theory to analyze neural response data when children are spontaneously engaged in honest or dishonest acts. Fifty-nine right-handed children between 7 and 12 years of age participated in the study. They lied or told the truth out of their own volition. We found that lying decreased both the global and local efficiencies of children's functional neural network. This finding, for the first time, suggests that lying disrupts the efficiency of children's cortical network functioning. Further, it suggests that the graph theory based network analysis is a viable approach to study the neural development of deception.

  7. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  8. Multidimensional Analysis of Linguistic Networks

    NASA Astrophysics Data System (ADS)

    Araújo, Tanya; Banisch, Sven

    Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

  9. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    PubMed

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. [Study based on ICA of "dorsal attention network" in patients with temporal lobe epilepsy].

    PubMed

    Yang, Zhigen; Wang, Huinan; Zhang, Zhiqiang; Zhong, Yuan; Chen, Zhili; Lu, Guangming

    2010-02-01

    Many functional magnetic resonance imaging (fMRI) studies have revealed the deactivation phenomenon of default mode network in the patients with epilepsy; however, nearly not any of the reports has focused on the dorsal attention network of epilepsy. In this paper, independent component analysis (ICA) was used to isolate the dorsal attention network of 16 patients with temporal lobe epilepsy (TLE) and of 20 healthy normals; and a goodness-of-fit analysis was applied at the individual subject level to choose the interesting component. Intra-group analysis and inter-group analysis were performed. The results indicated that the dorsal attention network included bilateral intraparietal sulcus, middle frontal gyrus, human frontal eye field, posterior lobe of right cerebellum, etc. The TLE group showed decreased functional connectivity in most of the dorsal attention regions with the predominance in the bilateral intraparietal sulcus, middle frontal gyrus, and posterior lobe of right cerebellum. These data suggested that the intrinsic organization of the brain function might be disrupted in TLE. In addition, the decrease of goodness-of-fit scores suggests that activity in the dorsal attention network may ultimately prove a sensitive biomarker for TLE.

  11. Feasibility of a clearing house for improved cooperation between telemedicine networks delivering humanitarian services: acceptability to network coordinators.

    PubMed

    Wootton, Richard; Bonnardot, Laurent; Geissbuhler, Antoine; Jethwani, Kamal; Kovarik, Carrie; McGoey, Suzanne; Person, Donald A; Vladzymyrskyy, Anton; Zolfo, Maria

    2012-10-09

    Telemedicine networks, which deliver humanitarian services, sometimes need to share expertise to find particular experts in other networks. It has been suggested that a mechanism for sharing expertise between networks (a 'clearing house') might be useful. To propose a mechanism for implementing the clearing house concept for sharing expertise, and to confirm its feasibility in terms of acceptability to the relevant networks. We conducted a needs analysis among eight telemedicine networks delivering humanitarian services. A small proportion of consultations (5-10%) suggested that networks may experience difficulties in finding the right specialists from within their own resources. With the assistance of key stakeholders, many of whom were network coordinators, various methods of implementing a clearing house were considered. One simple solution is to establish a central database holding information about consultants who have agreed to provide help to other networks; this database could be made available to network coordinators who need a specialist when none was available in their own network. The proposed solution was examined in a desktop simulation exercise, which confirmed its feasibility and probable value. This analysis informs full-scale implementation of a clearing house, and an associated examination of its costs and benefits.

  12. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    PubMed

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with psychosis, suggesting that antipsychotics achieve their effect by enhancing a number of central symptoms, which then facilitate reduction of other highly coupled symptoms in a network-like fashion.

  13. Additional considerations are required when preparing a protocol for a systematic review with multiple interventions.

    PubMed

    Chaimani, Anna; Caldwell, Deborah M; Li, Tianjing; Higgins, Julian P T; Salanti, Georgia

    2017-03-01

    The number of systematic reviews that aim to compare multiple interventions using network meta-analysis is increasing. In this study, we highlight aspects of a standard systematic review protocol that may need modification when multiple interventions are to be compared. We take the protocol format suggested by Cochrane for a standard systematic review as our reference and compare the considerations for a pairwise review with those required for a valid comparison of multiple interventions. We suggest new sections for protocols of systematic reviews including network meta-analyses with a focus on how to evaluate their assumptions. We provide example text from published protocols to exemplify the considerations. Standard systematic review protocols for pairwise meta-analyses need extensions to accommodate the increased complexity of network meta-analysis. Our suggested modifications are widely applicable to both Cochrane and non-Cochrane systematic reviews involving network meta-analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling

    PubMed Central

    Shin, Junha; Lee, Insuk

    2015-01-01

    Phylogenetic profiling, a network inference method based on gene inheritance profiles, has been widely used to construct functional gene networks in microbes. However, its utility for network inference in higher eukaryotes has been limited. An improved algorithm with an in-depth understanding of pathway evolution may overcome this limitation. In this study, we investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 reference species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens. We observed three clusters of reference species based on a principal component analysis of the phylogenetic profiles, which correspond to the three domains of life—Archaea, Bacteria, and Eukaryota—suggesting that pathways inherit primarily within specific domains or lower-ranked taxonomic groups during speciation. Hence, the co-inheritance pattern within a taxonomic group may be eroded by confounding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-inheritance analysis within domains substantially improved network inference not only in microbe species but also in the higher eukaryotes, including humans. Although we observed two sub-domain clusters of reference species within Eukaryota, co-inheritance analysis within these sub-domain taxonomic groups only marginally improved network inference. Therefore, we conclude that co-inheritance analysis within domains is the optimal approach to network inference with the given reference species. The construction of a series of human gene networks with increasing sample sizes of the reference species for each domain revealed that the size of the high-accuracy networks increased as additional reference species genomes were included, suggesting that within-domain co-inheritance analysis will continue to expand human gene networks as genomes of additional species are sequenced. Taken together, we propose that co-inheritance analysis within the domains of life will greatly potentiate the use of the expected onslaught of sequenced genomes in the study of molecular pathways in higher eukaryotes. PMID:26394049

  15. Has the Elite Foundation Agenda Spread beyond the Gates? An Organizational Network Analysis of Nonmajor Philanthropic Giving in K-12 Education

    ERIC Educational Resources Information Center

    Ferrare, Joseph J.; Reynolds, Katherine

    2016-01-01

    Previous research focusing on major philanthropic foundations suggests that these actors have collectively converged around a set of jurisdictional challengers promoting market-based education reforms. Using correspondence analysis, network analysis, and geographic information science, this article empirically tests whether this convergence has…

  16. Friendship Group Composition and Juvenile Institutional Misconduct.

    PubMed

    Reid, Shannon E

    2017-02-01

    The present study examines both the patterns of friendship networks and how these network characteristics relate to the risk factors of institutional misconduct for incarcerated youth. Using friendship networks collected from males incarcerated with California's Division of Juvenile Justice (DJJ), latent profile analysis was utilized to create homogeneous groups of friendship patterns based on alter attributes and network structure. The incarcerated youth provided 144 egocentric networks reporting 558 social network relationships. Latent profile analysis identified three network profiles: expected group (67%), new breed group (20%), and model citizen group (13%). The three network profiles were integrated into a multiple group analysis framework to examine the relative influence of individual-level risk factors on their rate of institutional misconduct. The analysis finds variation in predictors of institutional misconduct across profile types. These findings suggest that the close friendships of incarcerated youth are patterned across the individual characteristics of the youth's friends and that the friendship network can act as a moderator for individual risk factors for institutional misconduct.

  17. A network approach for distinguishing ethical issues in research and development.

    PubMed

    Zwart, Sjoerd D; van de Poel, Ibo; van Mil, Harald; Brumsen, Michiel

    2006-10-01

    In this paper we report on our experiences with using network analysis to discern and analyse ethical issues in research into, and the development of, a new wastewater treatment technology. Using network analysis, we preliminarily interpreted some of our observations in a Group Decision Room (GDR) session where we invited important stakeholders to think about the risks of this new technology. We show how a network approach is useful for understanding the observations, and suggests some relevant ethical issues. We argue that a network approach is also useful for ethical analysis of issues in other fields of research and development. The abandoning of the overarching rationality assumption, which is central to network approaches, does not have to lead to ethical relativism.

  18. Disclosing Sexual Assault Within Social Networks: A Mixed-Method Investigation.

    PubMed

    Dworkin, Emily R; Pittenger, Samantha L; Allen, Nicole E

    2016-03-01

    Most survivors of sexual assault disclose their experiences within their social networks, and these disclosure decisions can have important implications for their entry into formal systems and well-being, but no research has directly examined these networks as a strategy to understand disclosure decisions. Using a mixed-method approach that combined survey data, social network analysis, and interview data, we investigate whom, among potential informal responders in the social networks of college students who have experienced sexual assault, survivors contact regarding their assault, and how survivors narrate the role of networks in their decisions about whom to contact. Quantitative results suggest that characteristics of survivors, their social networks, and members of these networks are associated with disclosure decisions. Using data from social network analysis, we identified that survivors tended to disclose to a smaller proportion of their network when many network members had relationships with each other or when the network had more subgroups. Our qualitative analysis helps to contextualize these findings. © Society for Community Research and Action 2016.

  19. The Changing Nature of Suicide Attacks: A Social Network Perspective

    ERIC Educational Resources Information Center

    Pedahzur, Ami; Perliger, Arie

    2006-01-01

    To comprehend the developments underlying the suicide attacks of recent years, we suggest that the organizational approach, which until recently was used to explain this phenomenon, should be complemented with a social network perspective. By employing a social network analysis of Palestinian suicide networks, the authors found that, in contrast…

  20. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  1. Does the social capital in networks of “fish and fire” scientists and managers suggest learning?

    Treesearch

    A. Paige Fischer; Ken Vance-Borland; Kelly M. Burnett; Susan Hummel; Janean H. Creighton; Sherri L. Johnson; Lorien Jasny

    2014-01-01

    Patterns of social interaction influence how knowledge is generated, communicated, and applied. Theories of social capital and organizational learning suggest that interactions within disciplinary or functional groups foster communication of knowledge, whereas interactions across groups foster generation of new knowledge. We used social network analysis to examine...

  2. Advanced Fault Diagnosis Methods in Molecular Networks

    PubMed Central

    Habibi, Iman; Emamian, Effat S.; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670

  3. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  4. Complex networks untangle competitive advantage in Australian football

    NASA Astrophysics Data System (ADS)

    Braham, Calum; Small, Michael

    2018-05-01

    We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.

  5. Complex networks untangle competitive advantage in Australian football.

    PubMed

    Braham, Calum; Small, Michael

    2018-05-01

    We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R 2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.

  6. Dynamic Neural Networks Supporting Memory Retrieval

    PubMed Central

    St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.

    2011-01-01

    How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407

  7. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    PubMed

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  8. Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans (nemertea).

    PubMed

    Chen, Haixia; Strand, Malin; Norenburg, Jon L; Sun, Shichun; Kajihara, Hiroshi; Chernyshev, Alexey V; Maslakova, Svetlana A; Sundberg, Per

    2010-09-21

    It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling.

  9. Social Networks and Mourning: A Comparative Approach.

    ERIC Educational Resources Information Center

    Rubin, Nissan

    1990-01-01

    Suggests using social network theory to explain varieties of mourning behavior in different societies. Compares participation in funeral ceremonies of members of different social circles in American society and Israeli kibbutz. Concludes that results demonstrated validity of concepts deriving from social network analysis in study of bereavement,…

  10. Graph theory network function in Parkinson's disease assessed with electroencephalography.

    PubMed

    Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G

    2016-05-01

    To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Evaluating the Quality of Evidence from a Network Meta-Analysis

    PubMed Central

    Salanti, Georgia; Del Giovane, Cinzia; Chaimani, Anna; Caldwell, Deborah M.; Higgins, Julian P. T.

    2014-01-01

    Systematic reviews that collate data about the relative effects of multiple interventions via network meta-analysis are highly informative for decision-making purposes. A network meta-analysis provides two types of findings for a specific outcome: the relative treatment effect for all pairwise comparisons, and a ranking of the treatments. It is important to consider the confidence with which these two types of results can enable clinicians, policy makers and patients to make informed decisions. We propose an approach to determining confidence in the output of a network meta-analysis. Our proposed approach is based on methodology developed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group for pairwise meta-analyses. The suggested framework for evaluating a network meta-analysis acknowledges (i) the key role of indirect comparisons (ii) the contributions of each piece of direct evidence to the network meta-analysis estimates of effect size; (iii) the importance of the transitivity assumption to the validity of network meta-analysis; and (iv) the possibility of disagreement between direct evidence and indirect evidence. We apply our proposed strategy to a systematic review comparing topical antibiotics without steroids for chronically discharging ears with underlying eardrum perforations. The proposed framework can be used to determine confidence in the results from a network meta-analysis. Judgements about evidence from a network meta-analysis can be different from those made about evidence from pairwise meta-analyses. PMID:24992266

  12. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    PubMed

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  13. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.

    PubMed

    Salami, Alireza; Rieckmann, Anna; Fischer, Håkan; Bäckman, Lars

    2014-02-01

    Functional neuroimaging studies demonstrate age-related differences in recruitment of a large-scale attentional network during interference resolution, especially within dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). These alterations in functional responses have been frequently observed despite equivalent task performance, suggesting age-related reallocation of neural resources, although direct evidence for a facilitating effect in aging is sparse. We used the multi-source interference task and multivariate partial-least-squares to investigate age-related differences in the neuronal signature of conflict resolution, and their behavioral implications in younger and older adults. There were interference-related increases in activity, involving fronto-parietal and basal ganglia networks that generalized across age. In addition an age-by-task interaction was observed within a distributed network, including DLPFC and ACC, with greater activity during interference in the old. Next, we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were present in older adults, using DLPFC and ACC as regions of interest (i.e. seed regions). This analysis revealed two networks differentially related to performance across age groups. A structural analysis revealed age-related gray-matter losses in regions facilitating performance in the young, suggesting that functional reorganization may partly reflect structural alterations in aging. Collectively, these findings suggest that age-related structural changes contribute to reductions in the efficient recruitment of a youth-like interference network, which cascades into instantiation of a different network facilitating conflict resolution in elderly people. © 2013. Published by Elsevier Inc. All rights reserved.

  14. Perspectives on Social Network Analysis for Observational Scientific Data

    NASA Astrophysics Data System (ADS)

    Singh, Lisa; Bienenstock, Elisa Jayne; Mann, Janet

    This chapter is a conceptual look at data quality issues that arise during scientific observations and their impact on social network analysis. We provide examples of the many types of incompleteness, bias and uncertainty that impact the quality of social network data. Our approach is to leverage the insights and experience of observational behavioral scientists familiar with the challenges of making inference when data are not complete, and suggest avenues for extending these to relational data questions. The focus of our discussion is on network data collection using observational methods because they contain high dimensionality, incomplete data, varying degrees of observational certainty, and potential observer bias. However, the problems and recommendations identified here exist in many other domains, including online social networks, cell phone networks, covert networks, and disease transmission networks.

  15. Mixed-method Exploration of Social Network Links to Participation

    PubMed Central

    Kreider, Consuelo M.; Bendixen, Roxanna M.; Mann, William C.; Young, Mary Ellen; McCarty, Christopher

    2015-01-01

    The people who regularly interact with an adolescent form that youth's social network, which may impact participation. We investigated the relationship of social networks to participation using personal network analysis and individual interviews. The sample included 36 youth, age 11 – 16 years. Nineteen had diagnoses of learning disability, attention disorder, or high-functioning autism and 17 were typically developing. Network analysis yielded 10 network variables, of which 8 measured network composition and 2 measured network structure, with significant links to at least one measure of participation using the Children's Assessment of Participation and Enjoyment (CAPE). Interviews from youth in the clinical group yielded description of strategies used to negotiate social interactions, as well as processes and reasoning used to remain engaged within social networks. Findings contribute to understanding the ways social networks are linked to youth participation and suggest the potential of social network factors for predicting rehabilitation outcomes. PMID:26594737

  16. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    PubMed

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Network-based machine learning and graph theory algorithms for precision oncology.

    PubMed

    Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui

    2017-01-01

    Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.

  18. Evaluation model of distribution network development based on ANP and grey correlation analysis

    NASA Astrophysics Data System (ADS)

    Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong

    2018-06-01

    The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.

  19. Reappraisal of Social Network Research in Educational Contexts.

    ERIC Educational Resources Information Center

    Scherer, Jacqueline

    Three network studies in education are reviewed in order to assess the current "state of the art." New directions for developing social network analysis (SNA) in education, based upon experiences from a study of school-community relations in Pontiac, Michigan, are suggested. One concern for the future of SNA stems from the elevation of…

  20. Learning in Linguistically Diverse Middle School Classrooms: The Role of the Classroom Peer Network

    ERIC Educational Resources Information Center

    Elreda, Lauren Molloy; Kibler, Amanda; Futch Ehrlich, Valerie A.; Johnson, Haley

    2016-01-01

    The literature suggests there is much to be gained from exploring the role of the peer network in linguistically diverse "mainstream" middle school classrooms (i.e., classrooms that include English language learners alongside fluent English-speakers). The present study uses social network analysis to examine whether between-classroom and…

  1. Research of the self-healing technologies in the optical communication network of distribution automation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhong, Guoxin

    2018-03-01

    Optical communication network is the mainstream technique of the communication networks for distribution automation, and self-healing technologies can improve the in reliability of the optical communication networks significantly. This paper discussed the technical characteristics and application scenarios of several network self-healing technologies in the access layer, the backbone layer and the core layer of the optical communication networks for distribution automation. On the base of the contrastive analysis, this paper gives an application suggestion of these self-healing technologies.

  2. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  3. The Laplacian spectrum of neural networks

    PubMed Central

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  4. The adaptive safety analysis and monitoring system

    NASA Astrophysics Data System (ADS)

    Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter

    2004-09-01

    The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.

  5. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure.

    PubMed

    Hao, Dapeng; Ren, Cong; Li, Chuanxing

    2012-05-01

    A central idea in biology is the hierarchical organization of cellular processes. A commonly used method to identify the hierarchical modular organization of network relies on detecting a global signature known as variation of clustering coefficient (so-called modularity scaling). Although several studies have suggested other possible origins of this signature, it is still widely used nowadays to identify hierarchical modularity, especially in the analysis of biological networks. Therefore, a further and systematical investigation of this signature for different types of biological networks is necessary. We analyzed a variety of biological networks and found that the commonly used signature of hierarchical modularity is actually the reflection of spoke-like topology, suggesting a different view of network architecture. We proved that the existence of super-hubs is the origin that the clustering coefficient of a node follows a particular scaling law with degree k in metabolic networks. To study the modularity of biological networks, we systematically investigated the relationship between repulsion of hubs and variation of clustering coefficient. We provided direct evidences for repulsion between hubs being the underlying origin of the variation of clustering coefficient, and found that for biological networks having no anti-correlation between hubs, such as gene co-expression network, the clustering coefficient doesn't show dependence of degree. Here we have shown that the variation of clustering coefficient is neither sufficient nor exclusive for a network to be hierarchical. Our results suggest the existence of spoke-like modules as opposed to "deterministic model" of hierarchical modularity, and suggest the need to reconsider the organizational principle of biological hierarchy.

  6. Social Network Analysis for Assessing College-Aged Adults' Health: A Systematic Review.

    PubMed

    Patterson, Megan S; Go Odson, Patricia

    2018-04-13

    Social network analysis (SNA) is a useful, emerging method for studying health. College students are especially prone to social influence when it comes to health. This review aimed to identify network variables related to college student health and determine how SNA was used in the literature. A systematic review of relevant literature was conducted in October 2015. Studies employing egocentric or whole network analysis to study college student health were included. We used Garrard's Matrix Method to extract data from reviewed articles (n = 15). Drinking, smoking, aggression, homesickness, and stress were predicted by network variables in the reviewed literature. Methodological inconsistencies concerning boundary specification, data collection, nomination limits, and statistical analyses were revealed across studies. Results show the consistent relationship between network variables and college health outcomes, justifying further use of SNA to research college health. Suggestions and considerations for future use of SNA are provided.

  7. Structural and functional cerebral correlates of hypnotic suggestibility.

    PubMed

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

  8. Process-based network decomposition reveals backbone motif structure

    PubMed Central

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-01-01

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084

  9. Disappearing acts: The social networks of formerly homeless individuals with co-occurring disorders

    PubMed Central

    Abrams, Courtney

    2007-01-01

    Studies of the social lives of men and women living with co-occurring disorders (substance abuse and serious mental illness) suggest that social networks critically influence recovery. In this paper, we examine some of the reasons that the social networks of individuals with co-occurring disorders are small, and the impact of small networks for this population. Using a social capital framework with cross-case analysis, we analyze 72 in-depth qualitative interviews with 39 formerly homeless mentally ill men and women who were substance abusers. All were participants in the New York Services Study (HYSS), a federally funded study of mentally ill adults in New York City. The patterns suggest that networks shrunk because 1) social network members died prematurely, 2) study participants withdrew or pushed others away, and 3) friends and family members faced so many obstacles of their own that they could not provide resources for the study participants. We suggest that as networks diminished, some participants responded by attempting to rebuild their networks, even if the networks provided negative social capital, and others isolated themselves socially to escape the pressures and disappointments of interaction. PMID:17706330

  10. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    PubMed

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  11. Estimates of Segregation and Overlap of Functional Connectivity Networks in the Human Cerebral Cortex

    PubMed Central

    Yeo, BT Thomas; Krienen, Fenna M; Chee, Michael WL; Buckner, Randy L

    2014-01-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1,000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. PMID:24185018

  12. Differential C3NET reveals disease networks of direct physical interactions

    PubMed Central

    2011-01-01

    Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network is enriched for all proliferation genes, which further suggests that the genes in this network may serve in the process of oncogenesis. Conclusions Our approach reveals disease specific interactions. It may help to make experimental follow-up studies more cost and time efficient by prioritizing disease relevant parts of the global gene network. PMID:21777411

  13. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons

    PubMed Central

    Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210

  14. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons.

    PubMed

    Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.

  15. Duality between Time Series and Networks

    PubMed Central

    Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.

    2011-01-01

    Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093

  16. Comparative safety and efficacy of vasopressors for mortality in septic shock: A network meta-analysis.

    PubMed

    Nagendran, Myura; Maruthappu, Mahiben; Gordon, Anthony C; Gurusamy, Kurinchi S

    2016-05-01

    Septic shock is a life-threatening condition requiring vasopressor agents to support the circulatory system. Several agents exist with choice typically guided by the specific clinical scenario. We used a network meta-analysis approach to rate the comparative efficacy and safety of vasopressors for mortality and arrhythmia incidence in septic shock patients. We performed a comprehensive electronic database search including Medline, Embase, Science Citation Index Expanded and the Cochrane database. Randomised trials investigating vasopressor agents in septic shock patients and specifically assessing 28-day mortality or arrhythmia incidence were included. A Bayesian network meta-analysis was performed using Markov chain Monte Carlo methods. Thirteen trials of low to moderate risk of bias in which 3146 patients were randomised were included. There was no pairwise evidence to suggest one agent was superior over another for mortality. In the network meta-analysis, vasopressin was significantly superior to dopamine (OR 0.68 (95% CI 0.5 to 0.94)) for mortality. For arrhythmia incidence, standard pairwise meta-analyses confirmed that dopamine led to a higher incidence of arrhythmias than norepinephrine (OR 2.69 (95% CI 2.08 to 3.47)). In the network meta-analysis, there was no evidence of superiority of one agent over another. In this network meta-analysis, vasopressin was superior to dopamine for 28-day mortality in septic shock. Existing pairwise information supports the use of norepinephrine over dopamine. Our findings suggest that dopamine should be avoided in patients with septic shock and that other vasopressor agents should continue to be based on existing guidelines and clinical judgement of the specific presentation of the patient.

  17. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  18. Using Social Network Measures in Wildlife Disease Ecology, Epidemiology, and Management

    PubMed Central

    Silk, Matthew J.; Croft, Darren P.; Delahay, Richard J.; Hodgson, David J.; Boots, Mike; Weber, Nicola; McDonald, Robbie A.

    2017-01-01

    Abstract Contact networks, behavioral interactions, and shared use of space can all have important implications for the spread of disease in animals. Social networks enable the quantification of complex patterns of interactions; therefore, network analysis is becoming increasingly widespread in the study of infectious disease in animals, including wildlife. We present an introductory guide to using social-network-analytical approaches in wildlife disease ecology, epidemiology, and management. We focus on providing detailed practical guidance for the use of basic descriptive network measures by suggesting the research questions to which each technique is best suited and detailing the software available for each. We also discuss how using network approaches can be used beyond the study of social contacts and across a range of spatial and temporal scales. Finally, we integrate these approaches to examine how network analysis can be used to inform the implementation and monitoring of effective disease management strategies. PMID:28596616

  19. Applying social network analysis to understand the knowledge sharing behaviour of practitioners in a clinical online discussion forum.

    PubMed

    Stewart, Samuel Alan; Abidi, Syed Sibte Raza

    2012-12-04

    Knowledge Translation (KT) plays a vital role in the modern health care community, facilitating the incorporation of new evidence into practice. Web 2.0 tools provide a useful mechanism for establishing an online KT environment in which health practitioners share their practice-related knowledge and experiences with an online community of practice. We have implemented a Web 2.0 based KT environment--an online discussion forum--for pediatric pain practitioners across seven different hospitals in Thailand. The online discussion forum enabled the pediatric pain practitioners to share and translate their experiential knowledge to help improve the management of pediatric pain in hospitals. The goal of this research is to investigate the knowledge sharing dynamics of a community of practice through an online discussion forum. We evaluated the communication patterns of the community members using statistical and social network analysis methods in order to better understand how the online community engages to share experiential knowledge. Statistical analyses and visualizations provide a broad overview of the communication patterns within the discussion forum. Social network analysis provides the tools to delve deeper into the social network, identifying the most active members of the community, reporting the overall health of the social network, isolating the potential core members of the social network, and exploring the inter-group relationships that exist across institutions and professions. The statistical analyses revealed a network dominated by a single institution and a single profession, and found a varied relationship between reading and posting content to the discussion forum. The social network analysis discovered a healthy network with strong communication patterns, while identifying which users are at the center of the community in terms of facilitating communication. The group-level analysis suggests that there is strong interprofessional and interregional communication, but a dearth of non-nurse participants has been identified as a shortcoming. The results of the analysis suggest that the discussion forum is active and healthy, and that, though few, the interprofessional and interinstitutional ties are strong.

  20. A Small World of Neuronal Synchrony

    PubMed Central

    Yu, Shan; Huang, Debin; Singer, Wolf

    2008-01-01

    A small-world network has been suggested to be an efficient solution for achieving both modular and global processing—a property highly desirable for brain computations. Here, we investigated functional networks of cortical neurons using correlation analysis to identify functional connectivity. To reconstruct the interaction network, we applied the Ising model based on the principle of maximum entropy. This allowed us to assess the interactions by measuring pairwise correlations and to assess the strength of coupling from the degree of synchrony. Visual responses were recorded in visual cortex of anesthetized cats, simultaneously from up to 24 neurons. First, pairwise correlations captured most of the patterns in the population's activity and, therefore, provided a reliable basis for the reconstruction of the interaction networks. Second, and most importantly, the resulting networks had small-world properties; the average path lengths were as short as in simulated random networks, but the clustering coefficients were larger. Neurons differed considerably with respect to the number and strength of interactions, suggesting the existence of “hubs” in the network. Notably, there was no evidence for scale-free properties. These results suggest that cortical networks are optimized for the coexistence of local and global computations: feature detection and feature integration or binding. PMID:18400792

  1. A human functional protein interaction network and its application to cancer data analysis

    PubMed Central

    2010-01-01

    Background One challenge facing biologists is to tease out useful information from massive data sets for further analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship networks. We are building such a pathway-based analysis system. Results We have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers. Conclusions We have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases. PMID:20482850

  2. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    PubMed

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  3. Networks--New York Subways, A Piece of String, and African Traditions.

    ERIC Educational Resources Information Center

    Zaslavsky, Claudia

    1981-01-01

    Introducing network theory to schoolchildren is promoted as a way of encouraging students to deal with new situations, be unafraid of challenges, and learn to think. Several applications, methods of analysis, and suggestions for further activities are provided. (MP)

  4. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder.

    PubMed

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-09-12

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.

  5. Social networks and links to isolation and loneliness among elderly HCBS clients.

    PubMed

    Medvene, Louis J; Nilsen, Kari M; Smith, Rachel; Ofei-Dodoo, Samuel; DiLollo, Anthony; Webster, Noah; Graham, Annette; Nance, Anita

    2016-01-01

    The purpose of this study was to explore the network types of HCBS clients based on the structural characteristics of their social networks. We also examined how the network types were associated with social isolation, relationship quality and loneliness. Forty personal interviews were carried out with HCBS clients to assess the structure of their social networks as indicated by frequency of contact with children, friends, family and participation in religious and community organizations. Hierarchical cluster analysis was conducted to identify network types. Four network types were found including: family (n = 16), diverse (n = 8), restricted (n = 8) and religious (n = 7). Family members comprised almost half of participants' social networks, and friends comprised less than one-third. Clients embedded in family, diverse and religious networks had significantly more positive relationships than clients embedded in restricted networks. Clients embedded in restricted networks had significantly higher social isolation scores and were lonelier than clients in diverse and family networks. The findings suggest that HCBS clients' isolation and loneliness are linked to the types of social networks in which they are embedded. The findings also suggest that clients embedded in restricted networks are at high risk for negative outcomes.

  6. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

    PubMed Central

    Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-01-01

    The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990

  7. Disrupted functional connectome in antisocial personality disorder.

    PubMed

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2017-08-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.

  8. Disrupted functional connectome in antisocial personality disorder

    PubMed Central

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen

    2017-01-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949

  9. Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis

    PubMed Central

    Gopal, Shruti; Miller, Robyn L.; Michael, Andrew; Adali, Tulay; Cetin, Mustafa; Rachakonda, Srinivas; Bustillo, Juan R.; Cahill, Nathan; Baum, Stefi A.; Calhoun, Vince D.

    2016-01-01

    Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects. PMID:26106217

  10. Structural and Functional Cerebral Correlates of Hypnotic Suggestibility

    PubMed Central

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity. PMID:24671130

  11. Functional connectivity mapping of regions associated with self- and other-processing.

    PubMed

    Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B

    2015-04-01

    Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.

  12. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  13. How Relations are Built within a SNS World -- Social Network Analysis on Mixi --

    NASA Astrophysics Data System (ADS)

    Matsuo, Yutaka; Yasud, Yuki

    Our purpose here is to (1) investigate the structure of the personal networks developed on mixi, a Japanese social networking service (SNS), and (2) to consider the governing mechanism which guides participants of a SNS to form an aggregate network. Our findings are as follows:the clustering coefficient of the network is as high as 0.33 while the characteristic path lenght is as low as 5.5. A network among central users (over 300 edges) consist of two cliques, which seems to be very fragile. Community-affiliation network suggests there are several easy-entry communities which later lead users to more high-entry, unique-theme communities. The analysis on connectedness within a community reveals the importance of real-world interaction. Lastly, we depict a probable image of the entire ecology on {\\\\em mixi} among users and communities, which contributes broadly to social systems on the Web.

  14. Learning and robustness to catch-and-release fishing in a shark social network

    PubMed Central

    Brown, Culum; Planes, Serge

    2017-01-01

    Individuals can play different roles in maintaining connectivity and social cohesion in animal populations and thereby influence population robustness to perturbations. We performed a social network analysis in a reef shark population to assess the vulnerability of the global network to node removal under different scenarios. We found that the network was generally robust to the removal of nodes with high centrality. The network appeared also highly robust to experimental fishing. Individual shark catchability decreased as a function of experience, as revealed by comparing capture frequency and site presence. Altogether, these features suggest that individuals learnt to avoid capture, which ultimately increased network robustness to experimental catch-and-release. Our results also suggest that some caution must be taken when using capture–recapture models often used to assess population size as assumptions (such as equal probabilities of capture and recapture) may be violated by individual learning to escape recapture. PMID:28298593

  15. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists

    PubMed Central

    Chow, Cheryl-Emiliane T; Kim, Diane Y; Sachdeva, Rohan; Caron, David A; Fuhrman, Jed A

    2014-01-01

    Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance. PMID:24196323

  16. Default and Executive Network Coupling Supports Creative Idea Production

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Barry Kaufman, Scott; Silvia, Paul J.

    2015-01-01

    The role of attention in creative cognition remains controversial. Neuroimaging studies have reported activation of brain regions linked to both cognitive control and spontaneous imaginative processes, raising questions about how these regions interact to support creative thought. Using functional magnetic resonance imaging (fMRI), we explored this question by examining dynamic interactions between brain regions during a divergent thinking task. Multivariate pattern analysis revealed a distributed network associated with divergent thinking, including several core hubs of the default (posterior cingulate) and executive (dorsolateral prefrontal cortex) networks. The resting-state network affiliation of these regions was confirmed using data from an independent sample of participants. Graph theory analysis assessed global efficiency of the divergent thinking network, and network efficiency was found to increase as a function of individual differences in divergent thinking ability. Moreover, temporal connectivity analysis revealed increased coupling between default and salience network regions (bilateral insula) at the beginning of the task, followed by increased coupling between default and executive network regions at later stages. Such dynamic coupling suggests that divergent thinking involves cooperation between brain networks linked to cognitive control and spontaneous thought, which may reflect focused internal attention and the top-down control of spontaneous cognition during creative idea production. PMID:26084037

  17. A CFBPN Artificial Neural Network Model for Educational Qualitative Data Analyses: Example of Students' Attitudes Based on Kellerts' Typologies

    ERIC Educational Resources Information Center

    Yorek, Nurettin; Ugulu, Ilker

    2015-01-01

    In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…

  18. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    PubMed

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    PubMed Central

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  20. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    PubMed

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  1. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso; Elena, Santiago F

    2009-01-01

    Background Understanding the molecular mechanisms plants have evolved to adapt their biological activities to a constantly changing environment is an intriguing question and one that requires a systems biology approach. Here we present a network analysis of genome-wide expression data combined with reverse-engineering network modeling to dissect the transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an assembly of microarray data containing steady-state RNA expression levels from several growth conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes. Results We show that the A. thaliana regulatory network has the characteristic properties of hierarchical networks. We successfully applied our quantitative network model to predict the full transcriptome of the plant for a set of microarray experiments not included in the training dataset. We also used our model to analyze the robustness in expression levels conferred by network motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has allowed us to identify regulatory and robust genetic structures. Conclusions These data suggest that A. thaliana has evolved high connectivity in terms of transcriptional regulation among cellular functions involved in response and adaptation to changing environments, while gene networks constitutively expressed or less related to stress response are characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory strategies that have been selected during the evolutionary history of this eukaryote. PMID:19754933

  2. Characterizing core-periphery structure of complex network by h-core and fingerprint curve

    NASA Astrophysics Data System (ADS)

    Li, Simon S.; Ye, Adam Y.; Qi, Eric P.; Stanley, H. Eugene; Ye, Fred Y.

    2018-02-01

    It is proposed that the core-periphery structure of complex networks can be simulated by h-cores and fingerprint curves. While the features of core structure are characterized by h-core, the features of periphery structure are visualized by rose or spiral curve as the fingerprint curve linking to entire-network parameters. It is suggested that a complex network can be approached by h-core and rose curves as the first-order Fourier-approach, where the core-periphery structure is characterized by five parameters: network h-index, network radius, degree power, network density and average clustering coefficient. The simulation looks Fourier-like analysis.

  3. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment.

    PubMed

    Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang

    2017-09-01

    Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.

  4. [Clinical value evaluation of Chinese herbal formula in context of multi-omics network].

    PubMed

    Li, Bing; Han, Fei; Wang, Zhong; Wang, Yong-Yan

    2017-03-01

    Clinical value evaluation is the key issue to solve the problems such as high repetition rate, fuzzy clinical positioning, broad indications and unclear clinical values in Chinese herbal formula(Chinese patent medicine). By analyzing the challenges and opportunities of Chinese herbal formula in clinical value evaluation, this paper introduced a strategy of multi-omic network analysis. Through comparative analysis of three stroke treatment formulas, we suggested their different characteristic advantages for variant symptoms or phenotypes of stroke, which may provide reference for rational clinical choice. Such multi-omic network analysis strategy may open a unique angle of view for clinical evaluation and comparison of Chinese herbal formula. Copyright© by the Chinese Pharmaceutical Association.

  5. The complex genetics of gait speed: genome-wide meta-analysis approach

    PubMed Central

    Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil

    2017-01-01

    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804

  6. Women's connectivity in extreme networks.

    PubMed

    Manrique, Pedro; Cao, Zhenfeng; Gabriel, Andrew; Horgan, John; Gill, Paul; Qi, Hong; Restrepo, Elvira M; Johnson, Daniela; Wuchty, Stefan; Song, Chaoming; Johnson, Neil

    2016-06-01

    A popular stereotype is that women will play more minor roles than men as environments become more dangerous and aggressive. Our analysis of new longitudinal data sets from offline and online operational networks [for example, ISIS (Islamic State)] shows that although men dominate numerically, women emerge with superior network connectivity that can benefit the underlying system's robustness and survival. Our observations suggest new female-centric approaches that could be used to affect such networks. They also raise questions about how individual contributions in high-pressure systems are evaluated.

  7. Minimum spanning tree analysis of the human connectome

    PubMed Central

    Sommer, Iris E.; Bohlken, Marc M.; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A.; Douw, Linda; Otte, Willem M.; Mandl, René C.W.; Stam, Cornelis J.

    2018-01-01

    Abstract One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion‐weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null‐model. The MST of individual subjects matched this reference MST for a mean 58%–88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so‐called rich club nodes (a subset of high‐degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical–subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. PMID:29468769

  8. Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder.

    PubMed

    Yang, Xun; Liu, Jin; Meng, Yajing; Xia, Mingrui; Cui, Zaixu; Wu, Xi; Hu, Xinyu; Zhang, Wei; Gong, Gaolang; Gong, Qiyong; Sweeney, John A; He, Yong

    2017-12-07

    Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the "fear circuit", including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety. Copyright © 2017. Published by Elsevier Inc.

  9. A combined Bodian-Nissl stain for improved network analysis in neuronal cell culture.

    PubMed

    Hightower, M; Gross, G W

    1985-11-01

    Bodian and Nissl procedures were combined to stain dissociated mouse spinal cord cells cultured on coverslips. The Bodian technique stains fine neuronal processes in great detail as well as an intracellular fibrillar network concentrated around the nucleus and in proximal neurites. The Nissl stain clearly delimits neuronal cytoplasm in somata and in large dendrites. A combination of these techniques allows the simultaneous depiction of neuronal perikarya and all afferent and efferent processes. Costaining with little background staining by either procedure suggests high specificity for neurons. This procedure could be exploited for routine network analysis of cultured neurons.

  10. Artificial Neural Networks in Policy Research: A Current Assessment.

    ERIC Educational Resources Information Center

    Woelfel, Joseph

    1993-01-01

    Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…

  11. Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.

    PubMed

    Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L

    2016-11-01

    Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice

    PubMed Central

    2012-01-01

    Background WD40 proteins represent a large family in eukaryotes, which have been involved in a broad spectrum of crucial functions. Systematic characterization and co-expression analysis of OsWD40 genes enable us to understand the networks of the WD40 proteins and their biological processes and gene functions in rice. Results In this study, we identify and analyze 200 potential OsWD40 genes in rice, describing their gene structures, genome localizations, and evolutionary relationship of each member. Expression profiles covering the whole life cycle in rice has revealed that transcripts of OsWD40 were accumulated differentially during vegetative and reproductive development and preferentially up or down-regulated in different tissues. Under phytohormone treatments, 25 OsWD40 genes were differentially expressed with treatments of one or more of the phytohormone NAA, KT, or GA3 in rice seedlings. We also used a combined analysis of expression correlation and Gene Ontology annotation to infer the biological role of the OsWD40 genes in rice. The results suggested that OsWD40 genes may perform their diverse functions by complex network, thus were predictive for understanding their biological pathways. The analysis also revealed that OsWD40 genes might interact with each other to take part in metabolic pathways, suggesting a more complex feedback network. Conclusions All of these analyses suggest that the functions of OsWD40 genes are diversified, which provide useful references for selecting candidate genes for further functional studies. PMID:22429805

  13. Optimization of rainfall networks using information entropy and temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-04-01

    Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.

  14. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    NASA Astrophysics Data System (ADS)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  15. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. "Us and them": a social network analysis of physicians' professional networks and their attitudes towards EBM.

