Sample records for network analysis tool

  1. Network Analysis Tools: from biological networks to clusters and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  2. LENS: web-based lens for enrichment and network studies of human proteins

    PubMed Central

    2015-01-01

    Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011

  3. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-09-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  4. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-04-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  5. Interactive Planning under Uncertainty with Casual Modeling and Analysis

    DTIC Science & Technology

    2006-01-01

    Tool ( CAT ), a system for creating and analyzing causal models similar to Bayes networks. In order to use CAT as a tool for planning, users go through...an iterative process in which they use CAT to create and an- alyze alternative plans. One of the biggest difficulties is that the number of possible...Causal Analysis Tool ( CAT ), which is a tool for representing and analyzing causal networks sim- ilar to Bayesian networks. In order to represent plans

  6. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    NASA Technical Reports Server (NTRS)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  7. Improvements to Integrated Tradespace Analysis of Communications Architectures (ITACA) Network Loading Analysis Tool

    NASA Technical Reports Server (NTRS)

    Lee, Nathaniel; Welch, Bryan W.

    2018-01-01

    NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.

  8. Computational Tools for Metabolic Engineering

    PubMed Central

    Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.

    2012-01-01

    A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572

  9. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  10. A reliability analysis tool for SpaceWire network

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  11. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    PubMed

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  12. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE PAGES

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.; ...

    2017-07-18

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  13. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  14. A dynamical framework for integrated corridor management.

    DOT National Transportation Integrated Search

    2016-01-11

    We develop analysis and control synthesis tools for dynamic traffic flow over networks. Our analysis : relies on exploiting monotonicity properties of the dynamics, and on adapting relevant tools from : stochastic queuing networks. We develop proport...

  15. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    PubMed

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  16. Temporal Comparisons of Internet Topology

    DTIC Science & Technology

    2014-06-01

    Number CAIDA Cooperative Association of Internet Data Analysis CDN Content Delivery Network CI Confidence Interval DoS denial of service GMT Greenwich...the CAIDA data. Our methods include analysis of graph theoretical measures as well as complex network and statistical measures that will quantify the...tool that probes the Internet for topology analysis and performance [26]. Scamper uses network diagnostic tools, such as traceroute and ping, to probe

  17. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    PubMed

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  18. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques

    2008-07-01

    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources.

  19. Computerized power supply analysis: State equation generation and terminal models

    NASA Technical Reports Server (NTRS)

    Garrett, S. J.

    1978-01-01

    To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.

  20. Identifying and tracking attacks on networks: C3I displays and related technologies

    NASA Astrophysics Data System (ADS)

    Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.

    2003-09-01

    Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.

  1. ProphTools: general prioritization tools for heterogeneous biological networks.

    PubMed

    Navarro, Carmen; Martínez, Victor; Blanco, Armando; Cano, Carlos

    2017-12-01

    Networks have been proven effective representations for the analysis of biological data. As such, there exist multiple methods to extract knowledge from biological networks. However, these approaches usually limit their scope to a single biological entity type of interest or they lack the flexibility to analyze user-defined data. We developed ProphTools, a flexible open-source command-line tool that performs prioritization on a heterogeneous network. ProphTools prioritization combines a Flow Propagation algorithm similar to a Random Walk with Restarts and a weighted propagation method. A flexible model for the representation of a heterogeneous network allows the user to define a prioritization problem involving an arbitrary number of entity types and their interconnections. Furthermore, ProphTools provides functionality to perform cross-validation tests, allowing users to select the best network configuration for a given problem. ProphTools core prioritization methodology has already been proven effective in gene-disease prioritization and drug repositioning. Here we make ProphTools available to the scientific community as flexible, open-source software and perform a new proof-of-concept case study on long noncoding RNAs (lncRNAs) to disease prioritization. ProphTools is robust prioritization software that provides the flexibility not present in other state-of-the-art network analysis approaches, enabling researchers to perform prioritization tasks on any user-defined heterogeneous network. Furthermore, the application to lncRNA-disease prioritization shows that ProphTools can reach the performance levels of ad hoc prioritization tools without losing its generality. © The Authors 2017. Published by Oxford University Press.

  2. In Search of Practitioner-Based Social Capital: A Social Network Analysis Tool for Understanding and Facilitating Teacher Collaboration in a US-Based STEM Professional Development Program

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.; Yoon, Susan A.

    2011-01-01

    This paper presents the first in a series of studies on the informal advice networks of a community of teachers in an in-service professional development program. The aim of the research was to use Social Network Analysis as a methodological tool to reveal the social networks developed by the teachers, and to examine whether these networks…

  3. Honeycomb: Visual Analysis of Large Scale Social Networks

    NASA Astrophysics Data System (ADS)

    van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.

    The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.

  4. atBioNet--an integrated network analysis tool for genomics and biomarker discovery.

    PubMed

    Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-07-20

    Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.

  5. PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification.

    PubMed

    Vadigepalli, Rajanikanth; Chakravarthula, Praveen; Zak, Daniel E; Schwaber, James S; Gonye, Gregory E

    2003-01-01

    We have developed a bioinformatics tool named PAINT that automates the promoter analysis of a given set of genes for the presence of transcription factor binding sites. Based on coincidence of regulatory sites, this tool produces an interaction matrix that represents a candidate transcriptional regulatory network. This tool currently consists of (1) a database of promoter sequences of known or predicted genes in the Ensembl annotated mouse genome database, (2) various modules that can retrieve and process the promoter sequences for binding sites of known transcription factors, and (3) modules for visualization and analysis of the resulting set of candidate network connections. This information provides a substantially pruned list of genes and transcription factors that can be examined in detail in further experimental studies on gene regulation. Also, the candidate network can be incorporated into network identification methods in the form of constraints on feasible structures in order to render the algorithms tractable for large-scale systems. The tool can also produce output in various formats suitable for use in external visualization and analysis software. In this manuscript, PAINT is demonstrated in two case studies involving analysis of differentially regulated genes chosen from two microarray data sets. The first set is from a neuroblastoma N1E-115 cell differentiation experiment, and the second set is from neuroblastoma N1E-115 cells at different time intervals following exposure to neuropeptide angiotensin II. PAINT is available for use as an agent in BioSPICE simulation and analysis framework (www.biospice.org), and can also be accessed via a WWW interface at www.dbi.tju.edu/dbi/tools/paint/.

  6. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  7. Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application.

    PubMed

    Liu, Shoubing; Lu, Wenke; Zhu, Changchun

    2017-11-01

    The goal of this research is to study two-port network of wavelet transform processor (WTP) using surface acoustic wave (SAW) devices and its application. The motive was prompted by the inconvenience of the long research and design cycle and the huge research funding involved with traditional method in this field, which were caused by the lack of the simulation and emulation method of WTP using SAW devices. For this reason, we introduce the two-port network analysis tool, which has been widely used in the design and analysis of SAW devices with uniform interdigital transducers (IDTs). Because the admittance parameters calculation formula of the two-port network can only be used for the SAW devices with uniform IDTs, this analysis tool cannot be directly applied into the design and analysis of the processor using SAW devices, whose input interdigital transducer (IDT) is apodized weighting. Therefore, in this paper, we propose the channel segmentation method, which can convert the WTP using SAW devices into parallel channels, and also provide with the calculation formula of the number of channels, the number of finger pairs and the static capacitance of an interdigital period in each parallel channel firstly. From the parameters given above, we can calculate the admittance parameters of the two port network for each channel, so that we can obtain the admittance parameter of the two-port network of the WTP using SAW devices on the basis of the simplification rule of parallel two-port network. Through this analysis tool, not only can we get the impulse response function of the WTP using SAW devices but we can also get the matching circuit of it. Large numbers of studies show that the parameters of the two-port network obtained by this paper are consistent with those measured by network analyzer E5061A, and the impulse response function obtained by the two-port network analysis tool is also consistent with that measured by network analyzer E5061A, which can meet the accuracy requirements of the analysis of the WTP using SAW devices. Therefore the two-port network analysis tool discussed in this paper has comparatively higher theoretical and practical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. GARNET--gene set analysis with exploration of annotation relations.

    PubMed

    Rho, Kyoohyoung; Kim, Bumjin; Jang, Youngjun; Lee, Sanghyun; Bae, Taejeong; Seo, Jihae; Seo, Chaehwa; Lee, Jihyun; Kang, Hyunjung; Yu, Ungsik; Kim, Sunghoon; Lee, Sanghyuk; Kim, Wan Kyu

    2011-02-15

    Gene set analysis is a powerful method of deducing biological meaning for an a priori defined set of genes. Numerous tools have been developed to test statistical enrichment or depletion in specific pathways or gene ontology (GO) terms. Major difficulties towards biological interpretation are integrating diverse types of annotation categories and exploring the relationships between annotation terms of similar information. GARNET (Gene Annotation Relationship NEtwork Tools) is an integrative platform for gene set analysis with many novel features. It includes tools for retrieval of genes from annotation database, statistical analysis & visualization of annotation relationships, and managing gene sets. In an effort to allow access to a full spectrum of amassed biological knowledge, we have integrated a variety of annotation data that include the GO, domain, disease, drug, chromosomal location, and custom-defined annotations. Diverse types of molecular networks (pathways, transcription and microRNA regulations, protein-protein interaction) are also included. The pair-wise relationship between annotation gene sets was calculated using kappa statistics. GARNET consists of three modules--gene set manager, gene set analysis and gene set retrieval, which are tightly integrated to provide virtually automatic analysis for gene sets. A dedicated viewer for annotation network has been developed to facilitate exploration of the related annotations. GARNET (gene annotation relationship network tools) is an integrative platform for diverse types of gene set analysis, where complex relationships among gene annotations can be easily explored with an intuitive network visualization tool (http://garnet.isysbio.org/ or http://ercsb.ewha.ac.kr/garnet/).

  9. SATRAT: Staphylococcus aureus transcript regulatory network analysis tool.

    PubMed

    Gopal, Tamilselvi; Nagarajan, Vijayaraj; Elasri, Mohamed O

    2015-01-01

    Staphylococcus aureus is a commensal organism that primarily colonizes the nose of healthy individuals. S. aureus causes a spectrum of infections that range from skin and soft-tissue infections to fatal invasive diseases. S. aureus uses a large number of virulence factors that are regulated in a coordinated fashion. The complex regulatory mechanisms have been investigated in numerous high-throughput experiments. Access to this data is critical to studying this pathogen. Previously, we developed a compilation of microarray experimental data to enable researchers to search, browse, compare, and contrast transcript profiles. We have substantially updated this database and have built a novel exploratory tool-SATRAT-the S. aureus transcript regulatory network analysis tool, based on the updated database. This tool is capable of performing deep searches using a query and generating an interactive regulatory network based on associations among the regulators of any query gene. We believe this integrated regulatory network analysis tool would help researchers explore the missing links and identify novel pathways that regulate virulence in S. aureus. Also, the data model and the network generation code used to build this resource is open sourced, enabling researchers to build similar resources for other bacterial systems.

  10. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  11. Real-Time Visualization of Network Behaviors for Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.

    Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less

  12. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

    PubMed Central

    Hurley, Daniel; Araki, Hiromitsu; Tamada, Yoshinori; Dunmore, Ben; Sanders, Deborah; Humphreys, Sally; Affara, Muna; Imoto, Seiya; Yasuda, Kaori; Tomiyasu, Yuki; Tashiro, Kosuke; Savoie, Christopher; Cho, Vicky; Smith, Stephen; Kuhara, Satoru; Miyano, Satoru; Charnock-Jones, D. Stephen; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions. PMID:22121215

  13. Toward a Scalable Visualization System for Network Traffic Monitoring

    NASA Astrophysics Data System (ADS)

    Malécot, Erwan Le; Kohara, Masayoshi; Hori, Yoshiaki; Sakurai, Kouichi

    With the multiplication of attacks against computer networks, system administrators are required to monitor carefully the traffic exchanged by the networks they manage. However, that monitoring task is increasingly laborious because of the augmentation of the amount of data to analyze. And that trend is going to intensify with the explosion of the number of devices connected to computer networks along with the global rise of the available network bandwidth. So system administrators now heavily rely on automated tools to assist them and simplify the analysis of the data. Yet, these tools provide limited support and, most of the time, require highly skilled operators. Recently, some research teams have started to study the application of visualization techniques to the analysis of network traffic data. We believe that this original approach can also allow system administrators to deal with the large amount of data they have to process. In this paper, we introduce a tool for network traffic monitoring using visualization techniques that we developed in order to assist the system administrators of our corporate network. We explain how we designed the tool and some of the choices we made regarding the visualization techniques to use. The resulting tool proposes two linked representations of the network traffic and activity, one in 2D and the other in 3D. As 2D and 3D visualization techniques have different assets, we resulted in combining them in our tool to take advantage of their complementarity. We finally tested our tool in order to evaluate the accuracy of our approach.

  14. Graphical tools for network meta-analysis in STATA.

    PubMed

    Chaimani, Anna; Higgins, Julian P T; Mavridis, Dimitris; Spyridonos, Panagiota; Salanti, Georgia

    2013-01-01

    Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.

  15. Graphical Tools for Network Meta-Analysis in STATA

    PubMed Central

    Chaimani, Anna; Higgins, Julian P. T.; Mavridis, Dimitris; Spyridonos, Panagiota; Salanti, Georgia

    2013-01-01

    Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results. PMID:24098547

  16. Biblio-MetReS: A bibliometric network reconstruction application and server

    PubMed Central

    2011-01-01

    Background Reconstruction of genes and/or protein networks from automated analysis of the literature is one of the current targets of text mining in biomedical research. Some user-friendly tools already perform this analysis on precompiled databases of abstracts of scientific papers. Other tools allow expert users to elaborate and analyze the full content of a corpus of scientific documents. However, to our knowledge, no user friendly tool that simultaneously analyzes the latest set of scientific documents available on line and reconstructs the set of genes referenced in those documents is available. Results This article presents such a tool, Biblio-MetReS, and compares its functioning and results to those of other user-friendly applications (iHOP, STRING) that are widely used. Under similar conditions, Biblio-MetReS creates networks that are comparable to those of other user friendly tools. Furthermore, analysis of full text documents provides more complete reconstructions than those that result from using only the abstract of the document. Conclusions Literature-based automated network reconstruction is still far from providing complete reconstructions of molecular networks. However, its value as an auxiliary tool is high and it will increase as standards for reporting biological entities and relationships become more widely accepted and enforced. Biblio-MetReS is an application that can be downloaded from http://metres.udl.cat/. It provides an easy to use environment for researchers to reconstruct their networks of interest from an always up to date set of scientific documents. PMID:21975133

  17. Advantages of Social Network Analysis in Educational Research

    ERIC Educational Resources Information Center

    Ushakov, K. M.; Kukso, K. N.

    2015-01-01

    Currently one of the main tools for the large scale studies of schools is statistical analysis. Although it is the most common method and it offers greatest opportunities for analysis, there are other quantitative methods for studying schools, such as network analysis. We discuss the potential advantages that network analysis has for educational…

  18. Three-dimensional evidence network plot system: covariate imbalances and effects in network meta-analysis explored using a new software tool.

    PubMed

    Batson, Sarah; Score, Robert; Sutton, Alex J

    2017-06-01

    The aim of the study was to develop the three-dimensional (3D) evidence network plot system-a novel web-based interactive 3D tool to facilitate the visualization and exploration of covariate distributions and imbalances across evidence networks for network meta-analysis (NMA). We developed the 3D evidence network plot system within an AngularJS environment using a third party JavaScript library (Three.js) to create the 3D element of the application. Data used to enable the creation of the 3D element for a particular topic are inputted via a Microsoft Excel template spreadsheet that has been specifically formatted to hold these data. We display and discuss the findings of applying the tool to two NMA examples considering multiple covariates. These two examples have been previously identified as having potentially important covariate effects and allow us to document the various features of the tool while illustrating how it can be used. The 3D evidence network plot system provides an immediate, intuitive, and accessible way to assess the similarity and differences between the values of covariates for individual studies within and between each treatment contrast in an evidence network. In this way, differences between the studies, which may invalidate the usual assumptions of an NMA, can be identified for further scrutiny. Hence, the tool facilitates NMA feasibility/validity assessments and aids in the interpretation of NMA results. The 3D evidence network plot system is the first tool designed specifically to visualize covariate distributions and imbalances across evidence networks in 3D. This will be of primary interest to systematic review and meta-analysis researchers and, more generally, those assessing the validity and robustness of an NMA to inform reimbursement decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  20. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  1. Novel integrative genomic tool for interrogating lithium response in bipolar disorder

    PubMed Central

    Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M

    2015-01-01

    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery. PMID:25646593

  2. Novel integrative genomic tool for interrogating lithium response in bipolar disorder.

    PubMed

    Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M

    2015-02-03

    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery.

  3. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    PubMed

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  4. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome

    PubMed Central

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232

  5. "Development Radar": The Co-Configuration of a Tool in a Learning Network

    ERIC Educational Resources Information Center

    Toiviainen, Hanna; Kerosuo, Hannele; Syrjala, Tuula

    2009-01-01

    Purpose: The paper aims to argue that new tools are needed for operating, developing and learning in work-life networks where academic and practice knowledge are intertwined in multiple levels of and in boundary-crossing across activities. At best, tools for learning are designed in a process of co-configuration, as the analysis of one tool,…

  6. PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling.

    PubMed

    Bernabeu, Miguel O; Jones, Martin L; Nash, Rupert W; Pezzarossa, Anna; Coveney, Peter V; Gerhardt, Holger; Franco, Claudio A

    2018-05-08

    In this article, we present PolNet, an open-source software tool for the study of blood flow and cell-level biological activity during vessel morphogenesis. We provide an image acquisition, segmentation, and analysis protocol to quantify endothelial cell polarity in entire in vivo vascular networks. In combination, we use computational fluid dynamics to characterize the hemodynamics of the vascular networks under study. The tool enables, to our knowledge for the first time, a network-level analysis of polarity and flow for individual endothelial cells. To date, PolNet has proven invaluable for the study of endothelial cell polarization and migration during vascular patterning, as demonstrated by two recent publications. Additionally, the tool can be easily extended to correlate blood flow with other experimental observations at the cellular/molecular level. We release the source code of our tool under the Lesser General Public License. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. International Assistance for Low-Emission Development Planning: Coordinated Low Emissions Assistance Network (CLEAN) Inventory of Activities and Tools--Preliminary Trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, S.; Benioff, R.

    2011-05-01

    The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.

  8. Disentangling representations of shape and action components in the tool network.

    PubMed

    Wang, Xiaoying; Zhuang, Tonghe; Shen, Jiasi; Bi, Yanchao

    2018-05-30

    Shape and how they should be used are two key components of our knowledge about tools. Viewing tools preferentially activated a frontoparietal and occipitotemporal network, with dorsal regions implicated in computation of tool-related actions and ventral areas in shape representation. As shape and manners of manipulation are highly correlated for daily tools, whether they are independently represented in different regions remains inconclusive. In the current study, we collected fMRI data when participants viewed blocks of pictures of four daily tools (i.e., paintbrush, corkscrew, screwdriver, razor) where shape and action (manner of manipulation for functional use) were orthogonally manipulated, to tease apart these two dimensions. Behavioral similarity judgments tapping on object shape and finer aspects of actions (i.e., manners of motion, magnitude of arm movement, configuration of hand) were also collected to further disentangle the representation of object shape and different action components. Information analysis and representational similarity analysis were conducted on regional neural activation patterns of the tool-preferring network. In both analyses, the bilateral lateral occipitotemporal cortex showed robust shape representations but could not effectively distinguish between tool-use actions. The frontal and precentral regions represented kinematic action components, whereas the left parietal region (in information analyses) exhibited coding of both shape and tool-use action. By teasing apart shape and action components, we found both dissociation and association of them within the tool network. Taken together, our study disentangles representations for object shape from finer tool-use action components in the tool network, revealing the potential dissociable roles different tool-preferring regions play in tool processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Artificial neural network prediction of aircraft aeroelastic behavior

    NASA Astrophysics Data System (ADS)

    Pesonen, Urpo Juhani

    An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.

  10. Control Theoretic Modeling for Uncertain Cultural Attitudes and Unknown Adversarial Intent

    DTIC Science & Technology

    2009-02-01

    Constructive computational tools. 15. SUBJECT TERMS social learning, social networks , multiagent systems, game theory 16. SECURITY CLASSIFICATION OF: a...over- reactionary behaviors; 3) analysis of rational social learning in networks : analysis of belief propagation in social networks in various...general methodology as a predictive device for social network formation and for communication network formation with constraints on the lengths of

  11. Optimizing the ASC WAN: evaluating network performance tools for comparing transport protocols.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydick, Christopher L.

    2007-07-01

    The Advanced Simulation & Computing Wide Area Network (ASC WAN), which is a high delay-bandwidth network connection between US Department of Energy National Laboratories, is constantly being examined and evaluated for efficiency. One of the current transport-layer protocols which is used, TCP, was developed for traffic demands which are different from that on the ASC WAN. The Stream Control Transport Protocol (SCTP), on the other hand, has shown characteristics which make it more appealing to networks such as these. Most important, before considering a replacement for TCP on any network, a testing tool that performs well against certain criteria needsmore » to be found. In order to try to find such a tool, two popular networking tools (Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) were tested. These tools implement both TCP and SCTP and were evaluated using four metrics: (1) How effectively can the tool reach a throughput near the bandwidth? (2) How much of the CPU does the tool utilize during operation? (3) Is the tool freely and widely available? And, (4) Is the tool actively developed? Following the analysis of those tools, this paper goes further into explaining some recommendations and ideas for future work.« less

  12. Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis.

    PubMed

    Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H

    2014-05-01

    Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.

  13. Utilizing Semantic Big Data for realizing a National-scale Infrastructure Vulnerability Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Supriya; Shankar, Mallikarjun

    Critical Infrastructure systems(CIs) such as energy, water, transportation and communication are highly interconnected and mutually dependent in complex ways. Robust modeling of CIs interconnections is crucial to identify vulnerabilities in the CIs. We present here a national-scale Infrastructure Vulnerability Analysis System (IVAS) vision leveraging Se- mantic Big Data (SBD) tools, Big Data, and Geographical Information Systems (GIS) tools. We survey existing ap- proaches on vulnerability analysis of critical infrastructures and discuss relevant systems and tools aligned with our vi- sion. Next, we present a generic system architecture and discuss challenges including: (1) Constructing and manag- ing a CI network-of-networks graph,more » (2) Performing analytic operations at scale, and (3) Interactive visualization of ana- lytic output to generate meaningful insights. We argue that this architecture acts as a baseline to realize a national-scale network based vulnerability analysis system.« less

  14. The Holistic Targeting (HOT) Methodology as the Means to Improve Information Operations (IO) Target Development and Prioritization

    DTIC Science & Technology

    2008-09-01

    software facilitate targeting problem understanding and the network analysis tool, Palantir , as an efficient and tailored semi-automated means to...the use of compendium software facilitate targeting problem understanding and the network analysis tool, Palantir , as an efficient and tailored semi...OBJECTIVES USING COMPENDIUM SOFTWARE .....63 E. HOT TARGET PRIORITIZATION AND DEVELOPMENT USING PALANTIR SOFTWARE .................................69 1

  15. What's Next in Complex Networks? Capturing the Concept of Attacking Play in Invasive Team Sports.

    PubMed

    Ramos, João; Lopes, Rui J; Araújo, Duarte

    2018-01-01

    The evolution of performance analysis within sports sciences is tied to technology development and practitioner demands. However, how individual and collective patterns self-organize and interact in invasive team sports remains elusive. Social network analysis has been recently proposed to resolve some aspects of this problem, and has proven successful in capturing collective features resulting from the interactions between team members as well as a powerful communication tool. Despite these advances, some fundamental team sports concepts such as an attacking play have not been properly captured by the more common applications of social network analysis to team sports performance. In this article, we propose a novel approach to team sports performance centered on sport concepts, namely that of an attacking play. Network theory and tools including temporal and bipartite or multilayered networks were used to capture this concept. We put forward eight questions directly related to team performance to discuss how common pitfalls in the use of network tools for capturing sports concepts can be avoided. Some answers are advanced in an attempt to be more precise in the description of team dynamics and to uncover other metrics directly applied to sport concepts, such as the structure and dynamics of attacking plays. Finally, we propose that, at this stage of knowledge, it may be advantageous to build up from fundamental sport concepts toward complex network theory and tools, and not the other way around.

  16. NET: a new framework for the vectorization and examination of network data.

    PubMed

    Lasser, Jana; Katifori, Eleni

    2017-01-01

    The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like Drosophila tracheoles or leaf venation patterns: the Network Extraction Tool ( NET ) to extract data and the Graph-edit-GUI ( GeGUI ) to visualize and modify networks. NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of Drosophila tracheoles. The networks extracted by NET closely approximate the network depicted in the original image. NET is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally GeGUI allows easy handling and visualization of the networks.

  17. A Multidimensional Analysis Tool for Visualizing Online Interactions

    ERIC Educational Resources Information Center

    Kim, Minjeong; Lee, Eunchul

    2012-01-01

    This study proposes and verifies the performance of an analysis tool for visualizing online interactions. A review of the most widely used methods for analyzing online interactions, including quantitative analysis, content analysis, and social network analysis methods, indicates these analysis methods have some limitations resulting from their…

  18. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research

    PubMed Central

    Wiggins, Benjamin L.; Goodreau, Steven M.

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. PMID:26086650

  19. Software For Graphical Representation Of A Network

    NASA Technical Reports Server (NTRS)

    Mcallister, R. William; Mclellan, James P.

    1993-01-01

    System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.

  20. Survey of Human Systems Integration (HSI) Tools for USCG Acquisitions

    DTIC Science & Technology

    2009-04-01

    an IMPRINT HPM. IMPRINT uses task network modeling to represent human performance. As the name implies, task networks use a flowchart type format...tools; and built-in tutoring support for beginners . A perceptual/motor layer extending ACT-R’s theory of cognition to perception and action is also...chisystems.com B.8 Information and Functional Flow Analysis Description In information flow analysis, a flowchart of the information and decisions

  1. Metabolic network flux analysis for engineering plant systems.

    PubMed

    Shachar-Hill, Yair

    2013-04-01

    Metabolic network flux analysis (NFA) tools have proven themselves to be powerful aids to metabolic engineering of microbes by providing quantitative insights into the flows of material and energy through cellular systems. The development and application of NFA tools to plant systems has advanced in recent years and are yielding significant insights and testable predictions. Plants present substantial opportunities for the practical application of NFA but they also pose serious challenges related to the complexity of plant metabolic networks and to deficiencies in our knowledge of their structure and regulation. By considering the tools available and selected examples, this article attempts to assess where and how NFA is most likely to have a real impact on plant biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Network monitoring in the Tier2 site in Prague

    NASA Astrophysics Data System (ADS)

    Eliáš, Marek; Fiala, Lukáš; Horký, Jiří; Chudoba, Jiří; Kouba, Tomáš; Kundrát, Jan; Švec, Jan

    2011-12-01

    Network monitoring provides different types of view on the network traffic. It's output enables computing centre staff to make qualified decisions about changes in the organization of computing centre network and to spot possible problems. In this paper we present network monitoring framework used at Tier-2 in Prague in Institute of Physics (FZU). The framework consists of standard software and custom tools. We discuss our system for hardware failures detection using syslog logging and Nagios active checks, bandwidth monitoring of physical links and analysis of NetFlow exports from Cisco routers. We present tool for automatic detection of network layout based on SNMP. This tool also records topology changes into SVN repository. Adapted weathermap4rrd is used to visualize recorded data to get fast overview showing current bandwidth usage of links in network.

  3. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  4. Verification of S&D Solutions for Network Communications and Devices

    NASA Astrophysics Data System (ADS)

    Rudolph, Carsten; Compagna, Luca; Carbone, Roberto; Muñoz, Antonio; Repp, Jürgen

    This chapter describes the tool-supported verification of S&D Solutions on the level of network communications and devices. First, the general goals and challenges of verification in the context of AmI systems are highlighted and the role of verification and validation within the SERENITY processes is explained.Then, SERENITY extensions to the SH VErification tool are explained using small examples. Finally, the applicability of existing verification tools is discussed in the context of the AVISPA toolset. The two different tools show that for the security analysis of network and devices S&D Patterns relevant complementary approachesexist and can be used.

  5. Generating community-built tools for data sharing and analysis in environmental networks

    USGS Publications Warehouse

    Read, Jordan S.; Gries, Corinna; Read, Emily K.; Klug, Jennifer; Hanson, Paul C.; Hipsey, Matthew R.; Jennings, Eleanor; O'Reilley, Catherine; Winslow, Luke A.; Pierson, Don; McBride, Christopher G.; Hamilton, David

    2016-01-01

    Rapid data growth in many environmental sectors has necessitated tools to manage and analyze these data. The development of tools often lags behind the proliferation of data, however, which may slow exploratory opportunities and scientific progress. The Global Lake Ecological Observatory Network (GLEON) collaborative model supports an efficient and comprehensive data–analysis–insight life cycle, including implementations of data quality control checks, statistical calculations/derivations, models, and data visualizations. These tools are community-built and openly shared. We discuss the network structure that enables tool development and a culture of sharing, leading to optimized output from limited resources. Specifically, data sharing and a flat collaborative structure encourage the development of tools that enable scientific insights from these data. Here we provide a cross-section of scientific advances derived from global-scale analyses in GLEON. We document enhancements to science capabilities made possible by the development of analytical tools and highlight opportunities to expand this framework to benefit other environmental networks.

  6. Complex Networks Analysis of Manual and Machine Translations

    NASA Astrophysics Data System (ADS)

    Amancio, Diego R.; Antiqueira, Lucas; Pardo, Thiago A. S.; da F. Costa, Luciano; Oliveira, Osvaldo N.; Nunes, Maria G. V.

    Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by MT tools can be distinguished from their manual counterparts by means of metrics such as in- (ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better MT tools and automatic evaluation metrics.

  7. Cytoscape: the network visualization tool for GenomeSpace workflows.

    PubMed

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

  8. Cytoscape: the network visualization tool for GenomeSpace workflows

    PubMed Central

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537

  9. [Analysis of researchers' implication in a research-intervention in the Stork Network: a tool for institutional analysis].