    PubMed

    Mascia, Daniele; Cicchetti, Americo; Damiani, Gianfranco

    2013-10-22

    Extant research suggests that there is a strong social component to Evidence-Based Medicine (EBM) adoption since professional networks amongst physicians are strongly associated with their attitudes towards EBM. Despite this evidence, it is still unknown whether individual attitudes to use scientific evidence in clinical decision-making influence the position that physicians hold in their professional network. This paper explores how physicians' attitudes towards EBM is related to the network position they occupy within healthcare organizations. Data pertain to a sample of Italian physicians, whose professional network relationships, demographics and work-profile characteristics were collected. A social network analysis was performed to capture the structural importance of physicians in the collaboration network by the means of a core-periphery analysis and the computation of network centrality indicators. Then, regression analysis was used to test the association between the network position of individual clinicians and their attitudes towards EBM. Findings documented that the overall network structure is made up of a dense cohesive core of physicians and of less connected clinicians who occupy the periphery. A negative association between the physicians' attitudes towards EBM and the coreness they exhibited in the professional network was also found. Network centrality indicators confirmed these results documenting a negative association between physicians' propensity to use EBM and their structural importance in the professional network. Attitudes that physicians show towards EBM are related to the part (core or periphery) of the professional networks to which they belong as well as to their structural importance. By identifying virtuous attitudes and behaviors of professionals within their organizations, policymakers and executives may avoid marginalization and stimulate integration and continuity of care, both within and across the boundaries of healthcare providers.

  17. Comparative analysis of the application of different Low Power Wide Area Network technologies in power grid

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Sui, Hong; Liao, Xing; Li, Junhao

    2018-03-01

    Low Power Wide Area Network (LPWAN) technologies developed rapidly in recent years, but the application principle of different LPWAN technologies in power grid is still not clear. This paper gives a comparative analysis of two mainstream LPWAN technologies including NB-IoT and LoRa, and gives an application suggestion of these two LPWAN technologies, which can guide the planning and construction of LPWAN in power grid.

  18. Metabolic networks in epilepsy by MR spectroscopic imaging.

    PubMed

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  19. Using Spatial Multiple Regression to Identify Intrinsic Connectivity Networks Involved in Working Memory Performance

    PubMed Central

    Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.

    2012-01-01

    Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505

  20. Egocentric Social Network Analysis of Pathological Gambling

    PubMed Central

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  1. Egocentric social network analysis of pathological gambling.

    PubMed

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  2. Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William

    2014-01-01

    BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679

  3. Social network modulation of reward-related signals

    PubMed Central

    Fareri, Dominic S.; Niznikiewicz, Michael A.; Lee, Victoria K.; Delgado, Mauricio R.

    2012-01-01

    Everyday goals and experiences are often shared with others who may hold different places within our social networks. We investigated whether the experience of sharing a reward differs with respect to social network. Twenty human participants played a card guessing game for shared monetary outcomes with three partners: a computer, a confederate (out-of-network), and a friend (in-network). Participants subjectively rated the experience of sharing a reward more positively with their friend than the other partners. Neuroimaging results support participants’ subjective reports, as ventral striatal BOLD responses were more robust when sharing monetary gains with a friend, as compared to with the confederate or computer, suggesting a higher value for sharing with an in-network partner. Interestingly, ratings of social closeness co-varied with this activity, resulting in a significant partner × closeness interaction: exploratory analysis showed that only participants reporting higher levels of closeness demonstrated partner-related differences in striatal BOLD response. These results suggest that reward valuation in social contexts is sensitive to distinctions of social network, such that sharing positive experiences with in-network others may carry higher value. PMID:22745503

  4. An iterative network partition algorithm for accurate identification of dense network modules

    PubMed Central

    Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong

    2012-01-01

    A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225

  5. Future large broadband switched satellite communications networks

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  6. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.

    PubMed

    Navlakha, Saket; Barth, Alison L; Bar-Joseph, Ziv

    2015-07-01

    Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.

  7. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks

    PubMed Central

    Navlakha, Saket; Barth, Alison L.; Bar-Joseph, Ziv

    2015-01-01

    Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains. PMID:26217933

  8. Analysis of Road Network Pattern Considering Population Distribution and Central Business District

    PubMed Central

    Zhao, Fangxia; Sun, Huijun; Wu, Jianjun; Gao, Ziyou; Liu, Ronghui

    2016-01-01

    This paper proposes a road network growing model with the consideration of population distribution and central business district (CBD) attraction. In the model, the relative neighborhood graph (RNG) is introduced as the connection mechanism to capture the characteristics of road network topology. The simulation experiment is set up to illustrate the effects of population distribution and CBD attraction on the characteristics of road network. Moreover, several topological attributes of road network is evaluated by using coverage, circuitness, treeness and total length in the experiment. Finally, the suggested model is verified in the simulation of China and Beijing Highway networks. PMID:26981857

  9. Tightly Regulated Expression of Autographa californica Multicapsid Nucleopolyhedrovirus Immediate Early Genes Emerges from Their Interactions and Possible Collective Behaviors

    PubMed Central

    Taka, Hitomi; Asano, Shin-ichiro; Matsuura, Yoshiharu; Bando, Hisanori

    2015-01-01

    To infect their hosts, DNA viruses must successfully initiate the expression of viral genes that control subsequent viral gene expression and manipulate the host environment. Viral genes that are immediately expressed upon infection play critical roles in the early infection process. In this study, we investigated the expression and regulation of five canonical regulatory immediate-early (IE) genes of Autographa californica multicapsid nucleopolyhedrovirus: ie0, ie1, ie2, me53, and pe38. A systematic transient gene-expression analysis revealed that these IE genes are generally transactivators, suggesting the existence of a highly interactive regulatory network. A genetic analysis using gene knockout viruses demonstrated that the expression of these IE genes was tolerant to the single deletions of activator IE genes in the early stage of infection. A network graph analysis on the regulatory relationships observed in the transient expression analysis suggested that the robustness of IE gene expression is due to the organization of the IE gene regulatory network and how each IE gene is activated. However, some regulatory relationships detected by the genetic analysis were contradictory to those observed in the transient expression analysis, especially for IE0-mediated regulation. Statistical modeling, combined with genetic analysis using knockout alleles for ie0 and ie1, showed that the repressor function of ie0 was due to the interaction between ie0 and ie1, not ie0 itself. Taken together, these systematic approaches provided insight into the topology and nature of the IE gene regulatory network. PMID:25816136

  10. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks.

    PubMed

    Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon

    2015-01-01

    Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student's ADHD symptoms using an ADHD rating scale. The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.

  11. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks

    PubMed Central

    Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon

    2015-01-01

    Introduction Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. Methods A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student’s ADHD symptoms using an ADHD rating scale. Results The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Conclusion Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms. PMID:26562777

  12. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  13. Signal Processing in Periodically Forced Gradient Frequency Neural Networks

    PubMed Central

    Kim, Ji Chul; Large, Edward W.

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858

  14. Designing Industrial Networks Using Ecological Food Web Metrics.

    PubMed

    Layton, Astrid; Bras, Bert; Weissburg, Marc

    2016-10-18

    Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.

  15. Time-Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery.

    PubMed

    Gong, Anmin; Liu, Jianping; Chen, Si; Fu, Yunfa

    2018-01-01

    To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.

  16. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.

  17. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research.

    PubMed

    van Diessen, E; Numan, T; van Dellen, E; van der Kooi, A W; Boersma, M; Hofman, D; van Lutterveld, R; van Dijk, B W; van Straaten, E C W; Hillebrand, A; Stam, C J

    2015-08-01

    Electroencephalogram (EEG) and magnetoencephalogram (MEG) recordings during resting state are increasingly used to study functional connectivity and network topology. Moreover, the number of different analysis approaches is expanding along with the rising interest in this research area. The comparison between studies can therefore be challenging and discussion is needed to underscore methodological opportunities and pitfalls in functional connectivity and network studies. In this overview we discuss methodological considerations throughout the analysis pipeline of recording and analyzing resting state EEG and MEG data, with a focus on functional connectivity and network analysis. We summarize current common practices with their advantages and disadvantages; provide practical tips, and suggestions for future research. Finally, we discuss how methodological choices in resting state research can affect the construction of functional networks. When taking advantage of current best practices and avoid the most obvious pitfalls, functional connectivity and network studies can be improved and enable a more accurate interpretation and comparison between studies. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. [Social networks in drinking behaviors among Japanese: support network, drinking network, and intervening network].

    PubMed

    Yoshihara, Chika; Shimizu, Shinji

    2005-10-01

    The national representative sample was analyzed to examine the relationship between respondents' drinking practice and the social network which was constructed of three different types of network: support network, drinking network, and intervening network. Non-parametric statistical analysis was conducted with chi square method and ANOVA analysis, due to the risk of small samples in some basic tabulation cells. The main results are as follows: (1) In the support network of workplace associates, moderate drinkers enjoyed much more sociable support care than both nondrinkers and hard drinkers, which might suggest a similar effect as the French paradox. Meanwhile in the familial and kinship network, the more intervening care support was provided, the harder respondents' drinking practice. (2) The drinking network among Japanese people for both sexes is likely to be convergent upon certain types of network categories and not decentralized in various categories. This might reflect of the drinking culture of Japan, which permits people to drink everyday as a practice, especially male drinkers. Subsequently, solitary drinking is not optional for female drinkers. (3) Intervening network analysis showed that the harder the respondents' drinking practices, the more frequently their drinking behaviors were checked in almost all the categories of network. A rather complicated gender double-standard was found in the network of hard drinkers with their friends, particularly for female drinkers. Medical professionals played a similar intervening role for men as family and kinship networks but to a less degree than friends for females. The social network is considerably associated with respondents' drinking, providing both sociability for moderate drinkers and intervention for hard drinkers, depending on network categories. To minimize the risk of hard drinking and advance self-healthy drinking there should be more research development on drinking practice and the social network.

  19. A Baseline for the Multivariate Comparison of Resting-State Networks

    PubMed Central

    Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.

    2011-01-01

    As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040

  20. Design and implementation of dynamic hybrid Honeypot network

    NASA Astrophysics Data System (ADS)

    Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang

    2013-05-01

    The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.

  1. Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network

    PubMed Central

    Wang, Minggang; Fang, Guochang; Shao, Shuai

    2016-01-01

    We study the overall topological structure properties of global oil trade network, such as degree, strength, cumulative distribution, information entropy and weight clustering. The structural evolution of the network is investigated as well. We find the global oil import and export networks do not show typical scale-free distribution, but display disassortative property. Furthermore, based on the monthly data of oil import values during 2005.01–2014.12, by applying random matrix theory, we investigate the complex spatiotemporal dynamic from the country level and fitness evolution of the global oil market from a demand-side analysis. Abundant information about global oil market can be obtained from deviating eigenvalues. The result shows that the oil market has experienced five different periods, which is consistent with the evolution of country clusters. Moreover, we find the changing trend of fitness function agrees with that of gross domestic product (GDP), and suggest that the fitness evolution of oil market can be predicted by forecasting GDP values. To conclude, some suggestions are provided according to the results. PMID:27706147

  2. The Role of Surface Water for the Branching Geometry of Mars' Channel Networks

    NASA Astrophysics Data System (ADS)

    Seybold, H. F.; Rothman, D.; Kirchner, J. W.

    2016-12-01

    The controversy over the origin of Mars' channel networks is almost as old as their discovery 150 years ago. In recent decades, new Mars probe missions have revealed detailed network structures, and new studies suggest that Mars once had an active hydrologic cycle. But how this water flowed and how it could have carved these huge channel networks remains unclear. A recent analysis of high-resolution data for the Continental United States suggests that climate leaves a characteristic imprint in the branching geometry of stream networks: arid regions dominated by overland or near-surface flows have much narrower branching angles than humid regions with greater groundwater recharge. Based on this result we analyze the channel networks of Mars, and find that their geometry resembles those created by near-surface and overland flows on Earth. This result gives additional support to the hypothesis that Mars once had a more active hydrologic cycle, with liquid water flowing over its surface.

  3. Minimum spanning tree analysis of the human connectome.

    PubMed

    van Dellen, Edwin; Sommer, Iris E; Bohlken, Marc M; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A; Douw, Linda; Otte, Willem M; Mandl, René C W; Stam, Cornelis J

    2018-06-01

    One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion-weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null-model. The MST of individual subjects matched this reference MST for a mean 58%-88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so-called rich club nodes (a subset of high-degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical-subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    PubMed Central

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  5. An ultrastructural analysis of platelets, erythrocytes, white blood cells, and fibrin network in systemic lupus erythematosus.

    PubMed

    Pretorius, Etheresia; du Plooy, Jenny; Soma, Prashilla; Gasparyan, Armen Yuri

    2014-07-01

    The study suggests that patients with systemic lupus erythematosus (SLE) present with distinct inflammatory ultrastructural changes such as platelets blebbing, generation of platelet-derived microparticles, spontaneous formation of massive fibrin network and fusion of the erythrocytes membranes. Lupoid platelets actively interact with other inflammatory cells, particularly with white blood cells (WBCs), and the massive fibrin network facilitates such an interaction. It is possible that the concerted actions of platelets, erythrocytes and WBC, caught in the inflammatory fibrin network, predispose to pro-thrombotic states in patients with SLE.

  6. Women’s connectivity in extreme networks

    PubMed Central

    Manrique, Pedro; Cao, Zhenfeng; Gabriel, Andrew; Horgan, John; Gill, Paul; Qi, Hong; Restrepo, Elvira M.; Johnson, Daniela; Wuchty, Stefan; Song, Chaoming; Johnson, Neil

    2016-01-01

    A popular stereotype is that women will play more minor roles than men as environments become more dangerous and aggressive. Our analysis of new longitudinal data sets from offline and online operational networks [for example, ISIS (Islamic State)] shows that although men dominate numerically, women emerge with superior network connectivity that can benefit the underlying system’s robustness and survival. Our observations suggest new female-centric approaches that could be used to affect such networks. They also raise questions about how individual contributions in high-pressure systems are evaluated. PMID:27386564

  7. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  8. Graph theoretical analysis of complex networks in the brain

    PubMed Central

    Stam, Cornelis J; Reijneveld, Jaap C

    2007-01-01

    Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336

  9. Structural and functional social network attributes moderate the association of self-rated health with mental health in midlife and older adults.

    PubMed

    Windsor, Tim D; Rioseco, Pilar; Fiori, Katherine L; Curtis, Rachel G; Booth, Heather

    2016-01-01

    Social relationships are multifaceted, and different social network components can operate via different processes to influence well-being. This study examined associations of social network structure and relationship quality (positive and negative social exchanges) with mental health in midlife and older adults. The focus was on both direct associations of network structure and relationship quality with mental health, and whether these social network attributes moderated the association of self-rated health (SRH) with mental health. Analyses were based on survey data provided by 2001 (Mean age = 65, SD = 8.07) midlife and older adults. We used Latent Class Analysis (LCA) to classify participants into network types based on network structure (partner status, network size, contact frequency, and activity engagement), and used continuous measures of positive and negative social exchanges to operationalize relationship quality. Regression analysis was used to test moderation. LCA revealed network types generally consistent with those reported in previous studies. Participants in more diverse networks reported better mental health than those categorized into a restricted network type after adjustment for age, sex, education, and employment status. Analysis of moderation indicated that those with poorer SRH were less likely to report poorer mental health if they were classified into more diverse networks. A similar moderation effect was also evident for positive exchanges. The findings suggest that both quantity and quality of social relationships can play a role in buffering against the negative implications of physical health decline for mental health.

  10. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer

    PubMed Central

    Colaprico, Antonio; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-01

    Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC. PMID:29562723

  11. Syntactic Computations in the Language Network: Characterizing Dynamic Network Properties Using Representational Similarity Analysis

    PubMed Central

    Tyler, Lorraine K.; Cheung, Teresa P. L.; Devereux, Barry J.; Clarke, Alex

    2013-01-01

    The core human capacity of syntactic analysis involves a left hemisphere network involving left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LMTG) and the anatomical connections between them. Here we use magnetoencephalography (MEG) to determine the spatio-temporal properties of syntactic computations in this network. Listeners heard spoken sentences containing a local syntactic ambiguity (e.g., “… landing planes …”), at the offset of which they heard a disambiguating verb and decided whether it was an acceptable/unacceptable continuation of the sentence. We charted the time-course of processing and resolving syntactic ambiguity by measuring MEG responses from the onset of each word in the ambiguous phrase and the disambiguating word. We used representational similarity analysis (RSA) to characterize syntactic information represented in the LIFG and left posterior middle temporal gyrus (LpMTG) over time and to investigate their relationship to each other. Testing a variety of lexico-syntactic and ambiguity models against the MEG data, our results suggest early lexico-syntactic responses in the LpMTG and later effects of ambiguity in the LIFG, pointing to a clear differentiation in the functional roles of these two regions. Our results suggest the LpMTG represents and transmits lexical information to the LIFG, which responds to and resolves the ambiguity. PMID:23730293

  12. Overland flow erosion inferred from Martian channel network geometry

    NASA Astrophysics Data System (ADS)

    Seybold, Hansjörg; Kirchner, James

    2016-04-01

    The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian drainage networks, and new studies suggest that Mars once had large volumes of surface water. But how this water flowed, and how it could have carved the channels, remains unclear. Simple scaling arguments show that networks formed by similar mechanisms should have similar branching angles on Earth and Mars, suggesting that Earth analogues can be informative here. A recent analysis of high-resolution data for the continental United States shows that climate leaves a characteristic imprint in the branching geometry of stream networks. Networks growing in humid regions have an average branching angle of α = 2π/5 = 72° [1], which is characteristic of network growth by groundwater sapping [2]. Networks in arid regions, where overland flow erosion is more dominant, show much smaller branching angles. Here we show that the channel networks on Mars have branching angles that resemble those created by surficial flows on Earth. This result implies that the growth of Martian channel networks was dominated by near-surface flow, and suggests that deeper infiltration was inhibited, potentially by permafrost or by impermeable weathered soils. [1] Climate's Watermark in the Geometry of River Networks, Seybold et al.; under review [2] Ramification of stream networks, Devauchelle et al.; PNAS (2012)

  13. Multilayer network of language: A unified framework for structural analysis of linguistic subsystems

    NASA Astrophysics Data System (ADS)

    Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana

    2016-09-01

    Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.

  14. Fat fractal scaling of drainage networks from a random spatial network model

    USGS Publications Warehouse

    Karlinger, Michael R.; Troutman, Brent M.

    1992-01-01

    An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.

  15. Assessing the Network of Agencies in Local Communities that Promote Healthy Eating and Lifestyles among Populations with Limited Resources.

    PubMed

    An, Ruopeng; Khan, Naiman; Loehmer, Emily; McCaffrey, Jennifer

    2017-03-01

    We assessed the network of agencies in local communities that promote healthy eating and lifestyles among populations with limited resources. Network surveys were administered among 159 Illinois agencies identified as serving limited-resource audiences categorized into 8 types: K-12 schools, early childhood centers, emergency food providers, health-related agencies, social resource centers, low-income/subsidized housing complexes, continuing education organizations, and others. Network analysis was conducted to examine 4 network structures - communications, funding, cooperation, and collaboration networks between agencies within each county/county cluster. Agencies in a network were found to be loosely connected, indicated by low network density. Reporting accuracy might be of concern, indicated by low reciprocity. Agencies in a network are decentralized rather than centralized around a few influential agencies, indicated by low betweenness centrality. There is suggestive evidence regarding homophily in a network, indicated by some significant correlations within agencies of the same type. Agencies connected in one network are significantly more likely to be connected in all the other networks as well. Promoting healthy eating and lifestyles among populations with limited resources warrants strong partnership across agencies in communities. Network analysis serves as a useful tool to evaluate community partnerships and facilitate coalition building..

  16. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae

    PubMed Central

    Jarnuczak, Andrew F.; Eyers, Claire E.; Schwartz, Jean‐Marc; Grant, Christopher M.

    2015-01-01

    Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC‐based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs. PMID:25689132

  17. Interorganizational relationships within state tobacco control networks: a social network analysis.

    PubMed

    Krauss, Melissa; Mueller, Nancy; Luke, Douglas

    2004-10-01

    State tobacco control programs are implemented by networks of public and private agencies with a common goal to reduce tobacco use. The degree of a program's comprehensiveness depends on the scope of its activities and the variety of agencies involved in the network. Structural aspects of these networks could help describe the process of implementing a state's tobacco control program, but have not yet been examined. Social network analysis was used to examine the structure of five state tobacco control networks. Semi-structured interviews with key agencies collected quantitative and qualitative data on frequency of contact among network partners, money flow, relationship productivity, level of network effectiveness, and methods for improvement. Most states had hierarchical communication structures in which partner agencies had frequent contact with one or two central agencies. Lead agencies had the highest control over network communication. Networks with denser communication structures had denser productivity structures. Lead agencies had the highest financial influence within the networks, while statewide coalitions were financially influenced by others. Lead agencies had highly productive relationships with others, while agencies with narrow roles had fewer productive relationships. Statewide coalitions that received Robert Wood Johnson Foundation funding had more highly productive relationships than coalitions that did not receive the funding. Results suggest that frequent communication among network partners is related to more highly productive relationships. Results also highlight the importance of lead agencies and statewide coalitions in implementing a comprehensive state tobacco control program. Network analysis could be useful in developing process indicators for state tobacco control programs.

  18. Dynamics and nature of support in the personal networks of people with type 2 diabetes living in Europe: qualitative analysis of network properties.

    PubMed

    Kennedy, Anne; Rogers, Anne; Vassilev, Ivaylo; Todorova, Elka; Roukova, Poli; Foss, Christina; Knutsen, Ingrid; Portillo, Mari Carmen; Mujika, Agurtzane; Serrano-Gil, Manuel; Lionis, Christos; Angelaki, Agapi; Ratsika, Nikoleta; Koetsenruijter, Jan; Wensing, Michel

    2015-12-01

    Living with and self-managing a long-term condition implicates a diversity of networked relationships. This qualitative study examines the personal communities of support of people with type 2 diabetes. We conducted 170 biographical interviews in six European countries (Bulgaria, Greece, the Netherlands, Norway, Spain and UK) to explore social support and networks. Analysis was framed with reference to three predetermined social support mechanisms: the negotiation of support enabling engagement with healthy practices, navigation to sources of support and collective efficacy. Each interview was summarized to describe navigation and negotiation of participants' networks and the degree of collective efficacy. Analysis highlighted the similarities and differences between countries and provided insights into capacities of networks to support self-management. The network support mechanisms were identified in all interviews, and losses and gains in networks impacted on diabetes management. There were contextual differences between countries, most notably the impact of financial austerity on network dynamics. Four types of network are suggested: generative, diverse and beneficial to individuals; proxy, network members undertook diabetes management work; avoidant, support not engaged with; and struggling, diabetes management a struggle or not prioritized. It is possible to differentiate types of network input to living with and managing diabetes. Recognizing the nature of active, generative aspects of networks support is likely to have relevance for self-management support interventions either through encouraging continuing development and maintenance of these contacts or intervening to address struggling networks through introducing the means to connect people to additional sources of support. © 2014 John Wiley & Sons Ltd.

  19. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks

    PubMed Central

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568

  20. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    PubMed

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  1. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses.

    PubMed

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2017-01-01

    Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  2. Approaching human language with complex networks

    NASA Astrophysics Data System (ADS)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  3. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation.

    PubMed

    Benoit, Roland G; Schacter, Daniel L

    2015-08-01

    It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of expected core-network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network's nodes as well as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions' specialized contributions and interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation

    PubMed Central

    Benoit, Roland G.; Schacter, Daniel L.

    2015-01-01

    It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of core network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the lateral temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network’s nodes as wells as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions’ specialized contributions and interactions. PMID:26142352

  5. Diverse types of genetic variation converge on functional gene networks involved in schizophrenia.

    PubMed

    Gilman, Sarah R; Chang, Jonathan; Xu, Bin; Bawa, Tejdeep S; Gogos, Joseph A; Karayiorgou, Maria; Vitkup, Dennis

    2012-12-01

    Despite the successful identification of several relevant genomic loci, the underlying molecular mechanisms of schizophrenia remain largely unclear. We developed a computational approach (NETBAG+) that allows an integrated analysis of diverse disease-related genetic data using a unified statistical framework. The application of this approach to schizophrenia-associated genetic variations, obtained using unbiased whole-genome methods, allowed us to identify several cohesive gene networks related to axon guidance, neuronal cell mobility, synaptic function and chromosomal remodeling. The genes forming the networks are highly expressed in the brain, with higher brain expression during prenatal development. The identified networks are functionally related to genes previously implicated in schizophrenia, autism and intellectual disability. A comparative analysis of copy number variants associated with autism and schizophrenia suggests that although the molecular networks implicated in these distinct disorders may be related, the mutations associated with each disease are likely to lead, at least on average, to different functional consequences.

  6. The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis.

    PubMed

    Sánchez-Alcázar, José A; Rodríguez-Hernández, Angeles; Cordero, Mario D; Fernández-Ayala, Daniel J M; Brea-Calvo, Gloria; Garcia, Katherina; Navas, Plácido

    2007-07-01

    It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional gamma-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular "cocoon". Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.

  7. Characterizing the sustainable forestry issue network in thc United States

    Treesearch

    Steverson O. Moffat; Frederick W. Cubbage; Thomas P. Holmes; Elizabethann O' Sullivan

    2001-01-01

    Issue network analysis techniques were applied to the issue sustainable forestry in the United States to identify potential public and private outcomes for the issue. A quantitative approach based on work by Laumann and Knoke [(The Organizational State (1987)] was utilized in conjunction with the Delphi method. Results suggest that the parity in the distribution of...

  8. Influence networks among substance abuse treatment clinics: implications for the dissemination of innovations.

    PubMed

    Johnson, Kimberly; Quanbeck, Andrew; Maus, Adam; Gustafson, David H; Dearing, James W

    2015-09-01

    Understanding influence networks among substance abuse treatment clinics may speed the diffusion of innovations. The purpose of this study was to describe influence networks in Massachusetts, Michigan, New York, Oregon, and Washington and test two expectations, using social network analysis: (1) Social network measures can identify influential clinics; and (2) Within a network, some weakly connected clinics access out-of-network sources of innovative evidence-based practices and can spread these innovations through the network. A survey of 201 clinics in a parent study on quality improvement provided the data. Network measures and sociograms were obtained from adjacency matrixes created by UCINet. We used regression analysis to determine whether network status relates to clinics' adopting innovations. Findings suggest that influential clinics can be identified and that loosely linked clinics were likely to join the study sooner than more influential clinics but were not more likely to have improved outcomes than other organizations. Findings identify the structure of influence networks for SUD treatment organizations and have mixed results on how those structures impacted diffusion of the intervention under study. Further study is necessary to test whether use of knowledge of the network structure will have an effect on the pace and breadth of dissemination of innovations.

  9. Lessons from social network analyses for behavioral medicine.

    PubMed

    Rosenquist, James N

    2011-03-01

    This study presents an overview of the rapidly expanding field of social network analysis, with an emphasis placed on work relevant to behavioral health clinicians and researchers. I outline how social network analysis is a distinct empirical methodology within the social sciences that has the potential to deepen our understanding of how mental health and addiction are influenced by social environmental factors. Whereas there have been a number of recent studies in the mental health literature that discuss social influences on mental illness and addiction, and a number of studies looking at how social networks influence health and behaviors, there are still relatively few studies that combine the two. Those that have suggest that mood symptoms as well as alcohol consumption are clustered within, and may travel along, social networks. Social networks appear to have an important influence on a variety of mental health conditions. This avenue of research has the potential to influence both clinical practice and public policy.

  10. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  11. Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.

    PubMed

    Yeheskel, Adva; Haliloglu, Turkan; Ben-Tal, Nir

    2010-05-19

    Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Alternations of White Matter Structural Networks in First Episode Untreated Major Depressive Disorder with Short Duration.

    PubMed

    Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan

    2017-01-01

    It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal-subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD.

  13. Alternations of White Matter Structural Networks in First Episode Untreated Major Depressive Disorder with Short Duration

    PubMed Central

    Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan

    2017-01-01

    It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal–subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD. PMID:29118724

  14. The Study of Development Strategy for Bank Distribution Network through the Analysis of Inter-regional Financial Transaction Network

    NASA Astrophysics Data System (ADS)

    Hong, Jae Weon; Hong, Won Eui; Kwak, Yoon Sik

    This study attempts to shed light on the factors that influence the locations of bank branches in establishing a bank's distribution network from the angle of the network analysis. Whereas the previous studies analyzed the locations of bank branches on the basis of their geographical characteristics and image, the significance of this study rests upon the fact that it endeavors to explore the location factors from a new perspective of the movement path of financial customers. For this analysis, the network between administrative districts, which form the fundamental unit of a location, was analyzed based on the financial transactional data. The important findings of this study are as follows. First, in conformity with the previous studies, the income level, the spending level, the number of businesses, and the size of workforce in the pertinent region were all found to influence the size of a bank's market. Second, the centrality index extracted from the analysis of the network was found to have a significant effect on the locations of bank branches. In particular, the degree centrality was revealed to have a greater influence on the size of a bank's market than does the closeness centrality. Such results of this study clearly suggest the needs for a new approach from the perspective of network in furtherance of other factors that have been considered important in the previous studies of the distribution network strategies.

  15. Ecological Network Analysis for a Low-Carbon and High-Tech Industrial Park

    PubMed Central

    Lu, Yi; Su, Meirong; Liu, Gengyuan; Chen, Bin; Zhou, Shiyi; Jiang, Meiming

    2012-01-01

    Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs) seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA) International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA). Integrating the Network Utility Analysis (NUA), Network Control Analysis (NCA), and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment. PMID:23365516

  16. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer.

    PubMed

    Dehghanian, Fariba; Hojati, Zohreh; Hosseinkhan, Nazanin; Mousavian, Zaynab; Masoudi-Nejad, Ali

    2018-05-26

    The Hippo signaling pathway (HSP) has been identified as an essential and complex signaling pathway for tumor suppression that coordinates proliferation, differentiation, cell death, cell growth and stemness. In the present study, we conducted a genome-scale co-expression analysis to reconstruct the HSP in colorectal cancer (CRC). Five key modules were detected through network clustering, and a detailed discussion of two modules containing respectively 18 and 13 over and down-regulated members of HSP was provided. Our results suggest new potential regulatory factors in the HSP. The detected modules also suggest novel genes contributing to CRC. Moreover, differential expression analysis confirmed the differential expression pattern of HSP members and new suggested regulatory factors between tumor and normal samples. These findings can further reveal the importance of HSP in CRC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Alteration in intrinsic and extrinsic functional connectivity of resting state networks associated with subclinical hypothyroid.

    PubMed

    Kumar, Mukesh; Modi, Shilpi; Rana, Poonam; Kumar, Pawan; Kanwar, Ratnesh; Sekhri, Tarun; D'souza, Maria; Khushu, Subash

    2018-03-05

    Subclinical hypothyroidism (SCH) is characterized by mild elevation of thyroid stimulating hormone (TSH) (range 5-10 μIU/ml) and normal free triiodothyronine (FT3) and free thyroxine (FT4). The cognitive function impairment is well known in thyroid disorders such as hypothyroidism and hyperthyroidism, but little is known about deficits in brain functions in SCH subjects. Also, whether hormone-replacement treatment is necessary or not in SCH subjects is still debatable. In order to have an insight into the cognition of SCH subjects, intrinsic and extrinsic functional connectivity (FC) of the resting state networks (RSNs) was studied. For resting state data analysis we used an unbiased, data-driven approach based on Independent Component Analysis (ICA) and dual-regression that can emphasize widespread changes in FC without restricting to a set of predefined seeds. 28 SCH subjects and 28 matched healthy controls (HC) participated in the study. RSN analysis showed significantly decreased intrinsic FC in somato-motor network (SMN) and right fronto-parietal attention network (RAN) and increased intrinsic FC in default mode network (DMN) in SCH subjects as compared to control subjects. The reduced intrinsic FC in the SMN and RAN suggests neuro-cognitive alterations in SCH subjects in the corresponding functions which were also evident from the deficit in the neuropsychological performance of the SCH subjects on behavioural tests such as digit span, delayed recall, visual retention, recognition, Bender Gestalt and Mini-Mental State Examination (MMSE). We also found a significant reduction in extrinsic network FC between DMN and RAN; SMN and posterior default mode network (PDMN); and increased extrinsic FC between SMN and anterior default mode network (ADMN) in SCH subjects as compared to controls. An altered extrinsic FC in SCH suggests functional reorganization in response to neurological disruption. The partial correlation analysis between intrinsic and extrinsic RSNs FC and neuropsychological performances as well as clinical indices give interesting insights into brain-behavior relationship in SCH subjects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Distributed effects of methylphenidate on the network structure of the resting brain: a connectomic pattern classification analysis.

    PubMed

    Sripada, Chandra Sekhar; Kessler, Daniel; Welsh, Robert; Angstadt, Michael; Liberzon, Israel; Phan, K Luan; Scott, Clayton

    2013-11-01

    Methylphenidate is a psychostimulant medication that produces improvements in functions associated with multiple neurocognitive systems. To investigate the potentially distributed effects of methylphenidate on the brain's intrinsic network architecture, we coupled resting state imaging with multivariate pattern classification. In a within-subject, double-blind, placebo-controlled, randomized, counterbalanced, cross-over design, 32 healthy human volunteers received either methylphenidate or placebo prior to two fMRI resting state scans separated by approximately one week. Resting state connectomes were generated by placing regions of interest at regular intervals throughout the brain, and these connectomes were submitted for support vector machine analysis. We found that methylphenidate produces a distributed, reliably detected, multivariate neural signature. Methylphenidate effects were evident across multiple resting state networks, especially visual, somatomotor, and default networks. Methylphenidate reduced coupling within visual and somatomotor networks. In addition, default network exhibited decoupling with several task positive networks, consistent with methylphenidate modulation of the competitive relationship between these networks. These results suggest that connectivity changes within and between large-scale networks are potentially involved in the mechanisms by which methylphenidate improves attention functioning. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A balanced memory network.

    PubMed

    Roudi, Yasser; Latham, Peter E

    2007-09-01

    A fundamental problem in neuroscience is understanding how working memory--the ability to store information at intermediate timescales, like tens of seconds--is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons.

  20. Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributions of Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development

    PubMed Central

    Rong, Junkang; Feltus, F. Alex; Waghmare, Vijay N.; Pierce, Gary J.; Chee, Peng W.; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J.; Wilkins, Thea A.; May, O. Lloyd; Smith, C. Wayne; Gannaway, John R.; Wendel, Jonathan F.; Paterson, Andrew H.

    2007-01-01

    QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks. PMID:17565937

  1. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development.

    PubMed

    Rong, Junkang; Feltus, F Alex; Waghmare, Vijay N; Pierce, Gary J; Chee, Peng W; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J; Wilkins, Thea A; May, O Lloyd; Smith, C Wayne; Gannaway, John R; Wendel, Jonathan F; Paterson, Andrew H

    2007-08-01

    QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.

  2. The neural basis of hand gesture comprehension: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie; Andric, Michael; Mathew, Mili M

    2015-10-01

    Gestures play an important role in face-to-face communication and have been increasingly studied via functional magnetic resonance imaging. Although a large amount of data has been provided to describe the neural substrates of gesture comprehension, these findings have never been quantitatively summarized and the conclusion is still unclear. This activation likelihood estimation meta-analysis investigated the brain networks underpinning gesture comprehension while considering the impact of gesture type (co-speech gestures vs. speech-independent gestures) and task demand (implicit vs. explicit) on the brain activation of gesture comprehension. The meta-analysis of 31 papers showed that as hand actions, gestures involve a perceptual-motor network important for action recognition. As meaningful symbols, gestures involve a semantic network for conceptual processing. Finally, during face-to-face interactions, gestures involve a network for social emotive processes. Our finding also indicated that gesture type and task demand influence the involvement of the brain networks during gesture comprehension. The results highlight the complexity of gesture comprehension, and suggest that future research is necessary to clarify the dynamic interactions among these networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    PubMed

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  4. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    PubMed Central

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  5. Network topology and resilience analysis of South Korean power grid

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwan; Eisenberg, Daniel A.; Chun, Yeong Han; Park, Jeryang

    2017-01-01

    In this work, we present topological and resilience analyses of the South Korean power grid (KPG) with a broad voltage level. While topological analysis of KPG only with high-voltage infrastructure shows an exponential degree distribution, providing another empirical evidence of power grid topology, the inclusion of low voltage components generates a distribution with a larger variance and a smaller average degree. This result suggests that the topology of a power grid may converge to a highly skewed degree distribution if more low-voltage data is considered. Moreover, when compared to ER random and BA scale-free networks, the KPG has a lower efficiency and a higher clustering coefficient, implying that highly clustered structure does not necessarily guarantee a functional efficiency of a network. Error and attack tolerance analysis, evaluated with efficiency, indicate that the KPG is more vulnerable to random or degree-based attacks than betweenness-based intentional attack. Cascading failure analysis with recovery mechanism demonstrates that resilience of the network depends on both tolerance capacity and recovery initiation time. Also, when the two factors are fixed, the KPG is most vulnerable among the three networks. Based on our analysis, we propose that the topology of power grids should be designed so the loads are homogeneously distributed, or functional hubs and their neighbors have high tolerance capacity to enhance resilience.

  6. Statistical indicators of collective behavior and functional clusters in gene networks of yeast

    NASA Astrophysics Data System (ADS)

    Živković, J.; Tadić, B.; Wick, N.; Thurner, S.

    2006-03-01

    We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.

  7. Global value chains: Building blocks and network dynamics

    NASA Astrophysics Data System (ADS)

    Tsekeris, Theodore

    2017-12-01

    The paper employs measures and tools from complex network analysis to enhance the understanding and interpretation of structural characteristics pertaining to the Global Value Chains (GVCs) during the period 1995-2011. The analysis involves the country, sector and country-sector value chain networks to identify main drivers of structural change. The results indicate significant intertemporal changes, mirroring the increased globalization in terms of network size, strength and connectivity. They also demonstrate higher clustering and increased concentration of the most influential countries and country-sectors relative to all others in the GVC network, with the geographical dimension to prevail over the sectoral dimension in the formation of value chains. The regionalization and less hierarchical organization drive country-sector production sharing, while the sectoral value chain network has become more integrated and more competitive over time. The findings suggest that the impact of country-sector policies and/or shocks may vary with the own-group and network-wide influence of each country, take place in multiple geographical scales, as GVCs have a block structure, and involve time dynamics.

  8. Rapid molecular evolution across amniotes of the IIS/TOR network

    PubMed Central

    McGaugh, Suzanne E.; Bronikowski, Anne M.; Kuo, Chih-Horng; Reding, Dawn M.; Addis, Elizabeth A.; Flagel, Lex E.; Janzen, Fredric J.

    2015-01-01

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861

  9. Rapid molecular evolution across amniotes of the IIS/TOR network.

    PubMed

    McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S

    2015-06-02

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.

  10. Data extraction for complex meta-analysis (DECiMAL) guide.

    PubMed

    Pedder, Hugo; Sarri, Grammati; Keeney, Edna; Nunes, Vanessa; Dias, Sofia

    2016-12-13

    As more complex meta-analytical techniques such as network and multivariate meta-analyses become increasingly common, further pressures are placed on reviewers to extract data in a systematic and consistent manner. Failing to do this appropriately wastes time, resources and jeopardises accuracy. This guide (data extraction for complex meta-analysis (DECiMAL)) suggests a number of points to consider when collecting data, primarily aimed at systematic reviewers preparing data for meta-analysis. Network meta-analysis (NMA), multiple outcomes analysis and analysis combining different types of data are considered in a manner that can be useful across a range of data collection programmes. The guide has been shown to be both easy to learn and useful in a small pilot study.

  11. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.

    PubMed

    Li, Yongsheng; Sahni, Nidhi; Yi, Song

    2016-11-29

    Comprehensive understanding of human cancer mechanisms requires the identification of a thorough list of cancer-associated genes, which could serve as biomarkers for diagnoses and therapies in various types of cancer. Although substantial progress has been made in functional studies to uncover genes involved in cancer, these efforts are often time-consuming and costly. Therefore, it remains challenging to comprehensively identify cancer candidate genes. Network-based methods have accelerated this process through the analysis of complex molecular interactions in the cell. However, the extent to which various interactome networks can contribute to prediction of candidate genes responsible for cancer is still enigmatic. In this study, we evaluated different human protein-protein interactome networks and compared their application to cancer gene prioritization. Our results indicate that network analyses can increase the power to identify novel cancer genes. In particular, such predictive power can be enhanced with the use of unbiased systematic protein interaction maps for cancer gene prioritization. Functional analysis reveals that the top ranked genes from network predictions co-occur often with cancer-related terms in literature, and further, these candidate genes are indeed frequently mutated across cancers. Finally, our study suggests that integrating interactome networks with other omics datasets could provide novel insights into cancer-associated genes and underlying molecular mechanisms.