    PubMed

    Fortuna, Cinira Magali; Mesquita, Luana Pinho de; Matumoto, Silvia; Monceau, Gilles

    2016-09-19

    This qualitative study is based on institutional analysis as the methodological theoretical reference with the objective of analyzing researchers' implication during a research-intervention and the interferences caused by this analysis. The study involved researchers from courses in medicine, nursing, and dentistry at two universities and workers from a Regional Health Department in follow-up on the implementation of the Stork Network in São Paulo State, Brazil. The researchers worked together in the intervention and in analysis workshops, supported by an external institutional analysis. Two institutions stood out in the analysis: the research, established mainly with characteristics of neutrality, and management, with Taylorist characteristics. Differences between researchers and difficulties in identifying actions proper to network management and research were some of the interferences that were identified. The study concludes that implication analysis is a powerful tool for such studies.

  10. PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space.

    PubMed

    Ma, Chihua; Luciani, Timothy; Terebus, Anna; Liang, Jie; Marai, G Elisabeta

    2017-02-15

    Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes. We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state information corresponding to particular peaks. We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases.

  11. NEFI: Network Extraction From Images

    PubMed Central

    Dirnberger, M.; Kehl, T.; Neumann, A.

    2015-01-01

    Networks are amongst the central building blocks of many systems. Given a graph of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to study various types of networks. In some applications, graph acquisition is relatively simple. However, for many networks data collection relies on images where graph extraction requires domain-specific solutions. Here we introduce NEFI, a tool that extracts graphs from images of networks originating in various domains. Regarding previous work on graph extraction, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners to easily extract graphs from images by combining basic tools from image processing, computer vision and graph theory. Thus, NEFI constitutes an alternative to tedious manual graph extraction and special purpose tools. We anticipate NEFI to enable time-efficient collection of large datasets. The analysis of these novel datasets may open up the possibility to gain new insights into the structure and function of various networks. NEFI is open source and available at http://nefi.mpi-inf.mpg.de. PMID:26521675

  12. [Development and Use of Hidrosig

    NASA Technical Reports Server (NTRS)

    Gupta, Vijay K.; Milne, Bruce T.

    2003-01-01

    The NASA portion of this joint NSF-NASA grant consists of objective 2 and a part of objective 3. A major effort was made on objective 2, and it consisted of developing a numerical GIs environment called Hidrosig. This major research tool is being developed by the University of Colorado for conducting river-network-based scaling analyses of coupled water-energy-landform-vegetation interactions including water and energy balances, and floods and droughts, at multiple space-time scales.Objective 2: To analyze the relevant remotely sensed products from satellites, radars and ground measurements to compute the transported water mass for each complete Strahler stream using an 'assimilated water balance equation' at daily and other appropriate time scales. This objective requires analysis of concurrent data sets for Precipitation (PPT), Evapotranspiration (ET) and stream flows (Q) on river networks. To solve this major problem, our decision was to develop Hidrosig, a new Open-Source GIs software. A research group in Colombia, South America, developed the first version of Hidrosig, and Ricardo Mantilla was part of this effort as an undergraduate student before joining the graduate program at the University of Colorado in 2001. Hydrosig automatically extracts river networks from large DEMs and creates a "link-based" data structure, which is required to conduct a variety of analyses under objective 2. It is programmed in Java, which is a multi-platform programming language freely distributed by SUN under a GPL license. Some existent commercial tools like Arc-Info, RiverTools and others are not suitable for our purpose for two reasons. First, the source code is not available that is needed to build on the network data structure. Second, these tools use different programming languages that are not most versatile for our purposes. For example, RiverTools uses an IDL platform that is not very efficient for organizing diverse data sets on river networks. Hidrosig establishes a clear data organization framework that allows a simultaneous analysis of spatial fields along river network structures involving Horton- Strahler framework. Software tools for network extraction from DEMs and network-based analysis of geomorphologic and topologic variables were developed during the first year and a part of second year.

  13. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.

    PubMed

    Nam, Seungyoon

    2017-04-01

    Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.

  14. ITEP: an integrated toolkit for exploration of microbial pan-genomes.

    PubMed

    Benedict, Matthew N; Henriksen, James R; Metcalf, William W; Whitaker, Rachel J; Price, Nathan D

    2014-01-03

    Comparative genomics is a powerful approach for studying variation in physiological traits as well as the evolution and ecology of microorganisms. Recent technological advances have enabled sequencing large numbers of related genomes in a single project, requiring computational tools for their integrated analysis. In particular, accurate annotations and identification of gene presence and absence are critical for understanding and modeling the cellular physiology of newly sequenced genomes. Although many tools are available to compare the gene contents of related genomes, new tools are necessary to enable close examination and curation of protein families from large numbers of closely related organisms, to integrate curation with the analysis of gain and loss, and to generate metabolic networks linking the annotations to observed phenotypes. We have developed ITEP, an Integrated Toolkit for Exploration of microbial Pan-genomes, to curate protein families, compute similarities to externally-defined domains, analyze gene gain and loss, and generate draft metabolic networks from one or more curated reference network reconstructions in groups of related microbial species among which the combination of core and variable genes constitute the their "pan-genomes". The ITEP toolkit consists of: (1) a series of modular command-line scripts for identification, comparison, curation, and analysis of protein families and their distribution across many genomes; (2) a set of Python libraries for programmatic access to the same data; and (3) pre-packaged scripts to perform common analysis workflows on a collection of genomes. ITEP's capabilities include de novo protein family prediction, ortholog detection, analysis of functional domains, identification of core and variable genes and gene regions, sequence alignments and tree generation, annotation curation, and the integration of cross-genome analysis and metabolic networks for study of metabolic network evolution. ITEP is a powerful, flexible toolkit for generation and curation of protein families. ITEP's modular design allows for straightforward extension as analysis methods and tools evolve. By integrating comparative genomics with the development of draft metabolic networks, ITEP harnesses the power of comparative genomics to build confidence in links between genotype and phenotype and helps disambiguate gene annotations when they are evaluated in both evolutionary and metabolic network contexts.

  15. Development and psychometric testing of the clinical networks engagement tool

    PubMed Central

    Hecker, Kent G.; Rabatach, Leora; Noseworthy, Tom W.; White, Deborah E.

    2017-01-01

    Background Clinical networks are being used widely to facilitate large system transformation in healthcare, by engagement of stakeholders throughout the health system. However, there are no available instruments that measure engagement in these networks. Methods The study purpose was to develop and assess the measurement properties of a multiprofessional tool to measure engagement in clinical network initiatives. Based on components of the International Association of Public Participation Spectrum and expert panel review, we developed 40 items for testing. The draft instrument was distributed to 1,668 network stakeholders across different governance levels (leaders, members, support, frontline stakeholders) in 9 strategic clinical networks in Alberta (January to July 2014). With data from 424 completed surveys (25.4% response rate), descriptive statistics, exploratory and confirmatory factor analysis, Pearson correlations, linear regression, multivariate analysis, and Cronbach alpha were conducted to assess reliability and validity of the scores. Results Sixteen items were retained in the instrument. Exploratory factor analysis indicated a four-factor solution and accounted for 85.7% of the total variance in engagement with clinical network initiatives: global engagement, inform (provided with information), involve (worked together to address concerns), and empower (given final decision-making authority). All subscales demonstrated acceptable reliability (Cronbach alpha 0.87 to 0.99). Both the confirmatory factor analysis and regression analysis confirmed that inform, involve, and empower were all significant predictors of global engagement, with involve as the strongest predictor. Leaders had higher mean scores than frontline stakeholders, while members and support staff did not differ in mean scores. Conclusions This study provided foundational evidence for the use of this tool for assessing engagement in clinical networks. Further work is necessary to evaluate engagement in broader network functions and activities; to assess barriers and facilitators of engagement; and, to elucidate how the maturity of networks and other factors influence engagement. PMID:28350834

  16. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  17. CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful API.

    PubMed

    Ono, Keiichiro; Muetze, Tanja; Kolishovski, Georgi; Shannon, Paul; Demchak, Barry

    2015-01-01

    As bioinformatic workflows become increasingly complex and involve multiple specialized tools, so does the difficulty of reliably reproducing those workflows. Cytoscape is a critical workflow component for executing network visualization, analysis, and publishing tasks, but it can be operated only manually via a point-and-click user interface. Consequently, Cytoscape-oriented tasks are laborious and often error prone, especially with multistep protocols involving many networks. In this paper, we present the new cyREST Cytoscape app and accompanying harmonization libraries. Together, they improve workflow reproducibility and researcher productivity by enabling popular languages (e.g., Python and R, JavaScript, and C#) and tools (e.g., IPython/Jupyter Notebook and RStudio) to directly define and query networks, and perform network analysis, layouts and renderings. We describe cyREST's API and overall construction, and present Python- and R-based examples that illustrate how Cytoscape can be integrated into large scale data analysis pipelines. cyREST is available in the Cytoscape app store (http://apps.cytoscape.org) where it has been downloaded over 1900 times since its release in late 2014.

  18. CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful API

    PubMed Central

    Ono, Keiichiro; Muetze, Tanja; Kolishovski, Georgi; Shannon, Paul; Demchak, Barry

    2015-01-01

    As bioinformatic workflows become increasingly complex and involve multiple specialized tools, so does the difficulty of reliably reproducing those workflows. Cytoscape is a critical workflow component for executing network visualization, analysis, and publishing tasks, but it can be operated only manually via a point-and-click user interface. Consequently, Cytoscape-oriented tasks are laborious and often error prone, especially with multistep protocols involving many networks. In this paper, we present the new cyREST Cytoscape app and accompanying harmonization libraries. Together, they improve workflow reproducibility and researcher productivity by enabling popular languages (e.g., Python and R, JavaScript, and C#) and tools (e.g., IPython/Jupyter Notebook and RStudio) to directly define and query networks, and perform network analysis, layouts and renderings. We describe cyREST’s API and overall construction, and present Python- and R-based examples that illustrate how Cytoscape can be integrated into large scale data analysis pipelines. cyREST is available in the Cytoscape app store (http://apps.cytoscape.org) where it has been downloaded over 1900 times since its release in late 2014. PMID:26672762

  19. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    PubMed

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  20. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks

    PubMed Central

    Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli

    2006-01-01

    A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411

  1. Co-authorship network analysis in health research: method and potential use.

    PubMed

    Fonseca, Bruna de Paula Fonseca E; Sampaio, Ricardo Barros; Fonseca, Marcus Vinicius de Araújo; Zicker, Fabio

    2016-04-30

    Scientific collaboration networks are a hallmark of contemporary academic research. Researchers are no longer independent players, but members of teams that bring together complementary skills and multidisciplinary approaches around common goals. Social network analysis and co-authorship networks are increasingly used as powerful tools to assess collaboration trends and to identify leading scientists and organizations. The analysis reveals the social structure of the networks by identifying actors and their connections. This article reviews the method and potential applications of co-authorship network analysis in health. The basic steps for conducting co-authorship studies in health research are described and common network metrics are presented. The application of the method is exemplified by an overview of the global research network for Chikungunya virus vaccines.

  2. Network meta-analysis: an introduction for pharmacists.

    PubMed

    Xu, Yina; Amiche, Mohamed Amine; Tadrous, Mina

    2018-05-21

    Network meta-analysis is a new tool used to summarize and compare studies for multiple interventions, irrespective of whether these interventions have been directly evaluated against each other. Network meta-analysis is quickly becoming the standard in conducting therapeutic reviews and clinical guideline development. However, little guidance is available to help pharmacists review network meta-analysis studies in their practice. Major institutions such as the Cochrane Collaboration, Agency for Healthcare Research and Quality, Canadian Agency for Drugs and Technologies in Health, and National Institute for Health and Care Excellence Decision Support Unit have endorsed utilizing network meta-analysis to establish therapeutic evidence and inform decision making. Our objective is to introduce this novel technique to pharmacy practitioners, and highlight key assumptions behind network meta-analysis studies.

  3. MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification.

    PubMed

    Burgess, K E V; Borutzki, Y; Rankin, N; Daly, R; Jourdan, F

    2017-12-15

    Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  5. Integrated network analysis and effective tools in plant systems biology

    PubMed Central

    Fukushima, Atsushi; Kanaya, Shigehiko; Nishida, Kozo

    2014-01-01

    One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms. PMID:25408696

  6. HRLSim: a high performance spiking neural network simulator for GPGPU clusters.

    PubMed

    Minkovich, Kirill; Thibeault, Corey M; O'Brien, Michael John; Nogin, Aleksey; Cho, Youngkwan; Srinivasa, Narayan

    2014-02-01

    Modeling of large-scale spiking neural models is an important tool in the quest to understand brain function and subsequently create real-world applications. This paper describes a spiking neural network simulator environment called HRL Spiking Simulator (HRLSim). This simulator is suitable for implementation on a cluster of general purpose graphical processing units (GPGPUs). Novel aspects of HRLSim are described and an analysis of its performance is provided for various configurations of the cluster. With the advent of inexpensive GPGPU cards and compute power, HRLSim offers an affordable and scalable tool for design, real-time simulation, and analysis of large-scale spiking neural networks.

  7. A low complexity visualization tool that helps to perform complex systems analysis

    NASA Astrophysics Data System (ADS)

    Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.

    2008-12-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  8. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses--an overview and application of NetMetaXL.

    PubMed

    Brown, Stephen; Hutton, Brian; Clifford, Tammy; Coyle, Doug; Grima, Daniel; Wells, George; Cameron, Chris

    2014-09-29

    The use of network meta-analysis has increased dramatically in recent years. WinBUGS, a freely available Bayesian software package, has been the most widely used software package to conduct network meta-analyses. However, the learning curve for WinBUGS can be daunting, especially for new users. Furthermore, critical appraisal of network meta-analyses conducted in WinBUGS can be challenging given its limited data manipulation capabilities and the fact that generation of graphical output from network meta-analyses often relies on different software packages than the analyses themselves. We developed a freely available Microsoft-Excel-based tool called NetMetaXL, programmed in Visual Basic for Applications, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS from within Microsoft Excel. . This tool allows the user to easily prepare and enter data, set model assumptions, and run the network meta-analysis, with results being automatically displayed in an Excel spreadsheet. It also contains macros that use NetMetaXL's interface to generate evidence network diagrams, forest plots, league tables of pairwise comparisons, probability plots (rankograms), and inconsistency plots within Microsoft Excel. All figures generated are publication quality, thereby increasing the efficiency of knowledge transfer and manuscript preparation. We demonstrate the application of NetMetaXL using data from a network meta-analysis published previously which compares combined resynchronization and implantable defibrillator therapy in left ventricular dysfunction. We replicate results from the previous publication while demonstrating result summaries generated by the software. Use of the freely available NetMetaXL successfully demonstrated its ability to make running network meta-analyses more accessible to novice WinBUGS users by allowing analyses to be conducted entirely within Microsoft Excel. NetMetaXL also allows for more efficient and transparent critical appraisal of network meta-analyses, enhanced standardization of reporting, and integration with health economic evaluations which are frequently Excel-based.

  9. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL

    PubMed Central

    2014-01-01

    Background The use of network meta-analysis has increased dramatically in recent years. WinBUGS, a freely available Bayesian software package, has been the most widely used software package to conduct network meta-analyses. However, the learning curve for WinBUGS can be daunting, especially for new users. Furthermore, critical appraisal of network meta-analyses conducted in WinBUGS can be challenging given its limited data manipulation capabilities and the fact that generation of graphical output from network meta-analyses often relies on different software packages than the analyses themselves. Methods We developed a freely available Microsoft-Excel-based tool called NetMetaXL, programmed in Visual Basic for Applications, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS from within Microsoft Excel. . This tool allows the user to easily prepare and enter data, set model assumptions, and run the network meta-analysis, with results being automatically displayed in an Excel spreadsheet. It also contains macros that use NetMetaXL’s interface to generate evidence network diagrams, forest plots, league tables of pairwise comparisons, probability plots (rankograms), and inconsistency plots within Microsoft Excel. All figures generated are publication quality, thereby increasing the efficiency of knowledge transfer and manuscript preparation. Results We demonstrate the application of NetMetaXL using data from a network meta-analysis published previously which compares combined resynchronization and implantable defibrillator therapy in left ventricular dysfunction. We replicate results from the previous publication while demonstrating result summaries generated by the software. Conclusions Use of the freely available NetMetaXL successfully demonstrated its ability to make running network meta-analyses more accessible to novice WinBUGS users by allowing analyses to be conducted entirely within Microsoft Excel. NetMetaXL also allows for more efficient and transparent critical appraisal of network meta-analyses, enhanced standardization of reporting, and integration with health economic evaluations which are frequently Excel-based. PMID:25267416

  10. Water Network Tool for Resilience v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-09

    WNTR is a python package designed to simulate and analyze resilience of water distribution networks. The software includes: - Pressure driven and demand driven hydraulic simulation - Water quality simulation to track concentration, trace, and water age - Conditional controls to simulate power outages - Models to simulate pipe breaks - A wide range of resilience metrics - Analysis and visualization tools

  11. Flow Analysis Tool White Paper

    NASA Technical Reports Server (NTRS)

    Boscia, Nichole K.

    2012-01-01

    Faster networks are continually being built to accommodate larger data transfers. While it is intuitive to think that implementing faster networks will result in higher throughput rates, this is often not the case. There are many elements involved in data transfer, many of which are beyond the scope of the network itself. Although networks may get bigger and support faster technologies, the presence of other legacy components, such as older application software or kernel parameters, can often cause bottlenecks. Engineers must be able to identify when data flows are reaching a bottleneck that is not imposed by the network and then troubleshoot it using the tools available to them. The current best practice is to collect as much information as possible on the network traffic flows so that analysis is quick and easy. Unfortunately, no single method of collecting this information can sufficiently capture the whole endto- end picture. This becomes even more of a hurdle when large, multi-user systems are involved. In order to capture all the necessary information, multiple data sources are required. This paper presents a method for developing a flow analysis tool to effectively collect network flow data from multiple sources and provide that information to engineers in a clear, concise way for analysis. The purpose of this method is to collect enough information to quickly (and automatically) identify poorly performing flows along with the cause of the problem. The method involves the development of a set of database tables that can be populated with flow data from multiple sources, along with an easyto- use, web-based front-end interface to help network engineers access, organize, analyze, and manage all the information.

  12. STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data

    PubMed Central

    Jupiter, Daniel; Chen, Hailin; VanBuren, Vincent

    2009-01-01

    Background Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult. Results STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module. Conclusion STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at , and does not require user registration. PMID:19828039

  13. The guideline implementability research and application network (GIRAnet): an international collaborative to support knowledge exchange: study protocol.

    PubMed

    Gagliardi, Anna R; Brouwers, Melissa C; Bhattacharyya, Onil K

    2012-04-02

    Modifying the format and content of guidelines may facilitate their use and lead to improved quality of care. We reviewed the medical literature to identify features desired by different users and associated with guideline use to develop a framework of implementability and found that most guidelines do not contain these elements. Further research is needed to develop and evaluate implementability tools. We are launching the Guideline Implementability Research and Application Network (GIRAnet) to enable the development and testing of implementability tools in three domains: Resource Implications, Implementation, and Evaluation. Partners include the Guidelines International Network (G-I-N) and its member guideline developers, implementers, and researchers. In phase one, international guidelines will be examined to identify and describe exemplar tools. Indication-specific and generic tools will populate a searchable repository. In phase two, qualitative analysis of cognitive interviews will be used to understand how developers can best integrate implementability tools in guidelines and how health professionals use them for interpreting and applying guidelines. In phase three, a small-scale pilot test will assess the impact of implementability tools based on quantitative analysis of chart-based behavioural outcomes and qualitative analysis of interviews with participants. The findings will be used to plan a more comprehensive future evaluation of implementability tools. Infrastructure funding to establish GIRAnet will be leveraged with the in-kind contributions of collaborating national and international guideline developers to advance our knowledge of implementation practice and science. Needs assessment and evaluation of GIRAnet will provide a greater understanding of how to develop and sustain such knowledge-exchange networks. Ultimately, by facilitating use of guidelines, this research may lead to improved delivery and outcomes of patient care.

  14. Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks

    PubMed Central

    Castet, Jean-Francois; Saleh, Joseph H.

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks. PMID:23599835

  15. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    PubMed

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.

  16. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    PubMed

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.

  17. Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated "Knowledge-Based" Platform.

    PubMed

    Dubovenko, Alexey; Nikolsky, Yuri; Rakhmatulin, Eugene; Nikolskaya, Tatiana

    2017-01-01

    Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive database of molecular interactions of different types, pathways, network models, and ten functional ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for the identification of over- and under-connected proteins in the dataset, and a biological network analysis module made up of network generation algorithms and filters. The suite also features Advanced Search, an application for combinatorial search of the database content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and translational and personalized medicine).

  18. Visualization, documentation, analysis, and communication of large scale gene regulatory networks

    PubMed Central

    Longabaugh, William J.R.; Davidson, Eric H.; Bolouri, Hamid

    2009-01-01

    Summary Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on computational GRN modeling tools, and there is a need for custom modeling tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for GRN modeling. We also outline our future development plans, and give some examples of current applications of BioTapestry. PMID:18757046

  19. Process mapping as a tool for home health network analysis.

    PubMed

    Pluto, Delores M; Hirshorn, Barbara A

    2003-01-01

    Process mapping is a qualitative tool that allows service providers, policy makers, researchers, and other concerned stakeholders to get a "bird's eye view" of a home health care organizational network or a very focused, in-depth view of a component of such a network. It can be used to share knowledge about community resources directed at the older population, identify gaps in resource availability and access, and promote on-going collaborative interactions that encourage systemic policy reassessment and programmatic refinement. This article is a methodological description of process mapping, which explores its utility as a practice and research tool, illustrates its use in describing service-providing networks, and discusses some of the issues that are key to successfully using this methodology.

  20. Joint Improvised Explosive Device Defeat Organization

    DTIC Science & Technology

    2009-01-01

    searches increased exponentially. Palantir . Developed to provide C-IED network analysts with a collaborative link analysis tool, Palantir is used for...share data between teams and between other link analysis applications. Palantir outputs portray linked nodal networks, histogram data, and timeline...views. During FY 2008, the Palantir system was accessed by over 160 people investigating IED networks. Analyses by these people supported over

  1. Measuring, Understanding, and Responding to Covert Social Networks: Passive and Active Tomography

    DTIC Science & Technology

    2017-11-29

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social , biological, and information...on Theoretical Foundations for Statistical Network Analysis at the Isaac Newton Institute for Mathematical Sciences at Cambridge U. (organized by...Approach SOCIAL SCIENCES STATISTICS EECS Problems span three disciplines Scientific focus is needed at the interfaces

  2. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data.

    PubMed

    Basu, Sumanta; Duren, William; Evans, Charles R; Burant, Charles F; Michailidis, George; Karnovsky, Alla

    2017-05-15

    Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data. Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds. http://metscape.med.umich.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  3. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  4. PyPathway: Python Package for Biological Network Analysis and Visualization.

    PubMed

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  5. A Tool for Verification and Validation of Neural Network Based Adaptive Controllers for High Assurance Systems

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Schumann, Johann

    2004-01-01

    High reliability of mission- and safety-critical software systems has been identified by NASA as a high-priority technology challenge. We present an approach for the performance analysis of a neural network (NN) in an advanced adaptive control system. This problem is important in the context of safety-critical applications that require certification, such as flight software in aircraft. We have developed a tool to measure the performance of the NN during operation by calculating a confidence interval (error bar) around the NN's output. Our tool can be used during pre-deployment verification as well as monitoring the network performance during operation. The tool has been implemented in Simulink and simulation results on a F-15 aircraft are presented.

  6. Network Meta-Analysis Using R: A Review of Currently Available Automated Packages

    PubMed Central

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA) – a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously – has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA. PMID:25541687

  7. Network meta-analysis using R: a review of currently available automated packages.

    PubMed

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA)--a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously--has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA.

  8. Network portal: a database for storage, analysis and visualization of biological networks

    PubMed Central

    Turkarslan, Serdar; Wurtmann, Elisabeth J.; Wu, Wei-Ju; Jiang, Ning; Bare, J. Christopher; Foley, Karen; Reiss, David J.; Novichkov, Pavel; Baliga, Nitin S.

    2014-01-01

    The ease of generating high-throughput data has enabled investigations into organismal complexity at the systems level through the inference of networks of interactions among the various cellular components (genes, RNAs, proteins and metabolites). The wider scientific community, however, currently has limited access to tools for network inference, visualization and analysis because these tasks often require advanced computational knowledge and expensive computing resources. We have designed the network portal (http://networks.systemsbiology.net) to serve as a modular database for the integration of user uploaded and public data, with inference algorithms and tools for the storage, visualization and analysis of biological networks. The portal is fully integrated into the Gaggle framework to seamlessly exchange data with desktop and web applications and to allow the user to create, save and modify workspaces, and it includes social networking capabilities for collaborative projects. While the current release of the database contains networks for 13 prokaryotic organisms from diverse phylogenetic clades (4678 co-regulated gene modules, 3466 regulators and 9291 cis-regulatory motifs), it will be rapidly populated with prokaryotic and eukaryotic organisms as relevant data become available in public repositories and through user input. The modular architecture, simple data formats and open API support community development of the portal. PMID:24271392

  9. MetaNET--a web-accessible interactive platform for biological metabolic network analysis.

    PubMed

    Narang, Pankaj; Khan, Shawez; Hemrom, Anmol Jaywant; Lynn, Andrew Michael

    2014-01-01

    Metabolic reactions have been extensively studied and compiled over the last century. These have provided a theoretical base to implement models, simulations of which are used to identify drug targets and optimize metabolic throughput at a systemic level. While tools for the perturbation of metabolic networks are available, their applications are limited and restricted as they require varied dependencies and often a commercial platform for full functionality. We have developed MetaNET, an open source user-friendly platform-independent and web-accessible resource consisting of several pre-defined workflows for metabolic network analysis. MetaNET is a web-accessible platform that incorporates a range of functions which can be combined to produce different simulations related to metabolic networks. These include (i) optimization of an objective function for wild type strain, gene/catalyst/reaction knock-out/knock-down analysis using flux balance analysis. (ii) flux variability analysis (iii) chemical species participation (iv) cycles and extreme paths identification and (v) choke point reaction analysis to facilitate identification of potential drug targets. The platform is built using custom scripts along with the open-source Galaxy workflow and Systems Biology Research Tool as components. Pre-defined workflows are available for common processes, and an exhaustive list of over 50 functions are provided for user defined workflows. MetaNET, available at http://metanet.osdd.net , provides a user-friendly rich interface allowing the analysis of genome-scale metabolic networks under various genetic and environmental conditions. The framework permits the storage of previous results, the ability to repeat analysis and share results with other users over the internet as well as run different tools simultaneously using pre-defined workflows, and user-created custom workflows.

  10. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    PubMed

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management

    EPA Science Inventory

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing i...

  12. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management.

    EPA Science Inventory

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing in...

  13. Molecular ecological network analyses.

    PubMed

    Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong

    2012-05-30

    Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.

  14. Assessing Group Interaction with Social Language Network Analysis

    NASA Astrophysics Data System (ADS)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  15. CI-KNOW: Cyberinfrastructure Knowledge Networks on the Web. A Social Network Enabled Recommender System for Locating Resources in Cyberinfrastructures

    NASA Astrophysics Data System (ADS)

    Green, H. D.; Contractor, N. S.; Yao, Y.

    2006-12-01

    A knowledge network is a multi-dimensional network created from the interactions and interconnections among the scientists, documents, data, analytic tools, and interactive collaboration spaces (like forums and wikis) associated with a collaborative environment. CI-KNOW is a suite of software tools that leverages automated data collection, social network theories, analysis techniques and algorithms to infer an individual's interests and expertise based on their interactions and activities within a knowledge network. The CI-KNOW recommender system mines the knowledge network associated with a scientific community's use of cyberinfrastructure tools and uses relational metadata to record connections among entities in the knowledge network. Recent developments in social network theories and methods provide the backbone for a modular system that creates recommendations from relational metadata. A network navigation portlet allows users to locate colleagues, documents, data or analytic tools in the knowledge network and to explore their networks through a visual, step-wise process. An internal auditing portlet offers administrators diagnostics to assess the growth and health of the entire knowledge network. The first instantiation of the prototype CI-KNOW system is part of the Environmental Cyberinfrastructure Demonstration project at the National Center for Supercomputing Applications, which supports the activities of hydrologic and environmental science communities (CLEANER and CUAHSI) under the umbrella of the WATERS network environmental observatory planning activities (http://cleaner.ncsa.uiuc.edu). This poster summarizes the key aspects of the CI-KNOW system, highlighting the key inputs, calculation mechanisms, and output modalities.

  16. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  17. Tools and Models for Integrating Multiple Cellular Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstein, Mark

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novelmore » algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed CRIT for correlation analysis in systems biology [5]. For Aim 3, we have further investigated the scaling relationship that the number of Transcription Factors (TFs) in a genome is proportional to the square of the total number of genes. We have extended the analysis from transcription factors to various classes of functional categories, and from individual categories to joint distribution [6]. By introducing a new analytical framework, we have generalized the original toolbox model to take into account of metabolic network with arbitrary network topology [7].« less

  18. In response to 'Can sugars be produced from fatty acids? A test case for pathway analysis tools'.

    PubMed

    Faust, Karoline; Croes, Didier; van Helden, Jacques

    2009-12-01

    In their article entitled 'Can sugars be produced from fatty acids? A test case for pathway analysis tools' de Figueiredo and co-authors assess the performance of three pathway prediction tools (METATOOL, PathFinding and Pathway Hunter Tool) using the synthesis of glucose-6-phosphate (G6P) from acetyl-CoA in humans as a test case. We think that this article is biased for three reasons: (i) the metabolic networks used as input for the respective tools were of very different sizes; (ii) the 'assessment' is restricted to two study cases; (iii) developers are inherently more skilled to use their own tools than those developed by other people. We extended the analyses led by de Figueiredo and clearly show that the apparent superior performance of their tool (METATOOL) is partly due to the differences in input network sizes. We also see a conceptual problem in the comparison of tools that serve different purposes. In our opinion, metabolic path finding and elementary mode analysis are answering different biological questions, and should be considered as complementary rather than competitive approaches. Supplementary data are available at Bioinformatics online.

  19. Local-Area-Network Simulator

    NASA Technical Reports Server (NTRS)

    Gibson, Jim; Jordan, Joe; Grant, Terry

    1990-01-01

    Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.

  20. A network-base analysis of CMIP5 "historical" experiments

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Foudalis, I.; Dovrolis, C.

    2012-12-01

    In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.

  1. #LancerHealth: Using Twitter and Instagram as a tool in a campus wide health promotion initiative

    PubMed Central

    Santarossa, Sara; Woodruff, Sarah J.

    2018-01-01

    The present study aimed to explore using popular technology that people already have/use as a health promotion tool, in a campus wide social media health promotion initiative, entitled #LancerHealth. During a two-week period the university community was asked to share photos on Twitter and Instagram of What does being healthy on campus look like to you?, while tagging the image with #LancerHealth. All publically tagged media was collected using the Netlytic software and analysed. Text analysis (N=234 records, Twitter; N=141 records, Instagram) revealed that the majority of the conversation was positive and focused on health and the university. Social network analysis, based on five network properties, showed a small network with little interaction. Lastly, photo coding analysis (N=71 unique image) indicated that the majority of the shared images were of physical activity (52%) and on campus (80%). Further research into this area is warranted. Significance for public healthAs digital media continues to become a popular tool among both public health organizations and those in academia, it is important to understand how, why, and which platforms individuals are using in regards to their health. This campus wide, social media health promotion initiative found that people will use popular social networking sites like Twitter and Instagram to share their healthy behaviours. Online social networks, created through social networking sites, can play a role in social diffusion of public health information and health behaviours. In this study, however, social network analysis revealed that there needs to be influential and highly connected individuals sharing information to generate social diffusion. This study can help guide future public health research in the area of social media and its potential influence on health promotion. PMID:29780763

  2. Design and Evaluation for the End-to-End Detection of TCP/IP Header Manipulation

    DTIC Science & Technology

    2014-06-01

    Cooperative Association for Internet Data Analysis CDN content delivery network CE congestion encountered CRC cyclic redundancy check CWR congestion...Switzerland was primarily developed as a network neutrality analysis tool to detect when internet service providers (ISPs) were interfering with...maximum 200 words) Understanding, measuring, and debugging IP networks , particularly across administrative domains, is challenging. One aspect of the

  3. Changes in Social Capital and Networks: A Study of Community-Based Environmental Management through a School-Centered Research Program

    ERIC Educational Resources Information Center

    Thornton, Teresa; Leahy, Jessica

    2012-01-01

    Social network analysis (SNA) is a social science research tool that has not been applied to educational programs. This analysis is critical to documenting the changes in social capital and networks that result from community based K-12 educational collaborations. We review SNA and show an application of this technique in a school-centered,…

  4. FoodMicrobionet: A database for the visualisation and exploration of food bacterial communities based on network analysis.

    PubMed

    Parente, Eugenio; Cocolin, Luca; De Filippis, Francesca; Zotta, Teresa; Ferrocino, Ilario; O'Sullivan, Orla; Neviani, Erasmo; De Angelis, Maria; Cotter, Paul D; Ercolini, Danilo

    2016-02-16

    Amplicon targeted high-throughput sequencing has become a popular tool for the culture-independent analysis of microbial communities. Although the data obtained with this approach are portable and the number of sequences available in public databases is increasing, no tool has been developed yet for the analysis and presentation of data obtained in different studies. This work describes an approach for the development of a database for the rapid exploration and analysis of data on food microbial communities. Data from seventeen studies investigating the structure of bacterial communities in dairy, meat, sourdough and fermented vegetable products, obtained by 16S rRNA gene targeted high-throughput sequencing, were collated and analysed using Gephi, a network analysis software. The resulting database, which we named FoodMicrobionet, was used to analyse nodes and network properties and to build an interactive web-based visualisation. The latter allows the visual exploration of the relationships between Operational Taxonomic Units (OTUs) and samples and the identification of core- and sample-specific bacterial communities. It also provides additional search tools and hyperlinks for the rapid selection of food groups and OTUs and for rapid access to external resources (NCBI taxonomy, digital versions of the original articles). Microbial interaction network analysis was carried out using CoNet on datasets extracted from FoodMicrobionet: the complexity of interaction networks was much lower than that found for other bacterial communities (human microbiome, soil and other environments). This may reflect both a bias in the dataset (which was dominated by fermented foods and starter cultures) and the lower complexity of food bacterial communities. Although some technical challenges exist, and are discussed here, the net result is a valuable tool for the exploration of food bacterial communities by the scientific community and food industry. Copyright © 2015. Published by Elsevier B.V.

  5. Implementing a social network intervention designed to enhance and diversify support for people with long-term conditions. A qualitative study.

    PubMed

    Kennedy, Anne; Vassilev, Ivaylo; James, Elizabeth; Rogers, Anne

    2016-02-29

    For people with long-term conditions, social networks provide a potentially central means of mobilising, mediating and accessing support for health and well-being. Few interventions address the implementation of improving engagement with and through social networks. This paper describes the development and implementation of a web-based tool which comprises: network mapping, user-centred preference elicitation and need assessment and facilitated engagement with resources. The study aimed to determine whether the intervention was acceptable, implementable and acted to enhance support and to add to theory concerning social networks and engagement with resources and activities. A longitudinal design with 15 case studies used ethnographic methods comprising video, non-participant observation of intervention delivery and qualitative interviews (baseline, 6 and 12 months). Participants were people with type 2 diabetes living in a marginalised island community. Facilitators were local health trainers and care navigators. Analysis applied concepts concerning implementation of technology for self-management support to explain how new practices of work were operationalised and how the technology impacted on relationships fit with everyday life and allowed for visual feedback. Most participants reported identifying and taking up new activities as a result of using the tool. Thematic analysis suggested that workability of the tool was predicated on disruption and reconstruction of networks, challenging/supportive facilitation and change and reflection over time concerning network support. Visualisation of the network enabled people to mobilise support and engage in new activities. The tool aligned synergistically with the facilitators' role of linking people to local resources. The social network tool works through a process of initiating positive disruption of established self-management practice through mapping and reflection on personal network membership and support. This opens up possibilities for reconstructing self-management differently from current practice. Key facets of successful implementation were: the visual maps of networks and support options; facilitation characterised by a perceived lack of status difference which assisted engagement and constructive discussion of support and preferences for activities; and background work (a reliable database, tailored preferences, option reduction) for facilitator and user ease of use.

  6. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology

    PubMed Central

    Lamontagne, Marie-Eve

    2013-01-01

    Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281

  7. Visual analysis and exploration of complex corporate shareholder networks

    NASA Astrophysics Data System (ADS)

    Tekušová, Tatiana; Kohlhammer, Jörn

    2008-01-01

    The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.

  8. Mapping Creativity: Creativity Measurements Network Analysis

    ERIC Educational Resources Information Center

    Pinheiro, Igor Reszka; Cruz, Roberto Moraes

    2014-01-01

    This article borrowed network analysis tools to discover how the construct formed by the set of all measures of creativity configures itself. To this end, using a variant of the meta-analytical method, a database was compiled simulating 42,381 responses to 974 variables centered on 64 creativity measures. Results, although preliminary, indicate…

  9. Qualitative Network Analysis Tools for the Configurative Articulation of Cultural Value and Impact from Research

    ERIC Educational Resources Information Center

    Oancea, Alis; Florez Petour, Teresa; Atkinson, Jeanette

    2017-01-01

    This article introduces a methodological approach for articulating and communicating the impact and value of research: qualitative network analysis using collaborative configuration tracing and visualization. The approach was proposed initially in Oancea ("Interpretations and Practices of Research Impact across the Range of Disciplines…

  10. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    PubMed

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.

  11. Discovery of Information Diffusion Process in Social Networks

    NASA Astrophysics Data System (ADS)

    Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun

    Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.

  12. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming; Jin, Hong

    2016-05-31

    Tool breakage causes losses of surface polishing and dimensional accuracy for machined part, or possible damage to a workpiece or machine. Tool Condition Monitoring (TCM) is considerably vital in the manufacturing industry. In this paper, an indirect TCM approach is introduced with a wireless triaxial accelerometer. The vibrations in the three vertical directions (x, y and z) are acquired during milling operations, and the raw signals are de-noised by wavelet analysis. These features of de-noised signals are extracted in the time, frequency and time-frequency domains. The key features are selected based on Pearson's Correlation Coefficient (PCC). The Neuro-Fuzzy Network (NFN) is adopted to predict the tool wear and Remaining Useful Life (RUL). In comparison with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN), the results show that the NFN has the best performance in the prediction of tool wear and RUL.

  13. Geographical Network Analysis and Spatial Econometrics as Tools to Enhance Our Understanding of Student Migration Patterns and Benefits in the U.S. Higher Education Network

    ERIC Educational Resources Information Center

    González Canché, Manuel S.

    2018-01-01

    This study measures the extent to which student outmigration outside the 4-year sector takes place and posits that the benefits from attracting non-resident students exist regardless of sector of enrollment. The study also provides empirical evidence about the relevance of employing geographical network analysis (GNA) and spatial econometrics in…

  14. A smartphone-based platform to test the performance of wireless mobile networks and preliminary findings

    NASA Astrophysics Data System (ADS)

    Geng, Xinli; Xu, Hao; Qin, Xiaowei

    2016-10-01

    During the last several years, the amount of wireless network traffic data increased fast and relative technologies evolved rapidly. In order to improve the performance and Quality of Experience (QoE) of wireless network services, the analysis of field network data and existing delivery mechanisms comes to be a promising research topic. In order to achieve this goal, a smartphone based platform named Monitor and Diagnosis of Mobile Applications (MDMA) was developed to collect field data. Based on this tool, the web browsing service of High Speed Downlink Packet Access (HSDPA) network was tested. The top 200 popular websites in China were selected and loaded on smartphone for thousands times automatically. Communication packets between the smartphone and the cell station were captured for various scenarios (e.g. residential area, urban roads, bus station etc.) in the selected city. A cross-layer database was constructed to support the off-line analysis. Based on the results of client-side experiments and analysis, the usability of proposed portable tool was verified. The preliminary findings and results for existing web browsing service were also presented.

  15. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    USGS Publications Warehouse

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  16. Predicting and controlling infectious disease epidemics using temporal networks

    PubMed Central

    Holme, Petter

    2013-01-01

    Infectious diseases can be considered to spread over social networks of people or animals. Mainly owing to the development of data recording and analysis techniques, an increasing amount of social contact data with time stamps has been collected in the last decade. Such temporal data capture the dynamics of social networks on a timescale relevant to epidemic spreading and can potentially lead to better ways to analyze, forecast, and prevent epidemics. However, they also call for extended analysis tools for network epidemiology, which has, to date, mostly viewed networks as static entities. We review recent results of network epidemiology for such temporal network data and discuss future developments. PMID:23513178

  17. Predicting and controlling infectious disease epidemics using temporal networks.

    PubMed

    Masuda, Naoki; Holme, Petter

    2013-01-01

    Infectious diseases can be considered to spread over social networks of people or animals. Mainly owing to the development of data recording and analysis techniques, an increasing amount of social contact data with time stamps has been collected in the last decade. Such temporal data capture the dynamics of social networks on a timescale relevant to epidemic spreading and can potentially lead to better ways to analyze, forecast, and prevent epidemics. However, they also call for extended analysis tools for network epidemiology, which has, to date, mostly viewed networks as static entities. We review recent results of network epidemiology for such temporal network data and discuss future developments.

  18. Using Network Analysis to Characterize Biogeographic Data in a Community Archive

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Bristol, S.

    2017-12-01

    Informative measures are needed to evaluate and compare data from multiple providers in a community-driven data archive. This study explores insights from network theory and other descriptive and inferential statistics to examine data content and application across an assemblage of publically available biogeographic data sets. The data are archived in ScienceBase, a collaborative catalog of scientific data supported by the U.S Geological Survey to enhance scientific inquiry and acuity. In gaining understanding through this investigation and other scientific venues our goal is to improve scientific insight and data use across a spectrum of scientific applications. Network analysis is a tool to reveal patterns of non-trivial topological features in the data that do not exhibit complete regularity or randomness. In this work, network analyses are used to explore shared events and dependencies between measures of data content and application derived from metadata and catalog information and measures relevant to biogeographic study. Descriptive statistical tools are used to explore relations between network analysis properties, while inferential statistics are used to evaluate the degree of confidence in these assessments. Network analyses have been used successfully in related fields to examine social awareness of scientific issues, taxonomic structures of biological organisms, and ecosystem resilience to environmental change. Use of network analysis also shows promising potential to identify relationships in biogeographic data that inform programmatic goals and scientific interests.

  19. Social Network Analysis: A Simple but Powerful Tool for Identifying Teacher Leaders

    ERIC Educational Resources Information Center

    Smith, P. Sean; Trygstad, Peggy J.; Hayes, Meredith L.

    2018-01-01

    Instructional teacher leadership is central to a vision of distributed leadership. However, identifying instructional teacher leaders can be a daunting task, particularly for administrators who find themselves either newly appointed or faced with high staff turnover. This article describes the use of social network analysis (SNA), a simple but…

  20. Visualization techniques for computer network defense

    NASA Astrophysics Data System (ADS)

    Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew

    2011-06-01

    Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.

  1. Co-authorship Network Analysis: A Powerful Tool for Strategic Planning of Research, Development and Capacity Building Programs on Neglected Diseases

    PubMed Central

    Morel, Carlos Medicis; Serruya, Suzanne Jacob; Penna, Gerson Oliveira; Guimarães, Reinaldo

    2009-01-01

    Background New approaches and tools were needed to support the strategic planning, implementation and management of a Program launched by the Brazilian Government to fund research, development and capacity building on neglected tropical diseases with strong focus on the North, Northeast and Center-West regions of the country where these diseases are prevalent. Methodology/Principal Findings Based on demographic, epidemiological and burden of disease data, seven diseases were selected by the Ministry of Health as targets of the initiative. Publications on these diseases by Brazilian researchers were retrieved from international databases, analyzed and processed with text-mining tools in order to standardize author- and institution's names and addresses. Co-authorship networks based on these publications were assembled, visualized and analyzed with social network analysis software packages. Network visualization and analysis generated new information, allowing better design and strategic planning of the Program, enabling decision makers to characterize network components by area of work, identify institutions as well as authors playing major roles as central hubs or located at critical network cut-points and readily detect authors or institutions participating in large international scientific collaborating networks. Conclusions/Significance Traditional criteria used to monitor and evaluate research proposals or R&D Programs, such as researchers' productivity and impact factor of scientific publications, are of limited value when addressing research areas of low productivity or involving institutions from endemic regions where human resources are limited. Network analysis was found to generate new and valuable information relevant to the strategic planning, implementation and monitoring of the Program. It afforded a more proactive role of the funding agencies in relation to public health and equity goals, to scientific capacity building objectives and a more consistent engagement of institutions and authors from endemic regions based on innovative criteria and parameters anchored on objective scientific data. PMID:19688044

  2. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology

    PubMed Central

    Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237

  3. SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.

    PubMed

    Katsuragi, Tetsuo; Ono, Naoaki; Yasumoto, Keiichi; Altaf-Ul-Amin, Md; Hirai, Masami Y; Sriyudthsak, Kansuporn; Sawada, Yuji; Yamashita, Yui; Chiba, Yukako; Onouchi, Hitoshi; Fujiwara, Toru; Naito, Satoshi; Shiraishi, Fumihide; Kanaya, Shigehiko

    2013-05-01

    Metabolomics analysis tools can provide quantitative information on the concentration of metabolites in an organism. In this paper, we propose the minimum pathway model generator tool for simulating the dynamics of metabolite concentrations (SS-mPMG) and a tool for parameter estimation by genetic algorithm (SS-GA). SS-mPMG can extract a subsystem of the metabolic network from the genome-scale pathway maps to reduce the complexity of the simulation model and automatically construct a dynamic simulator to evaluate the experimentally observed behavior of metabolites. Using this tool, we show that stochastic simulation can reproduce experimentally observed dynamics of amino acid biosynthesis in Arabidopsis thaliana. In this simulation, SS-mPMG extracts the metabolic network subsystem from published databases. The parameters needed for the simulation are determined using a genetic algorithm to fit the simulation results to the experimental data. We expect that SS-mPMG and SS-GA will help researchers to create relevant metabolic networks and carry out simulations of metabolic reactions derived from metabolomics data.

  4. Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calyam, Prasad

    2014-09-15

    The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less

  5. Toward the automated generation of genome-scale metabolic networks in the SEED.

    PubMed

    DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron

    2007-04-26

    Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the stage for the automated generation of substantially complete metabolic networks for over 400 complete genome sequences currently in the SEED. With each genome that is processed using our tools, the database of common components grows to cover more of the diversity of metabolic pathways. This increases the likelihood that components of reaction networks for subsequently processed genomes can be retrieved from the database, rather than assembled and verified manually.

  6. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  7. Multidimensional Analysis of Linguistic Networks

    NASA Astrophysics Data System (ADS)

    Araújo, Tanya; Banisch, Sven

    Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

  8. Moving Large Data Sets Over High-Performance Long Distance Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodson, Stephen W; Poole, Stephen W; Ruwart, Thomas

    2011-04-01

    In this project we look at the performance characteristics of three tools used to move large data sets over dedicated long distance networking infrastructure. Although performance studies of wide area networks have been a frequent topic of interest, performance analyses have tended to focus on network latency characteristics and peak throughput using network traffic generators. In this study we instead perform an end-to-end long distance networking analysis that includes reading large data sets from a source file system and committing large data sets to a destination file system. An evaluation of end-to-end data movement is also an evaluation of themore » system configurations employed and the tools used to move the data. For this paper, we have built several storage platforms and connected them with a high performance long distance network configuration. We use these systems to analyze the capabilities of three data movement tools: BBcp, GridFTP, and XDD. Our studies demonstrate that existing data movement tools do not provide efficient performance levels or exercise the storage devices in their highest performance modes. We describe the device information required to achieve high levels of I/O performance and discuss how this data is applicable in use cases beyond data movement performance.« less

  9. Study of Adversarial and Defensive Components in an Experimental Machinery Control Systems Laboratory Environment

    DTIC Science & Technology

    2014-09-01

    prevention system (IPS), capable of performing real-time traffic analysis and packet logging on IP networks [25]. Snort’s features include protocol... analysis and content searching/matching. Snort can detect a variety of attacks and network probes, such as buffer overflows, port scans and OS...www.digitalbond.com/tools/the- rack/jtr-s7-password-cracking/ Kismet Mike Kershaw Cross- platform Open source wireless network detector and wireless sniffer

  10. Network Analysis in Community Psychology: Looking Back, Looking Forward.

    PubMed

    Neal, Zachary P; Neal, Jennifer Watling

    2017-09-01

    Network analysis holds promise for community psychology given the field's aim to understand the interplay between individuals and their social contexts. Indeed, because network analysis focuses explicitly on patterns of relationships between actors, its theories and methods are inherently extra-individual in nature and particularly well suited to characterizing social contexts. But, to what extent has community psychology taken advantage of this network analysis as a tool for capturing context? To answer these questions, this study provides a review of the use network analysis in articles published in American Journal of Community Psychology. Looking back, we describe and summarize the ways that network analysis has been employed in community psychology research to understand the range of ways community psychologists have found the technique helpful. Looking forward and paying particular attention to analytic issues identified in past applications, we provide some recommendations drawn from the network analysis literature to facilitate future applications of network analysis in community psychology. © 2017 The Authors. American Journal of Community Psychology published by Wiley Periodicals, Inc. on behalf of Society for Community Research and Action.

  11. Evaluating the Network: A Workflow for Tracking Twitter Interactions Using Social Networking Analysis

    ERIC Educational Resources Information Center

    Goodier, Sarah

    2018-01-01

    Networking plays an important role in research projects to build a community and audience around a research area. Using social media is popular in project communication as it provides the ability to engage with a group of followers daily. Such online networking tools provide the advantage of providing nearrealtime data, which can be used to…

  12. Genonets server-a web server for the construction, analysis and visualization of genotype networks.

    PubMed

    Khalid, Fahad; Aguilar-Rodríguez, José; Wagner, Andreas; Payne, Joshua L

    2016-07-08

    A genotype network is a graph in which vertices represent genotypes that have the same phenotype. Edges connect vertices if their corresponding genotypes differ in a single small mutation. Genotype networks are used to study the organization of genotype spaces. They have shed light on the relationship between robustness and evolvability in biological systems as different as RNA macromolecules and transcriptional regulatory circuits. Despite the importance of genotype networks, no tool exists for their automatic construction, analysis and visualization. Here we fill this gap by presenting the Genonets Server, a tool that provides the following features: (i) the construction of genotype networks for categorical and univariate phenotypes from DNA, RNA, amino acid or binary sequences; (ii) analyses of genotype network topology and how it relates to robustness and evolvability, as well as analyses of genotype network topography and how it relates to the navigability of a genotype network via mutation and natural selection; (iii) multiple interactive visualizations that facilitate exploratory research and education. The Genonets Server is freely available at http://ieu-genonets.uzh.ch. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Google matrix analysis of directed networks

    NASA Astrophysics Data System (ADS)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  14. Visualization of protein interaction networks: problems and solutions

    PubMed Central

    2013-01-01

    Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i) technology, i.e. availability/license of the software and supported OS (Operating System) platforms; (ii) interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii) visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv) analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the possibility to interact with external databases. Results Currently, many tools are available and it is not easy for the users choosing one of them. Some tools offer sophisticated 2D and 3D network visualization making available many layout algorithms, others tools are more data-oriented and support integration of interaction data coming from different sources and data annotation. Finally, some specialistic tools are dedicated to the analysis of pathways and cellular processes and are oriented toward systems biology studies, where the dynamic aspects of the processes being studied are central. Conclusion A current trend is the deployment of open, extensible visualization tools (e.g. Cytoscape), that may be incrementally enriched by the interactomics community with novel and more powerful functions for PIN analysis, through the development of plug-ins. On the other hand, another emerging trend regards the efficient and parallel implementation of the visualization engine that may provide high interactivity and near real-time response time, as in NAViGaTOR. From a technological point of view, open-source, free and extensible tools, like Cytoscape, guarantee a long term sustainability due to the largeness of the developers and users communities, and provide a great flexibility since new functions are continuously added by the developer community through new plug-ins, but the emerging parallel, often closed-source tools like NAViGaTOR, can offer near real-time response time also in the analysis of very huge PINs. PMID:23368786

  15. ENFIN--A European network for integrative systems biology.

    PubMed

    Kahlem, Pascal; Clegg, Andrew; Reisinger, Florian; Xenarios, Ioannis; Hermjakob, Henning; Orengo, Christine; Birney, Ewan

    2009-11-01

    Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.

  16. Snoopy--a unifying Petri net framework to investigate biomolecular networks.

    PubMed

    Rohr, Christian; Marwan, Wolfgang; Heiner, Monika

    2010-04-01

    To investigate biomolecular networks, Snoopy provides a unifying Petri net framework comprising a family of related Petri net classes. Models can be hierarchically structured, allowing for the mastering of larger networks. To move easily between the qualitative, stochastic and continuous modelling paradigms, models can be converted into each other. We get models sharing structure, but specialized by their kinetic information. The analysis and iterative reverse engineering of biomolecular networks is supported by the simultaneous use of several Petri net classes, while the graphical user interface adapts dynamically to the active one. Built-in animation and simulation are complemented by exports to various analysis tools. Snoopy facilitates the addition of new Petri net classes thanks to its generic design. Our tool with Petri net samples is available free of charge for non-commercial use at http://www-dssz.informatik.tu-cottbus.de/snoopy.html; supported operating systems: Mac OS X, Windows and Linux (selected distributions).

  17. Extracting microtubule networks from superresolution single-molecule localization microscopy data

    PubMed Central

    Zhang, Zhen; Nishimura, Yukako; Kanchanawong, Pakorn

    2017-01-01

    Microtubule filaments form ubiquitous networks that specify spatial organization in cells. However, quantitative analysis of microtubule networks is hampered by their complex architecture, limiting insights into the interplay between their organization and cellular functions. Although superresolution microscopy has greatly facilitated high-resolution imaging of microtubule filaments, extraction of complete filament networks from such data sets is challenging. Here we describe a computational tool for automated retrieval of microtubule filaments from single-molecule-localization–based superresolution microscopy images. We present a user-friendly, graphically interfaced implementation and a quantitative analysis of microtubule network architecture phenotypes in fibroblasts. PMID:27852898

  18. Engaging stakeholders: lessons from the use of participatory tools for improving maternal and child care health services.

    PubMed

    Ekirapa-Kiracho, Elizabeth; Ghosh, Upasona; Brahmachari, Rittika; Paina, Ligia

    2017-12-28

    Effective stakeholder engagement in research and implementation is important for improving the development and implementation of policies and programmes. A varied number of tools have been employed for stakeholder engagement. In this paper, we discuss two participatory methods for engaging with stakeholders - participatory social network analysis (PSNA) and participatory impact pathways analysis (PIPA). Based on our experience, we derive lessons about when and how to apply these tools. This paper was informed by a review of project reports and documents in addition to reflection meetings with the researchers who applied the tools. These reports were synthesised and used to make thick descriptions of the applications of the methods while highlighting key lessons. PSNA and PIPA both allowed a deep understanding of how the system actors are interconnected and how they influence maternal health and maternal healthcare services. The findings from the PSNA provided guidance on how stakeholders of a health system are interconnected and how they can stimulate more positive interaction between the stakeholders by exposing existing gaps. The PIPA meeting enabled the participants to envision how they could expand their networks and resources by mentally thinking about the contributions that they could make to the project. The processes that were considered critical for successful application of the tools and achievement of outcomes included training of facilitators, language used during the facilitation, the number of times the tool is applied, length of the tools, pretesting of the tools, and use of quantitative and qualitative methods. Whereas both tools allowed the identification of stakeholders and provided a deeper understanding of the type of networks and dynamics within the network, PIPA had a higher potential for promoting collaboration between stakeholders, likely due to allowing interaction between them. Additionally, it was implemented within a participatory action research project. PIPA also allowed participatory evaluation of the project from the perspective of the community. This paper provides lessons about the use of these participatory tools.

  19. An Integrative Analysis of Preeclampsia Based on the Construction of an Extended Composite Network Featuring Protein-Protein Physical Interactions and Transcriptional Relationships

    PubMed Central

    Vaiman, Daniel; Miralles, Francisco

    2016-01-01

    Preeclampsia (PE) is a pregnancy disorder defined by hypertension and proteinuria. This disease remains a major cause of maternal and fetal morbidity and mortality. Defective placentation is generally described as being at the root of the disease. The characterization of the transcriptome signature of the preeclamptic placenta has allowed to identify differentially expressed genes (DEGs). However, we still lack a detailed knowledge on how these DEGs impact the function of the placenta. The tools of network biology offer a methodology to explore complex diseases at a systems level. In this study we performed a cross-platform meta-analysis of seven publically available gene expression datasets comparing non-pathological and preeclamptic placentas. Using the rank product algorithm we identified a total of 369 DEGs consistently modified in PE. The DEGs were used as seeds to build both an extended physical protein-protein interactions network and a transcription factors regulatory network. Topological and clustering analysis was conducted to analyze the connectivity properties of the networks. Finally both networks were merged into a composite network which presents an integrated view of the regulatory pathways involved in preeclampsia and the crosstalk between them. This network is a useful tool to explore the relationship between the DEGs and enable hypothesis generation for functional experimentation. PMID:27802351

  20. An Automated Data Analysis Tool for Livestock Market Data

    ERIC Educational Resources Information Center

    Williams, Galen S.; Raper, Kellie Curry

    2011-01-01

    This article describes an automated data analysis tool that allows Oklahoma Cooperative Extension Service educators to disseminate results in a timely manner. Primary data collected at Oklahoma Quality Beef Network (OQBN) certified calf auctions across the state results in a large amount of data per sale site. Sale summaries for an individual sale…

  1. Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William

    2014-01-01

    BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679

  2. A graph-based computational framework for simulation and optimisation of coupled infrastructure networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek

    Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less

  3. A graph-based computational framework for simulation and optimisation of coupled infrastructure networks

    DOE PAGES

    Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek; ...

    2017-04-24

    Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less

  4. #LancerHealth: Using Twitter and Instagram as a tool in a campus wide health promotion initiative.

    PubMed

    Santarossa, Sara; Woodruff, Sarah J

    2018-02-05

    The present study aimed to explore using popular technology that people already have/use as a health promotion tool, in a campus wide social media health promotion initiative, entitled #LancerHealth . During a two-week period the university community was asked to share photos on Twitter and Instagram of What does being healthy on campus look like to you ?, while tagging the image with #LancerHealth . All publically tagged media was collected using the Netlytic software and analysed. Text analysis (N=234 records, Twitter; N=141 records, Instagram) revealed that the majority of the conversation was positive and focused on health and the university. Social network analysis, based on five network properties, showed a small network with little interaction. Lastly, photo coding analysis (N=71 unique image) indicated that the majority of the shared images were of physical activity (52%) and on campus (80%). Further research into this area is warranted.

  5. Passivity and Dissipativity as Design and Analysis Tools for Networked Control Systems

    ERIC Educational Resources Information Center

    Yu, Han

    2012-01-01

    In this dissertation, several control problems are studied that arise when passive or dissipative systems are interconnected and controlled over a communication network. Since communication networks can impact the systems' stability and performance, there is a need to extend the results on control of passive or dissipative systems to networked…

  6. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.

    PubMed

    Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan

    2016-06-04

    Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.

  7. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.

    PubMed

    Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan

    2016-03-01

    Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.