  12. Hybrid modeling and empirical analysis of automobile supply chain network

    NASA Astrophysics Data System (ADS)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying

    2017-05-01

    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  13. Evidence for fish dispersal from spatial analysis of stream network topology

    USGS Publications Warehouse

    Hitt, N.P.; Angermeier, P.L.

    2008-01-01

    Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.

  14. Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms

    PubMed Central

    Mahoney, J. Matthew; Taroni, Jaclyn; Martyanov, Viktor; Wood, Tammara A.; Greene, Casey S.; Pioli, Patricia A.; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a patients underlying genetic risk. PMID:25569146

  15. Social Networks and Adaptation to Environmental Change: The Case of Central Oregon's Fire-Prone Forest Landscape

    NASA Astrophysics Data System (ADS)

    Fischer, A.

    2012-12-01

    Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.

  16. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    PubMed Central

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  17. Inferential ecosystem models, from network data to prediction

    Treesearch

    James S. Clark; Pankaj Agarwal; David M. Bell; Paul G. Flikkema; Alan Gelfand; Xuanlong Nguyen; Eric Ward; Jun Yang

    2011-01-01

    Recent developments suggest that predictive modeling could begin to play a larger role not only for data analysis, but also for data collection. We address the example of efficient wireless sensor networks, where inferential ecosystem models can be used to weigh the value of an observation against the cost of data collection. Transmission costs make observations ‘‘...

  18. A security analysis of version 2 of the Network Time Protocol (NTP): A report to the privacy and security research group

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1991-01-01

    The Network Time Protocol is being used throughout the Internet to provide an accurate time service. The security requirements are examined of such a service, version 2 of the NTP protocol is analyzed to determine how well it meets these requirements, and improvements are suggested where appropriate.

  19. Online Social Networks for Crowdsourced Multimedia-Involved Behavioral Testing: An Empirical Study

    PubMed Central

    Choi, Jun-Ho; Lee, Jong-Seok

    2016-01-01

    Online social networks have emerged as effective crowdsourcing media to recruit participants in recent days. However, issues regarding how to effectively exploit them have not been adequately addressed yet. In this paper, we investigate the reliability and effectiveness of multimedia-involved behavioral testing via social network-based crowdsourcing, especially focused on Facebook as a medium to recruit participants. We conduct a crowdsourcing-based experiment for a music recommendation problem. It is shown that different advertisement methods yield different degrees of efficiency and there exist significant differences in behavioral patterns across different genders and different age groups. In addition, we perform a comparison of our experiment with other multimedia-involved crowdsourcing experiments built on Amazon Mechanical Turk (MTurk), which suggests that crowdsourcing-based experiments using social networks for recruitment can achieve comparable efficiency. Based on the analysis results, advantages and disadvantages of social network-based crowdsourcing and suggestions for successful experiments are also discussed. We conclude that social networks have the potential to support multimedia-involved behavioral tests to gather in-depth data even for long-term periods. PMID:26793137

  20. Online Social Networks for Crowdsourced Multimedia-Involved Behavioral Testing: An Empirical Study.

    PubMed

    Choi, Jun-Ho; Lee, Jong-Seok

    2015-01-01

    Online social networks have emerged as effective crowdsourcing media to recruit participants in recent days. However, issues regarding how to effectively exploit them have not been adequately addressed yet. In this paper, we investigate the reliability and effectiveness of multimedia-involved behavioral testing via social network-based crowdsourcing, especially focused on Facebook as a medium to recruit participants. We conduct a crowdsourcing-based experiment for a music recommendation problem. It is shown that different advertisement methods yield different degrees of efficiency and there exist significant differences in behavioral patterns across different genders and different age groups. In addition, we perform a comparison of our experiment with other multimedia-involved crowdsourcing experiments built on Amazon Mechanical Turk (MTurk), which suggests that crowdsourcing-based experiments using social networks for recruitment can achieve comparable efficiency. Based on the analysis results, advantages and disadvantages of social network-based crowdsourcing and suggestions for successful experiments are also discussed. We conclude that social networks have the potential to support multimedia-involved behavioral tests to gather in-depth data even for long-term periods.

  1. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis

    PubMed Central

    Lee, Won Jun; Kim, Sang Cheol; Yoon, Jung-Ho; Yoon, Sang Jun; Lim, Johan; Kim, You-Sun; Kwon, Sung Won; Park, Jeong Hill

    2016-01-01

    Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological mechanisms and suggested network analysis as an additional criterion for selecting candidates. PMID:26870956

  2. Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting

    NASA Astrophysics Data System (ADS)

    Cannon, A. J.; Hsieh, W. W.

    2008-02-01

    Robust variants of nonlinear canonical correlation analysis (NLCCA) are introduced to improve performance on datasets with low signal-to-noise ratios, for example those encountered when making seasonal climate forecasts. The neural network model architecture of standard NLCCA is kept intact, but the cost functions used to set the model parameters are replaced with more robust variants. The Pearson product-moment correlation in the double-barreled network is replaced by the biweight midcorrelation, and the mean squared error (mse) in the inverse mapping networks can be replaced by the mean absolute error (mae). Robust variants of NLCCA are demonstrated on a synthetic dataset and are used to forecast sea surface temperatures in the tropical Pacific Ocean based on the sea level pressure field. Results suggest that adoption of the biweight midcorrelation can lead to improved performance, especially when a strong, common event exists in both predictor/predictand datasets. Replacing the mse by the mae leads to improved performance on the synthetic dataset, but not on the climate dataset except at the longest lead time, which suggests that the appropriate cost function for the inverse mapping networks is more problem dependent.

  3. A catalyst for system change: a case study of child health network formation, evolution and sustainability in Canada.

    PubMed

    McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy

    2017-02-01

    The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.

  4. Overarching framework for data-based modelling

    NASA Astrophysics Data System (ADS)

    Schelter, Björn; Mader, Malenka; Mader, Wolfgang; Sommerlade, Linda; Platt, Bettina; Lai, Ying-Cheng; Grebogi, Celso; Thiel, Marco

    2014-02-01

    One of the main modelling paradigms for complex physical systems are networks. When estimating the network structure from measured signals, typically several assumptions such as stationarity are made in the estimation process. Violating these assumptions renders standard analysis techniques fruitless. We here propose a framework to estimate the network structure from measurements of arbitrary non-linear, non-stationary, stochastic processes. To this end, we propose a rigorous mathematical theory that underlies this framework. Based on this theory, we present a highly efficient algorithm and the corresponding statistics that are immediately sensibly applicable to measured signals. We demonstrate its performance in a simulation study. In experiments of transitions between vigilance stages in rodents, we infer small network structures with complex, time-dependent interactions; this suggests biomarkers for such transitions, the key to understand and diagnose numerous diseases such as dementia. We argue that the suggested framework combines features that other approaches followed so far lack.

  5. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae.

    PubMed

    Jarnuczak, Andrew F; Eyers, Claire E; Schwartz, Jean-Marc; Grant, Christopher M; Hubbard, Simon J

    2015-09-01

    Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC-based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs. © 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Centrality in earthquake multiplex networks

    NASA Astrophysics Data System (ADS)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  7. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    PubMed

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  8. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Use of social network analysis and global sensitivity and uncertainty analyses to better understand an influenza outbreak.

    PubMed

    Liu, Jianhua; Jiang, Hongbo; Zhang, Hao; Guo, Chun; Wang, Lei; Yang, Jing; Nie, Shaofa

    2017-06-27

    In the summer of 2014, an influenza A(H3N2) outbreak occurred in Yichang city, Hubei province, China. A retrospective study was conducted to collect and interpret hospital and epidemiological data on it using social network analysis and global sensitivity and uncertainty analyses. Results for degree (χ2=17.6619, P<0.0001) and betweenness(χ2=21.4186, P<0.0001) centrality suggested that the selection of sampling objects were different between traditional epidemiological methods and newer statistical approaches. Clique and network diagrams demonstrated that the outbreak actually consisted of two independent transmission networks. Sensitivity analysis showed that the contact coefficient (k) was the most important factor in the dynamic model. Using uncertainty analysis, we were able to better understand the properties and variations over space and time on the outbreak. We concluded that use of newer approaches were significantly more efficient for managing and controlling infectious diseases outbreaks, as well as saving time and public health resources, and could be widely applied on similar local outbreaks.

  10. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    PubMed

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.

  11. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes.

    PubMed

    Sanchez-Alberola, Neus; Campoy, Susana; Barbé, Jordi; Erill, Ivan

    2012-02-03

    The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.

  12. Approaching human language with complex networks.

    PubMed

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions

    PubMed Central

    Nayak, Renuka R.; Kearns, Michael; Spielman, Richard S.; Cheung, Vivian G.

    2009-01-01

    Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene networks, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B cells from three independent samples. The resulting networks allowed us to identify biological processes and gene functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore, genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that networks can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression networks offers information on the role of human genes in normal and disease processes. PMID:19797678

  14. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    PubMed

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.

  15. Molecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions.

    PubMed

    Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J

    2016-06-01

    A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.

  16. Molecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions

    NASA Astrophysics Data System (ADS)

    Baltoumas, Fotis A.; Theodoropoulou, Margarita C.; Hamodrakas, Stavros J.

    2016-06-01

    A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.

  17. Scientific authorship and collaboration network analysis on malaria research in Benin: papers indexed in the web of science (1996-2016).

    PubMed

    Azondekon, Roseric; Harper, Zachary James; Agossa, Fiacre Rodrigue; Welzig, Charles Michael; McRoy, Susan

    2018-01-01

    To sustain the critical progress made, prioritization and a multidisciplinary approach to malaria research remain important to the national malaria control program in Benin. To document the structure of the malaria collaborative research in Benin, we analyze authorship of the scientific documents published on malaria from Benin. We collected bibliographic data from the Web Of Science on malaria research in Benin from January 1996 to December 2016. From the collected data, a mulitigraph co-authorship network with authors representing vertices was generated. An edge was drawn between two authors when they co-author a paper. We computed vertex degree, betweenness, closeness, and eigenvectors among others to identify prolific authors. We further assess the weak points and how information flow in the network. Finally, we perform a hierarchical clustering analysis, and Monte-Carlo simulations. Overall, 427 publications were included in this study. The generated network contained 1792 authors and 116,388 parallel edges which converted in a weighted graph of 1792 vertices and 95,787 edges. Our results suggested that prolific authors with higher degrees tend to collaborate more. The hierarchical clustering revealed 23 clusters, seven of which form a giant component containing 94% of all the vertices in the network. This giant component has all the characteristics of a small-world network with a small shortest path distance between pairs of three, a diameter of 10 and a high clustering coefficient of 0.964. However, Monte-Carlo simulations suggested our observed network is an unusual type of small-world network. Sixteen vertices were identified as weak articulation points within the network. The malaria research collaboration network in Benin is a complex network that seems to display the characteristics of a small-world network. This research reveals the presence of closed research groups where collaborative research likely happens only between members. Interdisciplinary collaboration tends to occur at higher levels between prolific researchers. Continuously supporting, stabilizing the identified key brokers and most productive authors in the Malaria research collaborative network is an urgent need in Benin. It will foster the malaria research network and ensure the promotion of junior scientists in the field.

  18. Brain network response underlying decisions about abstract reinforcers.

    PubMed

    Mills-Finnerty, Colleen; Hanson, Catherine; Hanson, Stephen Jose

    2014-12-01

    Decision making studies typically use tasks that involve concrete action-outcome contingencies, in which subjects do something and get something. No studies have addressed decision making involving abstract reinforcers, where there are no action-outcome contingencies and choices are entirely hypothetical. The present study examines these kinds of choices, as well as whether the same biases that exist for concrete reinforcer decisions, specifically framing effects, also apply during abstract reinforcer decisions. We use both General Linear Model as well as Bayes network connectivity analysis using the Independent Multi-sample Greedy Equivalence Search (IMaGES) algorithm to examine network response underlying choices for abstract reinforcers under positive and negative framing. We find for the first time that abstract reinforcer decisions activate the same network of brain regions as concrete reinforcer decisions, including the striatum, insula, anterior cingulate, and VMPFC, results that are further supported via comparison to a meta-analysis of decision making studies. Positive and negative framing activated different parts of this network, with stronger activation in VMPFC during negative framing and in DLPFC during positive, suggesting different decision making pathways depending on frame. These results were further clarified using connectivity analysis, which revealed stronger connections between anterior cingulate, insula, and accumbens during negative framing compared to positive. Taken together, these results suggest that not only do abstract reinforcer decisions rely on the same brain substrates as concrete reinforcers, but that the response underlying framing effects on abstract reinforcers also resemble those for concrete reinforcers, specifically increased limbic system connectivity during negative frames. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. PodNet, a protein-protein interaction network of the podocyte.

    PubMed

    Warsow, Gregor; Endlich, Nicole; Schordan, Eric; Schordan, Sandra; Chilukoti, Ravi K; Homuth, Georg; Moeller, Marcus J; Fuellen, Georg; Endlich, Karlhans

    2013-07-01

    Interactions between proteins crucially determine cellular structure and function. Differential analysis of the interactome may help elucidate molecular mechanisms during disease development; however, this analysis necessitates mapping of expression data on protein-protein interaction networks. These networks do not exist for the podocyte; therefore, we built PodNet, a literature-based mouse podocyte network in Cytoscape format. Using database protein-protein interactions, we expanded PodNet to XPodNet with enhanced connectivity. In order to test the performance of XPodNet in differential interactome analysis, we examined podocyte developmental differentiation and the effect of cell culture. Transcriptomes of podocytes in 10 different states were mapped on XPodNet and analyzed with the Cytoscape plugin ExprEssence, based on the law of mass action. Interactions between slit diaphragm proteins are most significantly upregulated during podocyte development and most significantly downregulated in culture. On the other hand, our analysis revealed that interactions lost during podocyte differentiation are not regained in culture, suggesting a loss rather than a reversal of differentiation for podocytes in culture. Thus, we have developed PodNet as a valuable tool for differential interactome analysis in podocytes, and we have identified established and unexplored regulated interactions in developing and cultured podocytes.

  20. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia.

    PubMed

    Damaraju, E; Allen, E A; Belger, A; Ford, J M; McEwen, S; Mathalon, D H; Mueller, B A; Pearlson, G D; Potkin, S G; Preda, A; Turner, J A; Vaidya, J G; van Erp, T G; Calhoun, V D

    2014-01-01

    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.

  1. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    PubMed Central

    Damaraju, E.; Allen, E.A.; Belger, A.; Ford, J.M.; McEwen, S.; Mathalon, D.H.; Mueller, B.A.; Pearlson, G.D.; Potkin, S.G.; Preda, A.; Turner, J.A.; Vaidya, J.G.; van Erp, T.G.; Calhoun, V.D.

    2014-01-01

    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. PMID:25161896

  2. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    PubMed

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  3. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    PubMed

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    PubMed

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  5. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    PubMed Central

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  6. Social Network Type and Long-Term Condition Management Support: A Cross-Sectional Study in Six European Countries.

    PubMed

    Vassilev, Ivaylo; Rogers, Anne; Kennedy, Anne; Wensing, Michel; Koetsenruijter, Jan; Orlando, Rosanna; Portillo, Maria Carmen; Culliford, David

    2016-01-01

    Network types and characteristics have been linked to the capacity of inter-personal environments to mobilise and share resources. The aim of this paper is to examine personal network types in relation to long-term condition management in order to identify the properties of network types most likely to provide support for those with a long-term condition. A cross-sectional observational survey of people with type 2 diabetes using interviews and questionnaires was conducted between April and October 2013 in six European countries: Greece, Spain, Bulgaria, Norway, United Kingdom, and Netherlands. 1862 people with predominantly lower socio-economic status were recruited from each country. We used k-means clustering analysis to derive the network types, and one-way analysis of variance and multivariate logistic regression analysis to explore the relationship between network type socio-economic characteristics, self-management monitoring and skills, well-being, and network member work. Five network types of people with long-term conditions were identified: restricted, minimal family, family, weak ties, and diverse. Restricted network types represented those with the poorest self-management skills and were associated with limited support from social network members. Restricted networks were associated with poor indicators across self-management capacity, network support, and well-being. Diverse networks were associated with more enhanced self-management skills amongst those with a long-term condition and high level of emotional support. It was the three network types which had a large number of network members (diverse, weak ties, and family) where healthcare utilisation was most likely to correspond to existing health needs. Our findings suggest that type of increased social involvement is linked to greater self-management capacity and potentially lower formal health care costs indicating that diverse networks constitute the optimal network type as a policy in terms of the design of LTCM interventions and building support for people with LTCs.

  7. Mapping the Issues: A Content Analysis of Elementary and Secondary Education News Stories from 1968 to 2008 on Television Networks

    ERIC Educational Resources Information Center

    DeMoss, Mark D.

    2010-01-01

    Mainstream news organizations have long been considered leading agents in the formation of public opinion in the United States. A substantial number of studies have suggested that the television networks are vehicles in setting the agenda on the leading social, political and economic issues of the day. During the past four decades, there have been…

  8. Detecting Network Communities: An Application to Phylogenetic Analysis

    PubMed Central

    Andrade, Roberto F. S.; Rocha-Neto, Ivan C.; Santos, Leonardo B. L.; de Santana, Charles N.; Diniz, Marcelo V. C.; Lobão, Thierry Petit; Goés-Neto, Aristóteles; Pinho, Suani T. R.; El-Hani, Charbel N.

    2011-01-01

    This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis. PMID:21573202

  9. Efficiency disparities among community hospitals in Tennessee: do size, location, ownership, and network matter?

    PubMed

    Roh, Chul-Young; Moon, M Jae; Jung, Kwangho

    2013-11-01

    This study examined the impact of ownership, size, location, and network on the relative technical efficiency of community hospitals in Tennessee for the 2002-2006 period, by applying data envelopment analysis (DEA) to measure technical efficiency (decomposed into scale efficiency and pure technical efficiency). Data envelopment analysis results indicate that medium-size hospitals (126-250 beds) are more efficient than their counterparts. Interestingly, public hospitals are significantly more efficient than private and nonprofit hospitals in Tennessee, and rural hospitals are more efficient than urban hospitals. This is the first study to investigate whether hospital networks with other health care providers affect hospital efficiency. Results indicate that community hospitals with networks are more efficient than non-network hospitals. From a management and policy perspective, this study suggests that public policies should induce hospitals to downsize or upsize into optional size, and private hospitals and nonprofit hospitals should change their organizational objectives from profit-driven to quality-driven.

  10. Using the OASES-A to illustrate how network analysis can be applied to understand the experience of stuttering.

    PubMed

    Siew, Cynthia S Q; Pelczarski, Kristin M; Yaruss, J Scott; Vitevitch, Michael S

    Network science uses mathematical and computational techniques to examine how individual entities in a system, represented by nodes, interact, as represented by connections between nodes. This approach has been used by Cramer et al. (2010) to make "symptom networks" to examine various psychological disorders. In the present analysis we examined a network created from the items in the Overall Assessment of the Speaker's Experience of Stuttering-Adult (OASES-A), a commonly used measure for evaluating adverse impact in the lives of people who stutter. The items of the OASES-A were represented as nodes in the network. Connections between nodes were placed if responses to those two items in the OASES-A had a correlation coefficient greater than ±0.5. Several network analyses revealed which nodes were "important" in the network. Several centrally located nodes and "key players" in the network were identified. A community detection analysis found groupings of nodes that differed slightly from the subheadings of the OASES-A. Centrally located nodes and "key players" in the network may help clinicians prioritize treatment. The different community structure found for people who stutter suggests that the way people who stutter view stuttering may differ from the way that scientists and clinicians view stuttering. Finally, the present analyses illustrate how the network approach might be applied to other speech, language, and hearing disorders to better understand how those disorders are experienced and to provide insights for their treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A Balanced Memory Network

    PubMed Central

    Roudi, Yasser; Latham, Peter E

    2007-01-01

    A fundamental problem in neuroscience is understanding how working memory—the ability to store information at intermediate timescales, like tens of seconds—is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons. PMID:17845070

  12. Clustering of worry appraisals among college students.

    PubMed

    Schwab, Nicholas G; Cullum, Jerry C; Harton, Helen C

    2016-01-01

    The present study investigated the potential clustering of worry appraisals within college social networks. Participants living in campus residence buildings responded to online surveys across the course of several months. Worry appraisals were measured 10 weeks into the fall semester and again approximately 6 months later. Analysis of sociometric data suggests that the majority of participants' social interactions occurred within their respective residence building floors, indicating that proximity strongly influenced the development of social network ties and sources of social influence. Further, significant clustering of worry appraisals occurred across time, and more importantly, within residence building floors. The present findings compliment previous work suggesting that several physical and psychological states appear to spread and cluster within social networks. Implications for the study of emotional appraisals and future research are discussed.

  13. Analysis on Voltage Profile of Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua

    2018-02-01

    Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.

  14. A communications model for an ISAS to NASA span link

    NASA Technical Reports Server (NTRS)

    Green, James L.; Mcguire, Robert E.; Lopez-Swafford, Brian

    1987-01-01

    The authors propose that an initial computer-to-computer communication link use the public packet switched networks (PPSN) Venus-P in Japan and TELENET in the U.S. When the traffic warrants it, this link would then be upgraded to a dedicated leased line that directly connects into the Space Physics Analysis Network (SPAN). The proposed system of hardware and software will easily support migration to such a dedicated link. It therefore provides a cost effective approach to the network problem. Once a dedicated line becomes operation it is suggested that the public networks link and continue to coexist, providing a backup capability.

  15. Identifying major depressive disorder using Hurst exponent of resting-state brain networks.

    PubMed

    Wei, Maobin; Qin, Jiaolong; Yan, Rui; Li, Haoran; Yao, Zhijian; Lu, Qing

    2013-12-30

    Resting-state functional magnetic resonance imaging (fMRI) studies of major depressive disorder (MDD) have revealed abnormalities of functional connectivity within or among the resting-state networks. They provide valuable insight into the pathological mechanisms of depression. However, few reports were involved in the "long-term memory" of fMRI signals. This study was to investigate the "long-term memory" of resting-state networks by calculating their Hurst exponents for identifying depressed patients from healthy controls. Resting-state networks were extracted from fMRI data of 20 MDD and 20 matched healthy control subjects. The Hurst exponent of each network was estimated by Range Scale analysis for further discriminant analysis. 95% of depressed patients and 85% of healthy controls were correctly classified by Support Vector Machine with an accuracy of 90%. The right fronto-parietal and default mode network constructed a deficit network (lower memory and more irregularity in MDD), while the left fronto-parietal, ventromedial prefrontal and salience network belonged to an excess network (longer memory in MDD), suggesting these dysfunctional networks may be related to a portion of the complex of emotional and cognitive disturbances. The abnormal "long-term memory" of resting-state networks associated with depression may provide a new possibility towards the exploration of the pathophysiological mechanisms of MDD. © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Brain Network Activity During Face Perception: The Impact of Perceptual Familiarity and Individual Differences in Childhood Experience.

    PubMed

    Cloutier, Jasmin; Li, Tianyi; Mišic, Bratislav; Correll, Joshua; Berman, Marc G

    2017-09-01

    An extended distributed network of brain regions supports face perception. Face familiarity influences activity in brain regions involved in this network, but the impact of perceptual familiarity on this network has never been directly assessed with the use of partial least squares analysis. In the present work, we use this multivariate statistical analysis to examine how face-processing systems are differentially recruited by characteristics of the targets (i.e. perceptual familiarity and race) and of the perceivers (i.e. childhood interracial contact). Novel faces were found to preferentially recruit a large distributed face-processing network compared with perceptually familiar faces. Additionally, increased interracial contact during childhood led to decreased recruitment of distributed brain networks previously implicated in face perception, salience detection, and social cognition. Current results provide a novel perspective on the impact of cross-race exposure, suggesting that interracial contact early in life may dramatically shape the neural substrates of face perception generally. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Risk analysis of urban gas pipeline network based on improved bow-tie model

    NASA Astrophysics Data System (ADS)

    Hao, M. J.; You, Q. J.; Yue, Z.

    2017-11-01

    Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.

  18. Driver-centred vehicle automation: using network analysis for agent-based modelling of the driver in highly automated driving systems.

    PubMed

    Banks, Victoria A; Stanton, Neville A

    2016-11-01

    To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.

  19. A longitudinal social network analysis of the editorial boards of medical informatics and bioinformatics journals.

    PubMed

    Malin, Bradley; Carley, Kathleen

    2007-01-01

    The goal of this research is to learn how the editorial staffs of bioinformatics and medical informatics journals provide support for cross-community exposure. Models such as co-citation and co-author analysis measure the relationships between researchers; but they do not capture how environments that support knowledge transfer across communities are organized. In this paper, we propose a social network analysis model to study how editorial boards integrate researchers from disparate communities. We evaluate our model by building relational networks based on the editorial boards of approximately 40 journals that serve as research outlets in medical informatics and bioinformatics. We track the evolution of editorial relationships through a longitudinal investigation over the years 2000 through 2005. Our findings suggest that there are research journals that support the collocation of editorial board members from the bioinformatics and medical informatics communities. Network centrality metrics indicate that editorial board members are located in the intersection of the communities and that the number of individuals in the intersection is growing with time. Social network analysis methods provide insight into the relationships between the medical informatics and bioinformatics communities. The number of editorial board members facilitating the publication intersection of the communities has grown, but the intersection remains dependent on a small group of individuals and fragile.

  20. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  1. Z-Score-Based Modularity for Community Detection in Networks

    PubMed Central

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270

  2. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI.

    PubMed

    Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening

    2006-01-01

    In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.

  3. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  4. A Social Network Analysis of a Coalition Initiative to Prevent Underage Drinking in Los Angeles County

    PubMed Central

    Chu, Kar-Hai; Hoeppner, Elena; Valente, Thomas; Rohrbach, Luanne

    2016-01-01

    In 2011, the Los Angeles County Department of Public Health began a prevention services initiative to address problems dealing with alcohol and other drugs across the County. A major component of the strategy included the formation of eight coalitions. Defined by geographic borders, each coalition consisted of multiple service provider organizations, and were mandated to implement customized plans that would focus on preventing underage drinking by addressing availability and accessibility of alcohol. In this study, we collect survey data and observe coalition meetings to study the interactions within and between coalitions. We are informed by network tie strength theories to supplement our view of how organizations communicate. We apply social network analysis to learn how the multi-coalition network is functioning, and identify important unrealized connections. Our findings suggest there are many potential connections between coalitions that are not being leveraged. PMID:27899879

  5. Thirty Years of Evidence on the Efficacy of Drug Treatments for Chronic Heart Failure With Reduced Ejection Fraction

    PubMed Central

    Earley, Amy; Voors, Adriaan A.; Senni, Michele; McMurray, John J.V.; Deschaseaux, Celine; Cope, Shannon

    2017-01-01

    Background— Treatments that reduce mortality and morbidity in patients with heart failure with reduced ejection fraction, including angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), β-blockers (BB), mineralocorticoid receptor antagonists (MRA), and angiotensin receptor–neprilysin inhibitors (ARNI), have not been studied in a head-to-head fashion. This network meta-analysis aimed to compare the efficacy of these drugs and their combinations regarding all-cause mortality in patients with heart failure with reduced ejection fraction. Methods and Results— A systematic literature review identified 57 randomized controlled trials published between 1987 and 2015, which were compared in terms of study and patient characteristics, baseline risk, outcome definitions, and the observed treatment effects. Despite differences identified in terms of study duration, New York Heart Association class, ejection fraction, and use of background digoxin, a network meta-analysis was considered feasible and all trials were analyzed simultaneously. The random-effects network meta-analysis suggested that the combination of ACEI+BB+MRA was associated with a 56% reduction in mortality versus placebo (hazard ratio 0.44, 95% credible interval 0.26–0.66); ARNI+BB+MRA was associated with the greatest reduction in all-cause mortality versus placebo (hazard ratio 0.37, 95% credible interval 0.19–0.65). A sensitivity analysis that did not account for background therapy suggested that ARNI monotherapy is more efficacious than ACEI or ARB monotherapy. Conclusions— The network meta-analysis showed that treatment with ACEI, ARB, BB, MRA, and ARNI and their combinations were better than the treatment with placebo in reducing all-cause mortality, with the exception of ARB monotherapy and ARB plus ACEI. The combination of ARNI+BB+MRA resulted in the greatest mortality reduction. PMID:28087688

  6. Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach.

    PubMed

    Pouryahya, Maryam; Oh, Jung Hun; Mathews, James C; Deasy, Joseph O; Tannenbaum, Allen R

    2018-04-23

    In the present work, we apply a geometric network approach to study common biological features of anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis can provide novel insights into drug response and cancer biology. We adopted a discrete notion of Ricci curvature to measure, via a link between Ricci curvature and network robustness established by the theory of optimal mass transport, the robustness of biological networks constructed with a pre-treatment gene expression dataset and coupled the results with the GI50 response of the cell lines to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that are likely associated with individual drug response. For genes identified as important, we performed a gene ontology enrichment analysis using a curated bioinformatics database which resulted in biological processes associated with drug response across cell lines and tissue types which are plausible from the point of view of the biological literature. These results demonstrate the potential of using the mathematical network analysis in assessing drug response and in identifying relevant genomic biomarkers and biological processes for precision medicine.

  7. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Can Social Network Analysis Help Address the High Rates of Bacterial Sexually Transmitted Infections in Saskatchewan?

    PubMed

    Trecker, Molly A; Dillon, Jo-Anne R; Lloyd, Kathy; Hennink, Maurice; Jolly, Ann; Waldner, Cheryl

    2017-06-01

    Saskatchewan has one of the highest rates of gonorrhea among the Canadian provinces-more than double the national rate. In light of these high rates, and the growing threat of untreatable infections, improved understanding of gonorrhea transmission dynamics in the province and evaluation of the current system and tools for disease control are important. We extracted data from a cross-sectional sample of laboratory-confirmed gonorrhea cases between 2003 and 2012 from the notifiable disease files of the Regina Qu'Appelle Health Region. The database was stratified by calendar year, and social network analysis combined with statistical modeling was used to identify associations between measures of connection within the network and the odds of repeat gonorrhea and risk of coinfection with chlamydia at the time of diagnosis. Networks were highly fragmented. Younger age and component size were positively associated with being coinfected with chlamydia. Being coinfected, reporting sex trade involvement, and component size were all positively associated with repeat infection. This is the first study to apply social network analysis to gonorrhea transmission in Saskatchewan and contributes important information about the relationship of network connections to gonorrhea/chlamydia coinfection and repeat gonorrhea. This study also suggests several areas for change of systems-related factors that could greatly increase understanding of social networks and enhance the potential for bacterial sexually transmitted infection control in Saskatchewan.

  9. Using Social Network Analysis to Assess Mentorship and Collaboration in a Public Health Network.

    PubMed

    Petrescu-Prahova, Miruna; Belza, Basia; Leith, Katherine; Allen, Peg; Coe, Norma B; Anderson, Lynda A

    2015-08-20

    Addressing chronic disease burden requires the creation of collaborative networks to promote systemic changes and engage stakeholders. Although many such networks exist, they are rarely assessed with tools that account for their complexity. This study examined the structure of mentorship and collaboration relationships among members of the Healthy Aging Research Network (HAN) using social network analysis (SNA). We invited 97 HAN members and partners to complete an online social network survey that included closed-ended questions about HAN-specific mentorship and collaboration during the previous 12 months. Collaboration was measured by examining the activity of the network on 6 types of products: published articles, in-progress manuscripts, grant applications, tools, research projects, and presentations. We computed network-level measures such as density, number of components, and centralization to assess the cohesiveness of the network. Sixty-three respondents completed the survey (response rate, 65%). Responses, which included information about collaboration with nonrespondents, suggested that 74% of HAN members were connected through mentorship ties and that all 97 members were connected through at least one form of collaboration. Mentorship and collaboration ties were present both within and across boundaries of HAN member organizations. SNA of public health collaborative networks provides understanding about the structure of relationships that are formed as a result of participation in network activities. This approach may offer members and funders a way to assess the impact of such networks that goes beyond simply measuring products and participation at the individual level.

  10. Resting state neural networks for visual Chinese word processing in Chinese adults and children.

    PubMed

    Li, Ling; Liu, Jiangang; Chen, Feiyan; Feng, Lu; Li, Hong; Tian, Jie; Lee, Kang

    2013-07-01

    This study examined the resting state neural networks for visual Chinese word processing in Chinese children and adults. Both the functional connectivity (FC) and amplitude of low frequency fluctuation (ALFF) approaches were used to analyze the fMRI data collected when Chinese participants were not engaged in any specific explicit tasks. We correlated time series extracted from the visual word form area (VWFA) with those in other regions in the brain. We also performed ALFF analysis in the resting state FC networks. The FC results revealed that, regarding the functionally connected brain regions, there exist similar intrinsically organized resting state networks for visual Chinese word processing in adults and children, suggesting that such networks may already be functional after 3-4 years of informal exposure to reading plus 3-4 years formal schooling. The ALFF results revealed that children appear to recruit more neural resources than adults in generally reading-irrelevant brain regions. Differences between child and adult ALFF results suggest that children's intrinsic word processing network during the resting state, though similar in functional connectivity, is still undergoing development. Further exposure to visual words and experience with reading are needed for children to develop a mature intrinsic network for word processing. The developmental course of the intrinsically organized word processing network may parallel that of the explicit word processing network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Decreased functional connectivity to posterior cingulate cortex in major depressive disorder.

    PubMed

    Yang, Rui; Gao, Chengge; Wu, Xiaoping; Yang, Junle; Li, Shengbin; Cheng, Hu

    2016-09-30

    The default mode network (DMN) and its interaction with other key networks such as the salience network and executive network are keys to understand psychiatric and neurological disorders including major depressive disorder (MDD). In this study, we combined independent component analysis and seed based connectivity analysis to study the posterior default mode network between 20 patients with MDD and 25 normal controls, as well as pre-treatment and post-treatment conditions of the patients. Both correlated and anti-correlated networks centered at the posterior cingulate cortex (PCC) were examined (PCC+ and PCC-). Our results showed aberrant functional connectivity of the PCC+ and PCC- networks between patients and normal controls. Specifically, normal controls exhibited significantly higher connectivity between the PCC and frontal/temporal regions for the PCC+ network and stronger connectivity strength between the PCC and the insula/middle frontal cortex for the PCC- network. The overall connectivity strength of the PCC+ and PCC- networks was also significantly lower in MDD. Because the PCC is a hub in the DMN that interacts with other networks, our result suggested a stronger interaction between the DMN and the salience network but a weak interaction between the DMN and the executive network in MDD. The treatment using sertraline did increase the functional connectivity strength, especially in the PCC+ network. Despite a large inter-subject variability in the overall connectivity strengths and change of the PCC network in response to the treatment, a high correlation between change of connectivity strength and the Hamilton depression score was observed for both the PCC+ and PCC- network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The application of neural networks to myoelectric signal analysis: a preliminary study.

    PubMed

    Kelly, M F; Parker, P A; Scott, R N

    1990-03-01

    Two neural network implementations are applied to myoelectric signal (MES) analysis tasks. The motivation behind this research is to explore more reliable methods of deriving control for multidegree of freedom arm prostheses. A discrete Hopfield network is used to calculate the time series parameters for a moving average MES model. It is demonstrated that the Hopfield network is capable of generating the same time series parameters as those produced by the conventional sequential least squares (SLS) algorithm. Furthermore, it can be extended to applications utilizing larger amounts of data, and possibly to higher order time series models, without significant degradation in computational efficiency. The second neural network implementation involves using a two-layer perceptron for classifying a single site MES based on two features, specifically the first time series parameter, and the signal power. Using these features, the perceptron is trained to distinguish between four separate arm functions. The two-dimensional decision boundaries used by the perceptron classifier are delineated. It is also demonstrated that the perceptron is able to rapidly compensate for variations when new data are incorporated into the training set. This adaptive quality suggests that perceptrons may provide a useful tool for future MES analysis.

  13. Functional Covariance Networks: Obtaining Resting-State Networks from Intersubject Variability

    PubMed Central

    Gohel, Suril; Di, Xin; Walter, Martin; Biswal, Bharat B.

    2012-01-01

    Abstract In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these “functional covariance networks”. PMID:22765879

  14. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    PubMed Central

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  15. Value flow mapping: Using networks to inform stakeholder analysis

    NASA Astrophysics Data System (ADS)

    Cameron, Bruce G.; Crawley, Edward F.; Loureiro, Geilson; Rebentisch, Eric S.

    2008-02-01

    Stakeholder theory has garnered significant interest from the corporate community, but has proved difficult to apply to large government programs. A detailed value flow exercise was conducted to identify the value delivery mechanisms among stakeholders for the current Vision for Space Exploration. We propose a method for capturing stakeholder needs that explicitly recognizes the outcomes required of the value creating organization. The captured stakeholder needs are then translated into input-output models for each stakeholder, which are then aggregated into a network model. Analysis of this network suggests that benefits are infrequently linked to the root provider of value. Furthermore, it is noted that requirements should not only be written to influence the organization's outputs, but also to influence the propagation of benefit further along the value chain. A number of future applications of this model to systems architecture and requirement analysis are discussed.

  16. Transnational Research Networks in Chinese Scientific Production. An Investigation on Health-Industry Related Sectors.

    PubMed

    Rubini, Lauretta; Pollio, Chiara; Di Tommaso, Marco R

    2017-08-29

    Transnational research networks (TRN) are becoming increasingly complex. Such complexity may have both positive and negative effects on the quality of research. Our work studies the evolution over time of Chinese TRN and the role of complexity on the quality of Chinese research, given the leading role this country has recently acquired in international science. We focus on the fields of geriatrics and gerontology. We build an original dataset of all scientific publications of China in these areas in 2009, 2012 and 2015, starting from the ISI Web of Knowledge (ISI WoK) database. Using Social Network Analysis (SNA), we analyze the change in scientific network structure across time. Second, we design indices to control for the different aspects of networks complexity (number of authors, country heterogeneity and institutional heterogeneity) and we perform negative binomial regressions to identify the main determinants of research quality. Our analysis shows that research networks in the field of geriatrics and gerontology have gradually become wider in terms of countries and have become more balanced. Furthermore, our results identify that different forms of complexity have different impacts on quality, including a reciprocal moderating effect. In particular, according to our analysis, research quality benefits from complex research networks both in terms of countries and of types of institutions involved, but that such networks should be "compact" in terms of number of authors. Eventually, we suggest that complexity should be carefully taken into account when designing policies aimed at enhancing the quality of research.

  17. Large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  18. Automatic Network Fingerprinting through Single-Node Motifs

    PubMed Central

    Echtermeyer, Christoph; da Fontoura Costa, Luciano; Rodrigues, Francisco A.; Kaiser, Marcus

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs—a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks. PMID:21297963

  19. Extracting Fitness Relationships and Oncogenic Patterns among Driver Genes in Cancer.

    PubMed

    Zhang, Xindong; Gao, Lin; Jia, Songwei

    2017-12-25

    Driver mutation provides fitness advantage to cancer cells, the accumulation of which increases the fitness of cancer cells and accelerates cancer progression. This work seeks to extract patterns accumulated by driver genes ("fitness relationships") in tumorigenesis. We introduce a network-based method for extracting the fitness relationships of driver genes by modeling the network properties of the "fitness" of cancer cells. Colon adenocarcinoma (COAD) and skin cutaneous malignant melanoma (SKCM) are employed as case studies. Consistent results derived from different background networks suggest the reliability of the identified fitness relationships. Additionally co-occurrence analysis and pathway analysis reveal the functional significance of the fitness relationships with signaling transduction. In addition, a subset of driver genes called the "fitness core" is recognized for each case. Further analyses indicate the functional importance of the fitness core in carcinogenesis, and provide potential therapeutic opportunities in medicinal intervention. Fitness relationships characterize the functional continuity among driver genes in carcinogenesis, and suggest new insights in understanding the oncogenic mechanisms of cancers, as well as providing guiding information for medicinal intervention.

  20. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  1. Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia.

    PubMed

    Oh, Jooyoung; Chun, Ji-Won; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin

    2017-01-01

    Patients with schizophrenia exhibit several cognitive deficits, including memory impairment. Problems with recognition memory can hinder socially adaptive behavior. Previous investigations have suggested that altered activation of the frontotemporal area plays an important role in recognition memory impairment. However, the cerebral networks related to these deficits are not known. The aim of this study was to elucidate the brain networks required for recognizing socially relevant information in patients with schizophrenia performing an old-new recognition task. Sixteen patients with schizophrenia and 16 controls participated in this study. First, the subjects performed the theme-identification task during functional magnetic resonance imaging. In this task, pictures depicting social situations were presented with three words, and the subjects were asked to select the best theme word for each picture. The subjects then performed an old-new recognition task in which they were asked to discriminate whether the presented words were old or new. Task performance and neural responses in the old-new recognition task were compared between the subject groups. An independent component analysis of the functional connectivity was performed. The patients with schizophrenia exhibited decreased discriminability and increased activation of the right superior temporal gyrus compared with the controls during correct responses. Furthermore, aberrant network activities were found in the frontopolar and language comprehension networks in the patients. The functional connectivity analysis showed aberrant connectivity in the frontopolar and language comprehension networks in the patients with schizophrenia, and these aberrations possibly contribute to their low recognition performance and social dysfunction. These results suggest that the frontopolar and language comprehension networks are potential therapeutic targets in patients with schizophrenia.