  8. Understanding Groups in Outdoor Adventure Education through Social Network Analysis

    ERIC Educational Resources Information Center

    Jostad, Jeremy; Sibthorp, Jim; Paisley, Karen

    2013-01-01

    Relationships are a critical component to the experience of an outdoor adventure education (OAE) program, therefore, more fruitful ways of investigating groups is needed. Social network analysis (SNA) is an effective tool to study the relationship structure of small groups. This paper provides an explanation of SNA and shows how it was used by the…

  9. Analysis of Acoustic Depth Sounder Signals with Artificial Neural Networks

    DTIC Science & Technology

    1991-04-01

    battery pack, processor, and mode switches and (2) a stainless steel shaft 1 meter long and 27 millimeters in diameter, containing 8 milliCurie of...returned signal which is not used in conventional depth sounders due to lack of real-time tools for interpreting the 36 information. The shape and...develop some software tools for conducting the research. Commercial programs for neural network implementation were available, but were "black box" in

  10. Social network diagnostics: a tool for monitoring group interventions

    PubMed Central

    2013-01-01

    Background Many behavioral interventions designed to improve health outcomes are delivered in group settings. To date, however, group interventions have not been evaluated to determine if the groups generate interaction among members and how changes in group interaction may affect program outcomes at the individual or group level. Methods This article presents a model and practical tool for monitoring how social ties and social structure are changing within the group during program implementation. The approach is based on social network analysis and has two phases: collecting network measurements at strategic intervention points to determine if group dynamics are evolving in ways anticipated by the intervention, and providing the results back to the group leader to guide implementation next steps. This process aims to initially increase network connectivity and ultimately accelerate the diffusion of desirable behaviors through the new network. This article presents the Social Network Diagnostic Tool and, as proof of concept, pilot data collected during the formative phase of a childhood obesity intervention. Results The number of reported advice partners and discussion partners increased during program implementation. Density, the number of ties among people in the network expressed as a percentage of all possible ties, increased from 0.082 to 0.182 (p < 0.05) in the advice network, and from 0.027 to 0.055 (p > 0.05) in the discussion network. Conclusions The observed two-fold increase in network density represents a significant shift in advice partners over the intervention period. Using the Social Network Tool to empirically guide program activities of an obesity intervention was feasible. PMID:24083343

  11. Managing biological networks by using text mining and computer-aided curation

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  12. The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography

    NASA Astrophysics Data System (ADS)

    Perna, Andrea; Jost, Christian; Couturier, Etienne; Valverde, Sergi; Douady, Stéphane; Theraulaz, Guy

    2008-09-01

    Recent studies have introduced computer tomography (CT) as a tool for the visualisation and characterisation of insect architectures. Here, we use CT to map the three-dimensional networks of galleries inside Cubitermes nests in order to analyse them with tools from graph theory. The structure of these networks indicates that connections inside the nest are rearranged during the whole nest life. The functional analysis reveals that the final network topology represents an excellent compromise between efficient connectivity inside the nest and defence against attacking predators. We further discuss and illustrate the usefulness of CT to disentangle environmental and specific influences on nest architecture.

  13. Investigating System Dependability Modeling Using AADL

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin R.; Madl, Gabor

    2013-01-01

    This report describes Architecture Analysis & Design Language (AADL) models for a diverse set of fault-tolerant, embedded data networks and describes the methods and tools used to created these models. It also includes error models per the AADL Error Annex. Some networks were modeled using Error Detection Isolation Containment Types (EDICT). This report gives a brief description for each of the networks, a description of its modeling, the model itself, and evaluations of the tools used for creating the models. The methodology includes a naming convention that supports a systematic way to enumerate all of the potential failure modes.

  14. Obtaining Global Picture From Single Point Observations by Combining Data Assimilation and Machine Learning Tools

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.

    2017-12-01

    Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.

  15. Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley

    2009-01-01

    In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.

  16. TNA4OptFlux – a software tool for the analysis of strain optimization strategies

    PubMed Central

    2013-01-01

    Background Rational approaches for Metabolic Engineering (ME) deal with the identification of modifications that improve the microbes’ production capabilities of target compounds. One of the major challenges created by strain optimization algorithms used in these ME problems is the interpretation of the changes that lead to a given overproduction. Often, a single gene knockout induces changes in the fluxes of several reactions, as compared with the wild-type, and it is therefore difficult to evaluate the physiological differences of the in silico mutant. This is aggravated by the fact that genome-scale models per se are difficult to visualize, given the high number of reactions and metabolites involved. Findings We introduce a software tool, the Topological Network Analysis for OptFlux (TNA4OptFlux), a plug-in which adds to the open-source ME platform OptFlux the capability of creating and performing topological analysis over metabolic networks. One of the tool’s major advantages is the possibility of using these tools in the analysis and comparison of simulated phenotypes, namely those coming from the results of strain optimization algorithms. We illustrate the capabilities of the tool by using it to aid the interpretation of two E. coli strains designed in OptFlux for the overproduction of succinate and glycine. Conclusions Besides adding new functionalities to the OptFlux software tool regarding topological analysis, TNA4OptFlux methods greatly facilitate the interpretation of non-intuitive ME strategies by automating the comparison between perturbed and non-perturbed metabolic networks. The plug-in is available on the web site http://www.optflux.org, together with extensive documentation. PMID:23641878

  17. A systematic approach to infer biological relevance and biases of gene network structures.

    PubMed

    Antonov, Alexey V; Tetko, Igor V; Mewes, Hans W

    2006-01-10

    The development of high-throughput technologies has generated the need for bioinformatics approaches to assess the biological relevance of gene networks. Although several tools have been proposed for analysing the enrichment of functional categories in a set of genes, none of them is suitable for evaluating the biological relevance of the gene network. We propose a procedure and develop a web-based resource (BIOREL) to estimate the functional bias (biological relevance) of any given genetic network by integrating different sources of biological information. The weights of the edges in the network may be either binary or continuous. These essential features make our web tool unique among many similar services. BIOREL provides standardized estimations of the network biases extracted from independent data. By the analyses of real data we demonstrate that the potential application of BIOREL ranges from various benchmarking purposes to systematic analysis of the network biology.

  18. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research.

    PubMed

    Grunspan, Daniel Z; Wiggins, Benjamin L; Goodreau, Steven M

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. © 2014 D. Z. Grunspan et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. NDEx - the Network Data Exchange, A Network Commons for Biologists | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Network models of biology, whether curated or derived from large-scale data analysis, are critical tools in the understanding of cancer mechanisms and in the design and personalization of therapies. The NDEx Project (Network Data Exchange) will create, deploy, and maintain an open-source, web-based software platform and public website to enable scientists, organizations, and software applications to share, store, manipulate, and publish biological networks.

  20. Modeling languages for biochemical network simulation: reaction vs equation based approaches.

    PubMed

    Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya

    2010-01-01

    Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.

  1. Managing cancer care through service delivery networks: The role of professional collaboration in two European cancer networks.

    PubMed

    Prades, Joan; Morando, Verdiana; Tozzi, Valeria D; Verhoeven, Didier; Germà, Jose R; Borras, Josep M

    2017-01-01

    Background The study examines two meso-strategic cancer networks, exploring to what extent collaboration can strengthen or hamper network effectiveness. Unlike macro-strategic networks, meso-strategic networks have no hierarchical governance structures nor are they institutionalised within healthcare services' delivery systems. This study aims to analyse the models of professional cooperation and the tools developed for managing clinical practice within two meso-strategic, European cancer networks. Methods Multiple case study design based on the comparative analysis of two cancer networks: Iridium, in Antwerp, Belgium and the Institut Català d'Oncologia in Catalonia, Spain. The case studies applied mixed methods, with qualitative research based on semi-structured interviews ( n = 35) together with case-site observation and material collection. Results The analysis identified four levels of collaborative intensity within medical specialties as well as in multidisciplinary settings, which became both platforms for crosscutting clinical work between hubs' experts and local care teams and the levers for network-based tools development. The organisation of clinical practice relied on professional-based cooperative processes and tiers, lacking vertical integration mechanisms. Conclusions The intensity of professional linkages largely shaped the potential of meso-strategic cancer networks to influence clinical practice organisation. Conversely, the introduction of managerial techniques or network governance structures, without introducing vertical hierarchies, was found to be critical solutions.

  2. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations

    PubMed Central

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming; Jin, Hong

    2016-01-01

    Tool breakage causes losses of surface polishing and dimensional accuracy for machined part, or possible damage to a workpiece or machine. Tool Condition Monitoring (TCM) is considerably vital in the manufacturing industry. In this paper, an indirect TCM approach is introduced with a wireless triaxial accelerometer. The vibrations in the three vertical directions (x, y and z) are acquired during milling operations, and the raw signals are de-noised by wavelet analysis. These features of de-noised signals are extracted in the time, frequency and time–frequency domains. The key features are selected based on Pearson’s Correlation Coefficient (PCC). The Neuro-Fuzzy Network (NFN) is adopted to predict the tool wear and Remaining Useful Life (RUL). In comparison with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN), the results show that the NFN has the best performance in the prediction of tool wear and RUL. PMID:27258277

  3. On-line Tool Wear Detection on DCMT070204 Carbide Tool Tip Based on Noise Cutting Audio Signal using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.

    2018-01-01

    This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.

  4. Faculty Recommendations for Web Tools: Implications for Course Management Systems

    ERIC Educational Resources Information Center

    Oliver, Kevin; Moore, John

    2008-01-01

    A gap analysis of web tools in Engineering was undertaken as one part of the Digital Library Network for Engineering and Technology (DLNET) grant funded by NSF (DUE-0085849). DLNET represents a Web portal and an online review process to archive quality knowledge objects in Engineering and Technology disciplines. The gap analysis coincided with the…

  5. Community Structure in Online Collegiate Social Networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  6. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.

    PubMed

    Webb, Ryan L; Ma'ayan, Avi

    2011-03-21

    The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.

  7. Networks in Action: New Actors and Practices in Education Policy in Brazil

    ERIC Educational Resources Information Center

    Shiroma, Eneida Oto

    2014-01-01

    This paper focuses on the role of networks in the policy-making process in education and discusses the potential of network analysis as an analytical tool for education policy research. Drawing on publically available data from personal or institutional websites, this paper reports the findings from research carried out between 2005 and 2011.…

  8. Modelling and analysis of gene regulatory network using feedback control theory

    NASA Astrophysics Data System (ADS)

    El-Samad, H.; Khammash, M.

    2010-01-01

    Molecular pathways are a part of a remarkable hierarchy of regulatory networks that operate at all levels of organisation. These regulatory networks are responsible for much of the biological complexity within the cell. The dynamic character of these pathways and the prevalence of feedback regulation strategies in their operation make them amenable to systematic mathematical analysis using the same tools that have been used with success in analysing and designing engineering control systems. In this article, we aim at establishing this strong connection through various examples where the behaviour exhibited by gene networks is explained in terms of their underlying control strategies. We complement our analysis by a survey of mathematical techniques commonly used to model gene regulatory networks and analyse their dynamic behaviour.

  9. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Objective. Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. Approach. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. Main results. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. Significance. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  10. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects.

    PubMed

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  11. Spike-train spectra and network response functions for non-linear integrate-and-fire neurons.

    PubMed

    Richardson, Magnus J E

    2008-11-01

    Reduced models have long been used as a tool for the analysis of the complex activity taking place in neurons and their coupled networks. Recent advances in experimental and theoretical techniques have further demonstrated the usefulness of this approach. Despite the often gross simplification of the underlying biophysical properties, reduced models can still present significant difficulties in their analysis, with the majority of exact and perturbative results available only for the leaky integrate-and-fire model. Here an elementary numerical scheme is demonstrated which can be used to calculate a number of biologically important properties of the general class of non-linear integrate-and-fire models. Exact results for the first-passage-time density and spike-train spectrum are derived, as well as the linear response properties and emergent states of recurrent networks. Given that the exponential integrate-fire model has recently been shown to agree closely with the experimentally measured response of pyramidal cells, the methodology presented here promises to provide a convenient tool to facilitate the analysis of cortical-network dynamics.

  12. The “NetBoard”: Network Monitoring Tools Integration for INFN Tier-1 Data Center

    NASA Astrophysics Data System (ADS)

    De Girolamo, D.; dell'Agnello and, L.; Zani, S.

    2012-12-01

    The monitoring and alert system is fundamental for the management and the operation of the network in a large data center such as an LHC Tier-1. The network of the INFN Tier-1 at CNAF is a multi-vendor environment: for its management and monitoring several tools have been adopted and different sensors have been developed. In this paper, after an overview on the different aspects to be monitored and the tools used for them (i.e. MRTG, Nagios, Arpwatch, NetFlow, Syslog, etc), we will describe the “NetBoard”, a monitoring toolkit developed at the INFN Tier-1. NetBoard, developed for a multi-vendor network, is able to install and auto-configure all tools needed for its monitoring, either via network devices discovery mechanism or via configuration file or via wizard. In this way, we are also able to activate different types of sensors and Nagios checks according to the equipment vendor specifications. Moreover, when a new device is connected in the LAN, NetBoard can detect where it is plugged. Finally the NetBoard web interface allows to have the overall status of the entire network “at a glance”, both the local and the geographical (including the LHCOPN and the LHCONE) link utilization, health status of network devices (with active alerts) and flow analysis.

  13. Towards a C2 Poly-Visualization Tool: Leveraging the Power of Social-Network Analysis and GIS

    DTIC Science & Technology

    2011-06-01

    from Magsino.14 AutoMap, a product of CASOS at Carnegie Mellon University, is a text-mining tool that enables the extraction of network data from...enables community leaders to prepare for biological attacks using computational models. BioWar is a CASOS package that combines many factors into a...models, demographically accurate agent modes, wind dispersion models, and an error-diagnostic model. Construct, also developed by CASOS , is a

  14. CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses.

    PubMed

    Proost, Sebastian; Mutwil, Marek

    2018-05-01

    The recent accumulation of gene expression data in the form of RNA sequencing creates unprecedented opportunities to study gene regulation and function. Furthermore, comparative analysis of the expression data from multiple species can elucidate which functional gene modules are conserved across species, allowing the study of the evolution of these modules. However, performing such comparative analyses on raw data is not feasible for many biologists. Here, we present CoNekT (Co-expression Network Toolkit), an open source web server, that contains user-friendly tools and interactive visualizations for comparative analyses of gene expression data and co-expression networks. These tools allow analysis and cross-species comparison of (i) gene expression profiles; (ii) co-expression networks; (iii) co-expressed clusters involved in specific biological processes; (iv) tissue-specific gene expression; and (v) expression profiles of gene families. To demonstrate these features, we constructed CoNekT-Plants for green alga, seed plants and flowering plants (Picea abies, Chlamydomonas reinhardtii, Vitis vinifera, Arabidopsis thaliana, Oryza sativa, Zea mays and Solanum lycopersicum) and thus provide a web-tool with the broadest available collection of plant phyla. CoNekT-Plants is freely available from http://conekt.plant.tools, while the CoNekT source code and documentation can be found at https://github.molgen.mpg.de/proost/CoNekT/.

  15. The Earth Science Research Network as Seen Through Network Analysis of the AGU

    NASA Astrophysics Data System (ADS)

    Narock, T.; Hasnain, S.; Stephan, R.

    2017-12-01

    Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.

  16. Bridging the Host-Network Divide: Survey, Taxonomy, and Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.; Duggirala, Vedavyas; Correa, Ricardo

    2007-04-17

    Abstract: "This paper presents a new direction in security awareness tools for system administration--the Host-Network (HoNe) Visualizer. Our requirements for the HoNe Visualizer come from needs system administrators expressed in interviews, from reviewing the literature, and from conducting usability studies with prototypes. We present a tool taxonomy that serves as a framework for our literature review, and we use the taxonomy to show what is missing in the administrator's arsenal. Then we unveil our tool and its supporting infrastructure that we believe will fill the empty niche. We found that most security tools provide either an internal view of amore » host or an external view of traffic on a network. Our interviewees revealed how they must construct a mental end-to-end view from separate tools that individually give an incomplete view, expending valuable time and mental effort. Because of limitations designed into TCP/IP [RFC-791, RFC-793], no tool can effectively correlate host and network data into an end-to-end view without kernel modifications. Currently, no other visualization exists to support end-to-end analysis. But HoNe's infrastructure overcomes TCP/IP's limitations bridging the network and transport layers in the network stack and making end-to-end correlation possible. The capstone is the HoNe Visualizer that amplifies the users' cognitive power and reduces their mental workload by illustrating the correlated data graphically. Users said HoNe would be particularly good for discovering day-zero exploits. Our usability study revealed that users performed better on intrusion detection tasks using our visualization than with tools they were accustomed to using regardless of their experience level."« less

  17. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  18. Performance analysis of LAN bridges and routers

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.

    1991-01-01

    Bridges and routers are used to interconnect Local Area Networks (LANs). The performance of these devices is important since they can become bottlenecks in large multi-segment networks. Performance metrics and test methodology for bridges and routers were not standardized. Performance data reported by vendors is not applicable to the actual scenarios encountered in an operational network. However, vendor-provided data can be used to calibrate models of bridges and routers that, along with other models, yield performance data for a network. Several tools are available for modeling bridges and routers - Network II.5 was used. The results of the analysis of some bridges and routers are presented.

  19. Social Network Analysis as an Analytic Tool for Task Group Research: A Case Study of an Interdisciplinary Community of Practice

    ERIC Educational Resources Information Center

    Lockhart, Naorah C.

    2017-01-01

    Group counselors commonly collaborate in interdisciplinary settings in health care, substance abuse, and juvenile justice. Social network analysis is a methodology rarely used in counseling research yet has potential to examine task group dynamics in new ways. This case study explores the scholarly relationships among 36 members of an…

  20. Visualization Techniques for Computer Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, Justin M; Steed, Chad A; Patton, Robert M

    2011-01-01

    Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operatormore » to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.« less

  1. Using Social Network Analysis to Assess Mentorship and Collaboration in a Public Health Network.

    PubMed

    Petrescu-Prahova, Miruna; Belza, Basia; Leith, Katherine; Allen, Peg; Coe, Norma B; Anderson, Lynda A

    2015-08-20

    Addressing chronic disease burden requires the creation of collaborative networks to promote systemic changes and engage stakeholders. Although many such networks exist, they are rarely assessed with tools that account for their complexity. This study examined the structure of mentorship and collaboration relationships among members of the Healthy Aging Research Network (HAN) using social network analysis (SNA). We invited 97 HAN members and partners to complete an online social network survey that included closed-ended questions about HAN-specific mentorship and collaboration during the previous 12 months. Collaboration was measured by examining the activity of the network on 6 types of products: published articles, in-progress manuscripts, grant applications, tools, research projects, and presentations. We computed network-level measures such as density, number of components, and centralization to assess the cohesiveness of the network. Sixty-three respondents completed the survey (response rate, 65%). Responses, which included information about collaboration with nonrespondents, suggested that 74% of HAN members were connected through mentorship ties and that all 97 members were connected through at least one form of collaboration. Mentorship and collaboration ties were present both within and across boundaries of HAN member organizations. SNA of public health collaborative networks provides understanding about the structure of relationships that are formed as a result of participation in network activities. This approach may offer members and funders a way to assess the impact of such networks that goes beyond simply measuring products and participation at the individual level.

  2. Network analysis for science and technology management: Evidence from tuberculosis research in Fiocruz, Brazil

    PubMed Central

    da Silva, Marcus Vinicius Pereira; de Araújo, Kizi Mendonça; Sampaio, Ricardo Barros; Moraes, Milton Ozório

    2017-01-01

    Collaborative networks are of great value for science and technology (S&T) institutions as a way of sharing, generating and disseminating new knowledge that could ultimately lead to innovations. Driven by the need to assess the contribution and effectiveness of these networks in informing S&T management, we explored the evolution and dynamics of tuberculosis scientific networks involving the Oswaldo Cruz Foundation (Fiocruz), the major public health S&T Institution in Brazil. Social network analysis (SNA) was used to produce a 10-year (2005–2009, 2010–2014) retrospective longitudinal mapping of Brazilian tuberculosis research networks within the country and internationally, highlighting Fiocruz collaborations. Co-authorship analysis showed a significant expansion of collaboration in Brazil and the role of Fiocruz and other leading national institutions in maintaining connectivity, facilitating knowledge exchange and reducing network vulnerability. It also identified influential researchers that can act as information leaders and support strategic decisions. When we focused on networks inside the institution, the analysis showed a clear discontinuation between the clinical and the public health research areas, which needs specific internal policies to improve collaborations since outcomes in TB are expected to provide better diagnostic tools and more effective treatments. The approach provides evidence to support S&T management by pinpointing: key central institutions maintaining network connectivity; most influential researchers that can act as advisors/experts for investment and induction policies; key Fiocruz researchers that could improve information exchange, systems integration and innovation within the institution; opportunities for synergy between internal research groups working in complementary areas. In summary, we observed that SNA parameters proved to be a valuable tool that, along with other indicators, can strengthen knowledge platforms to support S&T management efforts. PMID:28792514

  3. Enhancement of the FDOT's project level and network level bridge management analysis tools

    DOT National Transportation Integrated Search

    2011-02-01

    Over several years, the Florida Department of Transportation (FDOT) has been implementing the AASHTO Pontis Bridge Management System to support network-level and project-level decision making in the headquarters and district offices. Pontis is an int...

  4. Advanced functional network analysis in the geosciences: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  5. Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks

    NASA Astrophysics Data System (ADS)

    Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji

    High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.

  6. ISS Mini AERCam Radio Frequency (RF) Coverage Analysis Using iCAT Development Tool

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Vazquez, Luis; Sham, Catherine; Fredrickson, Steven; Fink, Patrick; Cox, Jan; Phan, Chau; Panneton, Robert

    2003-01-01

    The long-term goals of the National Aeronautics and Space Administration's (NASA's) Human Exploration and Development of Space (HEDS) enterprise may require the development of autonomous free-flier (FF) robotic devices to operate within the vicinity of low-Earth orbiting spacecraft to supplement human extravehicular activities (EVAs) in space. Future missions could require external visual inspection of the spacecraft that would be difficult, or dangerous, for humans to perform. Under some circumstance, it may be necessary to employ an un-tethered communications link between the FF and the users. The interactive coverage analysis tool (ICAT) is a software tool that has been developed to perform critical analysis of the communications link performance for a FF operating in the vicinity of the International Space Station (ISS) external environment. The tool allows users to interactively change multiple parameters of the communications link parameters to efficiently perform systems engineering trades on network performance. These trades can be directly translated into design and requirements specifications. This tool significantly reduces the development time in determining a communications network topology by allowing multiple parameters to be changed, and the results of link coverage to be statistically characterized and plotted interactively.

  7. Ku-band signal design study. [space shuttle orbiter data processing network

    NASA Technical Reports Server (NTRS)

    Rubin, I.

    1978-01-01

    Analytical tools, methods and techniques for assessing the design and performance of the space shuttle orbiter data processing system (DPS) are provided. The computer data processing network is evaluated in the key areas of queueing behavior synchronization and network reliability. The structure of the data processing network is described as well as the system operation principles and the network configuration. The characteristics of the computer systems are indicated. System reliability measures are defined and studied. System and network invulnerability measures are computed. Communication path and network failure analysis techniques are included.

  8. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  9. Communications Effects Server (CES) Model for Systems Engineering Research

    DTIC Science & Technology

    2012-01-31

    Visualization Tool Interface «logical» HLA Tool Interface «logical» DIS Tool Interface «logical» STK Tool Interface «module» Execution Kernels «logical...interoperate with STK when running simulations. GUI Components  Architect – The Architect represents the main network design and visualization ...interest» CES «block» Third Party Visualization Tool «block» Third Party Analysis Tool «block» Third Party Text Editor «block» HLA Tools Analyst User Army

  10. Designing a holistic end-to-end intelligent network analysis and security platform

    NASA Astrophysics Data System (ADS)

    Alzahrani, M.

    2018-03-01

    Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.

  11. Information Assurance Study

    DTIC Science & Technology

    1998-01-01

    usually written up by Logistics or Maintenance (4790 is the Maintenance “ Bible ”). If need be, and if resources are available, one could collect all...Public domain) SATAN (System Administration Tool for Analyzing Networks) (Public Domain) STAT ( Security Test and Analysis Tool) (Harris Corporation...Service-Filtering Tools 1. TCP/IP wrapper program • Tools to Scan Hosts for Known Vulnerabilities 1. ISS (Internet Security Scanner) 2. SATAN (Security

  12. Making practice transparent through e-portfolio.

    PubMed

    Stewart, Sarah M

    2013-12-01

    Midwives are required to maintain a professional portfolio as part of their statutory requirements. Some midwives are using open social networking tools and processes to develop an e-portfolio. However, confidentiality of patient and client data and professional reputation have to be taken into consideration when using online public spaces for reflection. There is little evidence about how midwives use social networking tools for ongoing learning. It is uncertain how reflecting in an e-portfolio with an audience impacts on learning outcomes. This paper investigates ways in which reflective midwifery practice be carried out using e-portfolio in open, social networking platforms using collaborative processes. Using an auto-ethnographic approach I explored my e-portfolio and selected posts that had attracted six or more comments. I used thematic analysis to identify themes within the textual conversations in the posts and responses posted by readers. The analysis identified that my collaborative e-portfolio had four themes: to provide commentary and discuss issues; to reflect and process learning; to seek advice, brainstorm and process ideas for practice, projects and research, and provide evidence of professional development. E-portfolio using open social networking tools and processes is a viable option for midwives because it facilitates collaborative reflection and shared learning. However, my experience shows that concerns about what people think, and client confidentiality does impact on the nature of open reflection and learning outcomes. I conclude this paper with a framework for managing midwifery statutory obligations using online public spaces and social networking tools. Copyright © 2013 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  13. Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks

    PubMed Central

    2014-01-01

    Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226

  14. Polynomial algebra of discrete models in systems biology.

    PubMed

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  15. Artificial neural networks in biology and chemistry: the evolution of a new analytical tool.

    PubMed

    Cartwright, Hugh M

    2008-01-01

    Once regarded as an eccentric and unpromising algorithm for the analysis of scientific data, the neural network has been developed in the last decade into a powerful computational tool. Its use now spans all areas of science, from the physical sciences and engineering to the life sciences and allied subjects. Applications range from the assessment of epidemiological data or the deconvolution of spectra to highly practical applications, such as the electronic nose. This introductory chapter considers briefly the growth in the use of neural networks and provides some general background in preparation for the more detailed chapters that follow.

  16. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    PubMed

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    PubMed

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different networks. By simultaneously exploring these networks and metadata, we gained insights into regulatory mechanisms in M. tuberculosis that could not be obtained through the separate analysis of each data type.

  18. Measuring Road Network Vulnerability with Sensitivity Analysis

    PubMed Central

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  19. The Evolution of Recent Research on Catalan Literature through the Production of PhD Theses: A Bibliometric and Social Network Analysis

    ERIC Educational Resources Information Center

    Ardanuy, Jordi; Urbano, Cristobal; Quintana, Lluis

    2009-01-01

    Introduction: This paper studies the situation of research on Catalan literature between 1976 and 2003 by carrying out a bibliometric and social network analysis of PhD theses defended in Spain. It has a dual aim: to present interesting results for the discipline and to demonstrate the methodological efficacy of scientometric tools in the…

  20. Network analysis applications in hydrology

    NASA Astrophysics Data System (ADS)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  1. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis

    PubMed Central

    Fan, Yannan; Siklenka, Keith; Arora, Simran K.; Ribeiro, Paula; Kimmins, Sarah; Xia, Jianguo

    2016-01-01

    MicroRNAs (miRNAs) can regulate nearly all biological processes and their dysregulation is implicated in various complex diseases and pathological conditions. Recent years have seen a growing number of functional studies of miRNAs using high-throughput experimental technologies, which have produced a large amount of high-quality data regarding miRNA target genes and their interactions with small molecules, long non-coding RNAs, epigenetic modifiers, disease associations, etc. These rich sets of information have enabled the creation of comprehensive networks linking miRNAs with various biologically important entities to shed light on their collective functions and regulatory mechanisms. Here, we introduce miRNet, an easy-to-use web-based tool that offers statistical, visual and network-based approaches to help researchers understand miRNAs functions and regulatory mechanisms. The key features of miRNet include: (i) a comprehensive knowledge base integrating high-quality miRNA-target interaction data from 11 databases; (ii) support for differential expression analysis of data from microarray, RNA-seq and quantitative PCR; (iii) implementation of a flexible interface for data filtering, refinement and customization during network creation; (iv) a powerful fully featured network visualization system coupled with enrichment analysis. miRNet offers a comprehensive tool suite to enable statistical analysis and functional interpretation of various data generated from current miRNA studies. miRNet is freely available at http://www.mirnet.ca. PMID:27105848

  2. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    PubMed

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  3. Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans (nemertea).

    PubMed

    Chen, Haixia; Strand, Malin; Norenburg, Jon L; Sun, Shichun; Kajihara, Hiroshi; Chernyshev, Alexey V; Maslakova, Svetlana A; Sundberg, Per

    2010-09-21

    It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling.

  4. Vertical Interaction in Open Software Engineering Communities

    DTIC Science & Technology

    2009-03-01

    Program in CASOS (NSF,DGE-9972762), the Office of Naval Research under Dynamic Network Analysis program (N00014-02-1-0973, the Air Force Office of...W91WAW07C0063) for research in the area of dynamic network analysis. Additional support was provided by CASOS - the center for Computational Analysis of Social...methods across the domain. For a given project, de - velopers can choose from dozens of models, tools, platforms, and languages for specification, design

  5. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles.

    PubMed

    Mustafin, Zakhar Sergeevich; Lashin, Sergey Alexandrovich; Matushkin, Yury Georgievich; Gunbin, Konstantin Vladimirovich; Afonnikov, Dmitry Arkadievich

    2017-01-27

    There are many available software tools for visualization and analysis of biological networks. Among them, Cytoscape ( http://cytoscape.org/ ) is one of the most comprehensive packages, with many plugins and applications which extends its functionality by providing analysis of protein-protein interaction, gene regulatory and gene co-expression networks, metabolic, signaling, neural as well as ecological-type networks including food webs, communities networks etc. Nevertheless, only three plugins tagged 'network evolution' found in Cytoscape official app store and in literature. We have developed a new Cytoscape 3.0 application Orthoscape aimed to facilitate evolutionary analysis of gene networks and visualize the results. Orthoscape aids in analysis of evolutionary information available for gene sets and networks by highlighting: (1) the orthology relationships between genes; (2) the evolutionary origin of gene network components; (3) the evolutionary pressure mode (diversifying or stabilizing, negative or positive selection) of orthologous groups in general and/or branch-oriented mode. The distinctive feature of Orthoscape is the ability to control all data analysis steps via user-friendly interface. Orthoscape allows its users to analyze gene networks or separated gene sets in the context of evolution. At each step of data analysis, Orthoscape also provides for convenient visualization and data manipulation.