  2. What can graph theory tell us about word learning and lexical retrieval?

    PubMed

    Vitevitch, Michael S

    2008-04-01

    Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing.

  3. Dynamics of VEGF matrix-retention in vascular network patterning

    NASA Astrophysics Data System (ADS)

    Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.

    2013-12-01

    Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.

  4. Examining Intrinsic Thalamic Resting State Networks Using Graph Theory Analysis : Implications for mTBI detection

    DTIC Science & Technology

    2012-08-01

    disruptions in the resting state networks and neurocognitive pathologies such as schizophrenia, Alzheimer’s disease and attention deficit hyperactive ... deficits associated with TBI [8,9,10]. However, there is a growing body of evidence suggesting that TBI could induce thalamic injury, classically...Inventory (NBSI), Post Traumatic Stress Disorder (PCL-C) and the Automated Neuropsychological Assessment Metrics (ANAM). C. Data Acquisition and

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haffner, Robert; Helmer, Dorine; van Til, Harry

    Theoretical studies on the relationship between incentive regulation and investment in network industries generally point out that incentive regulation has a negative impact on investment. However, empirical evidence in this area is scarce. An analysis suggests that in the Dutch electricity and gas networks since 2001, incentive regulation has ensured a more rational and professional approach towards investments, with investment levels coming down somewhat at the start of the regulation but picking up later on. (author)

  6. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    NASA Technical Reports Server (NTRS)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  7. Analysis of multigrid methods on massively parallel computers: Architectural implications

    NASA Technical Reports Server (NTRS)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  8. Anger Modulates Influence Hierarchies Within and Between Emotional Reactivity and Regulation Networks

    PubMed Central

    Jacob, Yael; Gilam, Gadi; Lin, Tamar; Raz, Gal; Hendler, Talma

    2018-01-01

    Emotion regulation is hypothesized to be mediated by the interactions between emotional reactivity and regulation networks during the dynamic unfolding of the emotional episode. Yet, it remains unclear how to delineate the effective relationships between these networks. In this study, we examined the aforementioned networks’ information flow hierarchy during viewing of an anger provoking movie excerpt. Anger regulation is particularly essential for averting individuals from aggression and violence, thus improving prosocial behavior. Using subjective ratings of anger intensity we differentiated between low and high anger periods of the film. We then applied the Dependency Network Analysis (DEPNA), a newly developed graph theory method to quantify networks’ node importance during the two anger periods. The DEPNA analysis revealed that the impact of the ventromedial prefrontal cortex (vmPFC) was higher in the high anger condition, particularly within the regulation network and on the connections between the reactivity and regulation networks. We further showed that higher levels of vmPFC impact on the regulation network were associated with lower subjective anger intensity during the high-anger cinematic period, and lower trait anger levels. Supporting and replicating previous findings, these results emphasize the previously acknowledged central role of vmPFC in modulating negative affect. We further show that the impact of the vmPFC relies on its correlational influence on the connectivity between reactivity and regulation networks. More importantly, the hierarchy network analysis revealed a link between connectivity patterns of the vmPFC and individual differences in anger reactivity and trait, suggesting its potential therapeutic role. PMID:29681803

  9. Graph theoretical analysis of functional network for comprehension of sign language.

    PubMed

    Liu, Lanfang; Yan, Xin; Liu, Jin; Xia, Mingrui; Lu, Chunming; Emmorey, Karen; Chu, Mingyuan; Ding, Guosheng

    2017-09-15

    Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t (24) =2.379, p=0.026), small-worldness (t (24) =2.604, p=0.016) and modularity (t (24) =3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach.

    PubMed

    Akiki, Teddy J; Averill, Christopher L; Wrocklage, Kristen M; Scott, J Cobb; Averill, Lynnette A; Schweinsburg, Brian; Alexander-Bloch, Aaron; Martini, Brenda; Southwick, Steven M; Krystal, John H; Abdallah, Chadi G

    2018-08-01

    Disruption in the default mode network (DMN) has been implicated in numerous neuropsychiatric disorders, including posttraumatic stress disorder (PTSD). However, studies have largely been limited to seed-based methods and involved inconsistent definitions of the DMN. Recent advances in neuroimaging and graph theory now permit the systematic exploration of intrinsic brain networks. In this study, we used resting-state functional magnetic resonance imaging (fMRI), diffusion MRI, and graph theoretical analyses to systematically examine the DMN connectivity and its relationship with PTSD symptom severity in a cohort of 65 combat-exposed US Veterans. We employed metrics that index overall connectivity strength, network integration (global efficiency), and network segregation (clustering coefficient). Then, we conducted a modularity and network-based statistical analysis to identify DMN regions of particular importance in PTSD. Finally, structural connectivity analyses were used to probe whether white matter abnormalities are associated with the identified functional DMN changes. We found decreased DMN functional connectivity strength to be associated with increased PTSD symptom severity. Further topological characterization suggests decreased functional integration and increased segregation in subjects with severe PTSD. Modularity analyses suggest a spared connectivity in the posterior DMN community (posterior cingulate, precuneus, angular gyrus) despite overall DMN weakened connections with increasing PTSD severity. Edge-wise network-based statistical analyses revealed a prefrontal dysconnectivity. Analysis of the diffusion networks revealed no alterations in overall strength or prefrontal structural connectivity. DMN abnormalities in patients with severe PTSD symptoms are characterized by decreased overall interconnections. On a finer scale, we found a pattern of prefrontal dysconnectivity, but increased cohesiveness in the posterior DMN community and relative sparing of connectivity in this region. The DMN measures established in this study may serve as a biomarker of disease severity and could have potential utility in developing circuit-based therapeutics. Published by Elsevier Inc.

  11. Pharmacological modulation of pulvinar resting-state regional oscillations and network dynamics in major depression

    PubMed Central

    Tadayonnejad, Reza; Ajilore, Olusola; Mickey, Brian J.; Crane, Natania A.; Hsu, David T.; Kumar, Anand; Zubieta, Jon-Kar; Langenecker, Scott A.

    2016-01-01

    The pulvinar, the largest thalamus nucleus, has rich anatomical connections with several different cortical and subcortical regions suggesting its important involvement in high-level cognitive and emotional functions. Unfortunately, pulvinar dysfunction in psychiatric disorders particularly major depression disorder has not been thoroughly examined to date. In this study we explored the alterations in the baseline regional and network activities of the pulvinar in MDD by applying spectral analysis of resting-state oscillatory activity, functional connectivity and directed (effective) connectivity on resting-state fMRI data acquired from 20 healthy controls and 19 participants with MDD. Furthermore, we tested how pharmacological treatment with duloxetine can modulate the measured local and network variables in ten participants who completed treatment. Our results revealed a frequency-band dependent modulation of power spectrum characteristics of pulvinar regional oscillatory activity. At the network level, we found MDD is associated with aberrant causal interactions between pulvinar and several systems including default-mode and posterior insular networks. It was also shown that duloxetine treatment can correct or overcompensate the pathologic network behavior of the pulvinar. In conclusion, we suggest that pulvinar regional baseline oscillatory activity and its resting-state network dynamics are compromised in MDD and can be modulated therapeutically by pharmacological treatment. PMID:27148894

  12. Differential reward responses during competition against in- and out-of-network others.

    PubMed

    Fareri, Dominic S; Delgado, Mauricio R

    2014-04-01

    Social interactions occur within a variety of different contexts--cooperative/competitive--and often involve members of our social network. Here, we investigated whether social network modulated the value placed on positive outcomes during a competitive context. Eighteen human participants played a simple card-guessing game with three different competitors: a close friend (in-network), a confederate (out-of-network) and a random number generator (non-social condition) while undergoing functional magnetic resonance imaging. Neuroimaging results at the time of outcome receipt demonstrated a significant main effect of competitor across multiple regions of medial prefrontal cortex, with Blood Oxygen Level Dependent (BOLD) responses strongest when competing against one's friend compared with all other conditions. Striatal BOLD responses demonstrated a more general sensitivity to positive compared with negative monetary outcomes, which an exploratory analysis revealed to be stronger when interacting with social, compared with non-social, competitors. Interestingly, a Granger causality analysis indicated directed influences sent from an medial prefrontal cortex (mPFC) region, which shows social network differentiation of outcomes, and the ventral striatum bilaterally. Our results suggest that when competing against others of varying degrees of social network, mPFC differentially values these outcomes, perhaps treating in-network outcomes as more informative, leaving the striatum to more general value computations.

  13. Smoking-based selection and influence in gender-segregated friendship networks: a social network analysis of adolescent smoking.

    PubMed

    Mercken, Liesbeth; Snijders, Tom A B; Steglich, Christian; Vertiainen, Erkki; de Vries, Hein

    2010-07-01

    The main goal of this study was to examine differences between adolescent male and female friendship networks regarding smoking-based selection and influence processes using newly developed social network analysis methods that allow the current state of continuously changing friendship networks to act as a dynamic constraint for changes in smoking behaviour, while allowing current smoking behaviour to be simultaneously a dynamic constraint for changes in friendship networks. Longitudinal design with four measurements. Nine junior high schools in Finland. A total of 1163 adolescents (mean age = 13.6 years) who participated in the control group of the ESFA (European Smoking prevention Framework Approach) study, including 605 males and 558 females. Smoking behaviour of adolescents, parents, siblings and friendship ties. Smoking-based selection of friends was found in male as well as female networks. However, support for influence among friends was found only in female networks. Furthermore, females and males were both influenced by parental smoking behaviour. In Finnish adolescents, both male and female smokers tend to select other smokers as friends but it appears that only females are influenced to smoke by their peer group. This suggests that prevention campaigns targeting resisting peer pressure may be more effective in adolescent girls than boys.

  14. Differential reward responses during competition against in- and out-of-network others

    PubMed Central

    Fareri, Dominic S.

    2014-01-01

    Social interactions occur within a variety of different contexts––cooperative/competitive––and often involve members of our social network. Here, we investigated whether social network modulated the value placed on positive outcomes during a competitive context. Eighteen human participants played a simple card-guessing game with three different competitors: a close friend (in-network), a confederate (out-of-network) and a random number generator (non-social condition) while undergoing functional magnetic resonance imaging. Neuroimaging results at the time of outcome receipt demonstrated a significant main effect of competitor across multiple regions of medial prefrontal cortex, with Blood Oxygen Level Dependent (BOLD) responses strongest when competing against one’s friend compared with all other conditions. Striatal BOLD responses demonstrated a more general sensitivity to positive compared with negative monetary outcomes, which an exploratory analysis revealed to be stronger when interacting with social, compared with non-social, competitors. Interestingly, a Granger causality analysis indicated directed influences sent from an medial prefrontal cortex (mPFC) region, which shows social network differentiation of outcomes, and the ventral striatum bilaterally. Our results suggest that when competing against others of varying degrees of social network, mPFC differentially values these outcomes, perhaps treating in-network outcomes as more informative, leaving the striatum to more general value computations. PMID:23314007

  15. Network analysis among HIV-infected young black men who have sex with men demonstrates high connectedness around few venues.

    PubMed

    Oster, Alexandra M; Wejnert, Cyprian; Mena, Leandro A; Elmore, Kim; Fisher, Holly; Heffelfinger, James D

    2013-03-01

    Network analysis is useful for understanding sexual transmission of HIV and other sexually transmitted infections. We conducted egocentric and affiliation network analysis among HIV-infected young black men who have sex with men (MSM) in the Jackson, Mississippi, area to understand networks and connectedness of this population. We interviewed 22 black MSM aged 17 to 25 years diagnosed as having HIV in 2006 to 2008. Participants provided demographic and geographic information about each sex partner during the 12 months before diagnosis and identified venues where they met these partners. We created affiliation network diagrams to understand connectedness of this population and identify venues that linked participants. The median number of partners reported was 4 (range, 1-16); a total of 97 partners (88 of whom were male) were reported. All but 1 participant were connected through a network of venues where they had met partners during the 12 months before diagnosis. Three venues were named as places for meeting partners by 13 of 22 participants. Participants reported having partners from all regions of Mississippi and 5 other states. HIV-infected young black MSM in this analysis were linked by a small number of venues. These venues should be targeted for testing and prevention interventions. The pattern of meeting sex partners in a small number of venues suggests densely connected networks that propagate infection. This pattern, in combination with sexual partnerships with persons from outside Jackson, may contribute to spread of HIV and other sexually transmitted infections into or out the Jackson area.

  16. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions.

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2017-09-01

    Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.

  17. Agricultural science in the wild: a social network analysis of farmer knowledge exchange.

    PubMed

    Wood, Brennon A; Blair, Hugh T; Gray, David I; Kemp, Peter D; Kenyon, Paul R; Morris, Steve T; Sewell, Alison M

    2014-01-01

    Responding to demands for transformed farming practices requires new forms of knowledge. Given their scale and complexity, agricultural problems can no longer be solved by linear transfers in which technology developed by specialists passes to farmers by way of extension intermediaries. Recent research on alternative approaches has focused on the innovation systems formed by interactions between heterogeneous actors. Rather than linear transfer, systems theory highlights network facilitation as a specialized function. This paper contributes to our understanding of such facilitation by investigating the networks in which farmers discuss science. We report findings based on the study of a pastoral farming experiment collaboratively undertaken by a group of 17 farmers and five scientists. Analysis of prior contact and alter sharing between the group's members indicates strongly tied and decentralized networks. Farmer knowledge exchanges about the experiment have been investigated using a mix of quantitative and qualitative methods. Network surveys identified who the farmers contacted for knowledge before the study began and who they had talked to about the experiment by 18 months later. Open-ended interviews collected farmer statements about their most valuable contacts and these statements have been thematically analysed. The network analysis shows that farmers talked about the experiment with 192 people, most of whom were fellow farmers. Farmers with densely tied and occupationally homogeneous contacts grew their networks more than did farmers with contacts that are loosely tied and diverse. Thematic analysis reveals three general principles: farmers value knowledge delivered by persons rather than roles, privilege farming experience, and develop knowledge with empiricist rather than rationalist techniques. Taken together, these findings suggest that farmers deliberate about science in intensive and durable networks that have significant implications for theorizing agricultural innovation. The paper thus concludes by considering the findings' significance for current efforts to rethink agricultural extension.

  18. Weighted gene co‑expression network analysis in identification of key genes and networks for ischemic‑reperfusion remodeling myocardium.

    PubMed

    Guo, Nan; Zhang, Nan; Yan, Liqiu; Lian, Zheng; Wang, Jiawang; Lv, Fengfeng; Wang, Yunfei; Cao, Xufen

    2018-06-14

    Acute myocardial infarction induces ventricular remodeling, which is implicated in dilated heart and heart failure. The pathogenical mechanism of myocardium remodeling remains to be elucidated. The aim of the present study was to identify key genes and networks for myocardium remodeling following ischemia‑reperfusion (IR). First, the mRNA expression data from the National Center for Biotechnology Information database were downloaded to identify differences in mRNA expression of the IR heart at days 2 and 7. Then, weighted gene co‑expression network analysis, hierarchical clustering, protein‑protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to identify key genes and networks for the heart remodeling process following IR. A total of 3,321 differentially expressed genes were identified during the heart remodeling process. A total of 6 modules were identified through gene co‑expression network analysis. GO and KEGG analysis results suggested that each module represented a different biological function and was associated with different pathways. Finally, hub genes of each module were identified by PPI network construction. The present study revealed that heart remodeling following IR is a complicated process, involving extracellular matrix organization, neural development, apoptosis and energy metabolism. The dysregulated genes, including SRC proto‑oncogene, non‑receptor tyrosine kinase, discs large MAGUK scaffold protein 1, ATP citrate lyase, RAN, member RAS oncogene family, tumor protein p53, and polo like kinase 2, may be essential for heart remodeling following IR and may be used as potential targets for the inhibition of heart remodeling following acute myocardial infarction.

  19. Dengue research networks: building evidence for policy and planning in Brazil.

    PubMed

    de Paula Fonseca E Fonseca, Bruna; Zicker, Fabio

    2016-11-08

    The analysis of scientific networks has been applied in health research to map and measure relationships between researchers and institutions, describing collaboration structures, individual roles, and research outputs, and helping the identification of knowledge gaps and cooperation opportunities. Driven by dengue continued expansion in Brazil, we explore the contribution, dynamics and consolidation of dengue scientific networks that could ultimately inform the prioritisation of research, financial investments and health policy. Social network analysis (SNA) was used to produce a 20-year (1995-2014) retrospective longitudinal evaluation of dengue research networks within Brazil and with its partners abroad, with special interest in describing institutional collaboration and their research outputs. The analysis of institutional co-authorship showed a significant expansion of collaboration over the years, increased international involvement, and ensured a shift from public health research toward vector control and basic biomedical research, probably as a reflection of the expansion of transmission, high burden and increasing research funds from the Brazilian government. The analysis identified leading national organisations that maintained the research network connectivity, facilitated knowledge exchange and reduced network vulnerability. SNA proved to be a valuable tool that, along with other indicators, can strengthen a knowledge platform to inform future policy, planning and funding decisions. The paper provides relevant information to policy and planning for dengue research as it reveals: (1) the effectiveness of the research network in knowledge generation, sharing and diffusion; (2) the near-absence of collaboration with the private sector; and (3) the key central organisations that can support strategic decisions on investments, development and implementation of innovations. In addition, the increase in research activities and collaboration has not yet significantly affected dengue transmission, suggesting a limited translation of research efforts into public health solutions.

  20. Altered coupling of default-mode, executive-control and salience networks in Internet gaming disorder.

    PubMed

    Zhang, J T; Ma, S-S; Yan, C-G; Zhang, S; Liu, L; Wang, L-J; Liu, B; Yao, Y-W; Yang, Y-H; Fang, X-Y

    2017-09-01

    Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD. Thus, we aimed to assess alterations in the inter-network interactions of these large-scale networks in IGD, and to associate the alterations with IGD-related behaviors. DMN, ECN and SN were identified using group-level independent component analysis (gICA) in 39 individuals with IGD and 34 age and gender matched healthy controls (HCs). Then alterations in the SN-ECN and SN-DMN connectivity, as well as in the modulation of ECN versus DMN by SN, using a resource allocation index (RAI) developed and validated previously in nicotine addiction, were assessed. Further, associations between these altered network coupling and clinical assessments were also examined. Compared with HCs, IGD had significantly increased SN-DMN connectivity and decreased RAI in right hemisphere (rRAI), and the rRAI in IGD was negatively associated with their scores of craving. These findings suggest that the deficient modulation of ECN versus DMN by SN might provide a mechanistic framework to better understand the neural basis of IGD and might provide novel evidence for the triple-network model in IGD. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Inequalities in Global Trade: A Cross-Country Comparison of Trade Network Position, Economic Wealth, Pollution and Mortality.

    PubMed

    Prell, Christina; Sun, Laixiang; Feng, Kuishuang; Myroniuk, Tyler W

    2015-01-01

    In this paper we investigate how structural patterns of international trade give rise to emissions inequalities across countries, and how such inequality in turn impact countries' mortality rates. We employ Multi-regional Input-Output analysis to distinguish between sulfur-dioxide (SO2) emissions produced within a country's boarders (production-based emissions) and emissions triggered by consumption in other countries (consumption-based emissions). We use social network analysis to capture countries' level of integration within the global trade network. We then apply the Prais-Winsten panel estimation technique to a panel data set across 172 countries over 20 years (1990-2010) to estimate the relationships between countries' level of integration and SO2 emissions, and the impact of trade integration and SO2 emission on mortality rates. Our findings suggest a positive, (log-) linear relationship between a country's level of integration and both kinds of emissions. In addition, although more integrated countries are mainly responsible for both forms of emissions, our findings indicate that they also tend to experience lower mortality rates. Our approach offers a unique combination of social network analysis with multiregional input-output analysis, which better operationalizes intuitive concepts about global trade and trade structure.

  2. Social network analysis of the genetic structure of Pacific islanders.

    PubMed

    Terrell, John Edward

    2010-05-01

    Social network analysis (SNA) is a body of theory and a set of relatively new computer-aided techniques used in the analysis and study of relational data. Recent studies of autosomal markers from over 40 human populations in the south-western Pacific have further documented the remarkable degree of genetic diversity in this part of the world. I report additional analysis using SNA methods contributing new controlled observations on the structuring of genetic diversity among these islanders. These SNA mappings are then compared with model-based network expectations derived from the geographic distances among the same populations. Previous studies found that genetic divergence among island Melanesian populations is organised by island, island size/topography, and position (coastal vs. inland), and that similarities observed correlate only weakly with an isolation-by-distance model. Using SNA methods, however, improves the resolution of among population comparison, and suggests that isolation by distance constrained by social networks together with position (coastal/inland) accounts for much of the population structuring observed. The multilocus data now available is also in accord with current thinking on the impact of major biogeographical transformations on prehistoric colonisation and post-settlement human interaction in Oceania.

  3. A recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure.

    PubMed

    Liao, Fuyuan; Jan, Yih-Kuen

    2012-06-01

    This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (p<0.01). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.

  4. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana

    PubMed Central

    Henríquez-Valencia, Carlos; Arenas-M, Anita; Medina, Joaquín; Canales, Javier

    2018-01-01

    Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants. PMID:29692794

  5. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana.

    PubMed

    Henríquez-Valencia, Carlos; Arenas-M, Anita; Medina, Joaquín; Canales, Javier

    2018-01-01

    Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants.

  6. The importance of national and international collaboration in adult congenital heart disease: A network analysis of research output.

    PubMed

    Orwat, Melanie Iris; Kempny, Aleksander; Bauer, Ulrike; Gatzoulis, Michael A; Baumgartner, Helmut; Diller, Gerhard-Paul

    2015-09-15

    The determinants of adult congenital heart disease (ACHD) research output are only partially understood. The heterogeneity of ACHD naturally calls for collaborative work; however, limited information exists on the impact of collaboration on academic performance. We aimed to examine the global topology of ACHD research, distribution of research collaboration and its association with cumulative research output. Based on publications presenting original research between 2005 and 2011, a network analysis was performed quantifying centrality measures and key players in the field of ACHD. In addition, network maps were produced to illustrate the global distribution and interconnected nature of ACHD research. The proportion of collaborative research was 35.6 % overall, with a wide variation between countries (7.1 to 62.8%). The degree of research collaboration, as well as measures of network centrality (betweenness and degree centrality), were statistically associated with cumulative research output independently of national wealth and available workforce. The global ACHD research network was found to be scale-free with a small number of central hubs and a relatively large number of peripheral nodes. In addition, we could identify potentially influential hubs based on cluster analysis and measures of centrality/key player analysis. Using network analysis methods the current study illustrates the complex and global structures of ACHD research. It suggests that collaboration between research institutions is associated with higher academic output. As a consequence national and international collaboration in ACHD research should be encouraged and the creation of an adequate supporting infrastructure should be further promoted. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. F-MAP: A Bayesian approach to infer the gene regulatory network using external hints

    PubMed Central

    Shahdoust, Maryam; Mahjub, Hossein; Sadeghi, Mehdi

    2017-01-01

    The Common topological features of related species gene regulatory networks suggest reconstruction of the network of one species by using the further information from gene expressions profile of related species. We present an algorithm to reconstruct the gene regulatory network named; F-MAP, which applies the knowledge about gene interactions from related species. Our algorithm sets a Bayesian framework to estimate the precision matrix of one species microarray gene expressions dataset to infer the Gaussian Graphical model of the network. The conjugate Wishart prior is used and the information from related species is applied to estimate the hyperparameters of the prior distribution by using the factor analysis. Applying the proposed algorithm on six related species of drosophila shows that the precision of reconstructed networks is improved considerably compared to the precision of networks constructed by other Bayesian approaches. PMID:28938012

  8. Neuronal network models of epileptogenesis

    PubMed Central

    Abdullahi, Aminu T.; Adamu, Lawan H.

    2017-01-01

    Epilepsy is a chronic neurological condition, following some trigger, transforming a normal brain to one that produces recurrent unprovoked seizures. In the search for the mechanisms that best explain the epileptogenic process, there is a growing body of evidence suggesting that the epilepsies are network level disorders. In this review, we briefly describe the concept of neuronal networks and highlight 2 methods used to analyse such networks. The first method, graph theory, is used to describe general characteristics of a network to facilitate comparison between normal and abnormal networks. The second, dynamic causal modelling, is useful in the analysis of the pathways of seizure spread. We concluded that the end results of the epileptogenic process are best understood as abnormalities of neuronal circuitry and not simply as molecular or cellular abnormalities. The network approach promises to generate new understanding and more targeted treatment of epilepsy. PMID:28416779

  9. Transnational cocaine and heroin flow networks in western Europe: A comparison.

    PubMed

    Chandra, Siddharth; Joba, Johnathan

    2015-08-01

    A comparison of the properties of drug flow networks for cocaine and heroin in a group of 17 western European countries is provided with the aim of understanding the implications of their similarities and differences for drug policy. Drug flow data for the cocaine and heroin networks were analyzed using the UCINET software package. Country-level characteristics including hub and authority scores, core and periphery membership, and centrality, and network-level characteristics including network density, the results of a triad census, and the final fitness of the core-periphery structure of the network, were computed and compared between the two networks. The cocaine network contains fewer path redundancies and a smaller, more tightly knit core than the heroin network. Authorities, hubs and countries central to the cocaine network tend to have higher hub, authority, and centrality scores than those in the heroin network. The core-periphery and hub-authority structures of the cocaine and heroin networks reflect the west-to-east and east-to-west patterns of flow of cocaine and heroin respectively across Europe. The key nodes in the cocaine and heroin networks are generally distinct from one another. The analysis of drug flow networks can reveal important structural features of trafficking networks that can be useful for the allocation of scarce drug control resources. The identification of authorities, hubs, network cores, and network-central nodes can suggest foci for the allocation of these resources. In the case of Europe, while some countries are important to both cocaine and heroin networks, different sets of countries occupy positions of prominence in the two networks. The distinct nature of the cocaine and heroin networks also suggests that a one-size-fits-all supply- and interdiction-focused policy may not work as well as an approach that takes into account the particular characteristics of each network. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder

    PubMed Central

    Doll, Anselm; Sorg, Christian; Manoliu, Andrei; Wöller, Andreas; Meng, Chun; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M.; Riedl, Valentin

    2013-01-01

    Borderline personality disorder (BPD) is characterized by “stable instability” of emotions and behavior and their regulation. This emotional and behavioral instability corresponds with a neurocognitive triple network model of psychopathology, which suggests that aberrant emotional saliency and cognitive control is associated with aberrant interaction across three intrinsic connectivity networks [i.e., the salience network (SN), default mode network (DMN), and central executive network (CEN)]. The objective of the current study was to investigate whether and how such triple network intrinsic functional connectivity (iFC) is changed in patients with BPD. We acquired resting-state functional magnetic resonance imaging (rs-fMRI) data from 14 patients with BPD and 16 healthy controls. High-model order independent component analysis was used to extract spatiotemporal patterns of ongoing, coherent blood-oxygen-level-dependent signal fluctuations from rs-fMRI data. Main outcome measures were iFC within networks (intra-iFC) and between networks (i.e., network time course correlation inter-iFC). Aberrant intra-iFC was found in patients’ DMN, SN, and CEN, consistent with previous findings. While patients’ inter-iFC of the CEN was decreased, inter-iFC of the SN was increased. In particular, a balance index reflecting the relationship of CEN- and SN-inter-iFC across networks was strongly shifted from CEN to SN connectivity in patients. Results provide first preliminary evidence for aberrant triple network iFC in BPD. Our data suggest a shift of inter-network iFC from networks involved in cognitive control to those of emotion-related activity in BPD, potentially reflecting the persistent instability of emotion regulation in patients. PMID:24198777

  11. Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry

    PubMed Central

    Lee, Dong-Hun

    2017-01-01

    To determine the genetic and epidemiological relationship of infectious bronchitis virus (IBV) isolates from commercial poultry to attenuated live IBV vaccines we conducted a phylogenetic network analysis on the full-length S1 sequence for Arkansas (Ark), Massachusetts (Mass) and Delmarva/1639 (DMV/1639) type viruses isolated in 2015 from clinical cases by 3 different diagnostic laboratories. Phylogenetic network analysis of Ark isolates showed two predominant groups linked by 2 mutations, consistent with subpopulations found in commercial vaccines for this IBV type. In addition, a number of satellite groups surrounding the two predominant populations were observed for the Ark type virus, which is likely due to mutations associated with the nature of this vaccine to persist in flocks. The phylogenetic network analysis of Mass-type viruses shows two groupings corresponding to different manufacturers vaccine sequences. No satellite groups were observed for Mass-type viruses, which is consistent with no persistence of this vaccine type in the field. At the time of collection, no vaccine was being used for the DMV/1639 type viruses and phylogenetic network analysis showed a dispersed network suggesting no clear change in genetic distribution. Selection pressure analysis showed that the DMV/1639 and Mass-type strains were evolving under negative selection, whereas the Ark type viruses had evolved under positive selection. This data supports the hypothesis that live attenuated vaccine usage does play a role in the genetic profile of similar IB viruses in the field and phylogenetic network analysis can be used to identify vaccine and vaccine origin isolates, which is important for our understanding of the role live vaccines play in the evolutionary trajectory of those viruses. PMID:28472110

  12. Topological and Historical Considerations for Infectious Disease Transmission among Injecting Drug Users in Bushwick, Brooklyn (USA)

    PubMed Central

    Dombrowski, Kirk; Curtis, Richard; Friedman, Samuel; Khan, Bilal

    2014-01-01

    Recent interest by physicists in social networks and disease transmission factors has prompted debate over the topology of degree distributions in sexual networks. Social network researchers have been critical of “scale-free” Barabasi-Albert approaches, and largely rejected the preferential attachment, “rich-get-richer” assumptions that underlie that model. Instead, research on sexual networks has pointed to the importance of homophily and local sexual norms in dictating degree distributions, and thus disease transmission thresholds. Injecting Drug User (IDU) network topologies may differ from the emerging models of sexual networks, however. Degree distribution analysis of a Brooklyn, NY, IDU network indicates a different topology than the spanning tree configurations discussed for sexual networks, instead featuring comparatively short cycles and high concurrency. Our findings suggest that IDU networks do in some ways conform to a “scale-free” topology, and thus may represent “reservoirs” of potential infection despite seemingly low transmission thresholds. PMID:24672745

  13. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon.

    PubMed

    Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi

    2017-01-01

    We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  14. Computational Modeling of Allosteric Regulation in the Hsp90 Chaperones: A Statistical Ensemble Analysis of Protein Structure Networks and Allosteric Communications

    PubMed Central

    Blacklock, Kristin; Verkhivker, Gennady M.

    2014-01-01

    A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. PMID:24922508

  15. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    PubMed

    Blacklock, Kristin; Verkhivker, Gennady M

    2014-06-01

    A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks.

  16. In-Silico Identification Of Micro-Loops In Myelodysplastic Syndromes

    NASA Astrophysics Data System (ADS)

    Beck, Dominik; Brandl, Miriam; Pham, Tuan D.; Chang, Chung-Che; Zhou, Xiaobo

    2011-06-01

    Micro-loops are regulatory network motifs that leverage transcriptional and posttranscriptional control to effectively regulate the transcriptome. In this paper a regulatory network for Myelodysplastic Syndromes (MDSs) was constructed from the literature and publicly available data sources. The network was filtered using data from deep-sequencing of small RNAs, exon and microarrays. Motif discovery showed that micro-loops might exist in MDS. We further used the identified micro-loops and performed basic network analysis to identify the known disease gene RUNX1/AML, as well as miRNA family hsa-mir-181. This suggested that the concept of micro-loops can be applied to enhance disease gene identification and biomarker discovery.

  17. Computer network environment planning and analysis

    NASA Technical Reports Server (NTRS)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  18. Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases.

    PubMed

    Masías, Víctor Hugo; Valle, Mauricio; Morselli, Carlo; Crespo, Fernando; Vargas, Augusto; Laengle, Sigifredo

    2016-01-01

    Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers-Logistic Regression, Naïve Bayes and Random Forest-with a range of social network measures and the necessary databases to model the verdicts in two real-world cases: the U.S. Watergate Conspiracy of the 1970's and the now-defunct Canada-based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures.

  19. Event Networks and the Identification of Crime Pattern Motifs

    PubMed Central

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  20. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.

    PubMed

    Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2016-04-01

    Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Local Network-Level Integration Mediates Effects of Transcranial Alternating Current Stimulation.

    PubMed

    Fuscà, Marco; Ruhnau, Philipp; Neuling, Toralf; Weisz, Nathan

    2018-05-01

    Transcranial alternating current stimulation (tACS) has been proposed as a tool to draw causal inferences on the role of oscillatory activity in cognitive functioning and has the potential to induce long-term changes in cerebral networks. However, effectiveness of tACS underlies high variability and dependencies, which, as previous modeling works have suggested, may be mediated by local and network-level brain states. We used magnetoencephalography to record brain activity from 17 healthy participants at rest as they kept their eyes open (EO) or eyes closed (EC) while being stimulated with sham, weak, or strong alpha-tACS using a montage commonly assumed to target occipital areas. We reconstructed the activity of sources in all stimulation conditions by means of beamforming. The analysis of resting-state brain activity revealed an interaction of the external stimulation with the endogenous alpha power increase from EO to EC. This interaction was localized to the posterior cingulate, a region remote from occipital cortex. This suggests state-dependent (EO vs. EC) long-range effects of tACS. In a follow-up analysis of this online-tACS effect, we find evidence that this state-dependency effect is mediated by functional network changes: connection strength from the precuneus was significantly correlated with the state-dependency effect in the posterior cingulate during tACS. No analogous correlation could be found for alpha power modulations in occipital cortex. Altogether, this is the first strong evidence to illustrate how functional network architectures can shape tACS effects.

  2. A Network Analysis of the American Library Association: Defining a Profession

    ERIC Educational Resources Information Center

    Battleson, Brenda L.

    2010-01-01

    The term "librarianship" is a generic one, suggesting one overarching discipline despite the numerous specializations and areas of research within the profession. While many disciplines use bibliometric analysis of their literature to define subfields of study within, such methods are not appropriate to librarianship due to the nature of…

  3. The Structure of Male Adolescent Peer Networks and Risk for Intimate Partner Violence Perpetration: Findings from a National Sample

    PubMed Central

    Casey, Erin A.; Beadnell, Blair

    2015-01-01

    Although peer networks have been implicated as influential in a range of adolescent behaviors, little is known about relationships between peer network structures and risk for intimate partner violence (IPV) among youth. This study is a descriptive analysis of how peer network “types” may be related to subsequent risk for IPV perpetration among adolescents using data from 3,030 male respondents to the National Longitudinal Study of Adolescent Health. Sampled youth were a mean of 16 years of age when surveyed about the nature of their peer networks, and 21.9 when asked to report about IPV perpetration in their adolescent and early adulthood relationships. A latent class analysis of the size, structure, gender composition and delinquency level of friendship groups identified four unique profiles of peer network structures. Men in the group type characterized by small, dense, mostly male peer networks with higher levels of delinquent behavior reported higher rates of subsequent IPV perpetration than men whose adolescent network type was characterized by large, loosely connected groups of less delinquent male and female friends. Other factors known to be antecedents and correlates of IPV perpetration varied in their distribution across the peer group types, suggesting that different configurations of risk for relationship aggression can be found across peer networks. Implications for prevention programming and future research are addressed. PMID:20422351

  4. A social network analysis approach to alcohol use and co-occurring addictive behavior in young adults.

    PubMed

    Meisel, Matthew K; Clifton, Allan D; MacKillop, James; Goodie, Adam S

    2015-12-01

    The current study applied egocentric social network analysis (SNA) to investigate the prevalence of addictive behavior and co-occurring substance use in college students' networks. Specifically, we examined individuals' perceptions of the frequency of network members' co-occurring addictive behavior and investigated whether co-occurring addictive behavior is spread evenly throughout networks or is more localized in clusters. We also examined differences in network composition between individuals with varying levels of alcohol use. The study utilized an egocentric SNA approach in which respondents ("egos") enumerated 30 of their closest friends, family members, co-workers, and significant others ("alters") and the relations among alters listed. Participants were 281 undergraduates at a large university in the Southeastern United States. Robust associations were observed among the frequencies of gambling, smoking, drinking, and using marijuana by network members. We also found that alters tended to cluster together into two distinct groups: one cluster moderate-to-high on co-occurring addictive behavior and the other low on co-occurring addictive behavior. Lastly, significant differences were present when examining egos' perceptions of alters' substance use between the networks of at-risk, light, and nondrinkers. These findings provide empirical evidence of distinct clustering of addictive behavior among young adults and suggest the promise of social network-based interventions for this cohort. Copyright © 2015. Published by Elsevier Ltd.

  5. PLUS highway network analysis: Case of in-coming traffic burden in 2013

    NASA Astrophysics Data System (ADS)

    Asrah, Norhaidah Mohd; Djauhari, Maman Abdurachman; Mohamad, Ismail

    2017-05-01

    PLUS highway is the largest concessionary in Malaysia. The study on PLUS highway development, in order to overcome the demand for efficient road transportation, is crucial. If the highways have better interconnected network, it will help the economic activities such as trade to increase. If economic activities are increasing, the benefit will come to the people and state. In its turn, it will help the leaders to plan and conduct national development program. In this paper, network analysis approach will be used to study the in-coming traffic burden during the year of 2013. The highway network linking all the toll plazas is a dynamic network. The objective of this study is to learn and understand about highway network in terms of the in-coming traffic burden entering to each toll plazas along PLUS highway. For this purpose, the filtered network topology based on the forest of all possible minimum spanning trees is used. The in-coming traffic burden of a city is represented by the number of cars passing through the corresponding toll plaza. To interpret the filtered network, centrality measures such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality are used. An overall centrality will be proposed if those four measures are assumed to have the same role. Based on the results, some suggestions and recommendations for PLUS highway network development will be delivered to PLUS highway management.

  6. The Role of Vitamin D in the Transcriptional Program of Human Pregnancy

    PubMed Central

    Al-Garawi, Amal; Carey, Vincent J.; Chhabra, Divya; Morrow, Jarrett; Lasky-Su, Jessica; Qiu, Weiliang; Laranjo, Nancy; Litonjua, Augusto A.; Weiss, Scott T.

    2016-01-01

    Background Patterns of gene expression of human pregnancy are poorly understood. In a trial of vitamin D supplementation in pregnant women, peripheral blood transcriptomes were measured longitudinally on 30 women and used to characterize gene co-expression networks. Objective Studies suggest that increased maternal Vitamin D levels may reduce the risk of asthma in early life, yet the underlying mechanisms have not been examined. In this study, we used a network-based approach to examine changes in gene expression profiles during the course of normal pregnancy and evaluated their association with maternal Vitamin D levels. Design The VDAART study is a randomized clinical trial of vitamin D supplementation in pregnancy for reduction of pediatric asthma risk. The trial enrolled 881 women at 10–18 weeks of gestation. Longitudinal gene expression measures were obtained on thirty pregnant women, using RNA isolated from peripheral blood samples obtained in the first and third trimesters. Differentially expressed genes were identified using significance of analysis of microarrays (SAM), and clustered using a weighted gene co-expression network analysis (WGCNA). Gene-set enrichment was performed to identify major biological pathways. Results Comparison of transcriptional profiles between first and third trimesters of pregnancy identified 5839 significantly differentially expressed genes (FDR<0.05). Weighted gene co-expression network analysis clustered these transcripts into 14 co-expression modules of which two showed significant correlation with maternal vitamin D levels. Pathway analysis of these two modules revealed genes enriched in immune defense pathways and extracellular matrix reorganization as well as genes enriched in notch signaling and transcription factor networks. Conclusion Our data show that gene expression profiles of healthy pregnant women change during the course of pregnancy and suggest that maternal Vitamin D levels influence transcriptional profiles. These alterations of the maternal transcriptome may contribute to fetal immune imprinting and reduce allergic sensitization in early life. Trial Registration clinicaltrials.gov NCT00920621 PMID:27711190

  7. Analysis of gene network robustness based on saturated fixed point attractors

    PubMed Central

    2014-01-01

    The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364

  8. Fyn-Dependent Gene Networks in Acute Ethanol Sensitivity

    PubMed Central

    Farris, Sean P.; Miles, Michael F.