  6. Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns

    DOE PAGES

    Tian, Wenhong; Samatova, Nagiza F.

    2013-01-01

    A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less

  7. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1.

    PubMed

    Senachak, Jittisak; Cheevadhanarak, Supapon; Hongsthong, Apiradee

    2015-07-29

    Spirulina (Arthrospira) platensis is the only cyanobacterium that in addition to being studied at the molecular level and subjected to gene manipulation, can also be mass cultivated in outdoor ponds for commercial use as a food supplement. Thus, encountering environmental changes, including temperature stresses, is common during the mass production of Spirulina. The use of cyanobacteria as an experimental platform, especially for photosynthetic gene manipulation in plants and bacteria, is becoming increasingly important. Understanding the mechanisms and protein-protein interaction networks that underlie low- and high-temperature responses is relevant to Spirulina mass production. To accomplish this goal, high-throughput techniques such as OMICs analyses are used. Thus, large datasets must be collected, managed and subjected to information extraction. Therefore, databases including (i) proteomic analysis and protein-protein interaction (PPI) data and (ii) domain/motif visualization tools are required for potential use in temperature response models for plant chloroplasts and photosynthetic bacteria. A web-based repository was developed including an embedded database, SpirPro, and tools for network visualization. Proteome data were analyzed integrated with protein-protein interactions and/or metabolic pathways from KEGG. The repository provides various information, ranging from raw data (2D-gel images) to associated results, such as data from interaction and/or pathway analyses. This integration allows in silico analyses of protein-protein interactions affected at the metabolic level and, particularly, analyses of interactions between and within the affected metabolic pathways under temperature stresses for comparative proteomic analysis. The developed tool, which is coded in HTML with CSS/JavaScript and depicted in Scalable Vector Graphics (SVG), is designed for interactive analysis and exploration of the constructed network. SpirPro is publicly available on the web at http://spirpro.sbi.kmutt.ac.th . SpirPro is an analysis platform containing an integrated proteome and PPI database that provides the most comprehensive data on this cyanobacterium at the systematic level. As an integrated database, SpirPro can be applied in various analyses, such as temperature stress response networking analysis in cyanobacterial models and interacting domain-domain analysis between proteins of interest.

  8. How Much Security Does Your Library Need?

    ERIC Educational Resources Information Center

    Banerjee, Kyle

    2003-01-01

    Explains how to keep library systems healthy and functioning by taking sensible security measures. Examines why hackers would target library systems and how library systems are compromised. Describes tools that can help, including: firewalls; antivirus software; alarms; network analysis tools; and encryption. Identifies several strategies for…

  9. Real-Time-Simulation of IEEE-5-Bus Network on OPAL-RT-OP4510 Simulator

    NASA Astrophysics Data System (ADS)

    Atul Bhandakkar, Anjali; Mathew, Lini, Dr.

    2018-03-01

    The Real-Time Simulator tools have high computing technologies, improved performance. They are widely used for design and improvement of electrical systems. The advancement of the software tools like MATLAB/SIMULINK with its Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT), real-time simulators are used extensively in many engineering fields, such as industry, education, and research institutions. OPAL-RT-OP4510 is a Real-Time Simulator which is used in both industry and academia. In this paper, the real-time simulation of IEEE-5-Bus network is carried out by means of OPAL-RT-OP4510 with CRO and other hardware. The performance of the network is observed with the introduction of fault at various locations. The waveforms of voltage, current, active and reactive power are observed in the MATLAB simulation environment and on the CRO. Also, Load Flow Analysis (LFA) of IEEE-5-Bus network is computed using MATLAB/Simulink power-gui load flow tool.

  10. A review of network analysis terminology and its application to foot-and-mouth disease modelling and policy development.

    PubMed

    Dubé, C; Ribble, C; Kelton, D; McNab, B

    2009-04-01

    Livestock movements are important in spreading infectious diseases and many countries have developed regulations that require farmers to report livestock movements to authorities. This has led to the availability of large amounts of data for analysis and inclusion in computer simulation models developed to support policy formulation. Social network analysis has become increasingly popular to study and characterize the networks resulting from the movement of livestock from farm-to-farm and through other types of livestock operations. Network analysis is a powerful tool that allows one to study the relationships created among these operations, providing information on the role that they play in acquiring and spreading infectious diseases, information that is not readily available from more traditional livestock movement studies. Recent advances in the study of real-world complex networks are now being applied to veterinary epidemiology and infectious disease modelling and control. A review of the principles of network analysis and of the relevance of various complex network theories to infectious disease modelling and control is presented in this paper.

  11. Differential Tuning of Ventral and Dorsal Streams during the Generation of Common and Uncommon Tool Uses.

    PubMed

    Matheson, Heath E; Buxbaum, Laurel J; Thompson-Schill, Sharon L

    2017-11-01

    Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions within the ventral and dorsal streams represent information supporting common tool use. However, given the flexibility of object concepts, these regions may be tuned to different types of information when generating novel or uncommon uses of tools. To investigate this, we collected fMRI data from participants who reported common or uncommon tool uses in response to visually presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated cortical patterns with behavioral measures of visual, action, and category information. The results showed that evoked cortical patterns within the dorsal tool use network reflected action and visual information to a greater extent in the uncommon use group, whereas evoked neural patterns within the ventral tool use network reflected categorical information more strongly in the common use group. These results reveal the flexibility of cortical representations of tool use and the situated nature of cortical representations more generally.

  12. ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis.

    PubMed

    Pitkänen, Esa; Akerlund, Arto; Rantanen, Ari; Jouhten, Paula; Ukkonen, Esko

    2008-08-25

    ReMatch is a web-based, user-friendly tool that constructs stoichiometric network models for metabolic flux analysis, integrating user-developed models into a database collected from several comprehensive metabolic data resources, including KEGG, MetaCyc and CheBI. Particularly, ReMatch augments the metabolic reactions of the model with carbon mappings to facilitate (13)C metabolic flux analysis. The construction of a network model consisting of biochemical reactions is the first step in most metabolic modelling tasks. This model construction can be a tedious task as the required information is usually scattered to many separate databases whose interoperability is suboptimal, due to the heterogeneous naming conventions of metabolites in different databases. Another, particularly severe data integration problem is faced in (13)C metabolic flux analysis, where the mappings of carbon atoms from substrates into products in the model are required. ReMatch has been developed to solve the above data integration problems. First, ReMatch matches the imported user-developed model against the internal ReMatch database while considering a comprehensive metabolite name thesaurus. This, together with wild card support, allows the user to specify the model quickly without having to look the names up manually. Second, ReMatch is able to augment reactions of the model with carbon mappings, obtained either from the internal database or given by the user with an easy-touse tool. The constructed models can be exported into 13C-FLUX and SBML file formats. Further, a stoichiometric matrix and visualizations of the network model can be generated. The constructed models of metabolic networks can be optionally made available to the other users of ReMatch. Thus, ReMatch provides a common repository for metabolic network models with carbon mappings for the needs of metabolic flux analysis community. ReMatch is freely available for academic use at http://www.cs.helsinki.fi/group/sysfys/software/rematch/.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagberg, Aric; Swart, Pieter; S Chult, Daniel

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distributionmore » and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.« less

  14. Techniques for the Detection of Faulty Packet Header Modifications

    DTIC Science & Technology

    2014-03-12

    layer approaches to check if packets are being altered by middleboxes and were primarily developed as network neutrality analysis tools. Switzerland works...local and metropolitan area networks –specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications...policy or position of the Department of Defense or the U.S. Government. Understanding, measuring, and debugging IP networks , particularly across

  15. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    NASA Astrophysics Data System (ADS)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati- n networks. It then presents the generalities of possible architectures for future space communication and navigation networks. Finally, it describes the tools and methods being developed, clearly indicating the architectural decisions that have been taken into account as well as the systematic approach followed to model them. The purpose of this study is to explore the SCaN architectural tradespace by means of a computational tool. This paper describes the tool, while the tradespace exploration is underway.

  16. Social Networks, Engagement and Resilience in University Students.

    PubMed

    Fernández-Martínez, Elena; Andina-Díaz, Elena; Fernández-Peña, Rosario; García-López, Rosa; Fulgueiras-Carril, Iván; Liébana-Presa, Cristina

    2017-12-01

    Analysis of social networks may be a useful tool for understanding the relationship between resilience and engagement, and this could be applied to educational methodologies, not only to improve academic performance, but also to create emotionally sustainable networks. This descriptive study was carried out on 134 university students. We collected the network structural variables, degree of resilience (CD-RISC 10), and engagement (UWES-S). The computer programs used were excel, UCINET for network analysis, and SPSS for statistical analysis. The analysis revealed results of means of 28.61 for resilience, 2.98 for absorption, 4.82 for dedication, and 3.13 for vigour. The students had two preferred places for sharing information: the classroom and WhatsApp. The greater the value for engagement, the greater the degree of centrality in the friendship network among students who are beginning their university studies. This relationship becomes reversed as the students move to later academic years. In terms of resilience, the highest values correspond to greater centrality in the friendship networks. The variables of engagement and resilience influenced the university students' support networks.

  17. Social Networks, Engagement and Resilience in University Students

    PubMed Central

    García-López, Rosa; Fulgueiras-Carril, Iván

    2017-01-01

    Analysis of social networks may be a useful tool for understanding the relationship between resilience and engagement, and this could be applied to educational methodologies, not only to improve academic performance, but also to create emotionally sustainable networks. This descriptive study was carried out on 134 university students. We collected the network structural variables, degree of resilience (CD-RISC 10), and engagement (UWES-S). The computer programs used were excel, UCINET for network analysis, and SPSS for statistical analysis. The analysis revealed results of means of 28.61 for resilience, 2.98 for absorption, 4.82 for dedication, and 3.13 for vigour. The students had two preferred places for sharing information: the classroom and WhatsApp. The greater the value for engagement, the greater the degree of centrality in the friendship network among students who are beginning their university studies. This relationship becomes reversed as the students move to later academic years. In terms of resilience, the highest values correspond to greater centrality in the friendship networks. The variables of engagement and resilience influenced the university students’ support networks. PMID:29194361

  18. Network analysis of physics discussion forums and links to course success

    NASA Astrophysics Data System (ADS)

    Traxler, Adrienne; Gavrin, Andrew; Lindell, Rebecca

    2017-01-01

    Large introductory science courses tend to isolate students, with negative consequences for long-term retention in college. Many active learning courses build collaboration and community among students as an explicit goal, and social network analysis has been used to track the development and beneficial effects of these collaborations. Here we supplement such work by conducting network analysis of online course discussion forums in two semesters of an introductory physics class. Online forums provide a tool for engaging students with each other outside of class, and offer new opportunities to commuter or non-traditional students with limited on-campus time. We look for correlations between position in the forum network (centrality) and final course grades. Preliminary investigation has shown weak correlations in the very dense full-semester network, so we will consider reduced ''backbone'' networks that highlight the most consistent links between students. Future work and implications for instruction will also be discussed.

  19. Social network analysis for program implementation.

    PubMed

    Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks

    2015-01-01

    This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.

  20. Social Network Analysis for Program Implementation

    PubMed Central

    Valente, Thomas W.; Palinkas, Lawrence A.; Czaja, Sara; Chu, Kar-Hai; Brown, C. Hendricks

    2015-01-01

    This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach. PMID:26110842

  1. Predicting thermal regimes of stream networks across the northeast United States: Natural and anthropogenic influences

    EPA Science Inventory

    We used STARS (Spatial Tools for the Analysis of River Systems), an ArcGIS geoprocessing toolbox, to create spatial stream networks. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance...

  2. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-06-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  3. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-09-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  4. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells.

    PubMed

    Nadadhur, Aishwarya G; Emperador Melero, Javier; Meijer, Marieke; Schut, Desiree; Jacobs, Gerbren; Li, Ka Wan; Hjorth, J J Johannes; Meredith, Rhiannon M; Toonen, Ruud F; Van Kesteren, Ronald E; Smit, August B; Verhage, Matthijs; Heine, Vivi M

    2017-01-01

    Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.

  5. Acquisition Management for Systems-of-Systems: Analysis of Alternatives via Computational Exploratory Model

    DTIC Science & Technology

    2012-02-03

    node to the analysis of eigenmodes (connected trees /networks) of disruption sequences. The identification of disruption eigenmodes is particularly...investment portfolio approach enables the identification of optimal SoS network topologies and provides a tool for acquisition professionals to...a program based on its ability to provide a new capability for a given cost, and not on its ability to meet specific performance requirements ( Spacy

  6. Network Science Center Research Team’s Visit to Addis Ababa, Ethiopia

    DTIC Science & Technology

    2012-08-01

    www.netscience.usma.edu 845.938.0804 enterprise that supports the German Government in achieving its objectives in the field of international cooperation for...U.S. Government . 14. ABSTRACT A Network Science Center research team demonstrated a network analysis “tool kit” to the Political and Economic...by China State Construction Engineering 3 | P a g e Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a

  7. FunRich proteomics software analysis, let the fun begin!

    PubMed

    Benito-Martin, Alberto; Peinado, Héctor

    2015-08-01

    Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small-scale and high-throughput studies. However, user-friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597-2601) report the development of FunRich software, an open-access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Novel presentational approaches were developed for reporting network meta-analysis.

    PubMed

    Tan, Sze Huey; Cooper, Nicola J; Bujkiewicz, Sylwia; Welton, Nicky J; Caldwell, Deborah M; Sutton, Alexander J

    2014-06-01

    To present graphical tools for reporting network meta-analysis (NMA) results aiming to increase the accessibility, transparency, interpretability, and acceptability of NMA analyses. The key components of NMA results were identified based on recommendations by agencies such as the National Institute for Health and Care Excellence (United Kingdom). Three novel graphs were designed to amalgamate the identified components using familiar graphical tools such as the bar, line, or pie charts and adhering to good graphical design principles. Three key components for presentation of NMA results were identified, namely relative effects and their uncertainty, probability of an intervention being best, and between-study heterogeneity. Two of the three graphs developed present results (for each pairwise comparison of interventions in the network) obtained from both NMA and standard pairwise meta-analysis for easy comparison. They also include options to display the probability best, ranking statistics, heterogeneity, and prediction intervals. The third graph presents rankings of interventions in terms of their effectiveness to enable clinicians to easily identify "top-ranking" interventions. The graphical tools presented can display results tailored to the research question of interest, and targeted at a whole spectrum of users from the technical analyst to the nontechnical clinician. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics

    NASA Astrophysics Data System (ADS)

    Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve

    2017-05-01

    Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.

  10. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.

  11. GIS as a tool for efficient management of transport streams

    NASA Astrophysics Data System (ADS)

    Zatserkovnyi, V. I.; Kobrin, O. V.

    2015-10-01

    The transport network, which is an ideal object for the automation and the increase of efficiency using geographic information systems (GIS), is considered. The transport problems, which have a lot of mathematical models of the traffic flow for their solution, are enumerated. GIS analysis tools that allow one to build optimal routes in the real road network with its capabilities and limitations are presented. They can solve the extremely important problem of modern Ukraine - the rapid increase of the number of cars and the glut of road network vehicles. The intelligent transport systems, which are created and developed on the basis of GPS, GIS, modern communications and telecommunications facilities, are considered.

  12. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    PubMed

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  13. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  14. BiNA: A Visual Analytics Tool for Biological Network Data

    PubMed Central

    Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael

    2014-01-01

    Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056

  15. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence.

    PubMed

    Latkin, Carl A; Davey-Rothwell, Melissa A; Knowlton, Amy R; Alexander, Kamila A; Williams, Chyvette T; Boodram, Basmattee

    2013-06-01

    This article reviews the current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates, treatment access, and outcomes. Social network analysis is a valuable tool to link social structural factors to individual behaviors. Social networks provide an avenue for low-cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social networks can be utilized as a viable approach to recruitment for HIV testing and counseling, HIV prevention interventions, optimizing HIV medical care, and medication adherence. Social network interventions may be face-to-face or through social media. Key issues in designing social network interventions are contamination due to social diffusion, network stability, density, and the choice and training of network members. There are also ethical issues involved in the development and implementation of social network interventions. Social network analyses can also be used to understand HIV transmission dynamics.

  16. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  17. Compressive Network Analysis

    PubMed Central

    Jiang, Xiaoye; Yao, Yuan; Liu, Han; Guibas, Leonidas

    2014-01-01

    Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets. PMID:25620806

  18. Geospatial Analysis Tool Kit for Regional Climate Datasets (GATOR) : An Open-source Tool to Compute Climate Statistic GIS Layers from Argonne Climate Modeling Results

    DTIC Science & Technology

    2017-08-01

    This large repository of climate model results for North America (Wang and Kotamarthi 2013, 2014, 2015) is stored in Network Common Data Form (NetCDF...Network Common Data Form (NetCDF). UCAR/Unidata Program Center, Boulder, CO. Available at: http://www.unidata.ucar.edu/software/netcdf. Accessed on 6/20...emissions diverge from each other regarding fossil fuel use, technology, and other socioeconomic factors. As a result, the estimated emissions for each of

  19. Network Analytical Tool for Monitoring Global Food Safety Highlights China

    PubMed Central

    Nepusz, Tamás; Petróczi, Andrea; Naughton, Declan P.

    2009-01-01

    Background The Beijing Declaration on food safety and security was signed by over fifty countries with the aim of developing comprehensive programs for monitoring food safety and security on behalf of their citizens. Currently, comprehensive systems for food safety and security are absent in many countries, and the systems that are in place have been developed on different principles allowing poor opportunities for integration. Methodology/Principal Findings We have developed a user-friendly analytical tool based on network approaches for instant customized analysis of food alert patterns in the European dataset from the Rapid Alert System for Food and Feed. Data taken from alert logs between January 2003 – August 2008 were processed using network analysis to i) capture complexity, ii) analyze trends, and iii) predict possible effects of interventions by identifying patterns of reporting activities between countries. The detector and transgressor relationships are readily identifiable between countries which are ranked using i) Google's PageRank algorithm and ii) the HITS algorithm of Kleinberg. The program identifies Iran, China and Turkey as the transgressors with the largest number of alerts. However, when characterized by impact, counting the transgressor index and the number of countries involved, China predominates as a transgressor country. Conclusions/Significance This study reports the first development of a network analysis approach to inform countries on their transgressor and detector profiles as a user-friendly aid for the adoption of the Beijing Declaration. The ability to instantly access the country-specific components of the several thousand annual reports will enable each country to identify the major transgressors and detectors within its trading network. Moreover, the tool can be used to monitor trading countries for improved detector/transgressor ratios. PMID:19688088

  20. Enhancer Linking by Methylation/Expression Relationships (ELMER) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    R tool for analysis of DNA methylation and expression datasets. Integrative analysis allows reconstruction of in vivo transcription factor networks altered in cancer along with identification of the underlying gene regulatory sequences.

  1. SiLK: A Tool Suite for Unsampled Network Flow Analysis at Scale

    DTIC Science & Technology

    2014-06-01

    file format,” [Accessed: Feb 9, 2014]. [Online]. Available: https: //tools.netsa.cert.org/silk/faq.html#file-formats [12] “2012 data breach investigations...report (DBIR),” Verizon, Tech. Rep., 2012. [Online]. Available: http://www.verizonenterprise.com/DBIR/2012/ [13] “2013 data breach investigations

  2. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0

    PubMed Central

    Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-01-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850

  3. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    PubMed

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  4. Applying social network analysis to understand the knowledge sharing behaviour of practitioners in a clinical online discussion forum.

    PubMed

    Stewart, Samuel Alan; Abidi, Syed Sibte Raza

    2012-12-04

    Knowledge Translation (KT) plays a vital role in the modern health care community, facilitating the incorporation of new evidence into practice. Web 2.0 tools provide a useful mechanism for establishing an online KT environment in which health practitioners share their practice-related knowledge and experiences with an online community of practice. We have implemented a Web 2.0 based KT environment--an online discussion forum--for pediatric pain practitioners across seven different hospitals in Thailand. The online discussion forum enabled the pediatric pain practitioners to share and translate their experiential knowledge to help improve the management of pediatric pain in hospitals. The goal of this research is to investigate the knowledge sharing dynamics of a community of practice through an online discussion forum. We evaluated the communication patterns of the community members using statistical and social network analysis methods in order to better understand how the online community engages to share experiential knowledge. Statistical analyses and visualizations provide a broad overview of the communication patterns within the discussion forum. Social network analysis provides the tools to delve deeper into the social network, identifying the most active members of the community, reporting the overall health of the social network, isolating the potential core members of the social network, and exploring the inter-group relationships that exist across institutions and professions. The statistical analyses revealed a network dominated by a single institution and a single profession, and found a varied relationship between reading and posting content to the discussion forum. The social network analysis discovered a healthy network with strong communication patterns, while identifying which users are at the center of the community in terms of facilitating communication. The group-level analysis suggests that there is strong interprofessional and interregional communication, but a dearth of non-nurse participants has been identified as a shortcoming. The results of the analysis suggest that the discussion forum is active and healthy, and that, though few, the interprofessional and interinstitutional ties are strong.

  5. Divisibility patterns of natural numbers on a complex network.

    PubMed

    Shekatkar, Snehal M; Bhagwat, Chandrasheel; Ambika, G

    2015-09-16

    Investigation of divisibility properties of natural numbers is one of the most important themes in the theory of numbers. Various tools have been developed over the centuries to discover and study the various patterns in the sequence of natural numbers in the context of divisibility. In the present paper, we study the divisibility of natural numbers using the framework of a growing complex network. In particular, using tools from the field of statistical inference, we show that the network is scale-free but has a non-stationary degree distribution. Along with this, we report a new kind of similarity pattern for the local clustering, which we call "stretching similarity", in this network. We also show that the various characteristics like average degree, global clustering coefficient and assortativity coefficient of the network vary smoothly with the size of the network. Using analytical arguments we estimate the asymptotic behavior of global clustering and average degree which is validated using numerical analysis.

  6. Performance management of multiple access communication networks

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Ray, Asok

    1993-12-01

    This paper focuses on conceptual design, development, and implementation of a performance management tool for computer communication networks to serve large-scale integrated systems. The objective is to improve the network performance in handling various types of messages by on-line adjustment of protocol parameters. The techniques of perturbation analysis of Discrete Event Dynamic Systems (DEDS), stochastic approximation (SA), and learning automata have been used in formulating the algorithm of performance management. The efficacy of the performance management tool has been demonstrated on a network testbed. The conceptual design presented in this paper offers a step forward to bridging the gap between management standards and users' demands for efficient network operations since most standards such as ISO (International Standards Organization) and IEEE address only the architecture, services, and interfaces for network management. The proposed concept of performance management can also be used as a general framework to assist design, operation, and management of various DEDS such as computer integrated manufacturing and battlefield C(sup 3) (Command, Control, and Communications).

  7. The Reconstruction and Analysis of Gene Regulatory Networks.

    PubMed

    Zheng, Guangyong; Huang, Tao

    2018-01-01

    In post-genomic era, an important task is to explore the function of individual biological molecules (i.e., gene, noncoding RNA, protein, metabolite) and their organization in living cells. For this end, gene regulatory networks (GRNs) are constructed to show relationship between biological molecules, in which the vertices of network denote biological molecules and the edges of network present connection between nodes (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). Biologists can understand not only the function of biological molecules but also the organization of components of living cells through interpreting the GRNs, since a gene regulatory network is a comprehensively physiological map of living cells and reflects influence of genetic and epigenetic factors (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). In this paper, we will review the inference methods of GRN reconstruction and analysis approaches of network structure. As a powerful tool for studying complex diseases and biological processes, the applications of the network method in pathway analysis and disease gene identification will be introduced.

  8. Infectious disease transmission and contact networks in wildlife and livestock.

    PubMed

    Craft, Meggan E

    2015-05-26

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Infectious disease transmission and contact networks in wildlife and livestock

    PubMed Central

    Craft, Meggan E.

    2015-01-01

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. PMID:25870393

  10. What Role Does "Elongation" Play in "Tool-Specific" Activation and Connectivity in the Dorsal and Ventral Visual Streams?

    PubMed

    Chen, Juan; Snow, Jacqueline C; Culham, Jody C; Goodale, Melvyn A

    2018-04-01

    Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.

  11. DDN (Defense Data Network) Protocol Implementations and Vendors Guide

    DTIC Science & Technology

    1989-02-01

    Announcement 286-259 6/16/86 MACHINE-TYPE/CPU: IBM RT/PC O/S: AIX DISTRIBUTOR: 1. IBM Marketing 2. IBM Authorized VAR’s 3. Authorized Personal Computer...Vendors Guide 12. PERSONAL AUTHOR(S) Dorio, Nan; Johnson, Marlyn; Lederman. Sol; Redfield, Elizabeth; Ward, Carol 13a. TYPE OF REPORT 13b. TIME COVERED 114...documentation, contact person , and distributor. The fourth section describes analysis tools. It includes information about network analysis products

  12. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  13. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Leeuwen, Brian P.; Eldridge, John M.

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approachmore » that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.« less

  14. A Methodology and Software Environment for Testing Process Model’s Sequential Predictions with Protocols

    DTIC Science & Technology

    1992-12-21

    in preparation). Foundations of artificial intelligence. Cambridge, MA: MIT Press. O’Reilly, R. C. (1991). X3DNet: An X- Based Neural Network ...2.2.3 Trace based protocol analysis 19 2.2A Summary of important data features 21 2.3 Tools related to process model testing 23 2.3.1 Tools for building...algorithm 57 3. Requirements for testing process models using trace based protocol 59 analysis 3.1 Definition of trace based protocol analysis (TBPA) 59

  15. Networks of Practice in Science Education Research: A Global Context

    ERIC Educational Resources Information Center

    Martin, Sonya N.; Siry, Christina

    2011-01-01

    In this paper, we employ cultural sociology and Braj Kachru's model of World Englishes as theoretical and analytical tools for considering English as a form of capital necessary for widely disseminating research findings from local networks of practice to the greater science education research community. We present a brief analysis of recent…

  16. Mining and Modeling Real-World Networks: Patterns, Anomalies, and Tools

    ERIC Educational Resources Information Center

    Akoglu, Leman

    2012-01-01

    Large real-world graph (a.k.a network, relational) data are omnipresent, in online media, businesses, science, and the government. Analysis of these massive graphs is crucial, in order to extract descriptive and predictive knowledge with many commercial, medical, and environmental applications. In addition to its general structure, knowing what…

  17. Cognitive Affordances of the Cyberinfrastructure for Science and Math Learning

    ERIC Educational Resources Information Center

    Martinez, Michael E.; Peters Burton, Erin E.

    2011-01-01

    The "cyberinfrastucture" is a broad informational network that entails connections to real-time data sensors as well as tools that permit visualization and other forms of analysis, and that facilitates access to vast scientific databases. This multifaceted network, already a major boon to scientific discovery, now shows exceptional promise in…

  18. Emergent Complex Behavior in Social Networks: Examples from the Ktunaxa Speech Community

    ERIC Educational Resources Information Center

    Horsethief, Christopher

    2012-01-01

    Language serves as a primary tool for structuring identity and loss of language represents the loss of that identity. This study utilizes a social network analysis of Ktunaxa speech community activities for evidence of internally generated revitalization efforts. These behaviors include instances of self-organized emergence. Such emergent behavior…

  19. A bioinformatics analysis of Lamin-A regulatory network: a perspective on epigenetic involvement in Hutchinson-Gilford progeria syndrome.

    PubMed

    Arancio, Walter

    2012-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to premature aging. HGPS is caused by mutation in the Lamin-A (LMNA) gene that leads, in affected young individuals, to the accumulation of the progerin protein, usually present only in aging differentiated cells. Bioinformatics analyses of the network of interactions of the LMNA gene and transcripts are presented. The LMNA gene network has been analyzed using the BioGRID database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA ( http://genemania.org/). The network of interaction of LMNA transcripts has been further analyzed following the competing endogenous (ceRNA) hypotheses (RNA cross-talk via microRNAs [miRNAs]) and using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest particular relevance of epigenetic modifiers (via acetylase complexes and specifically HTATIP histone acetylase) and adenosine triphosphate (ATP)-dependent chromatin remodelers (via pBAF, BAF, and SWI/SNF complexes).

  20. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    DOE PAGES

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  1. Luigi Gentile Polese | NREL

    Science.gov Websites

    software development of next-generation whole-building energy modeling, analysis, and simulation tools technical positions in networking protocol specifications, call control software, and requirements

  2. Development of task network models of human performance in microgravity

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Adam, Susan

    1992-01-01

    This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.

  3. Identification of interactive gene networks: a novel approach in gene array profiling of myometrial events during guinea pig pregnancy.

    PubMed

    Mason, Clifford W; Swaan, Peter W; Weiner, Carl P

    2006-06-01

    The transition from myometrial quiescence to activation is poorly understood, and the analysis of array data is limited by the available data mining tools. We applied functional analysis and logical operations along regulatory gene networks to identify molecular processes and pathways underlying quiescence and activation. We analyzed some 18,400 transcripts and variants in guinea pig myometrium at stages corresponding to quiescence and activation, and compared them to the nonpregnant (control) counterpart using a functional mapping tool, MetaCore (GeneGo, St Joseph, MI) to identify novel gene networks composed of biological pathways during mid (MP) and late (LP) pregnancy. Genes altered during quiescence and or activation were identified following gene specific comparisons with myometrium from nonpregnant animals, and then linked to curated pathways and formulated networks. The MP and LP networks were subtracted from each other to identify unique genomic events during those periods. For example, changes 2-fold or greater in genes mediating protein biosynthesis, programmed cell death, microtubule polymerization, and microtubule based movement were noted during the transition to LP. We describe a novel approach combining microarrays and genetic data to identify networks associated with normal myometrial events. The resulting insights help identify potential biomarkers and permit future targeted investigations of these pathways or networks to confirm or refute their importance.