    2013-01-01

    Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders. PMID:24312422

  9. Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia

    PubMed Central

    Sheffield, Julia M; Repovs, Grega; Harms, Michael P.; Carter, Cameron S.; Gold, James M.; MacDonald, Angus W.; Ragland, J. Daniel; Silverstein, Steven M.; Godwin, Douglass; Barch, Deanna M

    2015-01-01

    Growing evidence suggests that coordinated activity within specific functional brain networks supports cognitive ability, and that abnormalities in brain connectivity may underlie cognitive deficits observed in neuropsychiatric diseases, such as schizophrenia. Two functional networks, the fronto-parietal network (FPN) and cingulo-opercular network (CON), are hypothesized to support top-down control of executive functioning, and have therefore emerged as potential drivers of cognitive impairment in disease-states. Graph theoretic analyses of functional connectivity data can characterize network topology, allowing the relationships between cognitive ability and network integrity to be examined. In the current study we applied graph analysis to pseudo-resting state data in 54 healthy subjects and 46 schizophrenia patients, and measured overall cognitive ability as the shared variance in performance from tasks of episodic memory, verbal memory, processing speed, goal maintenance, and visual integration. We found that, across all participants, cognitive ability was significantly positively associated with the local and global efficiency of the whole brain, FPN, and CON, but not with the efficiency of a comparison network, the auditory network. Additionally, the participation coefficient of the right anterior insula, a major hub within the CON, significantly predicted cognition, and this relationship was independent of CON global efficiency. Surprisingly, we did not observe strong evidence for group differences in any of our network metrics. These data suggest that functionally efficient task control networks support better cognitive ability in both health and schizophrenia, and that the right anterior insula may be a particularly important hub for successful cognitive performance across both health and disease. PMID:25979608

  10. A Survey on Node Clustering in Cognitive Radio Wireless Sensor Networks.

    PubMed

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2016-09-10

    Cognitive radio wireless sensor networks (CR-WSNs) have attracted a great deal of attention recently due to the emerging spectrum scarcity issue. This work attempts to provide a detailed analysis of the role of node clustering in CR-WSNs. We outline the objectives, requirements, and advantages of node clustering in CR-WSNs. We describe how a CR-WSN with node clustering differs from conventional wireless sensor networks, and we discuss its characteristics, architecture, and topologies. We survey the existing clustering algorithms and compare their objectives and features. We suggest how clustering issues and challenges can be handled.

  11. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  12. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan.

    PubMed

    Davison, Elizabeth N; Turner, Benjamin O; Schlesinger, Kimberly J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Carlson, Jean M

    2016-11-01

    Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism-hypergraph cardinality-we investigate individual variations in two separate, complementary data sets. The first data set ("multi-task") consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set ("age-memory"), in which 95 individuals, aged 18-75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.

  13. Bidirectional influence: A longitudinal analysis of size of drug network and depression among inner-city residents in Baltimore, Maryland

    PubMed Central

    Yang, Jingyan; Latkin, Carl A.; Davey-Rothwell, Melissa

    2015-01-01

    BACKGROUND The prevalence of depression among drug users is high. It has been recognized that drug use behaviors can be influenced and spread through social networks. OBJECTIVES We investigated the directional relationship between social network factors and depressive symptoms among a sample of inner-city residents in Baltimore, MD. METHODS We performed a longitudinal study of four-wave data collected from a network-based HIV/STI prevention intervention for women and network members, consisting of both men and women. Our primary outcome and exposure were depression using CESD scale and social network characteristics, respectively. Linear mixed model with clustering adjustment was used to account for both repeated measurement and network design. RESULTS Of the 746 participants, those who had high levels of depression tended to be female, less educated, homeless, smokers, and did not have a main partner. In the univariate longitudinal model, larger size of drug network was significantly associated with depression (OR=1.38, p<0.001). This relationship held after controlling for age, gender, homeless in the past six months, college education, having a main partner, cigarette smoking, perceived health, and social support network (aOR=1.19, p=0.001). In the univariate mixed model using depression to predict size of drug network, the data suggested that depression was associated with larger size of drug network (coef.=1.23, p<0.001) and the same relation held in multivariate model (adjusted coef.=1.08, p=0.001). CONCLUSIONS The results suggest that larger size of drug network is a risk factor for depression, and vice versa. Further intervention strategies to reduce depression should address social networks factors. PMID:26584046

  14. Functional subdivision of group-ICA results of fMRI data collected during cinema viewing.

    PubMed

    Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta

    2012-01-01

    Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film ("At land" by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative.

  15. Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren’s Disease

    PubMed Central

    Becker, Kerstin; Siegert, Sabine; Toliat, Mohammad Reza; Du, Juanjiangmeng; Casper, Ramona; Dolmans, Guido H.; Werker, Paul M.; Tinschert, Sigrid; Franke, Andre; Gieger, Christian; Strauch, Konstantin; Nothnagel, Michael; Nürnberg, Peter; Hennies, Hans Christian

    2016-01-01

    Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease. PMID:27467239

  16. Neural network modeling and prediction of resistivity structures using VES Schlumberger data over a geothermal area

    NASA Astrophysics Data System (ADS)

    Singh, Upendra K.; Tiwari, R. K.; Singh, S. B.

    2013-03-01

    This paper presents the effects of several parameters on the artificial neural networks (ANN) inversion of vertical electrical sounding (VES) data. Sensitivity of ANN parameters was examined on the performance of adaptive backpropagation (ABP) and Levenberg-Marquardt algorithms (LMA) to test the robustness to noisy synthetic as well as field geophysical data and resolving capability of these methods for predicting the subsurface resistivity layers. We trained, tested and validated ANN using the synthetic VES data as input to the networks and layer parameters of the models as network output. ANN learning parameters are varied and corresponding observations are recorded. The sensitivity analysis of synthetic data and real model demonstrate that ANN algorithms applied in VES data inversion should be considered well not only in terms of accuracy but also in terms of high computational efforts. Also the analysis suggests that ANN model with its various controlling parameters are largely data dependent and hence no unique architecture can be designed for VES data analysis. ANN based methods are also applied to the actual VES field data obtained from the tectonically vital geothermal areas of Jammu and Kashmir, India. Analysis suggests that both the ABP and LMA are suitable methods for 1-D VES modeling. But the LMA method provides greater degree of robustness than the ABP in case of 2-D VES modeling. Comparison of the inversion results with known lithology correlates well and also reveals the additional significant feature of reconsolidated breccia of about 7.0 m thickness beneath the overburden in some cases like at sounding point RDC-5. We may therefore conclude that ANN based methods are significantly faster and efficient for detection of complex layered resistivity structures with a relatively greater degree of precision and resolution.

  17. Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    PubMed Central

    Toubiana, David; Semel, Yaniv; Tohge, Takayuki; Beleggia, Romina; Cattivelli, Luigi; Rosental, Leah; Nikoloski, Zoran; Zamir, Dani; Fernie, Alisdair R.; Fait, Aaron

    2012-01-01

    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping. PMID:22479206

  18. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    PubMed Central

    2012-01-01

    Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks. PMID:22305460

  19. The interplay between cognitive risk and resilience factors in remitted depression: A network analysis.

    PubMed

    Hoorelbeke, Kristof; Marchetti, Igor; De Schryver, Maarten; Koster, Ernst H W

    2016-05-01

    Individuals in remission from depression are at increased risk for developing future depressive episodes. Several cognitive risk- and resilience factors have been suggested to account for this vulnerability. In the current study we explored how risk- and protective factors such as cognitive control, adaptive and maladaptive emotion regulation, residual symptomatology, and resilience relate to one another in a remitted depressed (RMD) sample. We examined the relationships between these constructs in a cross-sectional dataset of 69 RMD patients using network analyses in order to obtain a comprehensive, data-driven view on the interplay between these constructs. We subsequently present an association network, a concentration network, and a relative importance network. In all three networks resilience formed the central hub, connecting perceived cognitive control (i.e., working memory complaints), emotion regulation, and residual symptomatology. The contribution of the behavioral measure for cognitive control in the network was negligible. Moreover, the directed relative importance network indicates bidirectional influences between these constructs, with all indicators of centrality suggesting a key role of resilience in remission from depression. The presented findings are cross-sectional and networks are limited to a fixed set of key constructs in the literature pertaining cognitive vulnerability for depression. These findings indicate the importance of resilience to successfully cope with stressors following remission from depression. Further in-depth studies will be essential to identify the specific underlying resilience mechanisms that may be key to successful remission from depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ecological network analysis for economic systems: growth and development and implications for sustainable development.

    PubMed

    Huang, Jiali; Ulanowicz, Robert E

    2014-01-01

    The quantification of growth and development is an important issue in economics, because these phenomena are closely related to sustainability. We address growth and development from a network perspective in which economic systems are represented as flow networks and analyzed using ecological network analysis (ENA). The Beijing economic system is used as a case study and 11 input-output (I-O) tables for 1985-2010 are converted into currency networks. ENA is used to calculate system-level indices to quantify the growth and development of Beijing. The contributions of each direct flow toward growth and development in 2010 are calculated and their implications for sustainable development are discussed. The results show that during 1985-2010, growth was the main attribute of the Beijing economic system. Although the system grew exponentially, its development fluctuated within only a small range. The results suggest that system ascendency should be increased in order to favor more sustainable development. Ascendency can be augmented in two ways: (1) strengthen those pathways with positive contributions to increasing ascendency and (2) weaken those with negative effects.

  1. Ecological Network Analysis for Economic Systems: Growth and Development and Implications for Sustainable Development

    PubMed Central

    Huang, Jiali; Ulanowicz, Robert E.

    2014-01-01

    The quantification of growth and development is an important issue in economics, because these phenomena are closely related to sustainability. We address growth and development from a network perspective in which economic systems are represented as flow networks and analyzed using ecological network analysis (ENA). The Beijing economic system is used as a case study and 11 input–output (I-O) tables for 1985–2010 are converted into currency networks. ENA is used to calculate system-level indices to quantify the growth and development of Beijing. The contributions of each direct flow toward growth and development in 2010 are calculated and their implications for sustainable development are discussed. The results show that during 1985–2010, growth was the main attribute of the Beijing economic system. Although the system grew exponentially, its development fluctuated within only a small range. The results suggest that system ascendency should be increased in order to favor more sustainable development. Ascendency can be augmented in two ways: (1) strengthen those pathways with positive contributions to increasing ascendency and (2) weaken those with negative effects. PMID:24979465

  2. Creativity and the default network: A functional connectivity analysis of the creative brain at rest☆

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Wilkins, Robin W.; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J.; Hodges, Donald A.; Koschutnig, Karl; Neubauer, Aljoscha C.

    2014-01-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. PMID:25245940

  3. Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks*

    PubMed Central

    Bandeira, Nuno

    2016-01-01

    Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software. PMID:27609420

  4. Investigation of global and local network properties of music perception with culturally different styles of music.

    PubMed

    Li, Yan; Rui, Xue; Li, Shuyu; Pu, Fang

    2014-11-01

    Graph theoretical analysis has recently become a popular research tool in neuroscience, however, there have been very few studies on brain responses to music perception, especially when culturally different styles of music are involved. Electroencephalograms were recorded from ten subjects listening to Chinese traditional music, light music and western classical music. For event-related potentials, phase coherence was calculated in the alpha band and then constructed into correlation matrices. Clustering coefficients and characteristic path lengths were evaluated for global properties, while clustering coefficients and efficiency were assessed for local network properties. Perception of light music and western classical music manifested small-world network properties, especially with a relatively low proportion of weights of correlation matrices. For local analysis, efficiency was more discernible than clustering coefficient. Nevertheless, there was no significant discrimination between Chinese traditional and western classical music perception. Perception of different styles of music introduces different network properties, both globally and locally. Research into both global and local network properties has been carried out in other areas; however, this is a preliminary investigation aimed at suggesting a possible new approach to brain network properties in music perception. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Transitions in Smokers’ Social Networks After Quit Attempts: A Latent Transition Analysis

    PubMed Central

    Smith, Rachel A.; Piper, Megan E.; Roberts, Linda J.; Baker, Timothy B.

    2016-01-01

    Introduction: Smokers’ social networks vary in size, composition, and amount of exposure to smoking. The extent to which smokers’ social networks change after a quit attempt is unknown, as is the relation between quitting success and later network changes. Methods: Unique types of social networks for 691 smokers enrolled in a smoking-cessation trial were identified based on network size, new network members, members’ smoking habits, within network smoking, smoking buddies, and romantic partners’ smoking. Latent transition analysis was used to identify the network classes and to predict transitions in class membership across 3 years from biochemically assessed smoking abstinence. Results: Five network classes were identified: Immersed (large network, extensive smoking exposure including smoking buddies), Low Smoking Exposure (large network, minimal smoking exposure), Smoking Partner (small network, smoking exposure primarily from partner), Isolated (small network, minimal smoking exposure), and Distant Smoking Exposure (small network, considerable nonpartner smoking exposure). Abstinence at years 1 and 2 was associated with shifts in participants’ social networks to less contact with smokers and larger networks in years 2 and 3. Conclusions: In the years following a smoking-cessation attempt, smokers’ social networks changed, and abstinence status predicted these changes. Networks defined by high levels of exposure to smokers were especially associated with continued smoking. Abstinence, however, predicted transitions to larger social networks comprising less smoking exposure. These results support treatments that aim to reduce exposure to smoking cues and smokers, including partners who smoke. Implications: Prior research has shown that social network features predict the likelihood of subsequent smoking cessation. The current research illustrates how successful quitting predicts social network change over 3 years following a quit attempt. Specifically, abstinence predicts transitions to networks that are larger and afford less exposure to smokers. This suggests that quitting smoking may expand a person’s social milieu rather than narrow it. This effect, plus reduced exposure to smokers, may help sustain abstinence. PMID:27613925

  6. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  7. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  8. Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads

    PubMed Central

    Lee, Tae-Ho; Miernicki, Michelle E.; Telzer, Eva H.

    2017-01-01

    Despite emerging evidence suggesting a biological basis to our social tiles, our understanding of the neural processes which link two minds is unknown. We implemented a novel approach, which included connectome similarity analysis using resting state intrinsic networks of parent-child dyads as well as daily diaries measured across 14 days. Intrinsic resting-state networks for both parents and their adolescent child were identified using independent component analysis (ICA). Results indicate that parents and children who had more similar RSN connectome also had more similar day-to-day emotional synchrony. Furthermore, dyadic RSN connectome similarity was associated with children’s emotional competence, suggesting that being neurally in-tune with their parents confers emotional benefits. We provide the first evidence that dyadic RSN similarity is associated with emotional synchrony in what is often our first and most essential social bond, the parent-child relationship. PMID:28254510

  9. Translocality, Network Structure, and Music Worlds: Underground Metal in the United Kingdom.

    PubMed

    Emms, Rachel; Crossley, Nick

    2018-02-01

    Translocal music worlds are often defined as networks of local music worlds. However, their networked character and more especially their network structure is generally assumed rather than concretely mapped and explored. Formal social network analysis (SNA) is beginning to attract interest in music sociology but it has not previously been used to explore a translocal music world. In this paper, drawing upon a survey of the participation of 474 enthusiasts in 148 live music events, spread across 6 localities, we use SNA to explore a significant "slice" of the network structure of the U.K.'s translocal underground heavy metal world. Translocality is generated in a number of ways, we suggest, but one way, the way we focus upon, involves audiences traveling between localities to attend gigs and festivals. Our analysis of this network uncovers a core-periphery structure which, we further find, maps onto locality. Not all live events enjoy equal standing in our music world and some localities are better placed to capture more prestigious events, encouraging inward travel. The identification of such structures, and the inequality they point to, is, we believe, one of several benefits of using SNA to analyze translocal music worlds. © 2018 Canadian Sociological Association/La Société canadienne de sociologie.

  10. Network-Based Comparative Analysis of Arabidopsis Immune Responses to Golovinomyces orontii and Botrytis cinerea Infections.

    PubMed

    Jiang, Zhenhong; Dong, Xiaobao; Zhang, Ziding

    2016-01-11

    A comprehensive exploration of common and specific plant responses to biotrophs and necrotrophs is necessary for a better understanding of plant immunity. Here, we compared the Arabidopsis defense responses evoked by the biotrophic fungus Golovinomyces orontii and the necrotrophic fungus Botrytis cinerea through integrative network analysis. Two time-course transcriptional datasets were integrated with an Arabidopsis protein-protein interaction (PPI) network to construct a G. orontii conditional PPI sub-network (gCPIN) and a B. cinerea conditional PPI sub-network (bCPIN). We found that hubs in gCPIN and bCPIN played important roles in disease resistance. Hubs in bCPIN evolved faster than hubs in gCPIN, indicating the different selection pressures imposed on plants by different pathogens. By analyzing the common network from gCPIN and bCPIN, we identified two network components in which the genes were heavily involved in defense and development, respectively. The co-expression relationships between interacting proteins connecting the two components were different under G. orontii and B. cinerea infection conditions. Closer inspection revealed that auxin-related genes were overrepresented in the interactions connecting these two components, suggesting a critical role of auxin signaling in regulating the different co-expression relationships. Our work may provide new insights into plant defense responses against pathogens with different lifestyles.

  11. Brain functional network abnormality extends beyond the sensorimotor network in brachial plexus injury patients.

    PubMed

    Feng, Jun-Tao; Liu, Han-Qiu; Hua, Xu-Yun; Gu, Yu-Dong; Xu, Jian-Guang; Xu, Wen-Dong

    2016-12-01

    Brachial plexus injury (BPI) is a type of severe peripheral nerve trauma that leads to central remodeling in the brain, as revealed by functional MRI analysis. However, previously reported remodeling is mostly restricted to sensorimotor areas of the brain. Whether this disturbance in the sensorimotor network leads to larger-scale functional remodeling remains unknown. We sought to explore the higher-level brain functional abnormality pattern of BPI patients from a large-scale network function connectivity dimension in 15 right-handed BPI patients. Resting-state functional MRI data were collected and analyzed using independent component analysis methods. Five components of interest were recognized and compared between patients and healthy subjects. Patients showed significantly altered brain local functional activities in the bilateral fronto-parietal network (FPN), sensorimotor network (SMN), and executive-control network (ECN) compared with healthy subjects. Moreover, functional connectivity between SMN and ECN were significantly less in patients compared with healthy subjects, and connectivity strength between ECN and SMN was negatively correlated with patients' residual function of the affected limb. Functional connectivity between SMN and right FPN were also significantly less than in controls, although connectivity between ECN and default mode network (DMN) was greater than in controls. These data suggested that brain functional disturbance in BPI patients extends beyond the sensorimotor network and cascades serial remodeling in the brain, which significantly correlates with residual hand function of the paralyzed limb. Furthermore, functional remodeling in these higher-level functional networks may lead to cognitive alterations in complex tasks.

  12. Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.

    PubMed

    Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios

    2018-04-24

    Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.

  13. The effect of excluding juveniles on apparent adult olive baboons (Papio anubis) social networks

    PubMed Central

    Fedurek, Piotr; Lehmann, Julia

    2017-01-01

    In recent years there has been much interest in investigating the social structure of group living animals using social network analysis. Many studies so far have focused on the social networks of adults, often excluding younger, immature group members. This potentially may lead to a biased view of group social structure as multiple recent studies have shown that younger group members can significantly contribute to group structure. As proof of the concept, we address this issue by investigating social network structure with and without juveniles in wild olive baboons (Papio anubis) at Gashaka Gumti National Park, Nigeria. Two social networks including all independently moving individuals (i.e., excluding dependent juveniles) were created based on aggressive and grooming behaviour. We used knockout simulations based on the random removal of individuals from the network in order to investigate to what extent the exclusion of juveniles affects the resulting network structure and our interpretation of age-sex specific social roles. We found that juvenile social patterns differed from those of adults and that the exclusion of juveniles from the network significantly altered the resulting overall network structure. Moreover, the removal of juveniles from the network affected individuals in specific age-sex classes differently: for example, including juveniles in the grooming network increased network centrality of adult females while decreasing centrality of adult males. These results suggest that excluding juveniles from the analysis may not only result in a distorted picture of the overall social structure but also may mask some of the social roles of individuals belonging to different age-sex classes. PMID:28323851

  14. The effect of excluding juveniles on apparent adult olive baboons (Papio anubis) social networks.

    PubMed

    Fedurek, Piotr; Lehmann, Julia

    2017-01-01

    In recent years there has been much interest in investigating the social structure of group living animals using social network analysis. Many studies so far have focused on the social networks of adults, often excluding younger, immature group members. This potentially may lead to a biased view of group social structure as multiple recent studies have shown that younger group members can significantly contribute to group structure. As proof of the concept, we address this issue by investigating social network structure with and without juveniles in wild olive baboons (Papio anubis) at Gashaka Gumti National Park, Nigeria. Two social networks including all independently moving individuals (i.e., excluding dependent juveniles) were created based on aggressive and grooming behaviour. We used knockout simulations based on the random removal of individuals from the network in order to investigate to what extent the exclusion of juveniles affects the resulting network structure and our interpretation of age-sex specific social roles. We found that juvenile social patterns differed from those of adults and that the exclusion of juveniles from the network significantly altered the resulting overall network structure. Moreover, the removal of juveniles from the network affected individuals in specific age-sex classes differently: for example, including juveniles in the grooming network increased network centrality of adult females while decreasing centrality of adult males. These results suggest that excluding juveniles from the analysis may not only result in a distorted picture of the overall social structure but also may mask some of the social roles of individuals belonging to different age-sex classes.

  15. Altered affective, executive and sensorimotor resting state networks in patients with pediatric mania

    PubMed Central

    Wu, Minjie; Lu, Lisa H.; Passarotti, Alessandra M.; Wegbreit, Ezra; Fitzgerald, Jacklynn; Pavuluri, Mani N.

    2013-01-01

    Background The aim of the present study was to map the pathophysiology of resting state functional connectivity accompanying structural and functional abnormalities in children with bipolar disorder. Methods Children with bipolar disorder and demographically matched healthy controls underwent resting-state functional magnetic resonance imaging. A model-free independent component analysis was performed to identify intrinsically interconnected networks. Results We included 34 children with bipolar disorder and 40 controls in our analysis. Three distinct resting state networks corresponding to affective, executive and sensorimotor functions emerged as being significantly different between the pediatric bipolar disorder (PBD) and control groups. All 3 networks showed hyperconnectivity in the PBD relative to the control group. Specifically, the connectivity of the dorsal anterior cingulate cortex (ACC) differentiated the PBD from the control group in both the affective and the executive networks. Exploratory analysis suggests that greater connectivity of the right amygdala within the affective network is associated with better executive function in children with bipolar disorder, but not in controls. Limitations Unique clinical characteristics of the study sample allowed us to evaluate the pathophysiology of resting state connectivity at an early state of PBD, which led to the lack of generalizability in terms of comorbid disorders existing in a typical PBD population. Conclusion Abnormally engaged resting state affective, executive and sensorimotor networks observed in children with bipolar disorder may reflect a biological context in which abnormal task-based brain activity can occur. Dual engagement of the dorsal ACC in affective and executive networks supports the neuroanatomical interface of these networks, and the amygdala’s engagement in moderating executive function illustrates the intricate interplay of these neural operations at rest. PMID:23735583

  16. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    PubMed

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  17. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    PubMed

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  18. The Neonatal Connectome During Preterm Brain Development

    PubMed Central

    van den Heuvel, Martijn P.; Kersbergen, Karina J.; de Reus, Marcel A.; Keunen, Kristin; Kahn, René S.; Groenendaal, Floris; de Vries, Linda S.; Benders, Manon J.N.L.

    2015-01-01

    The human connectome is the result of an elaborate developmental trajectory. Acquiring diffusion-weighted imaging and resting-state fMRI, we studied connectome formation during the preterm phase of macroscopic connectome genesis. In total, 27 neonates were scanned at week 30 and/or week 40 gestational age (GA). Examining the architecture of the neonatal anatomical brain network revealed a clear presence of a small-world modular organization before term birth. Analysis of neonatal functional connectivity (FC) showed the early formation of resting-state networks, suggesting that functional networks are present in the preterm brain, albeit being in an immature state. Moreover, structural and FC patterns of the neonatal brain network showed strong overlap with connectome architecture of the adult brain (85 and 81%, respectively). Analysis of brain development between week 30 and week 40 GA revealed clear developmental effects in neonatal connectome architecture, including a significant increase in white matter microstructure (P < 0.01), small-world topology (P < 0.01) and interhemispheric FC (P < 0.01). Computational analysis further showed that developmental changes involved an increase in integration capacity of the connectivity network as a whole. Taken together, we conclude that hallmark organizational structures of the human connectome are present before term birth and subject to early development. PMID:24833018

  19. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore.

    PubMed

    Castano-Duque, Lina; Helms, Anjel; Ali, Jared Gregory; Luthe, Dawn S

    2018-06-21

    In this study we examined global changes in protein expression in both roots and leaves of maize plants attacked by the root herbivore, Western corn rootworm (WCR, Diabrotica virgifera virgifera). The changes in protein expression Are indicative of metabolic changes during WCR feeding that enable the plant to defend itself. This is one of the first studies to look above- and below-ground at global protein expression patterns of maize plants grown in soil and infested with a root herbivore. We used advanced proteomic and network analyses to identify metabolic pathways that contribute to global defenses deployed by the insect resistant maize genotype, Mp708, infested with WCR. Using proteomic analysis, 4878 proteins in roots and leaves were detected and of these 863 showed significant changes of abundance during WCR infestation. Protein abundance patterns were analyzed using hierarchical clustering, protein correlation and protein-protein interaction networks. All three data analysis pipelines showed that proteins such as jasmonic acid biosynthetic enzymes, serine proteases, protease inhibitors, proteins involved in biosynthesis and signaling of ethylene, and enzymes producing reactive oxygen species and isopentenyl pyrophosphate, a precursor for volatile production, were upregulated in roots during WCR infestation. In leaves, highly abundant proteins were involved in signal perception suggesting activation of systemic signaling. We conclude that these protein networks contribute to the overall herbivore defense mechanisms in Mp708. Because the plants were grown in potting mix and not sterilized sand, we found that both microbial and insect defense-related proteins were present in the roots. The presence of the high constitutive levels of reduced ascorbate in roots and benzothiazole in the root volatile profiles suggest a tight tri-trophic interaction among the plant, soil microbiomes and WCR-infested roots suggesting that defenses against insects coexist with defenses against bacteria and fungi due to the interaction between roots and soil microbiota. In this study, which is one of the most complete descriptions of plant responses to root-feeding herbivore, we established an analysis pipeline for proteomics data that includes network biology that can be used with different types of "omics" data from a variety of organisms.

  20. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

  1. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.

    PubMed

    Ramot, Michal; Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-09-16

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.

  2. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors.

    PubMed

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2013-06-01

    A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.

  3. Modulation of the brain's functional network architecture in the transition from wake to sleep

    PubMed Central

    Larson-Prior, Linda J.; Power, Jonathan D.; Vincent, Justin L.; Nolan, Tracy S.; Coalson, Rebecca S.; Zempel, John; Snyder, Abraham Z.; Schlaggar, Bradley L.; Raichle, Marcus E.; Petersen, Steven E.

    2013-01-01

    The transition from quiet wakeful rest to sleep represents a period over which attention to the external environment fades. Neuroimaging methodologies have provided much information on the shift in neural activity patterns in sleep, but the dynamic restructuring of human brain networks in the transitional period from wake to sleep remains poorly understood. Analysis of electrophysiological measures and functional network connectivity of these early transitional states shows subtle shifts in network architecture that are consistent with reduced external attentiveness and increased internal and self-referential processing. Further, descent to sleep is accompanied by the loss of connectivity in anterior and posterior portions of the default-mode network and more locally organized global network architecture. These data clarify the complex and dynamic nature of the transitional period between wake and sleep and suggest the need for more studies investigating the dynamics of these processes. PMID:21854969

  4. Effect of tumor resection on the characteristics of functional brain networks.

    PubMed

    Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P

    2010-08-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

  5. Recurrent Network models of sequence generation and memory

    PubMed Central

    Rajan, Kanaka; Harvey, Christopher D; Tank, David W

    2016-01-01

    SUMMARY Sequential activation of neurons is a common feature of network activity during a variety of behaviors, including working memory and decision making. Previous network models for sequences and memory emphasized specialized architectures in which a principled mechanism is pre-wired into their connectivity. Here, we demonstrate that starting from random connectivity and modifying a small fraction of connections, a largely disordered recurrent network can produce sequences and implement working memory efficiently. We use this process, called Partial In-Network training (PINning), to model and match cellular-resolution imaging data from the posterior parietal cortex during a virtual memory-guided two-alternative forced choice task [Harvey, Coen and Tank, 2012]. Analysis of the connectivity reveals that sequences propagate by the cooperation between recurrent synaptic interactions and external inputs, rather than through feedforward or asymmetric connections. Together our results suggest that neural sequences may emerge through learning from largely unstructured network architectures. PMID:26971945

  6. Altered cortical anatomical networks in temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  7. Title: Chimeras in small, globally coupled networks: Experiments and stability analysis

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    Since the initial observation of chimera states, there has been much discussion of the conditions under which these states emerge. The emphasis thus far has mainly been to analyze large networks of coupled oscillators; however, recent studies have begun to focus on the opposite limit: what is the smallest system of coupled oscillators in which chimeras can exist? We experimentally observe chimeras and other partially synchronous patterns in a network of four globally-coupled chaotic opto-electronic oscillators. By examining the equations of motion, we demonstrate that symmetries in the network topology allow a variety of synchronous states to exist, including cluster synchronous states and a chimera state. Using the group theoretical approach recently developed for analyzing cluster synchronization, we show how to derive the variational equations for these synchronous patterns and calculate their linear stability. The stability analysis gives good agreement with our experimental results. Both experiments and simulations suggest that these chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  8. Do Narcissism and Emotional Intelligence Win Us Friends? Modeling Dynamics of Peer Popularity Using Inferential Network Analysis.

    PubMed

    Czarna, Anna Z; Leifeld, Philip; Śmieja, Magdalena; Dufner, Michael; Salovey, Peter

    2016-09-27

    This research investigated effects of narcissism and emotional intelligence (EI) on popularity in social networks. In a longitudinal field study, we examined the dynamics of popularity in 15 peer groups in two waves (N = 273). We measured narcissism, ability EI, and explicit and implicit self-esteem. In addition, we measured popularity at zero acquaintance and 3 months later. We analyzed the data using inferential network analysis (temporal exponential random graph modeling, TERGM) accounting for self-organizing network forces. People high in narcissism were popular, but increased less in popularity over time than people lower in narcissism. In contrast, emotionally intelligent people increased more in popularity over time than less emotionally intelligent people. The effects held when we controlled for explicit and implicit self-esteem. These results suggest that narcissism is rather disadvantageous and that EI is rather advantageous for long-term popularity. © 2016 by the Society for Personality and Social Psychology, Inc.

  9. A review of structural and functional brain networks: small world and atlas.

    PubMed

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  10. Mean-field equations for neuronal networks with arbitrary degree distributions.

    PubMed

    Nykamp, Duane Q; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  11. Mean-field equations for neuronal networks with arbitrary degree distributions

    NASA Astrophysics Data System (ADS)

    Nykamp, Duane Q.; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  12. Grey-matter network disintegration as predictor of cognitive and motor function with aging.

    PubMed

    Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold

    2018-06-01

    Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.

  13. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. Copyright © 2015 the American Physiological Society.

  14. Analysis of neuronal cells of dissociated primary culture on high-density CMOS electrode array

    PubMed Central

    Matsuda, Eiko; Mita, Takeshi; Hubert, Julien; Bakkum, Douglas; Frey, Urs; Hierlemann, Andreas; Takahashi, Hirokazu; Ikegami, Takashi

    2017-01-01

    Spontaneous development of neuronal cells was recorded around 4–34 days in vitro (DIV) with high-density CMOS array, which enables detailed study of the spatio-temporal activity of neuronal culture. We used the CMOS array to characterize the evolution of the inter-spike interval (ISI) distribution from putative single neurons, and estimate the network structure based on transfer entropy analysis, where each node corresponds to a single neuron. We observed that the ISI distributions gradually obeyed the power law with maturation of the network. The amount of information transferred between neurons increased at the early stage of development, but decreased as the network matured. These results suggest that both ISI and transfer entropy were very useful for characterizing the dynamic development of cultured neural cells over a few weeks. PMID:24109870

  15. Analysis of integrated healthcare networks' performance: a contingency-strategic management perspective.

    PubMed

    Lin, B Y; Wan, T T

    1999-12-01

    Few empirical analyses have been done in the organizational researches of integrated healthcare networks (IHNs) or integrated healthcare delivery systems. Using a contingency derived contact-process-performance model, this study attempts to explore the relationships among an IHN's strategic direction, structural design, and performance. A cross-sectional analysis of 100 IHNs suggests that certain contextual factors such as market competition and network age and tax status have statistically significant effects on the implementation of an IHN's service differentiation strategy, which addresses coordination and control in the market. An IHN's service differentiation strategy is positively related to its integrated structural design, which is characterized as integration of administration, patient care, and information system across different settings. However, no evidence supports that the development of integrated structural design may benefit an IHN's performance in terms of clinical efficiency and financial viability.

  16. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia.

    PubMed

    Chen, Zheng; Soutto, Mohammed; Rahman, Bushra; Fazili, Muhammad W; Peng, DunFa; Blanca Piazuelo, Maria; Chen, Heidi; Kay Washington, M; Shyr, Yu; El-Rifai, Wael

    2017-07-01

    Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis. © 2017 Wiley Periodicals, Inc.

  17. Risk analysis of new oral anticoagulants for gastrointestinal bleeding and intracranial hemorrhage in atrial fibrillation patients: a systematic review and network meta-analysis.

    PubMed

    Xu, Wei-Wei; Hu, Shen-Jiang; Wu, Tao

    2017-07-01

    Antithrombotic therapy using new oral anticoagulants (NOACs) in patients with atrial fibrillation (AF) has been generally shown to have a favorable risk-benefit profile. Since there has been dispute about the risks of gastrointestinal bleeding (GIB) and intracranial hemorrhage (ICH), we sought to conduct a systematic review and network meta-analysis using Bayesian inference to analyze the risks of GIB and ICH in AF patients taking NOACs. We analyzed data from 20 randomized controlled trials of 91 671 AF patients receiving anticoagulants, antiplatelet drugs, or placebo. Bayesian network meta-analysis of two different evidence networks was performed using a binomial likelihood model, based on a network in which different agents (and doses) were treated as separate nodes. Odds ratios (ORs) and 95% confidence intervals (CIs) were modeled using Markov chain Monte Carlo methods. Indirect comparisons with the Bayesian model confirmed that aspirin+clopidogrel significantly increased the risk of GIB in AF patients compared to the placebo (OR 0.33, 95% CI 0.01-0.92). Warfarin was identified as greatly increasing the risk of ICH compared to edoxaban 30 mg (OR 3.42, 95% CI 1.22-7.24) and dabigatran 110 mg (OR 3.56, 95% CI 1.10-8.45). We further ranked the NOACs for the lowest risk of GIB (apixaban 5 mg) and ICH (apixaban 5 mg, dabigatran 110 mg, and edoxaban 30 mg). Bayesian network meta-analysis of treatment of non-valvular AF patients with anticoagulants suggested that NOACs do not increase risks of GIB and/or ICH, compared to each other.

  18. Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community?

    PubMed

    Saetnan, Eli Rudinow; Kipling, Richard Philip

    In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.

  19. Revealing the Effects of the Herbal Pair of Euphorbia kansui and Glycyrrhiza on Hepatocellular Carcinoma Ascites with Integrating Network Target Analysis and Experimental Validation

    PubMed Central

    Zhang, Yanqiong; Lin, Ya; Zhao, Haiyu; Guo, Qiuyan; Yan, Chen; Lin, Na

    2016-01-01

    Although the herbal pair of Euphorbia kansui (GS) and Glycyrrhiza (GC) is one of the so-called "eighteen antagonistic medicaments" in Chinese medicinal literature, it is prescribed in a classic Traditional Chinese Medicine (TCM) formula Gansui-Banxia-Tang for cancerous ascites, suggesting that GS and GC may exhibit synergistic or antagonistic effects in different combination designs. Here, we modeled the effects of GS/GC combination with a target interaction network and clarified the associations between the network topologies involving the drug targets and the drug combination effects. Moreover, the "edge-betweenness" values, which is defined as the frequency with which edges are placed on the shortest paths between all pairs of modules in network, were calculated, and the ADRB1-PIK3CG interaction exhibited the greatest edge-betweenness value, suggesting its crucial role in connecting the other edges in the network. Because ADRB1 and PIK3CG were putative targets of GS and GC, respectively, and both had functional interactions with AVPR2 approved as known therapeutic target for ascites, we proposed that the ADRB1-PIK3CG-AVPR2 signal axis might be involved in the effects of the GS-GC combination on ascites. This proposal was further experimentally validated in a H22 hepatocellular carcinoma (HCC) ascites model. Collectively, this systems-level investigation integrated drug target prediction and network analysis to reveal the combination principles of the herbal pair of GS and GC. Experimental validation in an in vivo system provided convincing evidence that different combination designs of GS and GC might result in synergistic or antagonistic effects on HCC ascites that might be partially related to their regulation of the ADRB1-PIK3CG-AVPR2 signal axis. PMID:27143956

  20. A common functional neural network for overt production of speech and gesture.

    PubMed

    Marstaller, L; Burianová, H

    2015-01-22

    The perception of co-speech gestures, i.e., hand movements that co-occur with speech, has been investigated by several studies. The results show that the perception of co-speech gestures engages a core set of frontal, temporal, and parietal areas. However, no study has yet investigated the neural processes underlying the production of co-speech gestures. Specifically, it remains an open question whether Broca's area is central to the coordination of speech and gestures as has been suggested previously. The objective of this study was to use functional magnetic resonance imaging to (i) investigate the regional activations underlying overt production of speech, gestures, and co-speech gestures, and (ii) examine functional connectivity with Broca's area. We hypothesized that co-speech gesture production would activate frontal, temporal, and parietal regions that are similar to areas previously found during co-speech gesture perception and that both speech and gesture as well as co-speech gesture production would engage a neural network connected to Broca's area. Whole-brain analysis confirmed our hypothesis and showed that co-speech gesturing did engage brain areas that form part of networks known to subserve language and gesture. Functional connectivity analysis further revealed a functional network connected to Broca's area that is common to speech, gesture, and co-speech gesture production. This network consists of brain areas that play essential roles in motor control, suggesting that the coordination of speech and gesture is mediated by a shared motor control network. Our findings thus lend support to the idea that speech can influence co-speech gesture production on a motoric level. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. What Can Graph Theory Tell Us About Word Learning and Lexical Retrieval?

    PubMed Central

    Vitevitch, Michael S.

    2008-01-01

    Purpose Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Method Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. Results The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. Conclusions The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing. PMID:18367686

  2. Analysis of NASA communications (Nascom) II network protocols and performance

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.

    1991-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate is to undertake a major initiative to develop the Nascom II (NII) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System, and other projects. NII is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The authors describe various baseline protocol architectures based on current and evolving technologies. They address the internetworking issues suggested for reliable transfer of data over heterogeneous segments. They also describe the NII architecture, topology, system components, and services. A comparative evaluation of the current and evolving technologies was made, and suggestions for further study are described. It is shown that the direction of the NII configuration and the subsystem component design will clearly depend on the advances made in the area of broadband integrated services.

  3. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.

    PubMed

    Marvig, Rasmus Lykke; Sommer, Lea Mette; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors. Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies.

  4. Default mode of brain function in monkeys.

    PubMed

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A; Buckner, Randy L; Vanduffel, Wim

    2011-09-07

    Human neuroimaging has revealed a specific network of brain regions-the default-mode network (DMN)-that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.

  5. Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis.

    PubMed

    Zhang, Zhi-guo; Niu, Xu-yan; Lu, Ai-ping; Xiao, Gary Guishan

    2015-02-01

    To re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin. Microarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis. A total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway. Genes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.

  6. Default Mode of Brain Function in Monkeys

    PubMed Central

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim

    2013-01-01

    Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574

  7. Understanding interactions in virtual HIV communities: a social network analysis approach.

    PubMed

    Shi, Jingyuan; Wang, Xiaohui; Peng, Tai-Quan; Chen, Liang

    2017-02-01

    This study investigated the driving mechanism of building interaction ties among the people living with HIV/AIDS in one of the largest virtual HIV communities in China using social network analysis. Specifically, we explained the probability of forming interaction ties with homophily and popularity characteristics. The exponential random graph modeling results showed that members in this community tend to form homophilous ties in terms of shared location and interests. Moreover, we found a tendency away from popularity effect. This suggests that in this community, resources and information were not disproportionally received by a few of members, which could be beneficial to the overall community.