  4. Applying differential dynamic logic to reconfigurable biological networks.

    PubMed

    Figueiredo, Daniel; Martins, Manuel A; Chaves, Madalena

    2017-09-01

    Qualitative and quantitative modeling frameworks are widely used for analysis of biological regulatory networks, the former giving a preliminary overview of the system's global dynamics and the latter providing more detailed solutions. Another approach is to model biological regulatory networks as hybrid systems, i.e., systems which can display both continuous and discrete dynamic behaviors. Actually, the development of synthetic biology has shown that this is a suitable way to think about biological systems, which can often be constructed as networks with discrete controllers, and present hybrid behaviors. In this paper we discuss this approach as a special case of the reconfigurability paradigm, well studied in Computer Science (CS). In CS there are well developed computational tools to reason about hybrid systems. We argue that it is worth applying such tools in a biological context. One interesting tool is differential dynamic logic (dL), which has recently been developed by Platzer and applied to many case-studies. In this paper we discuss some simple examples of biological regulatory networks to illustrate how dL can be used as an alternative, or also as a complement to methods already used. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    PubMed

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Application of modern tools and techniques to maximize engineering productivity in the development of orbital operations plans for the space station progrm

    NASA Technical Reports Server (NTRS)

    Manford, J. S.; Bennett, G. R.

    1985-01-01

    The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.

  7. The emerging potential for network analysis to inform precision cancer medicine.

    PubMed

    Ozturk, Kivilcim; Dow, Michelle; Carlin, Daniel E; Bejar, Rafael; Carter, Hannah

    2018-06-14

    Precision cancer medicine promises to tailor clinical decisions to patients using genomic information. Indeed, successes of drugs targeting genetic alterations in tumors, such as imatinib that targets BCR-ABL in chronic myelogenous leukemia, have demonstrated the power of this approach. However biological systems are complex, and patients may differ not only by the specific genetic alterations in their tumor, but by more subtle interactions among such alterations. Systems biology and more specifically, network analysis, provides a framework for advancing precision medicine beyond clinical actionability of individual mutations. Here we discuss applications of network analysis to study tumor biology, early methods for N-of-1 tumor genome analysis and the path for such tools to the clinic. Copyright © 2018. Published by Elsevier Ltd.

  8. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-12-10

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.

  9. An ANOVA approach for statistical comparisons of brain networks.

    PubMed

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  10. Duality between Time Series and Networks

    PubMed Central

    Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.

    2011-01-01

    Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093

  11. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  12. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  13. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  14. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  15. The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity

    PubMed Central

    Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406

  16. Visual analysis of large heterogeneous social networks by semantic and structural abstraction.

    PubMed

    Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina

    2006-01-01

    Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.

  17. Parameterized centrality metric for network analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Rumi; Lerman, Kristina

    2011-06-01

    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [P. Bonacich, Am. J. Sociol.0002-960210.1086/228631 92, 1170 (1987)], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, for example, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. Studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed metric to several benchmark networks and show that it leads to better insights into network structure than alternative metrics.

  18. Sovereign public debt crisis in Europe. A network analysis

    NASA Astrophysics Data System (ADS)

    Matesanz, David; Ortega, Guillermo J.

    2015-10-01

    In this paper we analyse the evolving network structure of the quarterly public debt-to-GDP ratio from 2000 to 2014. By applying tools and concepts coming from complex systems we study the effects of the global financial crisis over public debt network connections and communities. Two main results arise from this analysis: firstly, countries public debts tend to synchronize their evolution, increasing global connectivity in the network and dramatically decreasing the number of communities. Secondly, a disruption in previous structure is observed at the time of the shock, emerging a more centralized and less diversify network topological organization which might be more prone to suffer contagion effects. This last fact is evidenced by an increasing tendency in countries of similar level of public debt to be connected between them, which we have quantified by the network assortativity.

  19. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  20. Weighted Networks at the Polish Market

    NASA Astrophysics Data System (ADS)

    Chmiel, A. M.; Sienkiewicz, J.; Suchecki, K.; Hołyst, J. A.

    During the last few years various models of networks [1,2] have become a powerful tool for analysis of complex systems in such distant fields as Internet [3], biology [4], social groups [5], ecology [6] and public transport [7]. Modeling behavior of economical agents is a challenging issue that has also been studied from a network point of view. The examples of such studies are models of financial networks [8], supply chains [9, 10], production networks [11], investment networks [12] or collective bank bankrupcies [13, 14]. Relations between different companies have been already analyzed using several methods: as networks of shareholders [15], networks of correlations between stock prices [16] or networks of board directors [17]. In several cases scaling laws for network characteristics have been observed.

  1. NetIntel: A Database for Manipulation of Rich Social Network Data

    DTIC Science & Technology

    2005-03-03

    between entities in a social or organizational system. For most of its history , social network analysis has operated on a notion of a dataset - a clearly...and procedural), as well as stored procedure and trigger capabilities. For the current implementation, we have chosen PostgreSQL [1] database. Of the...data and easy-to-use facilities for export of data into analysis tools as well as online browsing and data entry. References [1] Postgresql

  2. Experimental investigation and optimization of welding process parameters for various steel grades using NN tool and Taguchi method

    NASA Astrophysics Data System (ADS)

    Soni, Sourabh Kumar; Thomas, Benedict

    2018-04-01

    The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.

  3. Multi-phenomenology Observation Network Evaluation Tool'' (MONET)

    NASA Astrophysics Data System (ADS)

    Oltrogge, D.; North, P.; Vallado, D.

    2014-09-01

    Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.

  4. Extension of a System Level Tool for Component Level Analysis

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    2002-01-01

    This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.

  5. Extension of a System Level Tool for Component Level Analysis

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul; McConnaughey, Paul K. (Technical Monitor)

    2001-01-01

    This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow, and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.

  6. Performance Analysis of Automated Attack Graph Generation Software

    DTIC Science & Technology

    2006-12-01

    MIT Lincoln Laboratory – NetSPA .................................................13 3. Skybox - Skybox View...Lip05*) 3. Skybox - Skybox View Skybox View is a commercially available tool developed by Skybox Security that can automatically generate...each host. It differs from CAULDRON because it requires that Skybox View probe live networks and must be connected to live networks during its

  7. Comparative Analysis of University-Government-Enterprise Co-Authorship Networks in Three Scientific Domains in the Region of Madrid

    ERIC Educational Resources Information Center

    Olmeda-Gomez, Carlos; Perianes-Rodriguez, Antonio; Ovalle-Perandones, Maria Antonia; Moya-Anegon, Felix

    2008-01-01

    Introduction: In an economy geared to innovation and competitiveness in research and development activities, inter-relationships between the university, private enterprise and government are of considerable interest. Networking constitutes a priority strategy to attain this strategic objective and a tool in knowledge-based economies. Method:…

  8. Tools and Techniques for Simplifying the Analysis of Captured Packet Data

    ERIC Educational Resources Information Center

    Cavaiani, Thomas P.

    2008-01-01

    Students acquire an understanding of the differences between TCP and UDP (connection-oriented vs. connection-less) data transfers as they analyze network packet data collected during one of a series of labs designed for an introductory network essentials course taught at Boise State University. The learning emphasis of the lab is not on the…

  9. Social Networking Tools and Teacher Education Learning Communities: A Case Study

    ERIC Educational Resources Information Center

    Poulin, Michael T.

    2014-01-01

    Social networking tools have become an integral part of a pre-service teacher's educational experience. As a result, the educational value of social networking tools in teacher preparation programs must be examined. The specific problem addressed in this study is that the role of social networking tools in teacher education learning communities…

  10. Communities detection as a tool to assess a reform of the Italian interlocking directorship network

    NASA Astrophysics Data System (ADS)

    Drago, Carlo; Ricciuti, Roberto

    2017-01-01

    Interlocking directorships are important communication channels among companies and may have anticompetitive effect. A corporate governance reform was introduced in 2011 to prevent interlocking directorships in the financial sector. We apply community detection techniques to the analysis of the networks in 2009 and 2012 to ascertain the effect of such reform on the Italian directorship network. We find that, although the number of interlocking directorships decreases in 2012, the reduction takes place mainly at the periphery of the network. The network core is stable, allowing the most connected companies to keep their strategic position.

  11. The PathoYeastract database: an information system for the analysis of gene and genomic transcription regulation in pathogenic yeasts.

    PubMed

    Monteiro, Pedro Tiago; Pais, Pedro; Costa, Catarina; Manna, Sauvagya; Sá-Correia, Isabel; Teixeira, Miguel Cacho

    2017-01-04

    We present the PATHOgenic YEAst Search for Transcriptional Regulators And Consensus Tracking (PathoYeastract - http://pathoyeastract.org) database, a tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in the pathogenic yeasts Candida albicans and C. glabrata Upon data retrieval from hundreds of publications, followed by curation, the database currently includes 28 000 unique documented regulatory associations between transcription factors (TF) and target genes and 107 DNA binding sites, considering 134 TFs in both species. Following the structure used for the YEASTRACT database, PathoYeastract makes available bioinformatics tools that enable the user to exploit the existing information to predict the TFs involved in the regulation of a gene or genome-wide transcriptional response, while ranking those TFs in order of their relative importance. Each search can be filtered based on the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. Promoter analysis tools and interactive visualization tools for the representation of TF regulatory networks are also provided. The PathoYeastract database further provides simple tools for the prediction of gene and genomic regulation based on orthologous regulatory associations described for other yeast species, a comparative genomics setup for the study of cross-species evolution of regulatory networks. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Cluster tool solution for fabrication and qualification of advanced photomasks

    NASA Astrophysics Data System (ADS)

    Schaetz, Thomas; Hartmann, Hans; Peter, Kai; Lalanne, Frederic P.; Maurin, Olivier; Baracchi, Emanuele; Miramond, Corinne; Brueck, Hans-Juergen; Scheuring, Gerd; Engel, Thomas; Eran, Yair; Sommer, Karl

    2000-07-01

    The reduction of wavelength in optical lithography, phase shift technology and optical proximity correction (OPC), requires a rapid increase in cost effective qualification of photomasks. The knowledge about CD variation, loss of pattern fidelity especially for OPC pattern and mask defects concerning the impact on wafer level is becoming a key issue for mask quality assessment. As part of the European Community supported ESPRIT projection 'Q-CAP', a new cluster concept has been developed, which allows the combination of hardware tools as well as software tools via network communication. It is designed to be open for any tool manufacturer and mask hose. The bi-directional network access allows the exchange of all relevant mask data including grayscale images, measurement results, lithography parameters, defect coordinates, layout data, process data etc. and its storage to a SQL database. The system uses SEMI format descriptions as well as standard network hardware and software components for the client server communication. Each tool is used mainly to perform its specific application without using expensive time to perform optional analysis, but the availability of the database allows each component to share the full data ste gathered by all components. Therefore, the cluster can be considered as one single virtual tool. The paper shows the advantage of the cluster approach, the benefits of the tools linked together already, and a vision of a mask house in the near future.

  13. The application of data mining techniques to oral cancer prognosis.

    PubMed

    Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan

    2015-05-01

    This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.

  14. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

    PubMed Central

    Ulitsky, Igor; Shamir, Ron

    2007-01-01

    The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins. PMID:17437029

  15. GRN2SBML: automated encoding and annotation of inferred gene regulatory networks complying with SBML.

    PubMed

    Vlaic, Sebastian; Hoffmann, Bianca; Kupfer, Peter; Weber, Michael; Dräger, Andreas

    2013-09-01

    GRN2SBML automatically encodes gene regulatory networks derived from several inference tools in systems biology markup language. Providing a graphical user interface, the networks can be annotated via the simple object access protocol (SOAP)-based application programming interface of BioMart Central Portal and minimum information required in the annotation of models registry. Additionally, we provide an R-package, which processes the output of supported inference algorithms and automatically passes all required parameters to GRN2SBML. Therefore, GRN2SBML closes a gap in the processing pipeline between the inference of gene regulatory networks and their subsequent analysis, visualization and storage. GRN2SBML is freely available under the GNU Public License version 3 and can be downloaded from http://www.hki-jena.de/index.php/0/2/490. General information on GRN2SBML, examples and tutorials are available at the tool's web page.

  16. Ganges-Brahmaputra-Meghna Delta Connectivity Analysis Using New Tools for the Automatic Extraction of Channel Networks from Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Jarriel, T. M.; Isikdogan, F.; Passalacqua, P.; Bovik, A.

    2017-12-01

    River deltas are one of the environmental ecosystems most threatened by climate change and anthropogenic activity. While their low elevation gradients and fertile soil have made them optimal for human inhabitation and diverse ecologic growth, it also makes them susceptible to adverse effects of sea level rise, flooding, subsidence, and manmade structures such as dams, levees, and dikes. One particularly large and threatened delta that is the focus area of this study, is the Ganges-Brahmaputra-Meghna Delta (GBMD) on the southern coast of Bangladesh/West Bengal India. In this study we analyze the GBMD channel network, identify areas of maximum change of the network, and use this information to predict how the network will respond under future scenarios. Landsat images of the delta from 1973 to 2017 are analyzed using new tools for the automatic extraction of channel networks from remotely sensed imagery [Isikdogan et al., 2017a, Isikdogan et al., 2017b]. The tools return channel width and channel centerline location at the resolution of the input imagery (30 m). Channel location variance over time is computed using the combined data from 1973 to 2017 and, based on this information, zones of highest change in the system are identified (Figure 1). Network metrics measuring characteristics of the delta's channels and islands are calculated for each year of the study and compared to the variance results in order to identify what metrics capture this change. These results provide both a method to identify zones of the GBMD that are currently experiencing the most change, as well as a means to predict what areas of the delta will experience network changes in the future. This information will be useful for informing coastal sustainability decisions about what areas of such a large and complex network should be the focus of remediation and mitigation efforts. Isikdogan, F., A. Bovik, P. Passalacqua (2017a), RivaMap: An Automated River Analysis and Mapping Engine, Remote Sensing of Environment, in press. Isikdogan, F., A. Bovik, P. Passalacqua (2017b), River Network Extraction by Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, under review.

  17. BiNChE: a web tool and library for chemical enrichment analysis based on the ChEBI ontology.

    PubMed

    Moreno, Pablo; Beisken, Stephan; Harsha, Bhavana; Muthukrishnan, Venkatesh; Tudose, Ilinca; Dekker, Adriano; Dornfeldt, Stefanie; Taruttis, Franziska; Grosse, Ivo; Hastings, Janna; Neumann, Steffen; Steinbeck, Christoph

    2015-02-21

    Ontology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis. We describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology. BiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.

  18. Houston Cole Library Collection Assessment.

    ERIC Educational Resources Information Center

    Henderson, William Abbot, Ed.; McAbee, Sonja L., Ed.

    This document reports on an assessment of the Jacksonville State University's Houston Cole Library collection that employed a variety of methodologies and tools, including list-checking, direct collection examination, shelflist measurement and analysis, WLN (Washington Library Network) conspectus sheets, analysis of OCLC/AMIGOS Collection Analysis…

  19. AccessMod 3.0: computing geographic coverage and accessibility to health care services using anisotropic movement of patients

    PubMed Central

    Ray, Nicolas; Ebener, Steeve

    2008-01-01

    Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations. PMID:19087277

  20. An open source high-performance solution to extract surface water drainage networks from diverse terrain conditions

    USGS Publications Warehouse

    Stanislawski, Larry V.; Survila, Kornelijus; Wendel, Jeffrey; Liu, Yan; Buttenfield, Barbara P.

    2018-01-01

    This paper describes a workflow for automating the extraction of elevation-derived stream lines using open source tools with parallel computing support and testing the effectiveness of procedures in various terrain conditions within the conterminous United States. Drainage networks are extracted from the US Geological Survey 1/3 arc-second 3D Elevation Program elevation data having a nominal cell size of 10 m. This research demonstrates the utility of open source tools with parallel computing support for extracting connected drainage network patterns and handling depressions in 30 subbasins distributed across humid, dry, and transitional climate regions and in terrain conditions exhibiting a range of slopes. Special attention is given to low-slope terrain, where network connectivity is preserved by generating synthetic stream channels through lake and waterbody polygons. Conflation analysis compares the extracted streams with a 1:24,000-scale National Hydrography Dataset flowline network and shows that similarities are greatest for second- and higher-order tributaries.

  1. GIANT API: an application programming interface for functional genomics

    PubMed Central

    Roberts, Andrew M.; Wong, Aaron K.; Fisk, Ian; Troyanskaya, Olga G.

    2016-01-01

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. PMID:27098035

  2. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.

  3. PubNet: a flexible system for visualizing literature derived networks

    PubMed Central

    Douglas, Shawn M; Montelione, Gaetano T; Gerstein, Mark

    2005-01-01

    We have developed PubNet, a web-based tool that extracts several types of relationships returned by PubMed queries and maps them into networks, allowing for graphical visualization, textual navigation, and topological analysis. PubNet supports the creation of complex networks derived from the contents of individual citations, such as genes, proteins, Protein Data Bank (PDB) IDs, Medical Subject Headings (MeSH) terms, and authors. This feature allows one to, for example, examine a literature derived network of genes based on functional similarity. PMID:16168087

  4. Multifractal analysis of mobile social networks

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhang, Zifeng; Deng, Yufan

    2017-09-01

    As Wireless Fidelity (Wi-Fi)-enabled handheld devices have been widely used, the mobile social networks (MSNs) has been attracting extensive attention. Fractal approaches have also been widely applied to characterierize natural networks as useful tools to depict their spatial distribution and scaling properties. Moreover, when the complexity of the spatial distribution of MSNs cannot be properly charaterized by single fractal dimension, multifractal analysis is required. For further research, we introduced a multifractal analysis method based on box-covering algorithm to describe the structure of MSNs. Using this method, we find that the networks are multifractal at different time interval. The simulation results demonstrate that the proposed method is efficient for analyzing the multifractal characteristic of MSNs, which provides a distribution of singularities adequately describing both the heterogeneity of fractal patterns and the statistics of measurements across spatial scales in MSNs.

  5. Integrated workflows for spiking neuronal network simulations

    PubMed Central

    Antolík, Ján; Davison, Andrew P.

    2013-01-01

    The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages. PMID:24368902

  6. Integrated workflows for spiking neuronal network simulations.

    PubMed

    Antolík, Ján; Davison, Andrew P

    2013-01-01

    The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages.

  7. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    PubMed

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The research on user behavior evaluation method for network state

    NASA Astrophysics Data System (ADS)

    Zhang, Chengyuan; Xu, Haishui

    2017-08-01

    Based on the correlation between user behavior and network running state, this paper proposes a method of user behavior evaluation based on network state. Based on the analysis and evaluation methods in other fields of study, we introduce the theory and tools of data mining. Based on the network status information provided by the trusted network view, the user behavior data and the network state data are analysed. Finally, we construct the user behavior evaluation index and weight, and on this basis, we can accurately quantify the influence degree of the specific behavior of different users on the change of network running state, so as to provide the basis for user behavior control decision.

  9. Auditing Albaha University Network Security using in-house Developed Penetration Tool

    NASA Astrophysics Data System (ADS)

    Alzahrani, M. E.

    2018-03-01

    Network security becomes very important aspect in any enterprise/organization computer network. If important information of the organization can be accessed by anyone it may be used against the organization for further own interest. Thus, network security comes into it roles. One of important aspect of security management is security audit. Security performance of Albaha university network is relatively low (in term of the total controls outlined in the ISO 27002 security control framework). This paper proposes network security audit tool to address issues in Albaha University network. The proposed penetration tool uses Nessus and Metasploit tool to find out the vulnerability of a site. A regular self-audit using inhouse developed tool will increase the overall security and performance of Albaha university network. Important results of the penetration test are discussed.

  10. Assessment of the water quality monitoring network of the Piabanha River experimental watersheds in Rio de Janeiro, Brazil, using autoassociative neural networks.

    PubMed

    Villas-Boas, Mariana D; Olivera, Francisco; de Azevedo, Jose Paulo S

    2017-09-01

    Water quality monitoring is a complex issue that requires support tools in order to provide information for water resource management. Budget constraints as well as an inadequate water quality network design call for the development of evaluation tools to provide efficient water quality monitoring. For this purpose, a nonlinear principal component analysis (NLPCA) based on an autoassociative neural network was performed to assess the redundancy of the parameters and monitoring locations of the water quality network in the Piabanha River watershed. Oftentimes, a small number of variables contain the most relevant information, while the others add little or no interpretation to the variability of water quality. Principal component analysis (PCA) is widely used for this purpose. However, conventional PCA is not able to capture the nonlinearities of water quality data, while neural networks can represent those nonlinear relationships. The results presented in this work demonstrate that NLPCA performs better than PCA in the reconstruction of the water quality data of Piabanha watershed, explaining most of data variance. From the results of NLPCA, the most relevant water quality parameter is fecal coliforms (FCs) and the least relevant is chemical oxygen demand (COD). Regarding the monitoring locations, the most relevant is Poço Tarzan (PT) and the least is Parque Petrópolis (PP).

  11. ADAM: analysis of discrete models of biological systems using computer algebra.

    PubMed

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.

  12. VisualUrText: A Text Analytics Tool for Unstructured Textual Data

    NASA Astrophysics Data System (ADS)

    Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.

    2018-05-01

    The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.

  13. MODIS Interactive Subsetting Tool (MIST)

    NASA Astrophysics Data System (ADS)

    McAllister, M.; Duerr, R.; Haran, T.; Khalsa, S. S.; Miller, D.

    2008-12-01

    In response to requests from the user community, NSIDC has teamed with the Oak Ridge National Laboratory Distributive Active Archive Center (ORNL DAAC) and the Moderate Resolution Data Center (MrDC) to provide time series subsets of satellite data covering stations in the Greenland Climate Network (GC-NET) and the International Arctic Systems for Observing the Atmosphere (IASOA) network. To serve these data NSIDC created the MODIS Interactive Subsetting Tool (MIST). MIST works with 7 km by 7 km subset time series of certain Version 5 (V005) MODIS products over GC-Net and IASOA stations. User- selected data are delivered in a text Comma Separated Value (CSV) file format. MIST also provides online analysis capabilities that include generating time series and scatter plots. Currently, MIST is a Beta prototype and NSIDC intends that user requests will drive future development of the tool. The intent of this poster is to introduce MIST to the MODIS data user audience and illustrate some of the online analysis capabilities.

  14. Discriminating topology in galaxy distributions using network analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl

    2016-07-01

    The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.

  15. Integrated communication and control systems. I - Analysis

    NASA Technical Reports Server (NTRS)

    Halevi, Yoram; Ray, Asok

    1988-01-01

    The paper presents the results of an ICCS analysis focusing on discrete-time control systems subject to time-varying delays. The present analytical technique is applicable to integrated dynamic systems such as those encountered in advanced aircraft, spacecraft, and the real-time control of robots and machine tools via a high-speed network within an autonomous manufacturing environment. The significance of data latency and missynchronization between individual system components in ICCS networks is discussed in view of the time-varying delays.

  16. Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks.

    PubMed

    Al Hajj, Hassan; Lamard, Mathieu; Conze, Pierre-Henri; Cochener, Béatrice; Quellec, Gwenolé

    2018-05-09

    This paper investigates the automatic monitoring of tool usage during a surgery, with potential applications in report generation, surgical training and real-time decision support. Two surgeries are considered: cataract surgery, the most common surgical procedure, and cholecystectomy, one of the most common digestive surgeries. Tool usage is monitored in videos recorded either through a microscope (cataract surgery) or an endoscope (cholecystectomy). Following state-of-the-art video analysis solutions, each frame of the video is analyzed by convolutional neural networks (CNNs) whose outputs are fed to recurrent neural networks (RNNs) in order to take temporal relationships between events into account. Novelty lies in the way those CNNs and RNNs are trained. Computational complexity prevents the end-to-end training of "CNN+RNN" systems. Therefore, CNNs are usually trained first, independently from the RNNs. This approach is clearly suboptimal for surgical tool analysis: many tools are very similar to one another, but they can generally be differentiated based on past events. CNNs should be trained to extract the most useful visual features in combination with the temporal context. A novel boosting strategy is proposed to achieve this goal: the CNN and RNN parts of the system are simultaneously enriched by progressively adding weak classifiers (either CNNs or RNNs) trained to improve the overall classification accuracy. Experiments were performed in a dataset of 50 cataract surgery videos, where the usage of 21 surgical tools was manually annotated, and a dataset of 80 cholecystectomy videos, where the usage of 7 tools was manually annotated. Very good classification performance are achieved in both datasets: tool usage could be labeled with an average area under the ROC curve of A z =0.9961 and A z =0.9939, respectively, in offline mode (using past, present and future information), and A z =0.9957 and A z =0.9936, respectively, in online mode (using past and present information only). Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of a Network-Centric Multi-Modal Communication Tool on a Communication Monitoring Task

    DTIC Science & Technology

    2012-03-01

    replaced (Nelson, Bolia, Vidulich, & Langhorne , 2004). Communication will continue to be the central tool for Command and Control (C2) operators. However...Nelson, Bolia, Vidulich, & Langhorne , 2004). The two highest ratings for most potential technologies were data capture/replay tools and chat...analysis of variance (ANOVA). A significant main effect was found for Difficulty, F (1, 13) = 21.11, p < .05; the overall level of detections was

  19. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  20. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    PubMed Central

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-01-01

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919

  1. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios.

    PubMed

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-11-17

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  2. Analysis of MD5 authentication in various routing protocols using simulation tools

    NASA Astrophysics Data System (ADS)

    Dinakaran, M.; Darshan, K. N.; Patel, Harsh

    2017-11-01

    Authentication being an important paradigm of security and Computer Networks require secure paths to make the flow of the data even more secure through some security protocols. So MD-5(Message Digest 5) helps in providing data integrity to the data being sent through it and authentication to the network devices. This paper gives a brief introduction to the MD-5, simulation of the networks by including MD-5 authentication using various routing protocols like OSPF, EIGRP and RIPv2. GNS3 is being used to simulate the scenarios. Analysis of the MD-5 authentication is done in the later sections of the paper.

  3. Cerebral cartography and connectomics

    PubMed Central

    Sporns, Olaf

    2015-01-01

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870

  4. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    PubMed Central

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic analysis (NET analysis) is presented as a framework for mechanistic and model-based analysis of these data. By coupling the data to an operating metabolic network via the second law of thermodynamics and the metabolites' Gibbs energies of formation, NET analysis allows inferring functional principles from quantitative metabolite data; for example it identifies reactions that are subject to active allosteric or genetic regulation as exemplified with quantitative metabolite data from Escherichia coli and Saccharomyces cerevisiae. Moreover, the optimization framework of NET analysis was demonstrated to be a valuable tool to systematically investigate data sets for consistency, for the extension of sub-omic metabolome data sets and for resolving intracompartmental concentrations from cell-averaged metabolome data. Without requiring any kind of kinetic modeling, NET analysis represents a perfectly scalable and unbiased approach to uncover insights from quantitative metabolome data. PMID:16788595

  5. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    PubMed

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  6. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data

    PubMed Central

    Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M

    2006-01-01

    Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281

  7. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.

    PubMed

    Jenness, Samuel M; Goodreau, Steven M; Morris, Martina

    2018-04-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.

  8. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks

    PubMed Central

    Jenness, Samuel M.; Goodreau, Steven M.; Morris, Martina

    2018-01-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel, designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel, designed to facilitate the exploration of novel research questions for advanced modelers. PMID:29731699

  9. Logical Modeling and Dynamical Analysis of Cellular Networks

    PubMed Central

    Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine

    2016-01-01

    The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle. PMID:27303434

  10. XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data

    PubMed Central

    Schweppe, Devin K.; Zheng, Chunxiang; Chavez, Juan D.; Navare, Arti T.; Wu, Xia; Eng, Jimmy K.; Bruce, James E.

    2016-01-01

    Motivation: Large-scale chemical cross-linking with mass spectrometry (XL-MS) analyses are quickly becoming a powerful means for high-throughput determination of protein structural information and protein–protein interactions. Recent studies have garnered thousands of cross-linked interactions, yet the field lacks an effective tool to compile experimental data or access the network and structural knowledge for these large scale analyses. We present XLinkDB 2.0 which integrates tools for network analysis, Protein Databank queries, modeling of predicted protein structures and modeling of docked protein structures. The novel, integrated approach of XLinkDB 2.0 enables the holistic analysis of XL-MS protein interaction data without limitation to the cross-linker or analytical system used for the analysis. Availability and Implementation: XLinkDB 2.0 can be found here, including documentation and help: http://xlinkdb.gs.washington.edu/. Contact: jimbruce@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153666

  11. A Design Tool Utilizing Stoichiometric Structure for the Analysis of Biochemical Reaction Networks

    DTIC Science & Technology

    1990-05-20

    production of astaxanthin , a natural red pigment was analyzed. Penicillin production was examined for the effects of various carbon and reduction...reaction networks were examined. A proposed pathway for the biosynthetic production of astaxanthin , a natural red pigment was analyzed. The overall...Chapter 4. Case Study I: Astaxanthin Biosynthesis ................... 53 4.1. Carotenoid Uses ...................................................... 53

  12. Self-Organizing Neural Network Map for the Purpose of Visualizing the Concept Images of Students on Angles

    ERIC Educational Resources Information Center

    Kaya, Deniz

    2017-01-01

    The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…

  13. A Quantitative Experimental Study of the Effectiveness of Systems to Identify Network Attackers

    ERIC Educational Resources Information Center

    Handorf, C. Russell

    2016-01-01

    This study analyzed the meta-data collected from a honeypot that was run by the Federal Bureau of Investigation for a period of 5 years. This analysis compared the use of existing industry methods and tools, such as Intrusion Detection System alerts, network traffic flow and system log traffic, within the Open Source Security Information Manager…

  14. Impact of Machine-Translated Text on Entity and Relationship Extraction

    DTIC Science & Technology

    2014-12-01

    20 1 1. Introduction Using social network analysis tools is an important asset in...semantic modeling software to automatically build detailed network models from unstructured text. Contour imports unstructured text and then maps the text...onto an existing ontology of frames at the sentence level, using FrameNet, a structured language model, and through Semantic Role Labeling ( SRL

  15. Neural Networks Based Approach to Enhance Space Hardware Reliability

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.; Thakoor, Anilkumar; Lu, Thomas; Franco, Lauro; Lin, Tsung Han; McClure, S. S.

    2011-01-01

    This paper demonstrates the use of Neural Networks as a device modeling tool to increase the reliability analysis accuracy of circuits targeted for space applications. The paper tackles a number of case studies of relevance to the design of Flight hardware. The results show that the proposed technique generates more accurate models than the ones regularly used to model circuits.

  16. Solar-Terrestrial and Astronomical Research Network (STAR-Network) - A Meaningful Practice of New Cyberinfrastructure on Space Science

    NASA Astrophysics Data System (ADS)

    Hu, X.; Zou, Z.

    2017-12-01

    For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on space science.

  17. Topological data analysis of contagion maps for examining spreading processes on networks.

    PubMed

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  18. Topological data analysis of contagion maps for examining spreading processes on networks

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  19. Analysis of complex neural circuits with nonlinear multidimensional hidden state models

    PubMed Central

    Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.

    2016-01-01

    A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584

  20. Refining Pathways: A Model Comparison Approach

    PubMed Central

    Moffa, Giusi; Erdmann, Gerrit; Voloshanenko, Oksana; Hundsrucker, Christian; Sadeh, Mohammad J.; Boutros, Michael; Spang, Rainer

    2016-01-01

    Cellular signalling pathways consolidate multiple molecular interactions into working models of signal propagation, amplification, and modulation. They are described and visualized as networks. Adjusting network topologies to experimental data is a key goal of systems biology. While network reconstruction algorithms like nested effects models are well established tools of computational biology, their data requirements can be prohibitive for their practical use. In this paper we suggest focussing on well defined aspects of a pathway and develop the computational tools to do so. We adapt the framework of nested effect models to focus on a specific aspect of activated Wnt signalling in HCT116 colon cancer cells: Does the activation of Wnt target genes depend on the secretion of Wnt ligands or do mutations in the signalling molecule β-catenin make this activation independent from them? We framed this question into two competing classes of models: Models that depend on Wnt ligands secretion versus those that do not. The model classes translate into restrictions of the pathways in the network topology. Wnt dependent models are more flexible than Wnt independent models. Bayes factors are the standard Bayesian tool to compare different models fairly on the data evidence. In our analysis, the Bayes factors depend on the number of potential Wnt signalling target genes included in the models. Stability analysis with respect to this number showed that the data strongly favours Wnt ligands dependent models for all realistic numbers of target genes. PMID:27248690

  1. Biomedical discovery acceleration, with applications to craniofacial development.

    PubMed

    Leach, Sonia M; Tipney, Hannah; Feng, Weiguo; Baumgartner, William A; Kasliwal, Priyanka; Schuyler, Ronald P; Williams, Trevor; Spritz, Richard A; Hunter, Lawrence

    2009-03-01

    The profusion of high-throughput instruments and the explosion of new results in the scientific literature, particularly in molecular biomedicine, is both a blessing and a curse to the bench researcher. Even knowledgeable and experienced scientists can benefit from computational tools that help navigate this vast and rapidly evolving terrain. In this paper, we describe a novel computational approach to this challenge, a knowledge-based system that combines reading, reasoning, and reporting methods to facilitate analysis of experimental data. Reading methods extract information from external resources, either by parsing structured data or using biomedical language processing to extract information from unstructured data, and track knowledge provenance. Reasoning methods enrich the knowledge that results from reading by, for example, noting two genes that are annotated to the same ontology term or database entry. Reasoning is also used to combine all sources into a knowledge network that represents the integration of all sorts of relationships between a pair of genes, and to calculate a combined reliability score. Reporting methods combine the knowledge network with a congruent network constructed from experimental data and visualize the combined network in a tool that facilitates the knowledge-based analysis of that data. An implementation of this approach, called the Hanalyzer, is demonstrated on a large-scale gene expression array dataset relevant to craniofacial development. The use of the tool was critical in the creation of hypotheses regarding the roles of four genes never previously characterized as involved in craniofacial development; each of these hypotheses was validated by further experimental work.

  2. Controllability of flow-conservation networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu

    2017-07-01

    The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.

  3. Curation of inhibitor-target data: process and impact on pathway analysis.

    PubMed

    Devidas, Sreenivas

    2009-01-01

    The past decade has seen a significant emergence in the availability and use of pathway analysis tools. The workflow that is supported by most of the pathway analysis tools is limited to either of the following: a. a network of genes based on the input data set, or b. the resultant network filtered down by a few criteria such as (but not limited to) i. disease association of the genes in the network; ii. targets known to be the target of one or more launched drugs; iii. targets known to be the target of one or more compounds in clinical trials; and iv. targets reasonably known to be potential candidate or clinical biomarkers. Almost all the tools in use today are biased towards the biological side and contain little, if any, information on the chemical inhibitors associated with the components of a given biological network. The limitation resides as follows: The fact that the number of inhibitors that have been published or patented is probably several fold (probably greater than 10-fold) more than the number of published protein-protein interactions. Curation of such data is both expensive and time consuming and could impact ROI significantly. The non-standardization associated with protein and gene names makes mapping reasonably non-straightforward. The number of patented and published inhibitors across target classes increases by over a million per year. Therefore, keeping the databases current becomes a monumental problem. Modifications required in the product architectures to accommodate chemistry-related content. GVK Bio has, over the past 7 years, curated the compound-target data that is necessary for the addition of such compound-centric workflows. This chapter focuses on identification, curation and utility of such data.

  4. Advances in SCA and RF-DNA Fingerprinting Through Enhanced Linear Regression Attacks and Application of Random Forest Classifiers

    DTIC Science & Technology

    2014-09-18

    Converter AES Advance Encryption Standard ANN Artificial Neural Network APS Application Support AUC Area Under the Curve CPA Correlation Power Analysis ...Importance WGN White Gaussian Noise WPAN Wireless Personal Area Networks XEnv Cross-Environment XRx Cross-Receiver xxi ADVANCES IN SCA AND RF-DNA...based tool called KillerBee was released in 2009 that increases the exposure of ZigBee and other IEEE 802.15.4-based Wireless Personal Area Networks

  5. Benefits and Pitfalls: Simple Guidelines for the Use of Social Networking Tools in K-12 Education

    ERIC Educational Resources Information Center

    Huffman, Stephanie

    2013-01-01

    The article will outline a framework for the use of social networking tools in K-12 education framed around four thought provoking questions: 1) what are the benefits and pitfalls of using social networking tools in P-12 education, 2) how do we plan effectively for the use of social networking tool, 3) what role does professional development play…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align andmore » transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections.« less

  7. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower.

    PubMed

    Moschen, Sebastián; Higgins, Janet; Di Rienzo, Julio A; Heinz, Ruth A; Paniego, Norma; Fernandez, Paula

    2016-06-06

    In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. Weighted Gene Correlation Network Analysis (WGCNA) and BioSignature Discoverer (BioSD, Gnosis Data Analysis, Heraklion, Greece) were used to integrate transcriptomic and metabolomic data. WGCNA allowed the detection of 10 metabolites and 13 TFs whereas BioSD allowed the detection of 1 metabolite and 6 TFs as potential biomarkers. The comparative analysis demonstrated that three transcription factors were detected through both methodologies, highlighting them as potentially robust biomarkers associated with leaf senescence in sunflower. The complementary use of network and BioSignature Discoverer analysis of transcriptomic and metabolomic data provided a useful tool for identifying candidate genes and metabolites which may have a role during the triggering and development of the leaf senescence process. The WGCNA tool allowed us to design and test a hypothetical network in order to infer relationships across selected transcription factor and metabolite candidate biomarkers involved in leaf senescence, whereas BioSignature Discoverer selected transcripts and metabolites which discriminate between different ages of sunflower plants. The methodology presented here would help to elucidate and predict novel networks and potential biomarkers of leaf senescence in sunflower.

  8. Lightweight Object Oriented Structure analysis: Tools for building Tools to Analyze Molecular Dynamics Simulations

    PubMed Central

    Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan

    2014-01-01

    LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784

  9. Lightweight object oriented structure analysis: tools for building tools to analyze molecular dynamics simulations.

    PubMed

    Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan

    2014-12-15

    LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.

  10. Addressing multi-label imbalance problem of surgical tool detection using CNN.

    PubMed

    Sahu, Manish; Mukhopadhyay, Anirban; Szengel, Angelika; Zachow, Stefan

    2017-06-01

    A fully automated surgical tool detection framework is proposed for endoscopic video streams. State-of-the-art surgical tool detection methods rely on supervised one-vs-all or multi-class classification techniques, completely ignoring the co-occurrence relationship of the tools and the associated class imbalance. In this paper, we formulate tool detection as a multi-label classification task where tool co-occurrences are treated as separate classes. In addition, imbalance on tool co-occurrences is analyzed and stratification techniques are employed to address the imbalance during convolutional neural network (CNN) training. Moreover, temporal smoothing is introduced as an online post-processing step to enhance runtime prediction. Quantitative analysis is performed on the M2CAI16 tool detection dataset to highlight the importance of stratification, temporal smoothing and the overall framework for tool detection. The analysis on tool imbalance, backed by the empirical results, indicates the need and superiority of the proposed framework over state-of-the-art techniques.

  11. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons

    PubMed Central

    2017-01-01

    Systematic reviews and pairwise meta-analyses of randomized controlled trials, at the intersection of clinical medicine, epidemiology and statistics, are positioned at the top of evidence-based practice hierarchy. These are important tools to base drugs approval, clinical protocols and guidelines formulation and for decision-making. However, this traditional technique only partially yield information that clinicians, patients and policy-makers need to make informed decisions, since it usually compares only two interventions at the time. In the market, regardless the clinical condition under evaluation, usually many interventions are available and few of them have been studied in head-to-head studies. This scenario precludes conclusions to be drawn from comparisons of all interventions profile (e.g. efficacy and safety). The recent development and introduction of a new technique – usually referred as network meta-analysis, indirect meta-analysis, multiple or mixed treatment comparisons – has allowed the estimation of metrics for all possible comparisons in the same model, simultaneously gathering direct and indirect evidence. Over the last years this statistical tool has matured as technique with models available for all types of raw data, producing different pooled effect measures, using both Frequentist and Bayesian frameworks, with different software packages. However, the conduction, report and interpretation of network meta-analysis still poses multiple challenges that should be carefully considered, especially because this technique inherits all assumptions from pairwise meta-analysis but with increased complexity. Thus, we aim to provide a basic explanation of network meta-analysis conduction, highlighting its risks and benefits for evidence-based practice, including information on statistical methods evolution, assumptions and steps for performing the analysis. PMID:28503228

  12. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  13. Enhancement of a network analysis tool to accommodate multiple construction work zone analysis (initial investigation).

    DOT National Transportation Integrated Search

    2010-08-30

    A major issue in transportation projects is capacity reduction due to lane closures. Calculating capacity for a specific project can be done using information from the Highway Capacity Manual, but how often should a lane closure be expected is still ...

  14. Influences of VSAT network on the economical and industrial development

    NASA Astrophysics Data System (ADS)

    Lancrenon, B.; Lorent, P.

    1990-10-01

    The adaptable, rapidly assembled and operational VSAT (very small aperature terminal) satellite network is a tool which rapidly provides essential digital infrastructure for business communication networks in order to support and stimulate the development of modern industry. A market analysis is given for VSATs, discussing such topics as applications of the product, retail and distribution, banking finance, and manufacturing industry. The centralized booking of the tourism transport sector is also investigated. The network including the earth stations, the satellite, the systems aspects, and the network management is described in detail and diagrams are provided. Some estimates of space channel cost per year are given.

  15. Assortativity Patterns in Multi-dimensional Inter-organizational Networks: A Case Study of the Humanitarian Relief Sector

    NASA Astrophysics Data System (ADS)

    Zhao, Kang; Ngamassi, Louis-Marie; Yen, John; Maitland, Carleen; Tapia, Andrea

    We use computational tools to study assortativity patterns in multi-dimensional inter-organizational networks on the basis of different node attributes. In the case study of an inter-organizational network in the humanitarian relief sector, we consider not only macro-level topological patterns, but also assortativity on the basis of micro-level organizational attributes. Unlike assortative social networks, this inter-organizational network exhibits disassortative or random patterns on three node attributes. We believe organizations' seek of complementarity is one of the main reasons for the special patterns. Our analysis also provides insights on how to promote collaborations among the humanitarian relief organizations.

  16. Connecting Core Percolation and Controllability of Complex Networks

    PubMed Central

    Jia, Tao; Pósfai, Márton

    2014-01-01

    Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797

  17. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  18. Network centrality measures and systemic risk: An application to the Turkish financial crisis

    NASA Astrophysics Data System (ADS)

    Kuzubaş, Tolga Umut; Ömercikoğlu, Inci; Saltoğlu, Burak

    2014-07-01

    In this paper, we analyze the performance of several network centrality measures in detecting systemically important financial institutions (SIFI) using data from the Turkish Interbank market during the financial crisis in 2000. We employ various network investigation tools such as volume, transactions, links, connectivity and reciprocity to gain a clearer picture of the network topology of the interbank market. We study the main borrower role of Demirbank in the crash of the banking system with network centrality measures which are extensively used in the network theory. This ex-post analysis of the crisis shows that centrality measures perform well in identifying and monitoring systemically important financial institutions which provide useful insights for financial regulations.

  19. Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Biamonte, Jacob

    2016-10-01

    Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.

  20. The Analysis of Duocentric Social Networks: A Primer.

    PubMed

    Kennedy, David P; Jackson, Grace L; Green, Harold D; Bradbury, Thomas N; Karney, Benjamin R

    2015-02-01

    Marriages and other intimate partnerships are facilitated or constrained by the social networks within which they are embedded. To date, methods used to assess the social networks of couples have been limited to global ratings of social network characteristics or network data collected from each partner separately. In the current article, the authors offer new tools for expanding on the existing literature by describing methods of collecting and analyzing duocentric social networks, that is, the combined social networks of couples. They provide an overview of the key considerations for measuring duocentric networks, such as how and why to combine separate network interviews with partners into one shared duocentric network, the number of network members to assess, and the implications of different network operationalizations. They illustrate these considerations with analyses of social network data collected from 57 low-income married couples, presenting visualizations and quantitative measures of network composition and structure.

  1. Topology Analysis of Social Networks Extracted from Literature

    PubMed Central

    2015-01-01

    In a world where complex networks are an increasingly important part of science, it is interesting to question how the new reading of social realities they provide applies to our cultural background and in particular, popular culture. Are authors of successful novels able to reproduce social networks faithful to the ones found in reality? Is there any common trend connecting an author’s oeuvre, or a genre of fiction? Such an analysis could provide new insight on how we, as a culture, perceive human interactions and consume media. The purpose of the work presented in this paper is to define the signature of a novel’s story based on the topological analysis of its social network of characters. For this purpose, an automated tool was built that analyses the dialogs in novels, identifies characters and computes their relationships in a time-dependent manner in order to assess the network’s evolution over the course of the story. PMID:26039072

  2. A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy.

    PubMed

    Dreyer, Florian S; Cantone, Martina; Eberhardt, Martin; Jaitly, Tanushree; Walter, Lisa; Wittmann, Jürgen; Gupta, Shailendra K; Khan, Faiz M; Wolkenhauer, Olaf; Pützer, Brigitte M; Jäck, Hans-Martin; Heinzerling, Lucie; Vera, Julio

    2018-06-01

    Cellular phenotypes are established and controlled by complex and precisely orchestrated molecular networks. In cancer, mutations and dysregulations of multiple molecular factors perturb the regulation of these networks and lead to malignant transformation. High-throughput technologies are a valuable source of information to establish the complex molecular relationships behind the emergence of malignancy, but full exploitation of this massive amount of data requires bioinformatics tools that rely on network-based analyses. In this report we present the Virtual Melanoma Cell, an online tool developed to facilitate the mining and interpretation of high-throughput data on melanoma by biomedical researches. The platform is based on a comprehensive, manually generated and expert-validated regulatory map composed of signaling pathways important in malignant melanoma. The Virtual Melanoma Cell is a tool designed to accept, visualize and analyze user-generated datasets. It is available at: https://www.vcells.net/melanoma. To illustrate the utilization of the web platform and the regulatory map, we have analyzed a large publicly available dataset accounting for anti-PD1 immunotherapy treatment of malignant melanoma patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Software Comparison for Renewable Energy Deployment in a Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objective of this report is to evaluate different software options for performing robust distributed generation (DG) power system modeling. The features and capabilities of four simulation tools, OpenDSS, GridLAB-D, CYMDIST, and PowerWorld Simulator, are compared to analyze their effectiveness in analyzing distribution networks with DG. OpenDSS and GridLAB-D, two open source software, have the capability to simulate networks with fluctuating data values. These packages allow the running of a simulation each time instant by iterating only the main script file. CYMDIST, a commercial software, allows for time-series simulation to study variations on network controls. PowerWorld Simulator, another commercialmore » tool, has a batch mode simulation function through the 'Time Step Simulation' tool, which obtains solutions for a list of specified time points. PowerWorld Simulator is intended for analysis of transmission-level systems, while the other three are designed for distribution systems. CYMDIST and PowerWorld Simulator feature easy-to-use graphical user interfaces (GUIs). OpenDSS and GridLAB-D, on the other hand, are based on command-line programs, which increase the time necessary to become familiar with the software packages.« less

  4. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.

  5. A Qualitative Study of Secondary School Teachers’ Perception of Social Network Analysis Metrics in the Context of Alcohol Consumption among Adolescents

    PubMed Central

    Quiroga, Enedina; Benavides, Carmen; Martín, Vicente

    2017-01-01

    Adolescence is a transitional period during which a number of changes occur. Social relationships established during this period influence adolescent behaviour and affect academic performance or alcohol consumption habits, among other issues. Teachers are very important actors in observing and guiding the evolution of their students, and should therefore have the appropriate knowledge and tools to gain insight into the complex social relationships that exist in their classes. The use of social network analysis (SNA) techniques may be helpful in order to study and monitor the evolution of these social networks. This study tries to understand how teachers perceive SNA metrics from an intuitive point of view. Using this information, useful tools could be created that allow teachers to use SNA techniques to improve their understanding of student relationships. A number of interviews with different teachers were held in secondary schools in Spain, allowing SNA concepts to be related to the everyday terms used by the teachers to characterize their students. Results from the study have an impact on questionnaire design for gathering data from students in order to perform an SNA analysis and on the design of software applications that can help teachers to understand the results of this analysis. PMID:29292718

  6. Network pharmacology: reigning in drug attrition?

    PubMed

    Alian, Osama M; Shah, Minjel; Mohammad, Momin; Mohammad, Ramzi M

    2013-06-01

    In the process of drug development, there has been an exceptionally high attrition rate in oncological compounds entering late phases of testing. This has seen a concurrent reduction in approved NCEs (new chemical entities) reaching patients. Network pharmacology has become a valuable tool in understanding the fine details of drug-target interactions as well as painting a more practical picture of phenotype relationships to patients and drugs. By utilizing all the tools achieved through molecular medicine and combining it with high throughput data analysis, interactions and mechanisms can be elucidated and treatments reasonably tailored to patients expressing specific phenotypes (or genotypes) of disease, essentially reigning in the phenomenon of drug attrition.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gregory L.; Arnold, Dorian; LeGendre, Matthew

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full featuremore » debugger like TolalView for root cause analysis.« less

  8. Application of ESE Data and Tools to Air Quality Management: Services for Helping the Air Quality Community use ESE Data (SHAirED)

    NASA Technical Reports Server (NTRS)

    Falke, Stefan; Husar, Rudolf

    2011-01-01

    The goal of this REASoN applications and technology project is to deliver and use Earth Science Enterprise (ESE) data and tools in support of air quality management. Its scope falls within the domain of air quality management and aims to develop a federated air quality information sharing network that includes data from NASA, EPA, US States and others. Project goals were achieved through a access of satellite and ground observation data, web services information technology, interoperability standards, and air quality community collaboration. In contributing to a network of NASA ESE data in support of particulate air quality management, the project will develop access to distributed data, build Web infrastructure, and create tools for data processing and analysis. The key technologies used in the project include emerging web services for developing self describing and modular data access and processing tools, and service oriented architecture for chaining web services together to assemble customized air quality management applications. The technology and tools required for this project were developed within DataFed.net, a shared infrastructure that supports collaborative atmospheric data sharing and processing web services. Much of the collaboration was facilitated through community interactions through the Federation of Earth Science Information Partners (ESIP) Air Quality Workgroup. The main activities during the project that successfully advanced DataFed, enabled air quality applications and established community-oriented infrastructures were: develop access to distributed data (surface and satellite), build Web infrastructure to support data access, processing and analysis create tools for data processing and analysis foster air quality community collaboration and interoperability.

  9. Building the European Seismological Research Infrastructure: results from 4 years NERIES EC project

    NASA Astrophysics Data System (ADS)

    van Eck, T.; Giardini, D.

    2010-12-01

    The EC Research Infrastructure (RI) project, Network of Research Infrastructures for European Seismology (NERIES), implemented a comprehensive European integrated RI for earthquake seismological data that is scalable and sustainable. NERIES opened a significant amount of additional seismological data, integrated different distributed data archives, implemented and produced advanced analysis tools and advanced software packages and tools. A single seismic data portal provides a single access point and overview for European seismological data available for the earth science research community. Additional data access tools and sites have been implemented to meet user and robustness requirements, notably those at the EMSC and ORFEUS. The datasets compiled in NERIES and available through the portal include among others: - The expanded Virtual European Broadband Seismic Network (VEBSN) with real-time access to more then 500 stations from > 53 observatories. This data is continuously monitored, quality controlled and archived in the European Integrated Distributed waveform Archive (EIDA). - A unique integration of acceleration datasets from seven networks in seven European or associated countries centrally accessible in a homogeneous format, thus forming the core comprehensive European acceleration database. Standardized parameter analysis and actual software are included in the database. - A Distributed Archive of Historical Earthquake Data (AHEAD) for research purposes, containing among others a comprehensive European Macroseismic Database and Earthquake Catalogue (1000 - 1963, M ≥5.8), including analysis tools. - Data from 3 one year OBS deployments at three sites, Atlantic, Ionian and Ligurian Sea within the general SEED format, thus creating the core integrated data base for ocean, sea and land based seismological observatories. Tools to facilitate analysis and data mining of the RI datasets are: - A comprehensive set of European seismological velocity reference model including a standardized model description with several visualisation tools currently adapted on a global scale. - An integrated approach to seismic hazard modelling and forecasting, a community accepted forecasting testing and model validation approach and the core hazard portal developed along the same technologies as the NERIES data portal. - Implemented homogeneous shakemap estimation tools at several large European observatories and a complementary new loss estimation software tool. - A comprehensive set of new techniques for geotechnical site characterization with relevant software packages documented and maintained (www.geopsy.org). - A set of software packages for data mining, data reduction, data exchange and information management in seismology as research and observatory analysis tools NERIES has a long-term impact and is coordinated with related US initiatives IRIS and EarthScope. The follow-up EC project of NERIES, NERA (2010 - 2014), is funded and will integrate the seismological and the earthquake engineering infrastructures. NERIES further provided the proof of concept for the ESFRI2008 initiative: the European Plate Observing System (EPOS). Its preparatory phase (2010 - 2014) is also funded by the EC.

  10. Scientific Mobility and International Research Networks: Trends and Policy Tools for Promoting Research Excellence and Capacity Building

    ERIC Educational Resources Information Center

    Jacob, Merle; Meek, V. Lynn

    2013-01-01

    One of the ways in which globalization is manifesting itself in higher education and research is through the increasing importance and emphasis on scientific mobility. This article seeks to provide an overview and analysis of current trends and policy tools for promoting mobility. The article argues that the mobility of scientific labour is an…

  11. Everglades Depth Estimation Network (EDEN) Applications: Tools to View, Extract, Plot, and Manipulate EDEN Data

    USGS Publications Warehouse

    Telis, Pamela A.; Henkel, Heather

    2009-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated system of real-time water-level monitoring, ground-elevation data, and water-surface elevation modeling to provide scientists and water managers with current on-line water-depth information for the entire freshwater part of the greater Everglades. To assist users in applying the EDEN data to their particular needs, a series of five EDEN tools, or applications (EDENapps), were developed. Using EDEN's tools, scientists can view the EDEN datasets of daily water-level and ground elevations, compute and view daily water depth and hydroperiod surfaces, extract data for user-specified locations, plot transects of water level, and animate water-level transects over time. Also, users can retrieve data from the EDEN datasets for analysis and display in other analysis software programs. As scientists and managers attempt to restore the natural volume, timing, and distribution of sheetflow in the wetlands, such information is invaluable. Information analyzed and presented with these tools is used to advise policy makers, planners, and decision makers of the potential effects of water management and restoration scenarios on the natural resources of the Everglades.

  12. An integrated web system to support veterinary activities in Italy for the management of information in epidemic emergencies.

    PubMed

    Iannetti, S; Savini, L; Palma, D; Calistri, P; Natale, F; Di Lorenzo, A; Cerella, A; Giovannini, A

    2014-03-01

    The management of public health emergencies is improved by quick, exhaustive and standardized flow of data on disease outbreaks, by using specific tools for data collection, registration and analysis. In this context, the National Information System for the Notification of Outbreaks of Animal Diseases (SIMAN) has been developed in Italy to collect and share data on the notifications of outbreaks of animal diseases. SIMAN is connected through web services to the national database of animals and holdings (BDN) and has been integrated with tools for the management of epidemic emergencies. The website has been updated with a section dedicated to the contingency planning in case of epidemic emergency. EpiTrace is one such useful tool also integrated in the BDN and based on the Social Network Analysis (SNA) and on network epidemiological models. This tool gives the possibility of assessing the risk associated to holdings and animals on the basis of their trade, in order to support the veterinary services in tracing back and forward the animals in case of outbreaks of infectious diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks

    PubMed Central

    2009-01-01

    Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks. PMID:20042075

  14. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration.

    PubMed

    Arneson, Douglas; Bhattacharya, Anindya; Shu, Le; Mäkinen, Ville-Petteri; Yang, Xia

    2016-09-09

    Human diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels. Recent advances in genomic technologies have enabled an outpour of omics datasets that capture these changes. However, separate analyses of these various data only provide fragmented understanding and do not capture the holistic view of disease mechanisms. To meet the urgent needs for tools that effectively integrate multiple types of omics data to derive biological insights, we have developed Mergeomics, a computational pipeline that integrates multidimensional disease association data with functional genomics and molecular networks to retrieve biological pathways, gene networks, and central regulators critical for disease development. To make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server ( http://mergeomics. idre.ucla.edu/ ). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. Additionally, it provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use. Our Mergeomics web server offers researchers flexible and user-friendly tools to facilitate integration of multidimensional data into holistic views of disease mechanisms in the form of tissue-specific key regulators, biological pathways, and gene networks.

  15. Investigating student communities with network analysis of interactions in a physics learning center

    NASA Astrophysics Data System (ADS)

    Brewe, Eric; Kramer, Laird; Sawtelle, Vashti

    2012-06-01

    Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at Florida International University. The emergence of a research and learning community, embedded within a course reform effort, has contributed to increased recruitment and retention of physics majors. We utilize social network analysis to quantify interactions in Florida International University’s Physics Learning Center (PLC) that support the development of academic and social integration. The tools of social network analysis allow us to visualize and quantify student interactions and characterize the roles of students within a social network. After providing a brief introduction to social network analysis, we use sequential multiple regression modeling to evaluate factors that contribute to participation in the learning community. Results of the sequential multiple regression indicate that the PLC learning community is an equitable environment as we find that gender and ethnicity are not significant predictors of participation in the PLC. We find that providing students space for collaboration provides a vital element in the formation of a supportive learning community.

  16. National Fusion Collaboratory: Grid Computing for Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2004-05-01

    The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.

  17. Bayesian network interface for assisting radiology interpretation and education

    NASA Astrophysics Data System (ADS)

    Duda, Jeffrey; Botzolakis, Emmanuel; Chen, Po-Hao; Mohan, Suyash; Nasrallah, Ilya; Rauschecker, Andreas; Rudie, Jeffrey; Bryan, R. Nick; Gee, James; Cook, Tessa

    2018-03-01

    In this work, we present the use of Bayesian networks for radiologist decision support during clinical interpretation. This computational approach has the advantage of avoiding incorrect diagnoses that result from known human cognitive biases such as anchoring bias, framing effect, availability bias, and premature closure. To integrate Bayesian networks into clinical practice, we developed an open-source web application that provides diagnostic support for a variety of radiology disease entities (e.g., basal ganglia diseases, bone lesions). The Clinical tool presents the user with a set of buttons representing clinical and imaging features of interest. These buttons are used to set the value for each observed feature. As features are identified, the conditional probabilities for each possible diagnosis are updated in real time. Additionally, using sensitivity analysis, the interface may be set to inform the user which remaining imaging features provide maximum discriminatory information to choose the most likely diagnosis. The Case Submission tools allow the user to submit a validated case and the associated imaging features to a database, which can then be used for future tuning/testing of the Bayesian networks. These submitted cases are then reviewed by an assigned expert using the provided QC tool. The Research tool presents users with cases with previously labeled features and a chosen diagnosis, for the purpose of performance evaluation. Similarly, the Education page presents cases with known features, but provides real time feedback on feature selection.