  8. Isolating Attention Systems: A Cognitive-Anatomical Analysis. Cognitive Science Program, Technical Report No. 86-3.

    ERIC Educational Resources Information Center

    Posner, Michael I.; And Others

    Recently, knowledge of the mechanisms of visual-spatial attention has improved due to studies employing single cell recording with alert monkeys and studies using performance analysis of neurological patients. These studies suggest that a complex neural network including parts of the posterior parietal lobe and midbrain are involved in covert…

  9. A Bayesian network analysis of posttraumatic stress disorder symptoms in adults reporting childhood sexual abuse

    PubMed Central

    McNally, Richard J.; Heeren, Alexandre; Robinaugh, Donald J.

    2017-01-01

    ABSTRACT Background: The network approach to mental disorders offers a novel framework for conceptualizing posttraumatic stress disorder (PTSD) as a causal system of interacting symptoms. Objective: In this study, we extended this work by estimating the structure of relations among PTSD symptoms in adults reporting personal histories of childhood sexual abuse (CSA; N = 179).   Method: We employed two complementary methods. First, using the graphical LASSO, we computed a sparse, regularized partial correlation network revealing associations (edges) between pairs of PTSD symptoms (nodes). Next, using a Bayesian approach, we computed a directed acyclic graph (DAG) to estimate a directed, potentially causal model of the relations among symptoms. Results: For the first network, we found that physiological reactivity to reminders of trauma, dreams about the trauma, and lost of interest in previously enjoyed activities were highly central nodes. However, stability analyses suggest that these findings were unstable across subsets of our sample. The DAG suggests that becoming physiologically reactive and upset in response to reminders of the trauma may be key drivers of other symptoms in adult survivors of CSA. Conclusions: Our study illustrates the strengths and limitations of these network analytic approaches to PTSD. PMID:29038690

  10. Knowledge sharing and organizational learning in the context of hospital infection prevention.

    PubMed

    Rangachari, Pavani

    2010-01-01

    Recently, hospitals that have been successful in preventing infections have labeled their improvement approaches as either the Toyota Production System (TPS) approach or the Positive Deviance (PD) approach. PD has been distinguished from TPS as being a bottom-up approach to improvement, as against top-down. Facilities that have employed both approaches have suggested that PD may be more effective than TPS for infection prevention. This article integrates organizational learning, institutional, and knowledge network theories to develop a theoretical framework for understanding the structure and evolution of effective knowledge-sharing networks in health care organizations, that is, networks most conducive to learning and improvement. Contrary to arguments put forth by hospital success stories, the framework suggests that networks rich in brokerage and hierarchy (ie, top-down, "TPS-like" structures) may be more effective for learning and improvement in health care organizations, compared with a networks rich in density (ie, bottom-up, "PD-like" structures). The theoretical framework and ensuing analysis help identify several gaps in the literature related to organization learning and improvement in the infection prevention context. This, in turn, helps put forth recommendations for health management research and practice.

  11. EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Hillebrand, Arjan; Cuccu, Lorenza; Porcu, Silvia; di Stefano, Francesca; Puligheddu, Monica; Floris, Gianluca; Borghero, Giuseppe; Marrosu, Francesco

    2016-12-01

    Amyotrophic Lateral Sclerosis (ALS) is one of the most severe neurodegenerative diseases, which is known to affect upper and lower motor neurons. In contrast to the classical tenet that ALS represents the outcome of extensive and progressive impairment of a fixed set of motor connections, recent neuroimaging findings suggest that the disease spreads along vast non-motor connections. Here, we hypothesised that functional network topology is perturbed in ALS, and that this reorganization is associated with disability. We tested this hypothesis in 21 patients affected by ALS at several stages of impairment using resting-state electroencephalography (EEG) and compared the results to 16 age-matched healthy controls. We estimated functional connectivity using the Phase Lag Index (PLI), and characterized the network topology using the minimum spanning tree (MST). We found a significant difference between groups in terms of MST dissimilarity and MST leaf fraction in the beta band. Moreover, some MST parameters (leaf, hierarchy and kappa) significantly correlated with disability. These findings suggest that the topology of resting-state functional networks in ALS is affected by the disease in relation to disability. EEG network analysis may be of help in monitoring and evaluating the clinical status of ALS patients.

  12. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.

    PubMed

    Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide

    2017-01-01

    Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.

  13. Comparative Network-Based Recovery Analysis and Proteomic Profiling of Neurological Changes in Valproic Acid-Treated Mice

    PubMed Central

    2013-01-01

    Despite its prominence for characterization of complex mixtures, LC–MS/MS frequently fails to identify many proteins. Network-based analysis methods, based on protein–protein interaction networks (PPINs), biological pathways, and protein complexes, are useful for recovering non-detected proteins, thereby enhancing analytical resolution. However, network-based analysis methods do come in varied flavors for which the respective efficacies are largely unknown. We compare the recovery performance and functional insights from three distinct instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic acid (VPA)-treated mice. We find that the most comprehensive functional insights, as well as best non-detected protein recovery performance, are derived from FCS utilizing real biological complexes. This outstrips other network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype. Although our results suggest different network analysis methods can produce different results, on the whole, the findings are mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of complex phenotypes. PMID:23557376

  14. Susceptible-infected-recovered epidemics in random networks with population awareness

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Chen, Shufang

    2017-10-01

    The influence of epidemic information-based awareness on the spread of infectious diseases on networks cannot be ignored. Within the effective degree modeling framework, we discuss the susceptible-infected-recovered model in complex networks with general awareness and general degree distribution. By performing the linear stability analysis, the conditions of epidemic outbreak can be deduced and the results of the previous research can be further expanded. Results show that the local awareness can suppress significantly the epidemic spreading on complex networks via raising the epidemic threshold and such effects are closely related to the formulation of awareness functions. In addition, our results suggest that the recovered information-based awareness has no effect on the critical condition of epidemic outbreak.

  15. Earth science: Making a mountain out of a plateau

    NASA Astrophysics Data System (ADS)

    Sinclair, Hugh

    2017-02-01

    A theory proposed in 2015 suggested that relatively flat surfaces in mountain ranges were formed by the reorganization of river networks. A fresh analysis rebuts this idea, reigniting discussion of a long-standing problem in Earth science.

  16. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  17. A Network Biology Approach to Decipher Stress Response in Bacteria Using Escherichia coli As a Model.

    PubMed

    Nagar, Shashwat Deepali; Aggarwal, Bhavye; Joon, Shikha; Bhatnagar, Rakesh; Bhatnagar, Sonika

    2016-05-01

    The development of drug-resistant pathogenic bacteria poses challenges to global health for their treatment and control. In this context, stress response enables bacterial populations to survive extreme perturbations in the environment but remains poorly understood. Specific modules are activated for unique stressors with few recognized global regulators. The phenomenon of cross-stress protection strongly suggests the presence of central proteins that control the diverse stress responses. In this work, Escherichia coli was used to model the bacterial stress response. A Protein-Protein Interaction Network was generated by integrating differentially expressed genes in eight stress conditions of pH, temperature, and antibiotics with relevant gene ontology terms. Topological analysis identified 24 central proteins. The well-documented role of 16 central proteins in stress indicates central control of the response, while the remaining eight proteins may have a novel role in stress response. Cluster analysis of the generated network implicated RNA binding, flagellar assembly, ABC transporters, and DNA repair as important processes during response to stress. Pathway analysis showed crosstalk of Two Component Systems with metabolic processes, oxidative phosphorylation, and ABC transporters. The results were further validated by analysis of an independent cross-stress protection dataset. This study also reports on the ways in which bacterial stress response can progress to biofilm formation. In conclusion, we suggest that drug targets or pathways disrupting bacterial stress responses can potentially be exploited to combat antibiotic tolerance and multidrug resistance in the future.

  18. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses.

    PubMed

    Feng, Jie; Li, Bing; Jiang, Xiaotao; Yang, Ying; Wells, George F; Zhang, Tong; Li, Xiaoyan

    2018-01-01

    The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). A metagenomic approach and network analysis were used to establish a comprehensive antibiotic resistome catalog and to obtain co-occurrence patterns between ARGs and microbial taxa in fecal samples from 180 healthy individuals from 11 different countries. In total, 507 ARG subtypes belonging to 20 ARG types were detected with abundances ranging from 7.12 × 10 -7 to 2.72 × 10 -1 copy of ARG/copy of 16S-rRNA gene. Tetracycline, multidrug, macrolide-lincosamide-streptogramin, bacitracin, vancomycin, beta-lactam and aminoglycoside resistance genes were the top seven most abundant ARG types. The multidrug ABC transporter, aadE, bacA, acrB, tetM, tetW, vanR and vanS were shared by all 180 individuals, suggesting their common occurrence in the human gut. Compared to populations from the other 10 countries, the Chinese population harboured the most abundant ARGs. Moreover, LEfSe analysis suggested that the MLS resistance type and its subtype 'ermF' were representative ARGs of the Chinese population. Antibiotic inactivation, antibiotic target alteration and antibiotic efflux were the dominant resistance mechanism categories in all populations. Procrustes analysis revealed that microbial phylogeny structured the antibiotic resistome. Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Inequalities in Global Trade: A Cross-Country Comparison of Trade Network Position, Economic Wealth, Pollution and Mortality

    PubMed Central

    Prell, Christina; Sun, Laixiang; Feng, Kuishuang; Myroniuk, Tyler W.

    2015-01-01

    In this paper we investigate how structural patterns of international trade give rise to emissions inequalities across countries, and how such inequality in turn impact countries’ mortality rates. We employ Multi-regional Input-Output analysis to distinguish between sulfur-dioxide (SO2) emissions produced within a country’s boarders (production-based emissions) and emissions triggered by consumption in other countries (consumption-based emissions). We use social network analysis to capture countries’ level of integration within the global trade network. We then apply the Prais-Winsten panel estimation technique to a panel data set across 172 countries over 20 years (1990–2010) to estimate the relationships between countries’ level of integration and SO2 emissions, and the impact of trade integration and SO2 emission on mortality rates. Our findings suggest a positive, (log-) linear relationship between a country’s level of integration and both kinds of emissions. In addition, although more integrated countries are mainly responsible for both forms of emissions, our findings indicate that they also tend to experience lower mortality rates. Our approach offers a unique combination of social network analysis with multiregional input-output analysis, which better operationalizes intuitive concepts about global trade and trade structure. PMID:26642202

  20. Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties

    PubMed Central

    Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.

    2014-01-01

    Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307

  1. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  2. Investigating changes in brain network properties in HIV-associated neurocognitive disease (HAND) using mutual connectivity analysis (MCA)

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    About 50% of subjects infected with HIV present deficits in cognitive domains, which are known collectively as HIV associated neurocognitive disorder (HAND). The underlying synaptodendritic damage can be captured using resting state functional MRI, as has been demonstrated by a few earlier studies. Such damage may induce topological changes of brain connectivity networks. We test this hypothesis by capturing the functional interdependence of 90 brain network nodes using a Mutual Connectivity Analysis (MCA) framework with non-linear time series modeling based on Generalized Radial Basis function (GRBF) neural networks. The network nodes are selected based on the regions defined in the Automated Anatomic Labeling (AAL) atlas. Each node is represented by the average time series of the voxels of that region. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We tested for differences in these properties in network graphs obtained for 10 subjects (6 male and 4 female, 5 HIV+ and 5 HIV-). Global network properties captured some differences between these subject cohorts, though significant differences were seen only with the clustering coefficient measure. Local network properties, such as local efficiency and the degree of connections, captured significant differences in regions of the frontal lobe, precentral and cingulate cortex amongst a few others. These results suggest that our method can be used to effectively capture differences occurring in brain network connectivity properties revealed by resting-state functional MRI in neurological disease states, such as HAND.

  3. Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases

    PubMed Central

    2016-01-01

    Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers–Logistic Regression, Naïve Bayes and Random Forest–with a range of social network measures and the necessary databases to model the verdicts in two real–world cases: the U.S. Watergate Conspiracy of the 1970’s and the now–defunct Canada–based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures. PMID:26824351

  4. From partnerships to networks: new approaches for measuring U.S. National Heritage Area effectiveness.

    PubMed

    Laven, Daniel N; Krymkowski, Daniel H; Ventriss, Curtis L; Manning, Robert E; Mitchell, Nora J

    2010-08-01

    National Heritage Areas (NHAs) are an alternative and increasingly popular form of protected area management in the United States. NHAs seek to integrate environmental objectives with community and economic objectives at regional or landscape scales. NHA designations have increased rapidly in the last 20 years, generating a substantial need for evaluative information about (a) how NHAs work; (b) outcomes associated with the NHA process; and (c) the costs and benefits of investing public moneys into the NHA approach. Qualitative evaluation studies recently conducted at three NHAs have identified the importance of understanding network structure and function in the context of evaluating NHA management effectiveness. This article extends these case studies by examining quantitative network data from each of the sites. The authors analyze these data using both a descriptive approach and a statistically more robust approach known as exponential random graph modeling. Study findings indicate the presence of transitive structures and the absence of three-cycle structures in each of these networks. This suggests that these networks are relatively ''open,'' which may be desirable, given the uncertainty of the environments in which they operate. These findings also suggest, at least at the sites reported here, that the NHA approach may be an effective way to activate and develop networks of intersectoral organizational partners. Finally, this study demonstrates the utility of using quantitative network analysis to better understand the effectiveness of protected area management models that rely on partnership networks to achieve their intended outcomes.

  5. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  7. Meta-connectomics: human brain network and connectivity meta-analyses.

    PubMed

    Crossley, N A; Fox, P T; Bullmore, E T

    2016-04-01

    Abnormal brain connectivity or network dysfunction has been suggested as a paradigm to understand several psychiatric disorders. We here review the use of novel meta-analytic approaches in neuroscience that go beyond a summary description of existing results by applying network analysis methods to previously published studies and/or publicly accessible databases. We define this strategy of combining connectivity with other brain characteristics as 'meta-connectomics'. For example, we show how network analysis of task-based neuroimaging studies has been used to infer functional co-activation from primary data on regional activations. This approach has been able to relate cognition to functional network topology, demonstrating that the brain is composed of cognitively specialized functional subnetworks or modules, linked by a rich club of cognitively generalized regions that mediate many inter-modular connections. Another major application of meta-connectomics has been efforts to link meta-analytic maps of disorder-related abnormalities or MRI 'lesions' to the complex topology of the normative connectome. This work has highlighted the general importance of network hubs as hotspots for concentration of cortical grey-matter deficits in schizophrenia, Alzheimer's disease and other disorders. Finally, we show how by incorporating cellular and transcriptional data on individual nodes with network models of the connectome, studies have begun to elucidate the microscopic mechanisms underpinning the macroscopic organization of whole-brain networks. We argue that meta-connectomics is an exciting field, providing robust and integrative insights into brain organization that will likely play an important future role in consolidating network models of psychiatric disorders.

  8. Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production.

    PubMed

    Beaty, Roger E; Christensen, Alexander P; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2017-03-01

    Functional neuroimaging research has recently revealed brain network interactions during performance on creative thinking tasks-particularly among regions of the default and executive control networks-but the cognitive mechanisms related to these interactions remain poorly understood. Here we test the hypothesis that the executive control network can interact with the default network to inhibit salient conceptual knowledge (i.e., pre-potent responses) elicited from memory during creative idea production. Participants studied common noun-verb pairs and were given a cued-recall test with corrective feedback to strengthen the paired association in memory. They then completed a verb generation task that presented either a previously studied noun (high-constraint) or an unstudied noun (low-constraint), and were asked to "think creatively" while searching for a novel verb to relate to the presented noun. Latent Semantic Analysis of verbal responses showed decreased semantic distance values in the high-constraint (i.e., interference) condition, which corresponded to increased neural activity within regions of the default (posterior cingulate cortex and bilateral angular gyri), salience (right anterior insula), and executive control (left dorsolateral prefrontal cortex) networks. Independent component analysis of intrinsic functional connectivity networks extended this finding by revealing differential interactions among these large-scale networks across the task conditions. The results suggest that interactions between the default and executive control networks underlie response inhibition during constrained idea production, providing insight into specific neurocognitive mechanisms supporting creative cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  10. Contrasting models of driver behaviour in emergencies using retrospective verbalisations and network analysis.

    PubMed

    Banks, Victoria A; Stanton, Neville A

    2015-01-01

    Automated assistance in driving emergencies aims to improve the safety of our roads by avoiding or mitigating the effects of accidents. However, the behavioural implications of such systems remain unknown. This paper introduces the driver decision-making in emergencies (DDMiEs) framework to investigate how the level and type of automation may affect driver decision-making and subsequent responses to critical braking events using network analysis to interrogate retrospective verbalisations. Four DDMiE models were constructed to represent different levels of automation within the driving task and its effects on driver decision-making. Findings suggest that whilst automation does not alter the decision-making pathway (e.g. the processes between hazard detection and response remain similar), it does appear to significantly weaken the links between information-processing nodes. This reflects an unintended yet emergent property within the task network that could mean that we may not be improving safety in the way we expect. This paper contrasts models of driver decision-making in emergencies at varying levels of automation using the Southampton University Driving Simulator. Network analysis of retrospective verbalisations indicates that increasing the level of automation in driving emergencies weakens the link between information-processing nodes essential for effective decision-making.

  11. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides.

    PubMed

    Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu

    2016-01-01

    Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.

  12. Recording axonal conduction to evaluate the integration of pluripotent cell-derived neurons into a neuronal network.

    PubMed

    Shimba, Kenta; Sakai, Koji; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-10-01

    Stem cell transplantation is a promising therapy to treat neurodegenerative disorders, and a number of in vitro models have been developed for studying interactions between grafted neurons and the host neuronal network to promote drug discovery. However, methods capable of evaluating the process by which stem cells integrate into the host neuronal network are lacking. In this study, we applied an axonal conduction-based analysis to a co-culture study of primary and differentiated neurons. Mouse cortical neurons and neuronal cells differentiated from P19 embryonal carcinoma cells, a model for early neural differentiation of pluripotent stem cells, were co-cultured in a microfabricated device. The somata of these cells were separated by the co-culture device, but their axons were able to elongate through microtunnels and then form synaptic contacts. Propagating action potentials were recorded from these axons by microelectrodes embedded at the bottom of the microtunnels and sorted into clusters representing individual axons. While the number of axons of cortical neurons increased until 14 days in vitro and then decreased, those of P19 neurons increased throughout the culture period. Network burst analysis showed that P19 neurons participated in approximately 80% of the bursting activity after 14 days in vitro. Interestingly, the axonal conduction delay of P19 neurons was significantly greater than that of cortical neurons, suggesting that there are some physiological differences in their axons. These results suggest that our method is feasible to evaluate the process by which stem cell-derived neurons integrate into a host neuronal network.

  13. Practice and Learning: Spatiotemporal Differences in Thalamo-Cortical-Cerebellar Networks Engagement across Learning Phases in Schizophrenia.

    PubMed

    Korostil, Michele; Remington, Gary; McIntosh, Anthony Randal

    2016-01-01

    Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.

  14. Social networks and environmental outcomes.

    PubMed

    Barnes, Michele L; Lynham, John; Kalberg, Kolter; Leung, PingSun

    2016-06-07

    Social networks can profoundly affect human behavior, which is the primary force driving environmental change. However, empirical evidence linking microlevel social interactions to large-scale environmental outcomes has remained scarce. Here, we leverage comprehensive data on information-sharing networks among large-scale commercial tuna fishers to examine how social networks relate to shark bycatch, a global environmental issue. We demonstrate that the tendency for fishers to primarily share information within their ethnic group creates segregated networks that are strongly correlated with shark bycatch. However, some fishers share information across ethnic lines, and examinations of their bycatch rates show that network contacts are more strongly related to fishing behaviors than ethnicity. Our findings indicate that social networks are tied to actions that can directly impact marine ecosystems, and that biases toward within-group ties may impede the diffusion of sustainable behaviors. Importantly, our analysis suggests that enhanced communication channels across segregated fisher groups could have prevented the incidental catch of over 46,000 sharks between 2008 and 2012 in a single commercial fishery.

  15. Carbon and Nitrogen Metabolism in Mycorrhizal Networks and Mycoheterotrophic Plants of Tropical Forests: A Stable Isotope Analysis1[W

    PubMed Central

    Courty, Pierre-Emmanuel; Walder, Florian; Boller, Thomas; Ineichen, Kurt; Wiemken, Andres; Rousteau, Alain; Selosse, Marc-André

    2011-01-01

    Most achlorophyllous mycoheterotrophic (MH) plants obtain carbon (C) from mycorrhizal networks and indirectly exploit nearby autotrophic plants. We compared overlooked tropical rainforest MH plants associating with arbuscular mycorrhizal fungi (AMF) to well-reported temperate MH plants associating with ectomycorrhizal basidiomycetes. We investigated 13C and 15N abundances of MH plants, green plants, and AMF spores in Caribbean rainforests. Whereas temperate MH plants and fungi have higher δ13C than canopy trees, these organisms displayed similar δ13C values in rainforests, suggesting differences in C exchanges. Although temperate green and MH plants differ in δ15N, they display similar 15N abundances, and likely nitrogen (N) sources, in rainforests. Contrasting with the high N concentrations shared by temperate MH plants and their fungi, rainforest MH plants had lower N concentrations than AMF, suggesting differences in C/N of exchanged nutrients. We provide a framework for isotopic studies on AMF networks and suggest that MH plants in tropical and temperate regions evolved different physiologies to adapt in diverging environments. PMID:21527422

  16. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-06-23

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations.

  17. Differential Impact of Types of Social Support in the Mental Health of Formerly Incarcerated Latino Men

    PubMed Central

    Muñoz-Laboy, Miguel; Severson, Nicolette; Perry, Ashley; Guilamo-Ramos, Vincent

    2015-01-01

    The role of social support in the mental health of formerly incarcerated Latino men (FILM) is an issue overlooked in public health prevention efforts. The objectives of this analysis were to (a) describe the levels of social support perceived and received by FILM; (b) identify the associations, if any, between levels of social support and mental health indicators such as depression and anxiety; and (c) explore the impact of familism and hypermasculinity on the receptivity of social support and the potential role of these factors in mediating associations between social support and mental health indicators. To accomplish the objectives, we conducted a cross-sectional survey with FILM (n = 259), ages 18 to 59, in New York City, and one nominated member of their social network (n = 130 dyads). In this analysis, we examined four dimensions of social support (instrumental, informational, appraisal, and emotional) from two perspectives: provided (as reported by members of the social networks) and perceived (as reported by FILM). The major outcome variables for this analysis were the presence/absence of major anxiety and depressive symptoms. Our logistic regression analyses suggest that perceived emotional support was inversely associated with both anxiety and depression. Our findings suggest that familism mediated the association between perceived emotional support and anxiety/depression. Therefore, we must consider designing network enhancement interventions that focus on both FILM and their social support systems. PMID:24323767

  18. A comparative study of 11 local health department organizational networks.

    PubMed

    Merrill, Jacqueline; Keeling, Jonathan W; Carley, Kathleen M

    2010-01-01

    Although the nation's local health departments (LHDs) share a common mission, variability in administrative structures is a barrier to identifying common, optimal management strategies. There is a gap in understanding what unifying features LHDs share as organizations that could be leveraged systematically for achieving high performance. To explore sources of commonality and variability in a range of LHDs by comparing intraorganizational networks. We used organizational network analysis to document relationships between employees, tasks, knowledge, and resources within LHDs, which may exist regardless of formal administrative structure. A national sample of 11 LHDs from seven states that differed in size, geographic location, and governance. Relational network data were collected via an on-line survey of all employees in 11 LHDs. A total of 1062 out of 1239 employees responded (84% response rate). Network measurements were compared using coefficient of variation. Measurements were correlated with scores from the National Public Health Performance Assessment and with LHD demographics. Rankings of tasks, knowledge, and resources were correlated across pairs of LHDs. We found that 11 LHDs exhibited compound organizational structures in which centralized hierarchies were coupled with distributed networks at the point of service. Local health departments were distinguished from random networks by a pattern of high centralization and clustering. Network measurements were positively associated with performance for 3 of 10 essential services (r > 0.65). Patterns in the measurements suggest how LHDs adapt to the population served. Shared network patterns across LHDs suggest where common organizational management strategies are feasible. This evidence supports national efforts to promote uniform standards for service delivery to diverse populations.

  19. Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells.

    PubMed

    Gutiérrez-Escobar, Andrés Julián; Méndez-Callejas, Gina

    2017-12-01

    Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan

    PubMed Central

    Davison, Elizabeth N.; Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2016-01-01

    Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism—hypergraph cardinality—we investigate individual variations in two separate, complementary data sets. The first data set (“multi-task”) consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set (“age-memory”), in which 95 individuals, aged 18–75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain. PMID:27880785

  1. Network Analysis of Intrinsic Functional Brain Connectivity in Male and Female Adult Smokers: A Preliminary Study.

    PubMed

    Moran-Santa Maria, Megan M; Vanderweyen, Davy C; Camp, Christopher C; Zhu, Xun; McKee, Sherry A; Cosgrove, Kelly P; Hartwell, Karen J; Brady, Kathleen T; Joseph, Jane E

    2018-06-07

    The goal of this study was to conduct a preliminary network analysis (using graph-theory measures) of intrinsic functional connectivity in adult smokers, with an exploration of sex differences in smokers. Twenty-seven adult smokers (13 males; mean age = 35) and 17 sex and age-matched controls (11 males; mean age = 35) completed a blood oxygen level-dependent resting state functional magnetic resonance imaging experiment. Data analysis involved preprocessing, creation of connectivity matrices using partial correlation, and computation of graph-theory measures using the Brain Connectivity Toolbox. Connector hubs and additional graph-theory measures were examined for differences between smokers and controls and correlations with nicotine dependence. Sex differences were examined in a priori regions of interest based on prior literature. Compared to nonsmokers, connector hubs in smokers emerged primarily in limbic (parahippocampus) and salience network (cingulate cortex) regions. In addition, global influence of the right insula and left nucleus accumbens was associated with higher nicotine dependence. These trends were present in male but not female smokers. Network communication was altered in smokers, primarily in limbic and salience network regions. Network topology was associated with nicotine dependence in male but not female smokers in regions associated with reinforcement (nucleus accumbens) and craving (insula), consistent with the idea that male smokers are more sensitive to the reinforcing aspects of nicotine than female smokers. Identifying alterations in brain network communication in male and female smokers can help tailor future behavioral and pharmacological smoking interventions. Male smokers showed alterations in brain networks associated with the reinforcing effects of nicotine more so than females, suggesting that pharmacotherapies targeting reinforcement and craving may be more efficacious in male smokers.

  2. The role of interpersonal communication in the process of knowledge mobilization within a community-based organization: a network analysis.

    PubMed

    Gainforth, Heather L; Latimer-Cheung, Amy E; Athanasopoulos, Peter; Moore, Spencer; Ginis, Kathleen A Martin

    2014-05-22

    Diffusion of innovations theory has been widely used to explain knowledge mobilization of research findings. This theory posits that individuals who are more interpersonally connected within an organization may be more likely to adopt an innovation (e.g., research evidence) than individuals who are less interconnected. Research examining this tenet of diffusion of innovations theory in the knowledge mobilization literature is limited. The purpose of the present study was to use network analysis to examine the role of interpersonal communication in the adoption and mobilization of the physical activity guidelines for people with spinal cord injury (SCI) among staff in a community-based organization (CBO). The study used a cross-sectional, whole-network design. In total, 56 staff completed the network survey. Adoption of the guidelines was assessed using Rogers' innovation-decision process and interpersonal communication was assessed using an online network instrument. The patterns of densities observed within the network were indicative of a core-periphery structure revealing that interpersonal communication was greater within the core than between the core and periphery and within the periphery. Membership in the core, as opposed to membership in the periphery, was associated with greater knowledge of the evidence-based physical activity resources available and engagement in physical activity promotion behaviours (ps < 0.05). Greater in-degree centrality was associated with adoption of evidence-based behaviours (p < 0.05). Findings suggest that interpersonal communication is associated with knowledge mobilization and highlight how the network structure could be improved for further dissemination efforts. diffusion of innovations; network analysis; community-based organization; knowledge mobilization; knowledge translation, interpersonal communication.

  3. Women as Managers.

    ERIC Educational Resources Information Center

    Moore, Linda L.

    1981-01-01

    Discusses theories that socialization or "the system" cause women's problems in management, contending that both contribute. Analyzes women manager's problems in using and misusing power and coping with stress. Discusses public/private sector differences. Suggests that networking and constructive self-analysis can alleviate some problems. (AYC)

  4. Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer.

    PubMed

    Reddy, Anupama; Huang, C Chris; Liu, Huiqing; Delisi, Charles; Nevalainen, Marja T; Szalma, Sandor; Bhanot, Gyan

    2010-01-01

    We develop a general method to identify gene networks from pair-wise correlations between genes in a microarray data set and apply it to a public prostate cancer gene expression data from 69 primary prostate tumors. We define the degree of a node as the number of genes significantly associated with the node and identify hub genes as those with the highest degree. The correlation network was pruned using transcription factor binding information in VisANT (http://visant.bu.edu/) as a biological filter. The reliability of hub genes was determined using a strict permutation test. Separate networks for normal prostate samples, and prostate cancer samples from African Americans (AA) and European Americans (EA) were generated and compared. We found that the same hubs control disease progression in AA and EA networks. Combining AA and EA samples, we generated networks for low low (<7) and high (≥7) Gleason grade tumors. A comparison of their major hubs with those of the network for normal samples identified two types of changes associated with disease: (i) Some hub genes increased their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with gain of regulatory control in cancer (e.g. possible turning on of oncogenes). (ii) Some hubs reduced their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with loss of regulatory control in cancer (e.g. possible loss of tumor suppressor genes). A striking result was that for both AA and EA tumor samples, STAT5a, CEBPB and EGR1 are major hubs that gain neighbors compared to the normal prostate network. Conversely, HIF-lα is a major hub that loses connections in the prostate cancer network compared to the normal prostate network. We also find that the degree of these hubs changes progressively from normal to low grade to high grade disease, suggesting that these hubs are master regulators of prostate cancer and marks disease progression. STAT5a was identified as a central hub, with ~120 neighbors in the prostate cancer network and only 81 neighbors in the normal prostate network. Of the 120 neighbors of STAT5a, 57 are known cancer related genes, known to be involved in functional pathways associated with tumorigenesis. Our method is general and can easily be extended to identify and study networks associated with any two phenotypes.

  5. Functional brain networks associated with cognitive control, cocaine dependence, and treatment outcome.

    PubMed

    Worhunsky, Patrick D; Stevens, Michael C; Carroll, Kathleen M; Rounsaville, Bruce J; Calhoun, Vince D; Pearlson, Godfrey D; Potenza, Marc N

    2013-06-01

    Individuals with cocaine dependence often evidence poor cognitive control. The purpose of this exploratory study was to investigate networks of functional connectivity underlying cognitive control in cocaine dependence and examine the relationship of the networks to the disorder and its treatment. Independent component analysis (ICA) was applied to fMRI data to investigate if regional activations underlying cognitive control processes operate in functional networks, and whether these networks relate to performance and treatment outcome measures in cocaine dependence. Twenty patients completed a Stroop task during fMRI prior to entering outpatient treatment and were compared to 20 control participants. ICA identified five distinct functional networks related to cognitive control interference events. Cocaine-dependent patients displayed differences in performance-related recruitment of three networks. Reduced involvement of a "top-down" fronto-cingular network contributing to conflict monitoring correlated with better treatment retention. Greater engagement of two "bottom-up" subcortical and ventral prefrontal networks related to cue-elicited motivational processing correlated with abstinence during treatment. The identification of subcortical networks linked to cocaine abstinence and cortical networks to treatment retention suggests that specific circuits may represent important, complementary targets in treatment development for cocaine dependence. 2013 APA, all rights reserved

  6. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    PubMed

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Functional Subdivision of Group-ICA Results of fMRI Data Collected during Cinema Viewing

    PubMed Central

    Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta

    2012-01-01

    Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film (“At land” by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative. PMID:22860044

  8. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  9. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.

    PubMed

    Ornostay, Anna; Cowie, Andrew M; Hindle, Matthew; Baker, Christopher J O; Martyniuk, Christopher J

    2013-12-01

    The herbicide linuron (LIN) is an endocrine disruptor with an anti-androgenic mode of action. The objectives of this study were to (1) improve knowledge of androgen and anti-androgen signaling in the teleostean ovary and to (2) assess the ability of gene networks and machine learning to classify LIN as an anti-androgen using transcriptomic data. Ovarian explants from vitellogenic fathead minnows (FHMs) were exposed to three concentrations of either 5α-dihydrotestosterone (DHT), flutamide (FLUT), or LIN for 12h. Ovaries exposed to DHT showed a significant increase in 17β-estradiol (E2) production while FLUT and LIN had no effect on E2. To improve understanding of androgen receptor signaling in the ovary, a reciprocal gene expression network was constructed for DHT and FLUT using pathway analysis and these data suggested that steroid metabolism, translation, and DNA replication are processes regulated through AR signaling in the ovary. Sub-network enrichment analysis revealed that FLUT and LIN shared more regulated gene networks in common compared to DHT. Using transcriptomic datasets from different fish species, machine learning algorithms classified LIN successfully with other anti-androgens. This study advances knowledge regarding molecular signaling cascades in the ovary that are responsive to androgens and anti-androgens and provides proof of concept that gene network analysis and machine learning can classify priority chemicals using experimental transcriptomic data collected from different fish species. © 2013.

  10. A quantitative analysis of biodiversity and the recreational value of potential national parks in Denmark.

    PubMed

    Larsen, Frank Wugt; Petersen, Anders Højgård; Strange, Niels; Lund, Mette Palitzsch; Rahbek, Carsten

    2008-05-01

    Denmark has committed itself to the European 2010 target to halt the loss of biodiversity. Currently, Denmark is in the process of designating larger areas as national parks, and 7 areas (of a possible 32 larger nature areas) have been selected for pilot projects to test the feasibility of establishing national parks. In this article, we first evaluate the effectiveness of the a priori network of national parks proposed through expert and political consensus versus a network chosen specifically for biodiversity through quantitative analysis. Second, we analyze the potential synergy between preserving biodiversity in terms of species representation and recreational values in selecting a network of national parks. We use the actual distribution of 973 species within these 32 areas and 4 quantitative measures of recreational value. Our results show that the 7 pilot project areas are not significantly more effective in representing species than expected by chance and that considerably more efficient networks can be selected. Moreover, it is possible to select more-effective networks of areas that combine high representation of species with high ranking in terms of recreational values. Therefore, our findings suggest possible synergies between outdoor recreation and biodiversity conservation when selecting networks of national parks. Overall, this Danish case illustrates that data-driven analysis can not only provide valuable information to guide the decision-making process of designating national parks, but it can also be a means to identify solutions that simultaneously fulfill several goals (biodiversity preservation and recreational values).

  11. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen.

    PubMed

    Jiang, Lu; Ball, Graham; Hodgman, Charlie; Coules, Anne; Zhao, Han; Lu, Chungui

    2018-03-08

    Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.

  12. Self-reference, emotion inhibition and somatosensory disturbance: preliminary investigation of network perturbations in conversion disorder.

    PubMed

    Monsa, R; Peer, M; Arzy, S

    2018-06-01

    Conversion disorder (CD), or functional neurological disorder, is manifested as a neurological disturbance that is not macroscopically visible on clinical structural neuroimaging and is instead ascribed to underlying psychological stress. Known for many years in neuropsychiatry, a comprehensive explanation of the way in which psychological stress leads to a neurological deficit of a structural-like origin is still lacking. We applied whole-brain network-based data-driven analyses on resting-state functional magnetic resonance imaging, recorded in seven patients with acute-onset, stroke-like CD with unilateral paresis and hypoesthesia as compared with 15 age-matched healthy controls. We used a clustering analysis to measure functional connectivity (FC) strength within 10 different brain networks, as well as between these networks. Finally, we tested FC of specific brain regions that are known to be involved in CD. We found a significant increase in FC strength only within the default-mode network (DMN), which manages self-referential processing. Examination of inter-connectivity between networks showed a structure of disturbed connectivity, which included decreased connectivity between the DMN and limbic/salience network, increased connectivity between the limbic/salience network and body-related temporo-parieto-occipital junction network, decreased connectivity between the temporo-parieto-occipital junction and memory-related medial temporal lobe, and decreased connectivity between the medial temporal lobe and sensorimotor network. Region-specific FC analysis showed increased connectivity between the hippocampus and DMN. These preliminary results of disturbances in brain networks related to memory, emotions and self-referential processing, and networks involved in motor planning and execution, suggest a role of these cognitive functions in the psychopathology of CD. © 2018 EAN.

  13. Agricultural Science in the Wild: A Social Network Analysis of Farmer Knowledge Exchange

    PubMed Central

    Wood, Brennon A.; Blair, Hugh T.; Gray, David I.; Kemp, Peter D.; Kenyon, Paul R.; Morris, Steve T.; Sewell, Alison M.

    2014-01-01

    Responding to demands for transformed farming practices requires new forms of knowledge. Given their scale and complexity, agricultural problems can no longer be solved by linear transfers in which technology developed by specialists passes to farmers by way of extension intermediaries. Recent research on alternative approaches has focused on the innovation systems formed by interactions between heterogeneous actors. Rather than linear transfer, systems theory highlights network facilitation as a specialized function. This paper contributes to our understanding of such facilitation by investigating the networks in which farmers discuss science. We report findings based on the study of a pastoral farming experiment collaboratively undertaken by a group of 17 farmers and five scientists. Analysis of prior contact and alter sharing between the group’s members indicates strongly tied and decentralized networks. Farmer knowledge exchanges about the experiment have been investigated using a mix of quantitative and qualitative methods. Network surveys identified who the farmers contacted for knowledge before the study began and who they had talked to about the experiment by 18 months later. Open-ended interviews collected farmer statements about their most valuable contacts and these statements have been thematically analysed. The network analysis shows that farmers talked about the experiment with 192 people, most of whom were fellow farmers. Farmers with densely tied and occupationally homogeneous contacts grew their networks more than did farmers with contacts that are loosely tied and diverse. Thematic analysis reveals three general principles: farmers value knowledge delivered by persons rather than roles, privilege farming experience, and develop knowledge with empiricist rather than rationalist techniques. Taken together, these findings suggest that farmers deliberate about science in intensive and durable networks that have significant implications for theorizing agricultural innovation. The paper thus concludes by considering the findings’ significance for current efforts to rethink agricultural extension. PMID:25121487

  14. Improving subjective pattern recognition in chemical senses through reduction of nonlinear effects in evaluation of sparse data

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Rasouli, Firooz; Wrenn, Susan E.; Subbiah, M.

    2002-11-01

    Artificial neural network models are typically useful in pattern recognition and extraction of important features in large data sets. These models are implemented in a wide variety of contexts and with diverse type of input-output data. The underlying mathematics of supervised training of neural networks is ultimately tied to the ability to approximate the nonlinearities that are inherent in network"s generalization ability. The quality and availability of sufficient data points for training and validation play a key role in the generalization ability of the network. A potential domain of applications of neural networks is in analysis of subjective data, such as in consumer science, affective neuroscience and perception of chemical senses. In applications of ANN to subjective data, it is common to rely on knowledge of the science and context for data acquisition, for instance as a priori probabilities in the Bayesian framework. In this paper, we discuss the circumstances that create challenges for success of neural network models for subjective data analysis, such as sparseness of data and cost of acquisition of additional samples. In particular, in the case of affect and perception of chemical senses, we suggest that inherent ambiguity of subjective responses could be offset by a combination of human-machine expert. We propose a method of pre- and post-processing for blind analysis of data that that relies on heuristics from human performance in interpretation of data. In particular, we offer an information-theoretic smoothing (ITS) algorithm that optimizes that geometric visualization of multi-dimensional data and improves human interpretation of the input-output view of neural network implementations. The pre- and post-processing algorithms and ITS are unsupervised. Finally, we discuss the details of an example of blind data analysis from actual taste-smell subjective data, and demonstrate the usefulness of PCA in reduction of dimensionality, as well as ITS.

  15. Support surfaces for pressure ulcer prevention: A network meta-analysis

    PubMed Central

    Dumville, Jo C.; Cullum, Nicky

    2018-01-01

    Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties. PMID:29474359

  16. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    PubMed

    Shi, Chunhu; Dumville, Jo C; Cullum, Nicky

    2018-01-01

    Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties.

  17. One-year test-retest reliability of intrinsic connectivity network fMRI in older adults

    PubMed Central

    Guo, Cong C.; Kurth, Florian; Zhou, Juan; Mayer, Emeran A.; Eickhoff, Simon B; Kramer, Joel H.; Seeley, William W.

    2014-01-01

    “Resting-state” or task-free fMRI can assess intrinsic connectivity network (ICN) integrity in health and disease, suggesting a potential for use of these methods as disease-monitoring biomarkers. Numerous analytical options are available, including model-driven ROI-based correlation analysis and model-free, independent component analysis (ICA). High test-retest reliability will be a necessary feature of a successful ICN biomarker, yet available reliability data remains limited. Here, we examined ICN fMRI test-retest reliability in 24 healthy older subjects scanned roughly one year apart. We focused on the salience network, a disease-relevant ICN not previously subjected to reliability analysis. Most ICN analytical methods proved reliable (intraclass coefficients > 0.4) and could be further improved by wavelet analysis. Seed-based ROI correlation analysis showed high map-wise reliability, whereas graph theoretical measures and temporal concatenation group ICA produced the most reliable individual unit-wise outcomes. Including global signal regression in ROI-based correlation analyses reduced reliability. Our study provides a direct comparison between the most commonly used ICN fMRI methods and potential guidelines for measuring intrinsic connectivity in aging control and patient populations over time. PMID:22446491

  18. Improving social connection through a communities-of-practice-inspired cognitive work analysis approach.

    PubMed

    Euerby, Adam; Burns, Catherine M

    2014-03-01

    Increasingly, people work in socially networked environments. With growing adoption of enterprise social network technologies, supporting effective social community is becoming an important factor in organizational success. Relatively few human factors methods have been applied to social connection in communities. Although team methods provide a contribution, they do not suit design for communities. Wenger's community of practice concept, combined with cognitive work analysis, provided one way of designing for community. We used a cognitive work analysis approach modified with principles for supporting communities of practice to generate a new website design. Over several months, the community using the site was studied to examine their degree of social connectedness and communication levels. Social network analysis and communications analysis, conducted at three different intervals, showed increases in connections between people and between people and organizations, as well as increased communication following the launch of the new design. In this work, we suggest that human factors approaches can be effective in social environments, when applied considering social community principles. This work has implications for the development of new human factors methods as well as the design of interfaces for sociotechnical systems that have community building requirements.

  19. A prior-based integrative framework for functional transcriptional regulatory network inference

    PubMed Central

    Siahpirani, Alireza F.

    2017-01-01

    Abstract Transcriptional regulatory networks specify regulatory proteins controlling the context-specific expression levels of genes. Inference of genome-wide regulatory networks is central to understanding gene regulation, but remains an open challenge. Expression-based network inference is among the most popular methods to infer regulatory networks, however, networks inferred from such methods have low overlap with experimentally derived (e.g. ChIP-chip and transcription factor (TF) knockouts) networks. Currently we have a limited understanding of this discrepancy. To address this gap, we first develop a regulatory network inference algorithm, based on probabilistic graphical models, to integrate expression with auxiliary datasets supporting a regulatory edge. Second, we comprehensively analyze our and other state-of-the-art methods on different expression perturbation datasets. Networks inferred by integrating sequence-specific motifs with expression have substantially greater agreement with experimentally derived networks, while remaining more predictive of expression than motif-based networks. Our analysis suggests natural genetic variation as the most informative perturbation for network inference, and, identifies core TFs whose targets are predictable from expression. Multiple reasons make the identification of targets of other TFs difficult, including network architecture and insufficient variation of TF mRNA level. Finally, we demonstrate the utility of our inference algorithm to infer stress-specific regulatory networks and for regulator prioritization. PMID:27794550

  20. Reduced structural connectivity within a prefrontal-motor-subcortical network in amyotrophic lateral sclerosis.

    PubMed

    Buchanan, Colin R; Pettit, Lewis D; Storkey, Amos J; Abrahams, Sharon; Bastin, Mark E

    2015-05-01

    To investigate white matter structural connectivity changes associated with amyotrophic lateral sclerosis (ALS) using network analysis and compare the results with those obtained using standard voxel-based methods, specifically Tract-based Spatial Statistics (TBSS). MRI data were acquired from 30 patients with ALS and 30 age-matched healthy controls. For each subject, 85 grey matter regions (network nodes) were identified from high resolution structural MRI, and network connections formed from the white matter tracts generated by diffusion MRI and probabilistic tractography. Whole-brain networks were constructed using strong constraints on anatomical plausibility and a weighting reflecting tract-averaged fractional anisotropy (FA). Analysis using Network-based Statistics (NBS), without a priori selected regions, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirectional connections), consistent with upper motor neuron pathology, in the ALS group compared with the controls (P = 0.020). Reduced FA in three of the impaired network connections, which involved fibers of the corticospinal tract, correlated with rate of disease progression (P ≤ 0.024). A novel network-tract comparison revealed that the connections involved in the affected network had a strong correspondence (mean overlap of 86.2%) with white matter tracts identified as having reduced FA compared with the control group using TBSS. These findings suggest that white matter degeneration in ALS is strongly linked to the motor cortex, and that impaired structural networks identified using NBS have a strong correspondence to affected white matter tracts identified using more conventional voxel-based methods. © 2014 Wiley Periodicals, Inc.

  1. Using egocentric analysis to investigate professional networks and productivity of graduate students and faculty in life sciences in Japan, Singapore, and Taiwan.

    PubMed

    Hara, Noriko; Chen, Hui; Ynalvez, Marcus Antonius

    2017-01-01

    Prior studies showed that scientists' professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1) examine what factors predict the formation of international ties between faculty and graduate students and 2) identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students) and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students' development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity.

  2. Using egocentric analysis to investigate professional networks and productivity of graduate students and faculty in life sciences in Japan, Singapore, and Taiwan

    PubMed Central

    Chen, Hui; Ynalvez, Marcus Antonius

    2017-01-01

    Prior studies showed that scientists’ professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1) examine what factors predict the formation of international ties between faculty and graduate students and 2) identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students) and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students’ development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity. PMID:29045500

  3. The Orphan Disease Networks

    PubMed Central

    Zhang, Minlu; Zhu, Cheng; Jacomy, Alexis; Lu, Long J.; Jegga, Anil G.

    2011-01-01

    The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone. PMID:21664998

  4. Insights into TREM2 biology by network analysis of human brain gene expression data

    PubMed Central

    Forabosco, Paola; Ramasamy, Adaikalavan; Trabzuni, Daniah; Walker, Robert; Smith, Colin; Bras, Jose; Levine, Adam P.; Hardy, John; Pocock, Jennifer M.; Guerreiro, Rita; Weale, Michael E.; Ryten, Mina

    2013-01-01

    Rare variants in TREM2 cause susceptibility to late-onset Alzheimer's disease. Here we use microarray-based expression data generated from 101 neuropathologically normal individuals and covering 10 brain regions, including the hippocampus, to understand TREM2 biology in human brain. Using network analysis, we detect a highly preserved TREM2-containing module in human brain, show that it relates to microglia, and demonstrate that TREM2 is a hub gene in 5 brain regions, including the hippocampus, suggesting that it can drive module function. Using enrichment analysis we show significant overrepresentation of genes implicated in the adaptive and innate immune system. Inspection of genes with the highest connectivity to TREM2 suggests that it plays a key role in mediating changes in the microglial cytoskeleton necessary not only for phagocytosis, but also migration. Most importantly, we show that the TREM2-containing module is significantly enriched for genes genetically implicated in Alzheimer's disease, multiple sclerosis, and motor neuron disease, implying that these diseases share common pathways centered on microglia and that among the genes identified are possible new disease-relevant genes. PMID:23855984

  5. Comparing cerebral perfusion in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study.

    PubMed

    Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J

    2014-06-01

    Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (AD

  6. Development blocks in innovation networks: The Swedish manufacturing industry, 1970-2007.

    PubMed

    Taalbi, Josef

    2017-01-01

    The notion of development blocks (Dahmén, 1950, 1991) suggests the co-evolution of technologies and industries through complementarities and the overcoming of imbalances. This study proposes and applies a methodology to analyse development blocks empirically. To assess the extent and character of innovational interdependencies between industries the study combines analysis of innovation biographies and statistical network analysis. This is made possible by using data from a newly constructed innovation output database for Sweden. The study finds ten communities of closely related industries in which innovation activity has been prompted by the emergence of technological imbalances or by the exploitation of new technological opportunities. The communities found in the Swedish network of innovation are shown to be stable over time and often characterized by strong user-supplier interdependencies. These findings serve to stress how historical imbalances and opportunities are key to understanding the dynamics of the long-run development of industries and new technologies.

  7. A dedicated network for social interaction processing in the primate brain.

    PubMed

    Sliwa, J; Freiwald, W A

    2017-05-19

    Primate cognition requires interaction processing. Interactions can reveal otherwise hidden properties of intentional agents, such as thoughts and feelings, and of inanimate objects, such as mass and material. Where and how interaction analyses are implemented in the brain is unknown. Using whole-brain functional magnetic resonance imaging in macaque monkeys, we discovered a network centered in the medial and ventrolateral prefrontal cortex that is exclusively engaged in social interaction analysis. Exclusivity of specialization was found for no other function anywhere in the brain. Two additional networks, a parieto-premotor and a temporal one, exhibited both social and physical interaction preference, which, in the temporal lobe, mapped onto a fine-grain pattern of object, body, and face selectivity. Extent and location of a dedicated system for social interaction analysis suggest that this function is an evolutionary forerunner of human mind-reading capabilities. Copyright © 2017, American Association for the Advancement of Science.

  8. Tracking cohesive subgroups over time in inferred social networks

    NASA Astrophysics Data System (ADS)

    Chin, Alvin; Chignell, Mark; Wang, Hao

    2010-04-01

    As a first step in the development of community trackers for large-scale online interaction, this paper shows how cohesive subgroup analysis using the Social Cohesion Analysis of Networks (SCAN; Chin and Chignell 2008) and Data-Intensive Socially Similar Evolving Community Tracker (DISSECT; Chin and Chignell 2010) methods can be applied to the problem of identifying cohesive subgroups and tracking them over time. Three case studies are reported, and the findings are used to evaluate how well the SCAN and DISSECT methods work for different types of data. In the largest of the case studies, variations in temporal cohesiveness are identified across a set of subgroups extracted from the inferred social network. Further modifications to the DISSECT methodology are suggested based on the results obtained. The paper concludes with recommendations concerning further research that would be beneficial in addressing the community tracking problem for online data.

  9. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    PubMed Central

    Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.

    2015-01-01

    Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia. PMID:25852520

  11. Integration of Spatial and Social Network Analysis in Disease Transmission Studies.

    PubMed

    Emch, Michael; Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2012-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how.

  12. Integration of Spatial and Social Network Analysis in Disease Transmission Studies

    PubMed Central

    Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2013-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how. PMID:24163443

  13. Detection of 5-hydroxytryptamine (5-HT) in vitro using a hippocampal neuronal network-based biosensor with extracellular potential analysis of neurons.

    PubMed

    Hu, Liang; Wang, Qin; Qin, Zhen; Su, Kaiqi; Huang, Liquan; Hu, Ning; Wang, Ping

    2015-04-15

    5-hydroxytryptamine (5-HT) is an important neurotransmitter in regulating emotions and related behaviors in mammals. To detect and monitor the 5-HT, effective and convenient methods are demanded in investigation of neuronal network. In this study, hippocampal neuronal networks (HNNs) endogenously expressing 5-HT receptors were employed as sensing elements to build an in vitro neuronal network-based biosensor. The electrophysiological characteristics were analyzed in both neuron and network levels. The firing rates and amplitudes were derived from signal to determine the biosensor response characteristics. The experimental results demonstrate a dose-dependent inhibitory effect of 5-HT on hippocampal neuron activities, indicating the effectiveness of this hybrid biosensor in detecting 5-HT with a response range from 0.01μmol/L to 10μmol/L. In addition, the cross-correlation analysis of HNNs activities suggests 5-HT could weaken HNN connectivity reversibly, providing more specificity of this biosensor in detecting 5-HT. Moreover, 5-HT induced spatiotemporal firing pattern alterations could be monitored in neuron and network levels simultaneously by this hybrid biosensor in a convenient and direct way. With those merits, this neuronal network-based biosensor will be promising to be a valuable and utility platform for the study of neurotransmitter in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Evaluation of shoulder function in clavicular fracture patients after six surgical procedures based on a network meta-analysis.

    PubMed

    Huang, Shou-Guo; Chen, Bo; Lv, Dong; Zhang, Yong; Nie, Feng-Feng; Li, Wei; Lv, Yao; Zhao, Huan-Li; Liu, Hong-Mei

    2017-01-01

    Purpose Using a network meta-analysis approach, our study aims to develop a ranking of the six surgical procedures, that is, Plate, titanium elastic nail (TEN), tension band wire (TBW), hook plate (HP), reconstruction plate (RP) and Knowles pin, by comparing the post-surgery constant shoulder scores in patients with clavicular fracture (CF). Methods A comprehensive search of electronic scientific literature databases was performed to retrieve publications investigating surgical procedures in CF, with the stringent eligible criteria, and clinical experimental studies of high quality and relevance to our area of interest were selected for network meta-analysis. Statistical analyses were conducted using Stata 12.0. Results A total of 19 studies met our inclusion criteria were eventually enrolled into our network meta-analysis, representing 1164 patients who had undergone surgical procedures for CF (TEN group = 240; Plate group = 164; TBW group  =  180; RP group  =  168; HP group  =  245; Knowles pin group  =  167). The network meta-analysis results revealed that RP significantly improved constant shoulder score in patients with CF when compared with TEN, and the post-operative constant shoulder scores in patients with CF after Plate, TBW, HP, Knowles pin and TEN were similar with no statistically significant differences. The treatment relative ranking of predictive probabilities of constant shoulder scores in patients with CF after surgery revealed the surface under the cumulative ranking curves (SUCRA) value is the highest in RP. Conclusion The current network meta-analysis suggests that RP may be the optimum surgical treatment among six inventions for patients with CF, and it can improve the shoulder score of patients with CF. Implications for Rehabilitation RP improves shoulder joint function after surgical procedure. RP achieves stability with minimal complications after surgery. RP may be the optimum surgical treatment for rehabilitation of patients with CF.

  15. Following the Footsteps of Chlamydial Gene Regulation

    PubMed Central

    Domman, D.; Horn, M.

    2015-01-01

    Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored. PMID:26424812

  16. Patterns in PARTNERing across Public Health Collaboratives.

    PubMed

    Bevc, Christine A; Retrum, Jessica H; Varda, Danielle M

    2015-10-05

    Inter-organizational networks represent one of the most promising practice-based approaches in public health as a way to attain resources, share knowledge, and, in turn, improve population health outcomes. However, the interdependencies and effectiveness related to the structure, management, and costs of these networks represents a critical item to be addressed. The objective of this research is to identify and determine the extent to which potential partnering patterns influence the structure of collaborative networks. This study examines data collected by PARTNER, specifically public health networks (n = 162), to better understand the structured relationships and interactions among public health organizations and their partners, in relation to collaborative activities. Combined with descriptive analysis, we focus on the composition of public health collaboratives in a series of Exponential Random Graph (ERG) models to examine the partnerships between different organization types to identify the attribute-based effects promoting the formation of network ties within and across collaboratives. We found high variation within and between these collaboratives including composition, diversity, and interactions. The findings of this research suggest common and frequent types of partnerships, as well as opportunities to develop new collaborations. The result of this analysis offer additional evidence to inform and strengthen public health practice partnerships.

  17. Characterizing Social Interaction in Tobacco-Oriented Social Networks: An Empirical Analysis.

    PubMed

    Liang, Yunji; Zheng, Xiaolong; Zeng, Daniel Dajun; Zhou, Xingshe; Leischow, Scott James; Chung, Wingyan

    2015-06-19

    Social media is becoming a new battlefield for tobacco "wars". Evaluating the current situation is very crucial for the advocacy of tobacco control in the age of social media. To reveal the impact of tobacco-related user-generated content, this paper characterizes user interaction and social influence utilizing social network analysis and information theoretic approaches. Our empirical studies demonstrate that the exploding pro-tobacco content has long-lasting effects with more active users and broader influence, and reveal the shortage of social media resources in global tobacco control. It is found that the user interaction in the pro-tobacco group is more active, and user-generated content for tobacco promotion is more successful in obtaining user attention. Furthermore, we construct three tobacco-related social networks and investigate the topological patterns of these tobacco-related social networks. We find that the size of the pro-tobacco network overwhelms the others, which suggests a huge number of users are exposed to the pro-tobacco content. These results indicate that the gap between tobacco promotion and tobacco control is widening and tobacco control may be losing ground to tobacco promotion in social media.

  18. Friendship networks and trajectories of adolescent tobacco use.

    PubMed

    Pollard, Michael S; Tucker, Joan S; Green, Harold D; Kennedy, David; Go, Myong-Hyun

    2010-07-01

    This article examines how friendship networks in adolescence are linked to tobacco use trajectories through a combination of analytic techniques that traditionally are located in separate literatures: social network analysis and developmental trajectory analysis. Using six years of longitudinal data from the National Longitudinal Study of Adolescent Health, we identify a set of six unique developmental trajectories of smoking (never smokers, steady lows, delayed increasers, early increasers, decreasers, and steady highs). Individuals' locations in their friendship networks were then linked to their trajectory group membership. Adolescents with a greater number of smoking friends were more likely to belong to the higher use trajectories. Beyond this exposure to smoking peers, individuals who at baseline were either members of a smoking group or liaisons to a smoking group were more likely than members of a nonsmoking group to belong to the higher use trajectories. Liaisons to a smoking group were particularly likely to belong to the delayed increaser trajectory group. Trajectory group membership for adolescents who belonged to a nonsmoking group did not significantly differ from those who were isolates or liaisons to a nonsmoking group. The study suggests features of an individual's social network have long-lasting associations with smoking behaviors. 2010 Elsevier Ltd. All rights reserved.

  19. Griffiths effects of the susceptible-infected-susceptible epidemic model on random power-law networks.

    PubMed

    Cota, Wesley; Ferreira, Silvio C; Ódor, Géza

    2016-03-01

    We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving on finite-size random networks with power-law degree distributions. Extensive simulations were done by averaging the activity density over many realizations of networks. We investigated the effects of outliers in both highly fluctuating (natural cutoff) and nonfluctuating (hard cutoff) most connected vertices. Logarithmic and power-law decays in time were found for natural and hard cutoffs, respectively. This happens in extended regions of the control parameter space λ(1)<λ<λ(2), suggesting Griffiths effects, induced by the topological inhomogeneities. Optimal fluctuation theory considering sample-to-sample fluctuations of the pseudothresholds is presented to explain the observed slow dynamics. A quasistationary analysis shows that response functions remain bounded at λ(2). We argue these to be signals of a smeared transition. However, in the thermodynamic limit the Griffiths effects loose their relevancy and have a conventional critical point at λ(c)=0. Since many real networks are composed by heterogeneous and weakly connected modules, the slow dynamics found in our analysis of independent and finite networks can play an important role for the deeper understanding of such systems.

  20. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  1. Characterizing Social Interaction in Tobacco-Oriented Social Networks: An Empirical Analysis

    PubMed Central

    Liang, Yunji; Zheng, Xiaolong; Zeng, Daniel Dajun; Zhou, Xingshe; Leischow, Scott James; Chung, Wingyan

    2015-01-01

    Social media is becoming a new battlefield for tobacco “wars”. Evaluating the current situation is very crucial for the advocacy of tobacco control in the age of social media. To reveal the impact of tobacco-related user-generated content, this paper characterizes user interaction and social influence utilizing social network analysis and information theoretic approaches. Our empirical studies demonstrate that the exploding pro-tobacco content has long-lasting effects with more active users and broader influence, and reveal the shortage of social media resources in global tobacco control. It is found that the user interaction in the pro-tobacco group is more active, and user-generated content for tobacco promotion is more successful in obtaining user attention. Furthermore, we construct three tobacco-related social networks and investigate the topological patterns of these tobacco-related social networks. We find that the size of the pro-tobacco network overwhelms the others, which suggests a huge number of users are exposed to the pro-tobacco content. These results indicate that the gap between tobacco promotion and tobacco control is widening and tobacco control may be losing ground to tobacco promotion in social media. PMID:26091553

  2. Creativity and the default network: A functional connectivity analysis of the creative brain at rest.

    PubMed

    Beaty, Roger E; Benedek, Mathias; Wilkins, Robin W; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J; Hodges, Donald A; Koschutnig, Karl; Neubauer, Aljoscha C

    2014-11-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Network Approach to Understanding Emotion Dynamics in Relation to Childhood Trauma and Genetic Liability to Psychopathology: Replication of a Prospective Experience Sampling Analysis

    PubMed Central

    Hasmi, Laila; Drukker, Marjan; Guloksuz, Sinan; Menne-Lothmann, Claudia; Decoster, Jeroen; van Winkel, Ruud; Collip, Dina; Delespaul, Philippe; De Hert, Marc; Derom, Catherine; Thiery, Evert; Jacobs, Nele; Rutten, Bart P. F.; Wichers, Marieke; van Os, Jim

    2017-01-01

    Background: The network analysis of intensive time series data collected using the Experience Sampling Method (ESM) may provide vital information in gaining insight into the link between emotion regulation and vulnerability to psychopathology. The aim of this study was to apply the network approach to investigate whether genetic liability (GL) to psychopathology and childhood trauma (CT) are associated with the network structure of the emotions “cheerful,” “insecure,” “relaxed,” “anxious,” “irritated,” and “down”—collected using the ESM method. Methods: Using data from a population-based sample of twin pairs and siblings (704 individuals), we examined whether momentary emotion network structures differed across strata of CT and GL. GL was determined empirically using the level of psychopathology in monozygotic and dizygotic co-twins. Network models were generated using multilevel time-lagged regression analysis and were compared across three strata (low, medium, and high) of CT and GL, respectively. Permutations were utilized to calculate p values and compare regressions coefficients, density, and centrality indices. Regression coefficients were presented as connections, while variables represented the nodes in the network. Results: In comparison to the low GL stratum, the high GL stratum had significantly denser overall (p = 0.018) and negative affect network density (p < 0.001). The medium GL stratum also showed a directionally similar (in-between high and low GL strata) but statistically inconclusive association with network density. In contrast to GL, the results of the CT analysis were less conclusive, with increased positive affect density (p = 0.021) and overall density (p = 0.042) in the high CT stratum compared to the medium CT stratum but not to the low CT stratum. The individual node comparisons across strata of GL and CT yielded only very few significant results, after adjusting for multiple testing. Conclusions: The present findings demonstrate that the network approach may have some value in understanding the relation between established risk factors for mental disorders (particularly GL) and the dynamic interplay between emotions. The present finding partially replicates an earlier analysis, suggesting it may be instructive to model negative emotional dynamics as a function of genetic influence. PMID:29163289

  4. Transitions in Smokers' Social Networks After Quit Attempts: A Latent Transition Analysis.

    PubMed

    Bray, Bethany C; Smith, Rachel A; Piper, Megan E; Roberts, Linda J; Baker, Timothy B

    2016-12-01

    Smokers' social networks vary in size, composition, and amount of exposure to smoking. The extent to which smokers' social networks change after a quit attempt is unknown, as is the relation between quitting success and later network changes. Unique types of social networks for 691 smokers enrolled in a smoking-cessation trial were identified based on network size, new network members, members' smoking habits, within network smoking, smoking buddies, and romantic partners' smoking. Latent transition analysis was used to identify the network classes and to predict transitions in class membership across 3 years from biochemically assessed smoking abstinence. Five network classes were identified: Immersed (large network, extensive smoking exposure including smoking buddies), Low Smoking Exposure (large network, minimal smoking exposure), Smoking Partner (small network, smoking exposure primarily from partner), Isolated (small network, minimal smoking exposure), and Distant Smoking Exposure (small network, considerable nonpartner smoking exposure). Abstinence at years 1 and 2 was associated with shifts in participants' social networks to less contact with smokers and larger networks in years 2 and 3. In the years following a smoking-cessation attempt, smokers' social networks changed, and abstinence status predicted these changes. Networks defined by high levels of exposure to smokers were especially associated with continued smoking. Abstinence, however, predicted transitions to larger social networks comprising less smoking exposure. These results support treatments that aim to reduce exposure to smoking cues and smokers, including partners who smoke. Prior research has shown that social network features predict the likelihood of subsequent smoking cessation. The current research illustrates how successful quitting predicts social network change over 3 years following a quit attempt. Specifically, abstinence predicts transitions to networks that are larger and afford less exposure to smokers. This suggests that quitting smoking may expand a person's social milieu rather than narrow it. This effect, plus reduced exposure to smokers, may help sustain abstinence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer.

    PubMed

    Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong

    2017-03-28

    Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.

  6. Competition between Homophily and Information Entropy Maximization in Social Networks

    PubMed Central

    Zhao, Jichang; Liang, Xiao; Xu, Ke

    2015-01-01

    In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. PMID:26334994

  7. Control of epidemics on complex networks: Effectiveness of delayed isolation

    NASA Astrophysics Data System (ADS)

    Pereira, Tiago; Young, Lai-Sang

    2015-08-01

    We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases.

  8. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.

    PubMed

    Lezon, Timothy R; Banavar, Jayanth R; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V

    2006-12-12

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.

  9. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  10. Space evolution model and empirical analysis of an urban public transport network

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  11. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.

    PubMed

    Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus

    2015-06-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. © 2015 Institute of Food Technologists®

  12. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    PubMed

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  13. Detection of pigment network in dermatoscopy images using texture analysis

    PubMed Central

    Anantha, Murali; Moss, Randy H.; Stoecker, William V.

    2011-01-01

    Dermatoscopy, also known as dermoscopy or epiluminescence microscopy (ELM), is a non-invasive, in vivo technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such prominent feature is the pigment network. Two texture-based algorithms are developed for the detection of pigment network. These methods are applicable to various texture patterns in dermatoscopy images, including patterns that lack fine lines such as cobblestone, follicular, or thickened network patterns. Two texture algorithms, Laws energy masks and the neighborhood gray-level dependence matrix (NGLDM) large number emphasis, were optimized on a set of 155 dermatoscopy images and compared. Results suggest superiority of Laws energy masks for pigment network detection in dermatoscopy images. For both methods, a texel width of 10 pixels or approximately 0.22 mm is found for dermatoscopy images. PMID:15249068

  14. Universal properties of mythological networks

    NASA Astrophysics Data System (ADS)

    Mac Carron, Pádraig; Kenna, Ralph

    2012-07-01

    As in statistical physics, the concept of universality plays an important, albeit qualitative, role in the field of comparative mythology. Here we apply statistical mechanical tools to analyse the networks underlying three iconic mythological narratives with a view to identifying common and distinguishing quantitative features. Of the three narratives, an Anglo-Saxon and a Greek text are mostly believed by antiquarians to be partly historically based while the third, an Irish epic, is often considered to be fictional. Here we use network analysis in an attempt to discriminate real from imaginary social networks and place mythological narratives on the spectrum between them. This suggests that the perceived artificiality of the Irish narrative can be traced back to anomalous features associated with six characters. Speculating that these are amalgams of several entities or proxies, renders the plausibility of the Irish text comparable to the others from a network-theoretic point of view.

  15. Modeling Dynamic Evolution of Online Friendship Network

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ren; Yan, Qiang

    2012-10-01

    In this paper, we study the dynamic evolution of friendship network in SNS (Social Networking Site). Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community, but also on the friendship network generated by those friends. In addition, we propose a model which is based on two processes: first, connecting nearest neighbors; second, strength driven attachment mechanism. The model reflects two facts: first, in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor; second, new nodes connect more likely to nodes which have larger weights and interactions, a phenomenon called strength driven attachment (also called weight driven attachment). From the simulation results, we find that degree distribution P(k), strength distribution P(s), and degree-strength correlation are all consistent with empirical data.

  16. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.

    PubMed

    Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  17. Role of graph architecture in controlling dynamical networks with applications to neural systems

    NASA Astrophysics Data System (ADS)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  18. A New View of Dynamic River Networks

    NASA Astrophysics Data System (ADS)

    Perron, J. T.; Willett, S.; McCoy, S. W.

    2014-12-01

    River networks are the main conduits that transport water, sediment, and nutrients from continental interiors to the oceans. They also shape topography as they erode through bedrock. These hierarchical networks are dynamic: there are numerous examples of apparent changes in the topology of river networks through geologic time. But these examples are geographically scattered, the evidence can be ambiguous, and the mechanisms that drive changes in river networks are poorly understood. This makes it difficult to assess how pervasive river network reorganization is, how it operates, and how the interlocking river basins that compose a given landscape are changing through time. Recent progress has improved the situation. We describe three developments that have dramatically advanced our understanding of dynamic river networks. First, new topographic, geophysical and geochronological measurement techniques are revealing the rate and extent of river network adjustment. Second, laboratory experiments and computational models are clarifying how river networks respond to tectonic and climatic perturbations at scales ranging from local to continental. Third, spatial analysis of genetic data is exposing links between landscape evolution, biological evolution, and the development of biodiversity. We highlight key problems that remain unsolved, and suggest ways to build on recent advances that will bring dynamic river networks into even sharper focus.

  19. Network Analysis of Rat Spatial Cognition: Behaviorally-Established Symmetry in a Physically Asymmetrical Environment

    PubMed Central

    Eilam, David; Portugali, Juval; Blumenfeld-Lieberthal, Efrat

    2012-01-01

    Background We set out to solve two inherent problems in the study of animal spatial cognition (i) What is a “place”?; and (ii) whether behaviors that are not revealed as differing by one methodology could be revealed as different when analyzed using a different approach. Methodology We applied network analysis to scrutinize spatial behavior of rats tested in either a symmetrical or asymmetrical layout of 4, 8, or 12 objects placed along the perimeter of a round arena. We considered locations as the units of the network (nodes), and passes between locations as the links within the network. Principal Findings While there were only minor activity differences between rats tested in the symmetrical or asymmetrical object layouts, network analysis revealed substantial differences. Viewing ‘location’ as a cluster of stopping coordinates, the key locations (large clusters of stopping coordinates) were at the objects in both layouts with 4 objects. However, in the asymmetrical layout with 4 objects, additional key locations were spaced by the rats between the objects, forming symmetry among the key locations. It was as if the rats had behaviorally imposed symmetry on the physically asymmetrical environment. Based on a previous finding that wayfinding is easier in symmetrical environments, we suggest that when the physical attributes of the environment were not symmetrical, the rats established a symmetric layout of key locations, thereby acquiring a more legible environment despite its complex physical structure. Conclusions and Significance The present study adds a behavioral definition for “location”, a term that so far has been mostly discussed according to its physical attributes or neurobiological correlates (e.g. - place and grid neurons). Moreover, network analysis enabled the assessment of the importance of a location, even when that location did not display any distinctive physical properties. PMID:22815808

  20. Health disparities in Europe's ageing population: the role of social network.

    PubMed

    Olofsson, Jenny; Padyab, Mojgan; Malmberg, Gunnar

    2018-01-01

    Previous research suggests that the social network may play very different roles in relation to health in countries with differing welfare regimes. The study aimed to assess the interplay between social network, socioeconomic position, and self-rated health (SRH) in European countries. The study used cross-sectional data on individuals aged 50+ from the fourth wave of the Survey of Health, Ageing and Retirement in Europe (SHARE) and includes data from 16 countries. The outcome is poor SRH. All analyses are adjusted for age and stratified by gender. Low satisfaction with the social network was associated with poor SRH among women in all country groups, but predicted poor SRH among males in West/Central and Eastern Europe only. The results from the multivariable analysis showed an increased likelihood of poor SRH among those with relatively lower education, as well as among those with low satisfaction with the social network (women from all country groups and men from Western/Central and Eastern Europe). However, the results from interaction analysis show that poor SRH for those with lower relative position in educational level was greater among those with higher satisfaction with the social network among male and female participants from Northern Europe. The health of individuals who are highly satisfied with their social network is more associated with socioeconomic status in Northern Europe. This study highlights the significance of social network and socioeconomic gradients in health among the elderly in Europe.

  1. Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis.

    PubMed

    Caeyenberghs, K; Powell, H W R; Thomas, R H; Brindley, L; Church, C; Evans, J; Muthukumaraswamy, S D; Jones, D K; Hamandi, K

    2015-01-01

    Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients.

  2. Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis

    PubMed Central

    Caeyenberghs, K.; Powell, H.W.R.; Thomas, R.H.; Brindley, L.; Church, C.; Evans, J.; Muthukumaraswamy, S.D.; Jones, D.K.; Hamandi, K.

    2014-01-01

    Objective Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Methods Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Results Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Conclusions Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients. PMID:25610771

  3. Health disparities in Europe’s ageing population: the role of social network

    PubMed Central

    Olofsson, Jenny; Malmberg, Gunnar

    2018-01-01

    ABSTRACT Background: Previous research suggests that the social network may play very different roles in relation to health in countries with differing welfare regimes. Objective: The study aimed to assess the interplay between social network, socioeconomic position, and self-rated health (SRH) in European countries. Methods: The study used cross-sectional data on individuals aged 50+ from the fourth wave of the Survey of Health, Ageing and Retirement in Europe (SHARE) and includes data from 16 countries. The outcome is poor SRH. All analyses are adjusted for age and stratified by gender. Results: Low satisfaction with the social network was associated with poor SRH among women in all country groups, but predicted poor SRH among males in West/Central and Eastern Europe only. The results from the multivariable analysis showed an increased likelihood of poor SRH among those with relatively lower education, as well as among those with low satisfaction with the social network (women from all country groups and men from Western/Central and Eastern Europe). However, the results from interaction analysis show that poor SRH for those with lower relative position in educational level was greater among those with higher satisfaction with the social network among male and female participants from Northern Europe. The health of individuals who are highly satisfied with their social network is more associated with socioeconomic status in Northern Europe. Conclusions: This study highlights the significance of social network and socioeconomic gradients in health among the elderly in Europe. PMID:29553305

  4. Identification of GRB2 and GAB1 Coexpression as an Unfavorable Prognostic Factor for Hepatocellular Carcinoma by a Combination of Expression Profile and Network Analysis

    PubMed Central

    Yang, Mei; Wang, Danhua; Yu, Lingxiang; Guo, Chaonan; Guo, Xiaodong; Lin, Na

    2013-01-01

    Aim To screen novel markers for hepatocellular carcinoma (HCC) by a combination of expression profile, interaction network analysis and clinical validation. Methods HCC significant molecules which are differentially expressed or had genetic variations in HCC tissues were obtained from five existing HCC related databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and Liverome). Then, the protein-protein interaction (PPI) network of these molecules was constructed. Three topological features of the network ('Degree', 'Betweenness', and 'Closeness') and the k-core algorithm were used to screen candidate HCC markers which play crucial roles in tumorigenesis of HCC. Furthermore, the clinical significance of two candidate HCC markers growth factor receptor-bound 2 (GRB2) and GRB2-associated-binding protein 1 (GAB1) was validated. Results In total, 6179 HCC significant genes and 977 HCC significant proteins were collected from existing HCC related databases. After network analysis, 331 candidate HCC markers were identified. Especially, GAB1 has the highest k-coreness suggesting its central localization in HCC related network, and the interaction between GRB2 and GAB1 has the largest edge-betweenness implying it may be biologically important to the function of HCC related network. As the results of clinical validation, the expression levels of both GRB2 and GAB1 proteins were significantly higher in HCC tissues than those in their adjacent nonneoplastic tissues. More importantly, the combined GRB2 and GAB1 protein expression was significantly associated with aggressive tumor progression and poor prognosis in patients with HCC. Conclusion This study provided an integrative analysis by combining expression profile and interaction network analysis to identify a list of biologically significant HCC related markers and pathways. Further experimental validation indicated that the aberrant expression of GRB2 and GAB1 proteins may be strongly related to tumor progression and prognosis in patients with HCC. The overexpression of GRB2 in combination with upregulation of GAB1 may be an unfavorable prognostic factor for HCC. PMID:24391994

  5. Health policy and systems research collaboration pathways: lessons from a network science analysis.

    PubMed

    English, Krista M; Pourbohloul, Babak

    2017-08-28

    The 2004 Mexico Declaration, and subsequent World Health Assembly resolutions, proposed a concerted support for the global development of health policy and systems research (HPSR). This included coordination across partners and advocates for the field of HPSR to monitor the development of the field, while promoting decision-making power and implementing responsibilities in low- and middle-income countries (LMICs). We used a network science approach to examine the structural properties of the HPSR co-authorship network across country economic groups in the PubMed citation database from 1990 to 2015. This analysis summarises the evolution of the publication, co-authorship and citation networks within HPSR. This method allows identification of several features otherwise not apparent. The co-authorship network has evolved steadily from 1990 to 2015 in terms of number of publications, but more importantly, in terms of co-authorship network connectedness. Our analysis suggests that, despite growth in the contribution from low-income countries to HPSR literature, co-authorship remains highly localised. Lower middle-income countries have made progress toward global connectivity through diversified collaboration with various institutions and regions. Global connectivity of the upper middle-income countries (UpperMICs) are almost on par with high-income countries (HICs), indicating the transition of this group of countries toward becoming major contributors to the field. Network analysis allows examination of the connectedness among the HSPR community. Initially (early 1990s), research groups operated almost exclusively independently and, despite the topic being specifically on health policy in LMICs, HICs provided lead authorship. Since the early 1990s, the network has evolved significantly. In the full set analysis (1990-2015), for the first time in HPSR history, more than half of the authors are connected and lead authorship from UpperMICs is on par with that of HICs. This demonstrates the shift in participation and influence toward regions which HPSR primarily serves. Understanding these interactions can highlight the current strengths and future opportunities for identifying new strategies to enhance collaboration and support capacity-building efforts for HPSR.

  6. Hegemonic structure of basic, clinical and patented knowledge on Ebola research: a US army reductionist initiative.

    PubMed

    Fajardo-Ortiz, David; Ortega-Sánchez-de-Tagle, José; Castaño, Victor M

    2015-04-19

    Ebola hemorrhagic fever (Ebola) is still a highly lethal infectious disease long affecting mainly neglected populations in sub-Saharan Africa. Moreover, this disease is now considered a potential worldwide threat. In this paper, we present an approach to understand how the basic, clinical and patent knowledge on Ebola is organized and intercommunicated and what leading factor could be shaping the evolution of the knowledge translation process for this disease. A combination of citation network analysis; analysis of Medical heading Subject (MeSH) and Gene Ontology (GO) terms, and quantitative content analysis for patents and scientific literature, aimed to map the organization of Ebola research was carried out. We found six putative research fronts (i.e. clusters of high interconnected papers). Three research fronts are basic research on Ebola virus structural proteins: glycoprotein, VP40 and VP35, respectively. There is a fourth research front of basic research papers on pathogenesis, which is the organizing hub of Ebola research. A fifth research front is pre-clinical research focused on vaccines and glycoproteins. Finally, a clinical-epidemiology research front related to the disease outbreaks was identified. The network structure of patent families shows that the dominant design is the use of Ebola virus proteins as targets of vaccines and other immunological treatments. Therefore, patents network organization resembles the organization of the scientific literature. Specifically, the knowledge on Ebola would flow from higher (clinical-epidemiology) to intermediated (cellular-tissular pathogenesis) to lower (molecular interactions) levels of organization. Our results suggest a strong reductionist approach for Ebola research probably influenced by the lethality of the disease. On the other hand, the ownership profile of the patent families network and the main researches relationship with the United State Army suggest a strong involvement of this military institution in Ebola research.

  7. Early grey matter changes in structural covariance networks in Huntington's disease.

    PubMed

    Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C

    2016-01-01

    Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n  = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p  < 0.001, in pre-HD p  = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p  < 0.001, in pre-HD p  = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p  = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.

  8. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory.

    PubMed

    Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio

    2017-04-26

    The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.

  9. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  10. Understanding the perceptions, roles and interactions of stakeholder networks managing health-care waste: A case study of the Gaza Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caniato, M., E-mail: marcocaniato@gmail.com; Tudor, T.; Vaccari, M.

    Highlights: • We systematically review scientific literature about health-care waste management. • We identify and discuss gaps, trends, efforts, and key-factors. • We suggest areas for improvement and best practices reported in literature. • We include recommendations for policy makers, practitioners and researchers. • We promote a holistic and harmonized approach to health-care waste management. - Abstract: The sustainable management of waste requires a holistic approach involving a range of stakeholders. What can often be difficult is to understand the manner in which different types of stakeholder networks are composed and work, and how best to enhance their effectiveness. Usingmore » social network analysis and stakeholder analysis of healthcare waste management stakeholders in the case study region of the Gaza Strip, this study aimed to understand and examine the manner in which the networks functioned. The Ministry of Health was found to be the most important stakeholder, followed by municipalities and solid waste management councils. Some international agencies were also mentioned, with specific roles, while other local institutions had a limited influence. Finally while health-care facilities had a strong interest in waste management, they were generally poorly informed and had limited links to each other. The manner in which the networks operated was complicated and influenced by differences in perception, sharing of information, access to finance and levels of awareness. The lack of a clear legal framework generated various mistakes about roles and responsibilities in the system, and evidently regulation was not an effective driver for improvement. Finally stakeholders had different priorities according to the waste management issues they were involved with, however segregation at the source was identified as a key requirement by most. Areas for improving the effectiveness of the networks are suggested. The analysis utilized an innovative methodology, which involved a large number of stakeholders. Such an approach served to raise interest and awareness at different levels (public authorities, health providers, supporting actors, others), stimulate the discussion about the adoption of specific policies, and identify the effective way forward.« less

  11. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.

    PubMed

    Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L

    2016-06-01

    White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.

  12. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder

    PubMed Central

    Travers, Brittany G.; Adluru, Nagesh; Tromp, Do P.M.; Destiche, Daniel J.; Samsin, Danica; Prigge, Molly B.; Zielinski, Brandon A.; Fletcher, P. Thomas; Anderson, Jeffrey S.; Froehlich, Alyson L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.; Alexander, Andrew L.

    2016-01-01

    Abstract White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440

  13. Network structure impacts global commodity trade growth and resilience.

    PubMed

    Kharrazi, Ali; Rovenskaya, Elena; Fath, Brian D

    2017-01-01

    Global commodity trade networks are critical to our collective sustainable development. Their increasing interconnectedness pose two practical questions: (i) Do the current network configurations support their further growth? (ii) How resilient are these networks to economic shocks? We analyze the data of global commodity trade flows from 1996 to 2012 to evaluate the relationship between structural properties of the global commodity trade networks and (a) their dynamic growth, as well as (b) the resilience of their growth with respect to the 2009 global economic shock. Specifically, we explore the role of network efficiency and redundancy using the information theory-based network flow analysis. We find that, while network efficiency is positively correlated with growth, highly efficient systems appear to be less resilient, losing more and gaining less growth following an economic shock. While all examined networks are rather redundant, we find that network redundancy does not hinder their growth. Moreover, systems exhibiting higher levels of redundancy lose less and gain more growth following an economic shock. We suggest that a strategy to support making global trade networks more efficient via, e.g., preferential trade agreements and higher specialization, can promote their further growth; while a strategy to increase the global trade networks' redundancy via e.g., more abundant free-trade agreements, can improve their resilience to global economic shocks.

  14. An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries.

    PubMed

    Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen

    2016-11-04

    In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.

  15. Continuous-time model of structural balance

    PubMed Central

    Marvel, Seth A.; Kleinberg, Jon; Kleinberg, Robert D.; Strogatz, Steven H.

    2011-01-01

    It is not uncommon for certain social networks to divide into two opposing camps in response to stress. This happens, for example, in networks of political parties during winner-takes-all elections, in networks of companies competing to establish technical standards, and in networks of nations faced with mounting threats of war. A simple model for these two-sided separations is the dynamical system dX/dt = X2, where X is a matrix of the friendliness or unfriendliness between pairs of nodes in the network. Previous simulations suggested that only two types of behavior were possible for this system: Either all relationships become friendly or two hostile factions emerge. Here we prove that for generic initial conditions, these are indeed the only possible outcomes. Our analysis yields a closed-form expression for faction membership as a function of the initial conditions and implies that the initial amount of friendliness in large social networks (started from random initial conditions) determines whether they will end up in intractable conflict or global harmony. PMID:21199953

  16. Continuous-time model of structural balance.

    PubMed

    Marvel, Seth A; Kleinberg, Jon; Kleinberg, Robert D; Strogatz, Steven H

    2011-02-01

    It is not uncommon for certain social networks to divide into two opposing camps in response to stress. This happens, for example, in networks of political parties during winner-takes-all elections, in networks of companies competing to establish technical standards, and in networks of nations faced with mounting threats of war. A simple model for these two-sided separations is the dynamical system dX/dt = X(2), where X is a matrix of the friendliness or unfriendliness between pairs of nodes in the network. Previous simulations suggested that only two types of behavior were possible for this system: Either all relationships become friendly or two hostile factions emerge. Here we prove that for generic initial conditions, these are indeed the only possible outcomes. Our analysis yields a closed-form expression for faction membership as a function of the initial conditions and implies that the initial amount of friendliness in large social networks (started from random initial conditions) determines whether they will end up in intractable conflict or global harmony.

  17. Evaluating multiple determinants of the structure of plant-animal mutualistic networks.

    PubMed

    Vázquez, Diego P; Chacoff, Natacha P; Cagnolo, Luciano

    2009-08-01

    The structure of mutualistic networks is likely to result from the simultaneous influence of neutrality and the constraints imposed by complementarity in species phenotypes, phenologies, spatial distributions, phylogenetic relationships, and sampling artifacts. We develop a conceptual and methodological framework to evaluate the relative contributions of these potential determinants. Applying this approach to the analysis of a plant-pollinator network, we show that information on relative abundance and phenology suffices to predict several aggregate network properties (connectance, nestedness, interaction evenness, and interaction asymmetry). However, such information falls short of predicting the detailed network structure (the frequency of pairwise interactions), leaving a large amount of variation unexplained. Taken together, our results suggest that both relative species abundance and complementarity in spatiotemporal distribution contribute substantially to generate observed network patters, but that this information is by no means sufficient to predict the occurrence and frequency of pairwise interactions. Future studies could use our methodological framework to evaluate the generality of our findings in a representative sample of study systems with contrasting ecological conditions.

  18. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback

    PubMed Central

    Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-01-01

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. PMID:28917059

  19. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae

    PubMed Central

    Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike

    2006-01-01

    Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047

  20. Aquatic Nitrate Retention at River Network Scales Across Flow Conditions Determined Using Nested In Situ Sensors

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.

    2017-11-01

    Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.

  1. Neural Systems Underlying Individual Differences in Intertemporal Decision-making.

    PubMed

    Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A

    2017-03-01

    Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.

  2. How the ownership structures cause epidemics in financial markets: A network-based simulation model

    NASA Astrophysics Data System (ADS)

    Dastkhan, Hossein; Gharneh, Naser Shams

    2018-02-01

    Analysis of systemic risks and contagions is one of the main challenges of policy makers and researchers in the recent years. Network theory is introduced as a main approach in the modeling and simulation of financial and economic systems. In this paper, a simulation model is introduced based on the ownership network to analyze the contagion and systemic risk events. For this purpose, different network structures with different values for parameters are considered to investigate the stability of the financial system in the presence of different kinds of idiosyncratic and aggregate shocks. The considered network structures include Erdos-Renyi, core-periphery, segregated and power-law networks. Moreover, the results of the proposed model are also calculated for a real ownership network. The results show that the network structure has a significant effect on the probability and the extent of contagion in the financial systems. For each network structure, various values for the parameters results in remarkable differences in the systemic risk measures. The results of real case show that the proposed model is appropriate in the analysis of systemic risk and contagion in financial markets, identification of systemically important firms and estimation of market loss when the initial failures occur. This paper suggests a new direction in the modeling of contagion in the financial markets, in particular that the effects of new kinds of financial exposure are clarified. This paper's idea and analytical results may also be useful for the financial policy makers, portfolio managers and the firms to conduct their investment in the right direction.

  3. Healthcare Worker Contact Networks and the Prevention of Hospital-Acquired Infections

    PubMed Central

    Curtis, Donald E.; Hlady, Christopher S.; Kanade, Gaurav; Pemmaraju, Sriram V.; Polgreen, Philip M.; Segre, Alberto M.

    2013-01-01

    We present a comprehensive approach to using electronic medical records (EMR) for constructing contact networks of healthcare workers in a hospital. This approach is applied at the University of Iowa Hospitals and Clinics (UIHC) – a 3.2 million square foot facility with 700 beds and about 8,000 healthcare workers – by obtaining 19.8 million EMR data points, spread over more than 21 months. We use these data to construct 9,000 different healthcare worker contact networks, which serve as proxies for patterns of actual healthcare worker contacts. Unlike earlier approaches, our methods are based on large-scale data and do not make any a priori assumptions about edges (contacts) between healthcare workers, degree distributions of healthcare workers, their assignment to wards, etc. Preliminary validation using data gathered from a 10-day long deployment of a wireless sensor network in the Medical Intensive Care Unit suggests that EMR logins can serve as realistic proxies for hospital-wide healthcare worker movement and contact patterns. Despite spatial and job-related constraints on healthcare worker movement and interactions, analysis reveals a strong structural similarity between the healthcare worker contact networks we generate and social networks that arise in other (e.g., online) settings. Furthermore, our analysis shows that disease can spread much more rapidly within the constructed contact networks as compared to random networks of similar size and density. Using the generated contact networks, we evaluate several alternate vaccination policies and conclude that a simple policy that vaccinates the most mobile healthcare workers first, is robust and quite effective relative to a random vaccination policy. PMID:24386075

  4. Peer Influence on Academic Performance: A Social Network Analysis of Social-Emotional Intervention Effects.

    PubMed

    DeLay, Dawn; Zhang, Linlin; Hanish, Laura D; Miller, Cindy F; Fabes, Richard A; Martin, Carol Lynn; Kochel, Karen P; Updegraff, Kimberly A

    2016-11-01

    Longitudinal social network analysis (SNA) was used to examine how a social-emotional learning (SEL) intervention may be associated with peer socialization on academic performance. Fifth graders (N = 631; 48 % girls; 9 to 12 years) were recruited from six elementary schools. Intervention classrooms (14) received a relationship building intervention (RBI) and control classrooms (8) received elementary school as usual. At pre- and post-test, students nominated their friends, and teachers completed assessments of students' writing and math performance. The results of longitudinal SNA suggested that the RBI was associated with friend selection and peer influence within the classroom peer network. Friendship choices were significantly more diverse (i.e., less evidence of social segregation as a function of ethnicity and academic ability) in intervention compared to control classrooms, and peer influence on improved writing and math performance was observed in RBI but not control classrooms. The current findings provide initial evidence that SEL interventions may change social processes in a classroom peer network and may break down barriers of social segregation and improve academic performance.

  5. A bioinformatics analysis of Lamin-A regulatory network: a perspective on epigenetic involvement in Hutchinson-Gilford progeria syndrome.

    PubMed

    Arancio, Walter

    2012-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to premature aging. HGPS is caused by mutation in the Lamin-A (LMNA) gene that leads, in affected young individuals, to the accumulation of the progerin protein, usually present only in aging differentiated cells. Bioinformatics analyses of the network of interactions of the LMNA gene and transcripts are presented. The LMNA gene network has been analyzed using the BioGRID database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA ( http://genemania.org/). The network of interaction of LMNA transcripts has been further analyzed following the competing endogenous (ceRNA) hypotheses (RNA cross-talk via microRNAs [miRNAs]) and using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest particular relevance of epigenetic modifiers (via acetylase complexes and specifically HTATIP histone acetylase) and adenosine triphosphate (ATP)-dependent chromatin remodelers (via pBAF, BAF, and SWI/SNF complexes).

  6. A Heterogeneous Network Based Method for Identifying GBM-Related Genes by Integrating Multi-Dimensional Data.

    PubMed

    Chen Peng; Ao Li

    2017-01-01

    The emergence of multi-dimensional data offers opportunities for more comprehensive analysis of the molecular characteristics of human diseases and therefore improving diagnosis, treatment, and prevention. In this study, we proposed a heterogeneous network based method by integrating multi-dimensional data (HNMD) to identify GBM-related genes. The novelty of the method lies in that the multi-dimensional data of GBM from TCGA dataset that provide comprehensive information of genes, are combined with protein-protein interactions to construct a weighted heterogeneous network, which reflects both the general and disease-specific relationships between genes. In addition, a propagation algorithm with resistance is introduced to precisely score and rank GBM-related genes. The results of comprehensive performance evaluation show that the proposed method significantly outperforms the network based methods with single-dimensional data and other existing approaches. Subsequent analysis of the top ranked genes suggests they may be functionally implicated in GBM, which further corroborates the superiority of the proposed method. The source code and the results of HNMD can be downloaded from the following URL: http://bioinformatics.ustc.edu.cn/hnmd/ .

  7. Using complex networks for text classification: Discriminating informative and imaginative documents

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-01-01

    Statistical methods have been widely employed in recent years to grasp many language properties. The application of such techniques have allowed an improvement of several linguistic applications, such as machine translation and document classification. In the latter, many approaches have emphasised the semantical content of texts, as is the case of bag-of-word language models. These approaches have certainly yielded reasonable performance. However, some potential features such as the structural organization of texts have been used only in a few studies. In this context, we probe how features derived from textual structure analysis can be effectively employed in a classification task. More specifically, we performed a supervised classification aiming at discriminating informative from imaginative documents. Using a networked model that describes the local topological/dynamical properties of function words, we achieved an accuracy rate of up to 95%, which is much higher than similar networked approaches. A systematic analysis of feature relevance revealed that symmetry and accessibility measurements are among the most prominent network measurements. Our results suggest that these measurements could be used in related language applications, as they play a complementary role in characterising texts.

  8. System Biology Approach: Gene Network Analysis for Muscular Dystrophy.

    PubMed

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Giuliani, Alessandro

    2018-01-01

    Phenotypic changes at different organization levels from cell to entire organism are associated to changes in the pattern of gene expression. These changes involve the entire genome expression pattern and heavily rely upon correlation patterns among genes. The classical approach used to analyze gene expression data builds upon the application of supervised statistical techniques to detect genes differentially expressed among two or more phenotypes (e.g., normal vs. disease). The use of an a posteriori, unsupervised approach based on principal component analysis (PCA) and the subsequent construction of gene correlation networks can shed a light on unexpected behaviour of gene regulation system while maintaining a more naturalistic view on the studied system.In this chapter we applied an unsupervised method to discriminate DMD patient and controls. The genes having the highest absolute scores in the discrimination between the groups were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.

  9. Networks and the fiscal performance of rural hospitals in Oklahoma: are they associated?

    PubMed

    Broyles, R W; Brandt, E N; Biard-Holmes, D

    1998-01-01

    This paper uses regression analysis to explore the relation of network membership to the financial performance of rural hospitals in Oklahoma during fiscal year 1995. After adjusting for the scope of service, as measured by the number of facilities or services offered by the hospital, indicators of fiscal status are (1) the cash receipts derived from net patient revenue; (2) the cash disbursements related to operating costs, net of interest and depreciation expense, labor costs and nonlabor costs; and (3) net cash flow, defined as the difference between cash receipts and disbursements. Controlling for the effects of the hospital's structural attributes, operating characteristics and market conditions, the results indicate that members of a network reported lower net operating costs, labor costs and nonlabor expenses per service than nonmembers. Hence, the analysis seems to suggest that the membership of rural hospitals in a network is associated with lower cash disbursements and an improved net cash flow, outcomes that may preserve their fiscal viability and the access of the population at risk to service.

  10. Thermotaxis is a Robust Mechanism for Thermoregulation in C. elegans Nematodes

    PubMed Central

    Ramot, Daniel; MacInnis, Bronwyn L.; Lee, Hau-Chen; Goodman, Miriam B.

    2013-01-01

    Many biochemical networks are robust to variations in network or stimulus parameters. Although robustness is considered an important design principle of such networks, it is not known whether this principle also applies to higher-level biological processes such as animal behavior. In thermal gradients, C. elegans uses thermotaxis to bias its movement along the direction of the gradient. Here we develop a detailed, quantitative map of C. elegans thermotaxis and use these data to derive a computational model of thermotaxis in the soil, a natural environment of C. elegans. This computational analysis indicates that thermotaxis enables animals to avoid temperatures at which they cannot reproduce, to limit excursions from their adapted temperature, and to remain relatively close to the surface of the soil, where oxygen is abundant. Furthermore, our analysis reveals that this mechanism is robust to large variations in the parameters governing both worm locomotion and temperature fluctuations in the soil. We suggest that, similar to biochemical networks, animals evolve behavioral strategies that are robust, rather than strategies that rely on fine-tuning of specific behavioral parameters. PMID:19020047

  11. Cognitive components of a mathematical processing network in 9-year-old children.

    PubMed

    Szűcs, Dénes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2014-07-01

    We determined how various cognitive abilities, including several measures of a proposed domain-specific number sense, relate to mathematical competence in nearly 100 9-year-old children with normal reading skill. Results are consistent with an extended number processing network and suggest that important processing nodes of this network are phonological processing, verbal knowledge, visuo-spatial short-term and working memory, spatial ability and general executive functioning. The model was highly specific to predicting arithmetic performance. There were no strong relations between mathematical achievement and verbal short-term and working memory, sustained attention, response inhibition, finger knowledge and symbolic number comparison performance. Non-verbal intelligence measures were also non-significant predictors when added to our model. Number sense variables were non-significant predictors in the model and they were also non-significant predictors when entered into regression analysis with only a single visuo-spatial WM measure. Number sense variables were predicted by sustained attention. Results support a network theory of mathematical competence in primary school children and falsify the importance of a proposed modular 'number sense'. We suggest an 'executive memory function centric' model of mathematical processing. Mapping a complex processing network requires that studies consider the complex predictor space of mathematics rather than just focusing on a single or a few explanatory factors.

  12. Cognitive components of a mathematical processing network in 9-year-old children

    PubMed Central

    Szűcs, Dénes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2014-01-01

    We determined how various cognitive abilities, including several measures of a proposed domain-specific number sense, relate to mathematical competence in nearly 100 9-year-old children with normal reading skill. Results are consistent with an extended number processing network and suggest that important processing nodes of this network are phonological processing, verbal knowledge, visuo-spatial short-term and working memory, spatial ability and general executive functioning. The model was highly specific to predicting arithmetic performance. There were no strong relations between mathematical achievement and verbal short-term and working memory, sustained attention, response inhibition, finger knowledge and symbolic number comparison performance. Non-verbal intelligence measures were also non-significant predictors when added to our model. Number sense variables were non-significant predictors in the model and they were also non-significant predictors when entered into regression analysis with only a single visuo-spatial WM measure. Number sense variables were predicted by sustained attention. Results support a network theory of mathematical competence in primary school children and falsify the importance of a proposed modular ‘number sense’. We suggest an ‘executive memory function centric’ model of mathematical processing. Mapping a complex processing network requires that studies consider the complex predictor space of mathematics rather than just focusing on a single or a few explanatory factors. PMID:25089322

  13. Characterizing interactions in online social networks during exceptional events

    NASA Astrophysics Data System (ADS)

    Omodei, Elisa; De Domenico, Manlio; Arenas, Alex

    2015-08-01

    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events.

  14. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    PubMed

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis

    PubMed Central

    Williams, Alex H.; Kwiatkowski, Molly A.; Mortimer, Adam L.; Marder, Eve; Zeeman, Mary Lou

    2013-01-01

    The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: “small cells” (SCs) and “large cells” (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. PMID:23446690

  16. Evidence for Functional Networks within the Human Brain's White Matter.

    PubMed

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human brain. However, most fMRI studies ignored a major part of the brain, the white-matter, discarding signals from it as arising from noise. Here we use resting-state fMRI data from 176 subjects to show that signals from the human white-matter contain meaningful information. We identify 12 functional networks composed of interacting long-distance white-matter tracts. Moreover, we show that these networks are highly correlated to resting-state gray-matter networks, highlighting their functional role. Our findings enable reinterpretation of many existing fMRI datasets, and suggest a new way to explore the white-matter role in cognition and its disturbances in neuropsychiatric disorders. Copyright © 2017 the authors 0270-6474/17/376394-14$15.00/0.

  17. Space lab system analysis

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Rives, T. B.

    1987-01-01

    An analytical analysis of the HOSC Generic Peripheral processing system was conducted. The results are summarized and they indicate that the maximum delay in performing screen change requests should be less than 2.5 sec., occurring for a slow VAX host to video screen I/O rate of 50 KBps. This delay is due to the average I/O rate from the video terminals to their host computer. Software structure of the main computers and the host computers will have greater impact on screen change or refresh response times. The HOSC data system model was updated by a newly coded PASCAL based simulation program which was installed on the HOSC VAX system. This model is described and documented. Suggestions are offered to fine tune the performance of the ETERNET interconnection network. Suggestions for using the Nutcracker by Excelan to trace itinerate packets which appear on the network from time to time were offered in discussions with the HOSC personnel. Several visits to the HOSC facility were to install and demonstrate the simulation model.

  18. Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads.

    PubMed

    Lee, Tae-Ho; Miernicki, Michelle E; Telzer, Eva H

    2017-05-15

    Despite emerging evidence suggesting a biological basis to our social tiles, our understanding of the neural processes which link two minds is unknown. We implemented a novel approach, which included connectome similarity analysis using resting state intrinsic networks of parent-child dyads as well as daily diaries measured across 14 days. Intrinsic resting-state networks for both parents and their adolescent child were identified using independent component analysis (ICA). Results indicate that parents and children who had more similar RSN connectome also had more similar day-to-day emotional synchrony. Furthermore, dyadic RSN connectome similarity was associated with children's emotional competence, suggesting that being neurally in-tune with their parents confers emotional benefits. We provide the first evidence that dyadic RSN similarity is associated with emotional synchrony in what is often our first and most essential social bond, the parent-child relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion

    NASA Astrophysics Data System (ADS)

    Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang

    2018-03-01

    Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.

  20. A network analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in U.S. military veterans.

    PubMed

    Armour, Cherie; Fried, Eiko I; Deserno, Marie K; Tsai, Jack; Pietrzak, Robert H

    2017-01-01

    Recent developments in psychometrics enable the application of network models to analyze psychological disorders, such as PTSD. Instead of understanding symptoms as indicators of an underlying common cause, this approach suggests symptoms co-occur in syndromes due to causal interactions. The current study has two goals: (1) examine the network structure among the 20 DSM-5 PTSD symptoms, and (2) incorporate clinically relevant variables to the network to investigate whether PTSD symptoms exhibit differential relationships with suicidal ideation, depression, anxiety, physical functioning/quality of life (QoL), mental functioning/QoL, age, and sex. We utilized a nationally representative U.S. military veteran's sample; and analyzed the data from a subsample of 221 veterans who reported clinically significant DSM-5 PTSD symptoms. Networks were estimated using state-of-the-art regularized partial correlation models. Data and code are published along with the paper. The 20-item DSM-5 PTSD network revealed that symptoms were positively connected within the network. Especially strong connections emerged between nightmares and flashbacks; blame of self or others and negative trauma-related emotions, detachment and restricted affect; and hypervigilance and exaggerated startle response. The most central symptoms were negative trauma-related emotions, flashbacks, detachment, and physiological cue reactivity. Incorporation of clinically relevant covariates into the network revealed paths between self-destructive behavior and suicidal ideation; concentration difficulties and anxiety, depression, and mental QoL; and depression and restricted affect. These results demonstrate the utility of a network approach in modeling the structure of DSM-5 PTSD symptoms, and suggest differential associations between specific DSM-5 PTSD symptoms and clinical outcomes in trauma survivors. Implications of these results for informing the assessment and treatment of this disorder, are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Comparative Study of 11 Local Health Department Organizational Networks

    PubMed Central

    Merrill, Jacqueline; Keeling, Jonathan W.; Carley, Kathleen M.

    2013-01-01

    Context Although the nation’s local health departments (LHDs) share a common mission, variability in administrative structures is a barrier to identifying common, optimal management strategies. There is a gap in understanding what unifying features LHDs share as organizations that could be leveraged systematically for achieving high performance. Objective To explore sources of commonality and variability in a range of LHDs by comparing intraorganizational networks. Intervention We used organizational network analysis to document relationships between employees, tasks, knowledge, and resources within LHDs, which may exist regardless of formal administrative structure. Setting A national sample of 11 LHDs from seven states that differed in size, geographic location, and governance. Participants Relational network data were collected via an on-line survey of all employees in 11 LHDs. A total of 1 062 out of 1 239 employees responded (84% response rate). Outcome Measures Network measurements were compared using coefficient of variation. Measurements were correlated with scores from the National Public Health Performance Assessment and with LHD demographics. Rankings of tasks, knowledge, and resources were correlated across pairs of LHDs. Results We found that 11 LHDs exhibited compound organizational structures in which centralized hierarchies were coupled with distributed networks at the point of service. Local health departments were distinguished from random networks by a pattern of high centralization and clustering. Network measurements were positively associated with performance for 3 of 10 essential services (r > 0.65). Patterns in the measurements suggest how LHDs adapt to the population served. Conclusions Shared network patterns across LHDs suggest where common organizational management strategies are feasible. This evidence supports national efforts to promote uniform standards for service delivery to diverse populations. PMID:20445462

  2. Diagnostic utility of brain activity flow patterns analysis in attention deficit hyperactivity disorder.

    PubMed

    Biederman, J; Hammerness, P; Sadeh, B; Peremen, Z; Amit, A; Or-Ly, H; Stern, Y; Reches, A; Geva, A; Faraone, S V

    2017-05-01

    A previous small study suggested that Brain Network Activation (BNA), a novel ERP-based brain network analysis, may have diagnostic utility in attention deficit hyperactivity disorder (ADHD). In this study we examined the diagnostic capability of a new advanced version of the BNA methodology on a larger population of adults with and without ADHD. Subjects were unmedicated right-handed 18- to 55-year-old adults of both sexes with and without a DSM-IV diagnosis of ADHD. We collected EEG while the subjects were performing a response inhibition task (Go/NoGo) and then applied a spatio-temporal Brain Network Activation (BNA) analysis of the EEG data. This analysis produced a display of qualitative measures of brain states (BNA scores) providing information on cortical connectivity. This complex set of scores was then fed into a machine learning algorithm. The BNA analysis of the EEG data recorded during the Go/NoGo task demonstrated a high discriminative capacity between ADHD patients and controls (AUC = 0.92, specificity = 0.95, sensitivity = 0.86 for the Go condition; AUC = 0.84, specificity = 0.91, sensitivity = 0.76 for the NoGo condition). BNA methodology can help differentiate between ADHD and healthy controls based on functional brain connectivity. The data support the utility of the tool to augment clinical examinations by objective evaluation of electrophysiological changes associated with ADHD. Results also support a network-based approach to the study of ADHD.

  3. Dim Networks: The Utility of Social Network Analysis for Illuminating Partner Security Force Networks

    DTIC Science & Technology

    2015-12-01

    use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations and selectively target key elements...data to improve SC. 14. SUBJECT TERMS social network analysis, dark networks, light networks, dim networks, security cooperation, Southeast Asia...task may already exist. Recently, the use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations

  4. Relation between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi

    2002-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to magnetic discontinuities in PBSs. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  5. Relation Between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Suess, Steven T.; Sakurai, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to discontinuities. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  6. Synergistic Allosteric Mechanism of Fructose-1,6-bisphosphate and Serine for Pyruvate Kinase M2 via Dynamics Fluctuation Network Analysis.

    PubMed

    Yang, Jingxu; Liu, Hao; Liu, Xiaorui; Gu, Chengbo; Luo, Ray; Chen, Hai-Feng

    2016-06-27

    Pyruvate kinase M2 (PKM2) plays a key role in tumor metabolism and regulates the rate-limiting final step of glycolysis. In tumor cells, there are two allosteric effectors for PKM2: fructose-1,6-bisphosphate (FBP) and serine. However, the relationship between FBP and serine for allosteric regulation of PKM2 is unknown. Here we constructed residue/residue fluctuation correlation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in bound PKM2 is distinctly different from that in the free state, FBP/PKM2, or Ser/PKM2. The community network analysis indicates that the information can freely transfer from the allosteric sites of FBP and serine to the substrate site in bound PKM2, while there exists a bottleneck for information transfer in the network of the free state. Furthermore, the binding free energy between the substrate and PKM2 for bound PKM2 is significantly lower than either of FBP/PKM2 or Ser/PKM2. Thus, a hypothesis of "synergistic allosteric mechanism" is proposed for the allosteric regulation of FBP and serine. This hypothesis was further confirmed by the perturbational and mutational analyses of community networks and binding free energies. Finally, two possible synergistic allosteric pathways of FBP-K433-T459-R461-A109-V71-R73-MG2-OXL and Ser-I47-C49-R73-MG2-OXL were identified based on the shortest path algorithm and were confirmed by the network perturbation analysis. Interestingly, no similar pathways could be found in the free state. The process targeting on the allosteric pathways can better regulate the glycolysis of PKM2 and significantly inhibit the progression of tumor.

  7. Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome

    PubMed Central

    Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964

  8. [Using social network analysis to examine care for older drug users in three major cities in Germany : Results of a pilot study].

    PubMed

    Kuhn, U; Hofmann, L; Hoff, T; Färber, N

    2018-05-04

    Compared with the general population, chronic drug addicts already start showing typical aging problems by the age of 40 years. The increasing number of older drug addicts leads to questions of what an adequate health and social care should look like. This discussion particularly takes place in the context of a sufficient integration of different care systems. A sufficient integration requires an improvement in the networking of substance treatment, nursing care and medical care services. The purpose of this study was to investigate the care structure of older people who use drugs and the services involved in a social network analysis. This was a descriptive design of the pilot study. The study objective was to gain first-hand knowledge about the health and social care situation, the quality of care concerning this client group and to identify supply gaps. Therefore, the three regions Cologne, Dusseldorf and Frankfurt/Main were exemplarily examined. The data for the social network analysis was gathered by a quantitative online questionnaire. Therefore, especially central network members were contacted and asked to participate. The survey was conducted in two waves. In total, 65 practitioners of all surveyed cities participated in the second wave. The centrality measures assessed indicated that in all regions institutions of the substance abuse service network hold central positions in terms of conveying information. The moderate density values of the networks suggest that there are sufficient cooperation structures. Care deficits were identified most frequently in the areas of housing and nursing care. The results provide the first systematic insights and a description of the cooperation practice in the care system. Because of the limitations, further research and practice issues are raised.

  9. DTI-based connectome analysis of adolescents with major depressive disorder reveals hypoconnectivity of the right caudate.

    PubMed

    Tymofiyeva, Olga; Connolly, Colm G; Ho, Tiffany C; Sacchet, Matthew D; Henje Blom, Eva; LeWinn, Kaja Z; Xu, Duan; Yang, Tony T

    2017-01-01

    Adolescence is a vulnerable period for the onset of major depressive disorder (MDD). While some studies have shown white matter alterations in adolescent MDD, there is still a gap in understanding how the brain is affected at a network level. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 57 adolescents with MDD and 41 well-matched healthy controls who completed self-reports of depression symptoms and stressful life events. Using atlas-based brain regions as network nodes and tractography streamline count or mean fractional anisotropy (FA) as edge weights, we examined weighted local and global network properties and performed Network-Based Statistic (NBS) analysis. While there were no significant group differences in the global network properties, the FA-weighted node strength of the right caudate was significantly lower in depressed adolescents and correlated positively with age across both groups. The NBS analysis revealed a cluster of lower FA-based connectivity in depressed subjects centered on the right caudate, including connections to frontal gyri, insula, and anterior cingulate. Within this cluster, the most robust difference between groups was the connection between the right caudate and middle frontal gyrus. This connection showed a significant diagnosis by stress interaction and a negative correlation with total stress in depressed adolescents. Use of DTI-based tractography, one atlas-based parcellation, and FA values to characterize brain networks represent this study's limitations. Our results allowed us to suggest caudate-centric models of dysfunctional processes underlying adolescent depression, which might guide future studies and help better understand and treat this disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Social Network Behavior and Engagement Within a Smoking Cessation Facebook Page.

    PubMed

    Cole-Lewis, Heather; Perotte, Adler; Galica, Kasia; Dreyer, Lindy; Griffith, Christopher; Schwarz, Mary; Yun, Christopher; Patrick, Heather; Coa, Kisha; Augustson, Erik

    2016-08-02

    Social media platforms are increasingly being used to support individuals in behavior change attempts, including smoking cessation. Examining the interactions of participants in health-related social media groups can help inform our understanding of how these groups can best be leveraged to facilitate behavior change. The aim of this study was to analyze patterns of participation, self-reported smoking cessation length, and interactions within the National Cancer Institutes' Facebook community for smoking cessation support. Our sample consisted of approximately 4243 individuals who interacted (eg, posted, commented) on the public Smokefree Women Facebook page during the time of data collection. In Phase 1, social network visualizations and centrality measures were used to evaluate network structure and engagement. In Phase 2, an inductive, thematic qualitative content analysis was conducted with a subsample of 500 individuals, and correlational analysis was used to determine how participant engagement was associated with self-reported session length. Between February 2013 and March 2014, there were 875 posts and 4088 comments from approximately 4243 participants. Social network visualizations revealed the moderator's role in keeping the community together and distributing the most active participants. Correlation analyses suggest that engagement in the network was significantly inversely associated with cessation status (Spearman correlation coefficient = -0.14, P=.03, N=243). The content analysis of 1698 posts from 500 randomly selected participants identified the most frequent interactions in the community as providing support (43%, n=721) and announcing number of days smoke free (41%, n=689). These findings highlight the importance of the moderator for network engagement and provide helpful insights into the patterns and types of interactions participants are engaging in. This study adds knowledge of how the social network of a smoking cessation community behaves within the confines of a Facebook group.

  11. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.

    PubMed

    Verkhivker, G M

    2016-10-20

    Protein kinases are central to proper functioning of cellular networks and are an integral part of many signal transduction pathways. The family of protein kinases represents by far the largest and most important class of therapeutic targets in oncology. Dimerization-induced activation has emerged as a common mechanism of allosteric regulation in BRAF kinases, which play an important role in growth factor signalling and human diseases. Recent studies have revealed that most of the BRAF inhibitors can induce dimerization and paradoxically stimulate enzyme transactivation by conferring an active conformation in the second monomer of the kinase dimer. The emerging connections between inhibitor binding and BRAF kinase domain dimerization have suggested a molecular basis of the activation mechanism in which BRAF inhibitors may allosterically modulate the stability of the dimerization interface and affect the organization of residue interaction networks in BRAF kinase dimers. In this work, we integrated structural bioinformatics analysis, molecular dynamics and binding free energy simulations with the protein structure network analysis of the BRAF crystal structures to determine dynamic signatures of BRAF conformations in complexes with different types of inhibitors and probe the mechanisms of the inhibitor-induced dimerization and paradoxical activation. The results of this study highlight previously unexplored relationships between types of BRAF inhibitors, inhibitor-induced changes in the residue interaction networks and allosteric modulation of the kinase activity. This study suggests a mechanism by which BRAF inhibitors could promote or interfere with the paradoxical activation of BRAF kinases, which may be useful in informing discovery efforts to minimize the unanticipated adverse biological consequences of these therapeutic agents.

  12. Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory

    NASA Astrophysics Data System (ADS)

    Wang, Na; Li, Dong; Wang, Qiwen

    2012-12-01

    The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government policies in China on the changes of dynamics of GDP and the three industries adjustment. The work in our paper provides a new way to understand the dynamics of economic development.

  13. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells.

    PubMed

    Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith

    2017-05-01

    Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression networks. Stem Cells 2017;35:1273-1289. © 2017 AlphaMed Press.

  14. Transcription Analysis of the Myometrium of Labouring and Non-Labouring Women

    PubMed Central

    Hutchinson, James L.; Hibbert, Nanette; Freeman, Tom C.; Saunders, Philippa T. K.; Norman, Jane E.

    2016-01-01

    An incomplete understanding of the molecular mechanisms that initiate normal human labour at term seriously hampers the development of effective ways to predict, prevent and treat disorders such as preterm labour. Appropriate analysis of large microarray experiments that compare gene expression in non-labouring and labouring gestational tissues is necessary to help bridge these gaps in our knowledge. In this work, gene expression in 48 (22 labouring, 26 non-labouring) lower-segment myometrial samples collected at Caesarean section were analysed using Illumina HT-12 v4.0 BeadChips. Normalised data were compared between labouring and non-labouring groups using traditional statistical methods and a novel network graph approach. We sought technical validation with quantitative real-time PCR, and biological replication through inverse variance-weighted meta-analysis with published microarray data. We have extended the list of genes suggested to be associated with labour: Compared to non-labouring samples, labouring samples showed apparent higher expression at 960 probes (949 genes) and apparent lower expression at 801 probes (789 genes) (absolute fold change ≥1.2, rank product percentage of false positive value (RP-PFP) <0.05). Although half of the women in the labouring group had received pharmaceutical treatment to induce or augment labour, sensitivity analysis suggested that this did not confound our results. In agreement with previous studies, functional analysis suggested that labour was characterised by an increase in the expression of inflammatory genes and network analysis suggested a strong neutrophil signature. Our analysis also suggested that labour is characterised by a decrease in the expression of muscle-specific processes, which has not been explicitly discussed previously. We validated these findings through the first formal meta-analysis of raw data from previous experiments and we hypothesise that this represents a change in the composition of myometrial tissue at labour. Further work will be necessary to reveal whether these results are solely due to leukocyte infiltration into the myometrium as a mechanism initiating labour, or in addition whether they also represent gene changes in the myocytes themselves. We have made all our data available at www.ebi.ac.uk/arrayexpress/ (accession number E-MTAB-3136) to facilitate progression of this work. PMID:27176052

  15. The pangenome of the genus Clostridium.

    PubMed

    Udaondo, Zulema; Duque, Estrella; Ramos, Juan-Luis

    2017-07-01

    The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    PubMed

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  17. Impact of real-time fMRI working memory feedback training on the interactions between three core brain networks.

    PubMed

    Zhang, Qiushi; Zhang, Gaoyan; Yao, Li; Zhao, Xiaojie

    2015-01-01

    Working memory (WM) refers to the temporary holding and manipulation of information during the performance of a range of cognitive tasks, and WM training is a promising method for improving an individual's cognitive functions. Our previous work demonstrated that WM performance can be improved through self-regulation of dorsal lateral prefrontal cortex (PFC) activation using real-time functional magnetic resonance imaging (rtfMRI), which enables individuals to control local brain activities volitionally according to the neurofeedback. Furthermore, research concerning large-scale brain networks has demonstrated that WM training requires the engagement of several networks, including the central executive network (CEN), the default mode network (DMN) and the salience network (SN), and functional connectivity within the CEN and DMN can be changed by WM training. Although a switching role of the SN between the CEN and DMN has been demonstrated, it remains unclear whether WM training can affect the interactions between the three networks and whether a similar mechanism also exists during the training process. In this study, we investigated the dynamic functional connectivity between the three networks during the rtfMRI feedback training using independent component analysis (ICA) and correlation analysis. The results indicated that functional connectivity within and between the three networks were significantly enhanced by feedback training, and most of the changes were associated with the insula and correlated with behavioral improvements. These findings suggest that the insula plays a critical role in the reorganization of functional connectivity among the three networks induced by rtfMRI training and in WM performance, thus providing new insights into the mechanisms of high-level functions and the clinical treatment of related functional impairments.

  18. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury

    PubMed Central

    Duff, Melissa C.; McAuley, Edward; Kramer, Arthur F.; Voss, Michelle W.

    2016-01-01

    Abstract Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p < 0.01), and ECN (p < 0.05), but not for the DMN (p > 0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment. PMID:25719433

  19. Visualization analysis of author collaborations in schizophrenia research.

    PubMed

    Wu, Ying; Duan, Zhiguang

    2015-02-19

    Schizophrenia is a serious mental illness that levies a heavy medical toll and cost burden throughout the world. Scientific collaborations are necessary for progress in psychiatric research. However, there have been few publications on scientific collaborations in schizophrenia. The aim of this study was to investigate the extent of author collaborations in schizophrenia research. This study used 58,107 records on schizophrenia from 2003 to 2012 which were downloaded from Science Citation Index Expanded (SCI Expanded) via Web of Science. CiteSpace III, an information visualization and analysis software, was used to make a visual analysis. Collaborative author networks within the field of schizophrenia were determined using published documents. We found that external author collaboration networks were more scattered while potential author collaboration networks were more compact. Results from hierarchical clustering analysis showed that the main collaborative field was genetic research in schizophrenia. Based on the results, authors belonging to different institutions and in different countries should be encouraged to collaborate in schizophrenia research. This will help researchers focus their studies on key issues, and allow each other to offer reasonable suggestions for making polices and providing scientific evidence to effectively diagnose, prevent, and cure schizophrenia.

  20. Topological versus rheological entanglement length in primitive-path analysis protocols, tube models, and slip-link models

    NASA Astrophysics Data System (ADS)

    Everaers, Ralf

    2012-08-01

    We show that the front factor appearing in the shear modulus of a phantom network, Gph=(1-2/f)(ρkBT)/Ns, also controls the ratio of the strand length, Ns, and the number of monomers per Kuhn length of the primitive paths, NphPPKuhn, characterizing the average network conformation. In particular, NphPPKuhn=Ns/(1-2/f) and Gph=(ρkBT)/NphPPKuhn. Neglecting the difference between cross-links and slip-links, these results can be transferred to entangled systems and the interpretation of primitive path analysis data. In agreement with the tube model, the analogy to phantom networks suggest that the rheological entanglement length, Nerheo=(ρkBT)/Ge, should equal NePPKuhn. Assuming binary entanglements with f=4 functional junctions, we expect that Nerheo should be twice as large as the topological entanglement length, Netopo. These results are in good agreement with reported primitive path analysis results for model systems and a wide range of polymeric materials. Implications for tube and slip-link models are discussed.

Top