  18. New ArcGIS tools developed for stream network extraction and basin delineations using Python and java script

    NASA Astrophysics Data System (ADS)

    Omran, Adel; Dietrich, Schröder; Abouelmagd, Abdou; Michael, Märker

    2016-09-01

    Damages caused by flash floods hazards are an increasing phenomenon, especially in arid and semi-arid areas. Thus, the need to evaluate these areas based on their flash flood risk using maps and hydrological models is also becoming more important. For ungauged watersheds a tentative analysis can be carried out based on the geomorphometric characteristics of the terrain. To process regions with larger watersheds, where perhaps hundreds of watersheds have to be delineated, processed and classified, the overall process need to be automated. GIS packages such as ESRI's ArcGIS offer a number of sophisticated tools that help regarding such analysis. Yet there are still gaps and pitfalls that need to be considered if the tools are combined into a geoprocessing model to automate the complete assessment workflow. These gaps include issues such as i) assigning stream order according to Strahler theory, ii) calculating the threshold value for the stream network extraction, and iii) determining the pour points for each of the nodes of the Strahler ordered stream network. In this study a complete automated workflow based on ArcGIS Model Builder using standard tools will be introduced and discussed. Some additional tools have been implemented to complete the overall workflow. These tools have been programmed using Python and Java in the context of ArcObjects. The workflow has been applied to digital data from the southwestern Sinai Peninsula, Egypt. An optimum threshold value has been selected to optimize drainage configuration by statistically comparing all of the extracted stream configuration results from DEM with the available reference data from topographic maps. The code has succeeded in estimating the correct ranking of specific stream orders in an automatic manner without additional manual steps. As a result, the code has proven to save time and efforts; hence it's considered a very useful tool for processing large catchment basins.

  19. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOEmore » Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.« less

  20. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  1. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    PubMed

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  2. Comparison of various tool wear prediction methods during end milling of metal matrix composite

    NASA Astrophysics Data System (ADS)

    Wiciak, Martyna; Twardowski, Paweł; Wojciechowski, Szymon

    2018-02-01

    In this paper, the problem of tool wear prediction during milling of hard-to-cut metal matrix composite Duralcan™ was presented. The conducted research involved the measurements of acceleration of vibrations during milling with constant cutting conditions, and evaluation of the flank wear. Subsequently, the analysis of vibrations in time and frequency domain, as well as the correlation of the obtained measures with the tool wear values were conducted. The validation of tool wear diagnosis in relation to selected diagnostic measures was carried out with the use of one variable and two variables regression models, as well as with the application of artificial neural networks (ANN). The comparative analysis of the obtained results enable.

  3. Foregrounding the Role of Relationships in Reform: A Social Network Perspective on Leadership and Change

    ERIC Educational Resources Information Center

    Liou, Yi-Hwa; Daly, Alan J.; Brown, Chris; del Fresno, Miguel

    2015-01-01

    Purpose: The role of relationships in the process of leadership and change is central, yet the social aspect of the work of reform is often background in favor of more technical approaches to improvement. Therefore, the purpose of this paper is to argue that social network theory and analysis provides a useful theory and set of tools to unpack the…

  4. Facebook as a Learning Tool? A Case Study on the Appropriation of Social Network Sites from Mobile Phones in Developing Countries

    ERIC Educational Resources Information Center

    Pimmer, Christoph; Linxen, Sebastian; Grohbiel, Urs

    2012-01-01

    This exploratory research investigates how students and professionals use social network sites (SNSs) in the setting of developing and emerging countries. Data collection included focus groups consisting of medical students and faculty as well as the analysis of a Facebook site centred on medical and clinical topics. The findings show how users,…

  5. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  6. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    PubMed

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  7. modPDZpep: a web resource for structure based analysis of human PDZ-mediated interaction networks.

    PubMed

    Sain, Neetu; Mohanty, Debasisa

    2016-09-21

    PDZ domains recognize short sequence stretches usually present in C-terminal of their interaction partners. Because of the involvement of PDZ domains in many important biological processes, several attempts have been made for developing bioinformatics tools for genome-wide identification of PDZ interaction networks. Currently available tools for prediction of interaction partners of PDZ domains utilize machine learning approach. Since, they have been trained using experimental substrate specificity data for specific PDZ families, their applicability is limited to PDZ families closely related to the training set. These tools also do not allow analysis of PDZ-peptide interaction interfaces. We have used a structure based approach to develop modPDZpep, a program to predict the interaction partners of human PDZ domains and analyze structural details of PDZ interaction interfaces. modPDZpep predicts interaction partners by using structural models of PDZ-peptide complexes and evaluating binding energy scores using residue based statistical pair potentials. Since, it does not require training using experimental data on peptide binding affinity, it can predict substrates for diverse PDZ families. Because of the use of simple scoring function for binding energy, it is also fast enough for genome scale structure based analysis of PDZ interaction networks. Benchmarking using artificial as well as real negative datasets indicates good predictive power with ROC-AUC values in the range of 0.7 to 0.9 for a large number of human PDZ domains. Another novel feature of modPDZpep is its ability to map novel PDZ mediated interactions in human protein-protein interaction networks, either by utilizing available experimental phage display data or by structure based predictions. In summary, we have developed modPDZpep, a web-server for structure based analysis of human PDZ domains. It is freely available at http://www.nii.ac.in/modPDZpep.html or http://202.54.226.235/modPDZpep.html . This article was reviewed by Michael Gromiha and Zoltán Gáspári.

  8. Tool Steel Heat Treatment Optimization Using Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz

    2016-11-01

    Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

  9. Developing 21st century skills through the use of student personal learning networks

    NASA Astrophysics Data System (ADS)

    Miller, Robert D.

    This research was conducted to study the development of 21st century communication, collaboration, and digital literacy skills of students at the high school level through the use of online social network tools. The importance of this study was based on evidence high school and college students are not graduating with the requisite skills of communication, collaboration, and digital literacy skills yet employers see these skills important to the success of their employees. The challenge addressed through this study was how high schools can integrate social network tools into traditional learning environments to foster the development of these 21st century skills. A qualitative research study was completed through the use of case study. One high school class in a suburban high performing town in Connecticut was selected as the research site and the sample population of eleven student participants engaged in two sets of interviews and learned through the use social network tools for one semester of the school year. The primary social network tools used were Facebook, Diigo, Google Sites, Google Docs, and Twitter. The data collected and analyzed partially supported the transfer of the theory of connectivism at the high school level. The students actively engaged in collaborative learning and research. Key results indicated a heightened engagement in learning, the development of collaborative learning and research skills, and a greater understanding of how to use social network tools for effective public communication. The use of social network tools with high school students was a positive experience that led to an increased awareness of the students as to the benefits social network tools have as a learning tool. The data supported the continued use of social network tools to develop 21st century communication, collaboration, and digital literacy skills. Future research in this area may explore emerging social network tools as well as the long term impact these tools have on the development of lifelong learning skills and quantitative data linked to student learning.

  10. Quantitative petri net model of gene regulated metabolic networks in the cell.

    PubMed

    Chen, Ming; Hofestädt, Ralf

    2011-01-01

    A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.

  11. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  12. [Weighted gene co-expression network analysis in biomedicine research].

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Tu, Wei

    2017-11-25

    High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.

  13. Analog-to-digital clinical data collection on networked workstations with graphic user interface.

    PubMed

    Lunt, D

    1991-02-01

    An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.

  14. An integrated workflow for analysis of ChIP-chip data.

    PubMed

    Weigelt, Karin; Moehle, Christoph; Stempfl, Thomas; Weber, Bernhard; Langmann, Thomas

    2008-08-01

    Although ChIP-chip is a powerful tool for genome-wide discovery of transcription factor target genes, the steps involving raw data analysis, identification of promoters, and correlation with binding sites are still laborious processes. Therefore, we report an integrated workflow for the analysis of promoter tiling arrays with the Genomatix ChipInspector system. We compare this tool with open-source software packages to identify PU.1 regulated genes in mouse macrophages. Our results suggest that ChipInspector data analysis, comparative genomics for binding site prediction, and pathway/network modeling significantly facilitate and enhance whole-genome promoter profiling to reveal in vivo sites of transcription factor-DNA interactions.

  15. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks.

    PubMed

    Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon

    2015-01-01

    Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student's ADHD symptoms using an ADHD rating scale. The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.

  16. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks

    PubMed Central

    Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon

    2015-01-01

    Introduction Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. Methods A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student’s ADHD symptoms using an ADHD rating scale. Results The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Conclusion Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms. PMID:26562777

  17. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  18. Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design.

    PubMed

    Li, Jianqiang; Zhou, Doudou; Qiu, Weiliang; Shi, Yuliang; Yang, Ji-Jiang; Chen, Shi; Wang, Qing; Pan, Hui

    2018-01-12

    Investigating how genes jointly affect complex human diseases is important, yet challenging. The network approach (e.g., weighted gene co-expression network analysis (WGCNA)) is a powerful tool. However, genomic data usually contain substantial batch effects, which could mask true genomic signals. Paired design is a powerful tool that can reduce batch effects. However, it is currently unclear how to appropriately apply WGCNA to genomic data from paired design. In this paper, we modified the current WGCNA pipeline to analyse high-throughput genomic data from paired design. We illustrated the modified WGCNA pipeline by analysing the miRNA dataset provided by Shiah et al. (2014), which contains forty oral squamous cell carcinoma (OSCC) specimens and their matched non-tumourous epithelial counterparts. OSCC is the sixth most common cancer worldwide. The modified WGCNA pipeline identified two sets of novel miRNAs associated with OSCC, in addition to the existing miRNAs reported by Shiah et al. (2014). Thus, this work will be of great interest to readers of various scientific disciplines, in particular, genetic and genomic scientists as well as medical scientists working on cancer.

  19. Function and activity classification in network traffic data: existing methods, their weaknesses, and a path forward

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy

    2016-05-01

    The cyber spaces are increasingly becoming the battlefields between friendly and adversary forces, with normal users caught in the middle. Accordingly, planners of enterprise defensive policies and offensive cyber missions alike have an essential goal to minimize the impact of their own actions and adversaries' attacks on normal operations of the commercial and government networks. To do this, the cyber analysis need accurate "cyber battle maps", where the functions, roles, and activities of individual and groups of devices and users are accurately identified. Most of the research in cyber exploitation has focused on the identification of attacks, attackers, and their devices. Many tools exist for device profiling, malware identification, user attribution, and attack analysis. However, most of the tools are intrusive, sensitive to data obfuscation, or provide anomaly flagging and not able to correctly classify the semantics and causes of network activities. In this paper, we review existing solutions that can identify functional and social roles of entities in cyberspace, discuss their weaknesses, and propose an approach for developing functional and social layers of cyber battle maps.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  1. Using modeling and simulation tools for work zone analysis

    DOT National Transportation Integrated Search

    2009-05-01

    Work Zone Planning and Management have become more challenging because of increasing travel demand and an aging roadway network infrastructure facing more frequent maintenance and major rehabilitation projects, while still needing to transport people...

  2. Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity

    PubMed Central

    Bassett, Danielle S.; Khambhati, Ankit N.; Grafton, Scott T.

    2018-01-01

    Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain–machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer’s tool kit. PMID:28375650

  3. GIANT API: an application programming interface for functional genomics.

    PubMed

    Roberts, Andrew M; Wong, Aaron K; Fisk, Ian; Troyanskaya, Olga G

    2016-07-08

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.

  5. SentiHealth-Cancer: A sentiment analysis tool to help detecting mood of patients in online social networks.

    PubMed

    Rodrigues, Ramon Gouveia; das Dores, Rafael Marques; Camilo-Junior, Celso G; Rosa, Thierson Couto

    2016-01-01

    Cancer is a critical disease that affects millions of people and families around the world. In 2012 about 14.1 million new cases of cancer occurred globally. Because of many reasons like the severity of some cases, the side effects of some treatments and death of other patients, cancer patients tend to be affected by serious emotional disorders, like depression, for instance. Thus, monitoring the mood of the patients is an important part of their treatment. Many cancer patients are users of online social networks and many of them take part in cancer virtual communities where they exchange messages commenting about their treatment or giving support to other patients in the community. Most of these communities are of public access and thus are useful sources of information about the mood of patients. Based on that, Sentiment Analysis methods can be useful to automatically detect positive or negative mood of cancer patients by analyzing their messages in these online communities. The objective of this work is to present a Sentiment Analysis tool, named SentiHealth-Cancer (SHC-pt), that improves the detection of emotional state of patients in Brazilian online cancer communities, by inspecting their posts written in Portuguese language. The SHC-pt is a sentiment analysis tool which is tailored specifically to detect positive, negative or neutral messages of patients in online communities of cancer patients. We conducted a comparative study of the proposed method with a set of general-purpose sentiment analysis tools adapted to this context. Different collections of posts were obtained from two cancer communities in Facebook. Additionally, the posts were analyzed by sentiment analysis tools that support the Portuguese language (Semantria and SentiStrength) and by the tool SHC-pt, developed based on the method proposed in this paper called SentiHealth. Moreover, as a second alternative to analyze the texts in Portuguese, the collected texts were automatically translated into English, and submitted to sentiment analysis tools that do not support the Portuguese language (AlchemyAPI and Textalytics) and also to Semantria and SentiStrength, using the English option of these tools. Six experiments were conducted with some variations and different origins of the collected posts. The results were measured using the following metrics: precision, recall, F1-measure and accuracy The proposed tool SHC-pt reached the best averages for accuracy and F1-measure (harmonic mean between recall and precision) in the three sentiment classes addressed (positive, negative and neutral) in all experimental settings. Moreover, the worst accuracy value (58%) achieved by SHC-pt in any experiment is 11.53% better than the greatest accuracy (52%) presented by other addressed tools. Finally, the worst average F1 (48.46%) reached by SHC-pt in any experiment is 4.14% better than the greatest average F1 (46.53%) achieved by other addressed tools. Thus, even when we compare the SHC-pt results in complex scenario versus others in easier scenario the SHC-pt is better. This paper presents two contributions. First, it proposes the method SentiHealth to detect the mood of cancer patients that are also users of communities of patients in online social networks. Second, it presents an instantiated tool from the method, called SentiHealth-Cancer (SHC-pt), dedicated to automatically analyze posts in communities of cancer patients, based on SentiHealth. This context-tailored tool outperformed other general-purpose sentiment analysis tools at least in the cancer context. This suggests that the SentiHealth method could be instantiated as other disease-based tools during future works, for instance SentiHealth-HIV, SentiHealth-Stroke and SentiHealth-Sclerosis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles1[W][OA

    PubMed Central

    Price, Charles A.; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S.

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure. PMID:21057114

  7. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles.

    PubMed

    Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.

  8. Informatics methods to enable sharing of quantitative imaging research data.

    PubMed

    Levy, Mia A; Freymann, John B; Kirby, Justin S; Fedorov, Andriy; Fennessy, Fiona M; Eschrich, Steven A; Berglund, Anders E; Fenstermacher, David A; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L; Brown, Bartley J; Braun, Terry A; Dekker, Andre; Roelofs, Erik; Mountz, James M; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-11-01

    The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Sparse dictionary learning for resting-state fMRI analysis

    NASA Astrophysics Data System (ADS)

    Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul

    2011-09-01

    Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.

  10. The growth of partnerships to support patient safety practice adoption.

    PubMed

    Mendel, Peter; Damberg, Cheryl L; Sorbero, Melony E S; Varda, Danielle M; Farley, Donna O

    2009-04-01

    To document the numbers and types of interorganizational partnerships within the national patient safety domain, changes over time in these networks, and their potential for disseminating patient safety knowledge and practices. Self-reported information gathered from representatives of national-level organizations active in promoting patient safety. Social network analysis was used to examine the structure and composition of partnership networks and changes between 2004 and 2006. Two rounds of structured telephone interviews (n=35 organizations in 2004 and 55 in 2006). Patient safety partnerships expanded between 2004 and 2006. The average number of partnerships per interviewed organization increased 40 percent and activities per reported partnership increased over 50 percent. Partnerships increased in all activity domains, particularly dissemination and tools development. Fragmentation of the overall partnership network decreased and potential for information flow increased. Yet network centralization increased, suggesting vulnerability to partnership failure if key participants disengage. Growth in partnerships signifies growing strength in the capacity to disseminate and implement patient safety advancements in the U.S. health care system. The centrality of AHRQ in these networks of partnerships bodes well for its leadership role in disseminating information, tools, and practices generated by patient safety research projects.

  11. Cerebral cartography and connectomics.

    PubMed

    Sporns, Olaf

    2015-05-19

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Music-therapy analyzed through conceptual mapping

    NASA Astrophysics Data System (ADS)

    Martinez, Rodolfo; de la Fuente, Rebeca

    2002-11-01

    Conceptual maps have been employed lately as a learning tool, as a modern study technique, and as a new way to understand intelligence, which allows for the development of a strong theoretical reference, in order to prove the research hypothesis. This paper presents a music-therapy analysis based on this tool to produce a conceptual mapping network, which ranges from magic through the rigor of the hard sciences.

  13. The 'wired' universe of organic chemistry.

    PubMed

    Grzybowski, Bartosz A; Bishop, Kyle J M; Kowalczyk, Bartlomiej; Wilmer, Christopher E

    2009-04-01

    The millions of reactions performed and compounds synthesized by organic chemists over the past two centuries connect to form a network larger than the metabolic networks of higher organisms and rivalling the complexity of the World Wide Web. Despite its apparent randomness, the network of chemistry has a well-defined, modular architecture. The network evolves in time according to trends that have not changed since the inception of the discipline, and thus project into chemistry's future. Analysis of organic chemistry using the tools of network theory enables the identification of most 'central' organic molecules, and for the prediction of which and how many molecules will be made in the future. Statistical analyses based on network connectivity are useful in optimizing parallel syntheses, in estimating chemical reactivity, and more.

  14. Teaching Students How to Integrate and Assess Social Networking Tools in Marketing Communications

    ERIC Educational Resources Information Center

    Schlee, Regina Pefanis; Harich, Katrin R.

    2013-01-01

    This research is based on two studies that focus on teaching students how to integrate and assess social networking tools in marketing communications. Study 1 examines how students in marketing classes utilize social networking tools and explores their attitudes regarding the use of such tools for marketing communications. Study 2 focuses on an…

  15. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    PubMed

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  16. Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks

    NASA Technical Reports Server (NTRS)

    Birrane, Edward J. III; Burleigh, Scott C.; Cerf, Vint

    2011-01-01

    Challenged networks exhibit irregularities in their communication performance stemming from node mobility, power constraints, and impacts from the operating environment. These irregularities manifest as high signal propagation delay and frequent link disruption. Understanding those limits of link disruption and propagation delay beyond which core networking features fail is an ongoing area of research. Various wireless networking communities propose tools and techniques that address these phenomena. Emerging standardization activities within the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) look to build upon both this experience and scalability analysis. Successful research in this area is predicated upon identifying enablers for common communication functions (notably node discovery, duplex communication, state caching, and link negotiation) and how increased disruptions and delays affect their feasibility within the network. Networks that make fewer assumptions relating to these enablers provide more universal service. Specifically, reliance on node discovery and link negotiation results in network-specific operational concepts rather than scalable technical solutions. Fundamental to this debate are the definitions, assumptions, operational concepts, and anticipated scaling of these networks. This paper presents the commonalities and differences between delay and disruption tolerance, including support protocols and critical enablers. We present where and how these tolerances differ. We propose a set of use cases that must be accommodated by any standardized delay-tolerant network and discuss the implication of these on existing tool development.

  17. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Plecháč, Petr

    2017-12-01

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  18. A new cross-correlation algorithm for the analysis of "in vitro" neuronal network activity aimed at pharmacological studies.

    PubMed

    Biffi, E; Menegon, A; Regalia, G; Maida, S; Ferrigno, G; Pedrocchi, A

    2011-08-15

    Modern drug discovery for Central Nervous System pathologies has recently focused its attention to in vitro neuronal networks as models for the study of neuronal activities. Micro Electrode Arrays (MEAs), a widely recognized tool for pharmacological investigations, enable the simultaneous study of the spiking activity of discrete regions of a neuronal culture, providing an insight into the dynamics of networks. Taking advantage of MEAs features and making the most of the cross-correlation analysis to assess internal parameters of a neuronal system, we provide an efficient method for the evaluation of comprehensive neuronal network activity. We developed an intra network burst correlation algorithm, we evaluated its sensitivity and we explored its potential use in pharmacological studies. Our results demonstrate the high sensitivity of this algorithm and the efficacy of this methodology in pharmacological dose-response studies, with the advantage of analyzing the effect of drugs on the comprehensive correlative properties of integrated neuronal networks. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The topology of metabolic isotope labeling networks.

    PubMed

    Weitzel, Michael; Wiechert, Wolfgang; Nöh, Katharina

    2007-08-29

    Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs) and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global topological analysis of ILNs allows to comprehensively describe and understand the general patterns of label flow in complex networks. This is an invaluable tool for the structural design of new experiments and the interpretation of measured data.

  20. [Algorithms of artificial neural networks--practical application in medical science].

    PubMed

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  1. Data-driven automated acoustic analysis of human infant vocalizations using neural network tools.

    PubMed

    Warlaumont, Anne S; Oller, D Kimbrough; Buder, Eugene H; Dale, Rick; Kozma, Robert

    2010-04-01

    Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f(0), duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network's weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network's receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations.

  2. Collaborative workbench for cyberinfrastructure to accelerate science algorithm development

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.

    2013-12-01

    There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.

  3. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  4. Approaching human language with complex networks

    NASA Astrophysics Data System (ADS)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  5. Team Collaboration Software

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Schrock, Mitchell; Baldwin, John R.; Borden, Charles S.

    2010-01-01

    The Ground Resource Allocation and Planning Environment (GRAPE 1.0) is a Web-based, collaborative team environment based on the Microsoft SharePoint platform, which provides Deep Space Network (DSN) resource planners tools and services for sharing information and performing analysis.

  6. A bicycle network analysis tool for planning applications in small communities.

    DOT National Transportation Integrated Search

    2015-05-01

    Non-motorized transportation modes such as bicycles constitute an important part of a : communitys transportation system; they are vital to the success of transit-oriented developments : (TODs). However, bicycles were often ignored in transportati...

  7. Information security system quality assessment through the intelligent tools

    NASA Astrophysics Data System (ADS)

    Trapeznikov, E. V.

    2018-04-01

    The technology development has shown the automated system information security comprehensive analysis necessity. The subject area analysis indicates the study relevance. The research objective is to develop the information security system quality assessment methodology based on the intelligent tools. The basis of the methodology is the information security assessment model in the information system through the neural network. The paper presents the security assessment model, its algorithm. The methodology practical implementation results in the form of the software flow diagram are represented. The practical significance of the model being developed is noted in conclusions.

  8. Method and tool for network vulnerability analysis

    DOEpatents

    Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  9. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    PubMed Central

    2011-01-01

    Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817

  10. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556

  11. Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    PubMed Central

    Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine

    2011-01-01

    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123

  12. Learning Principal Component Analysis by Using Data from Air Quality Networks

    ERIC Educational Resources Information Center

    Perez-Arribas, Luis Vicente; Leon-González, María Eugenia; Rosales-Conrado, Noelia

    2017-01-01

    With the final objective of using computational and chemometrics tools in the chemistry studies, this paper shows the methodology and interpretation of the Principal Component Analysis (PCA) using pollution data from different cities. This paper describes how students can obtain data on air quality and process such data for additional information…

  13. A Biologically Informed Framework for the Analysis of the PPAR Signaling Pathway using a Bayesian Network

    EPA Science Inventory

    The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...

  14. AllAboard: Visual Exploration of Cellphone Mobility Data to Optimise Public Transport.

    PubMed

    Di Lorenzo, G; Sbodio, M; Calabrese, F; Berlingerio, M; Pinelli, F; Nair, R

    2016-02-01

    The deep penetration of mobile phones offers cities the ability to opportunistically monitor citizens' mobility and use data-driven insights to better plan and manage services. With large scale data on mobility patterns, operators can move away from the costly, mostly survey based, transportation planning processes, to a more data-centric view, that places the instrumented user at the center of development. In this framework, using mobile phone data to perform transit analysis and optimization represents a new frontier with significant societal impact, especially in developing countries. In this paper we present AllAboard, an intelligent tool that analyses cellphone data to help city authorities in visually exploring urban mobility and optimizing public transport. This is performed within a self contained tool, as opposed to the current solutions which rely on a combination of several distinct tools for analysis, reporting, optimisation and planning. An interactive user interface allows transit operators to visually explore the travel demand in both space and time, correlate it with the transit network, and evaluate the quality of service that a transit network provides to the citizens at very fine grain. Operators can visually test scenarios for transit network improvements, and compare the expected impact on the travellers' experience. The system has been tested using real telecommunication data for the city of Abidjan, Ivory Coast, and evaluated from a data mining, optimisation and user prospective.

  15. A computer tool to support in design of industrial Ethernet.

    PubMed

    Lugli, Alexandre Baratella; Santos, Max Mauro Dias; Franco, Lucia Regina Horta Rodrigues

    2009-04-01

    This paper presents a computer tool to support in the project and development of an industrial Ethernet network, verifying the physical layer (cables-resistance and capacitance, scan time, network power supply-POE's concept "Power Over Ethernet" and wireless), and occupation rate (amount of information transmitted to the network versus the controller network scan time). These functions are accomplished without a single physical element installed in the network, using only simulation. The computer tool has a software that presents a detailed vision of the network to the user, besides showing some possible problems in the network, and having an extremely friendly environment.

  16. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    PubMed

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.

  17. Assessing the Network of Agencies in Local Communities that Promote Healthy Eating and Lifestyles among Populations with Limited Resources.

    PubMed

    An, Ruopeng; Khan, Naiman; Loehmer, Emily; McCaffrey, Jennifer

    2017-03-01

    We assessed the network of agencies in local communities that promote healthy eating and lifestyles among populations with limited resources. Network surveys were administered among 159 Illinois agencies identified as serving limited-resource audiences categorized into 8 types: K-12 schools, early childhood centers, emergency food providers, health-related agencies, social resource centers, low-income/subsidized housing complexes, continuing education organizations, and others. Network analysis was conducted to examine 4 network structures - communications, funding, cooperation, and collaboration networks between agencies within each county/county cluster. Agencies in a network were found to be loosely connected, indicated by low network density. Reporting accuracy might be of concern, indicated by low reciprocity. Agencies in a network are decentralized rather than centralized around a few influential agencies, indicated by low betweenness centrality. There is suggestive evidence regarding homophily in a network, indicated by some significant correlations within agencies of the same type. Agencies connected in one network are significantly more likely to be connected in all the other networks as well. Promoting healthy eating and lifestyles among populations with limited resources warrants strong partnership across agencies in communities. Network analysis serves as a useful tool to evaluate community partnerships and facilitate coalition building..

  18. The Strategic Environment Assessment bibliographic network: A quantitative literature review analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caschili, Simone, E-mail: s.caschili@ucl.ac.uk; De Montis, Andrea; Ganciu, Amedeo

    2014-07-01

    Academic literature has been continuously growing at such a pace that it can be difficult to follow the progression of scientific achievements; hence, the need to dispose of quantitative knowledge support systems to analyze the literature of a subject. In this article we utilize network analysis tools to build a literature review of scientific documents published in the multidisciplinary field of Strategic Environment Assessment (SEA). The proposed approach helps researchers to build unbiased and comprehensive literature reviews. We collect information on 7662 SEA publications and build the SEA Bibliographic Network (SEABN) employing the basic idea that two publications are interconnectedmore » if one cites the other. We apply network analysis at macroscopic (network architecture), mesoscopic (sub graph) and microscopic levels (node) in order to i) verify what network structure characterizes the SEA literature, ii) identify the authors, disciplines and journals that are contributing to the international discussion on SEA, and iii) scrutinize the most cited and important publications in the field. Results show that the SEA is a multidisciplinary subject; the SEABN belongs to the class of real small world networks with a dominance of publications in Environmental studies over a total of 12 scientific sectors. Christopher Wood, Olivia Bina, Matthew Cashmore, and Andrew Jordan are found to be the leading authors while Environmental Impact Assessment Review is by far the scientific journal with the highest number of publications in SEA studies. - Highlights: • We utilize network analysis to analyze scientific documents in the SEA field. • We build the SEA Bibliographic Network (SEABN) of 7662 publications. • We apply network analysis at macroscopic, mesoscopic and microscopic network levels. • We identify SEABN architecture, relevant publications, authors, subjects and journals.« less

  19. Sense-making for intelligence analysis on social media data

    NASA Astrophysics Data System (ADS)

    Pritzkau, Albert

    2016-05-01

    Social networks, in particular online social networks as a subset, enable the analysis of social relationships which are represented by interaction, collaboration, or other sorts of influence between people. Any set of people and their internal social relationships can be modelled as a general social graph. These relationships are formed by exchanging emails, making phone calls, or carrying out a range of other activities that build up the network. This paper presents an overview of current approaches to utilizing social media as a ubiquitous sensor network in the context of national and global security. Exploitation of social media is usually an interdisciplinary endeavour, in which the relevant technologies and methods are identified and linked in order ultimately demonstrate selected applications. Effective and efficient intelligence is usually accomplished in a combined human and computer effort. Indeed, the intelligence process heavily depends on combining a human's flexibility, creativity, and cognitive ability with the bandwidth and processing power of today's computers. To improve the usability and accuracy of the intelligence analysis we will have to rely on data-processing tools at the level of natural language. Especially the collection and transformation of unstructured data into actionable, structured data requires scalable computational algorithms ranging from Artificial Intelligence, via Machine Learning, to Natural Language Processing (NLP). To support intelligence analysis on social media data, social media analytics is concerned with developing and evaluating computational tools and frameworks to collect, monitor, analyze, summarize, and visualize social media data. Analytics methods are employed to extract of significant patterns that might not be obvious. As a result, different data representations rendering distinct aspects of content and interactions serve as a means to adapt the focus of the intelligence analysis to specific information requests.

  20. Experimental Modal Analysis and Dynaic Strain Fiber Bragg Gratings for Structural Health Monitoring of Composite Aerospace Structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.

    2012-07-01

    The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.

  1. A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.

    PubMed

    Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo

    2015-07-01

    In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.

  2. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  3. Multi-target drugs: the trend of drug research and development.

    PubMed

    Lu, Jin-Jian; Pan, Wei; Hu, Yuan-Jia; Wang, Yi-Tao

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future.

  4. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  5. BIND: the Biomolecular Interaction Network Database

    PubMed Central

    Bader, Gary D.; Betel, Doron; Hogue, Christopher W. V.

    2003-01-01

    The Biomolecular Interaction Network Database (BIND: http://bind.ca) archives biomolecular interaction, complex and pathway information. A web-based system is available to query, view and submit records. BIND continues to grow with the addition of individual submissions as well as interaction data from the PDB and a number of large-scale interaction and complex mapping experiments using yeast two hybrid, mass spectrometry, genetic interactions and phage display. We have developed a new graphical analysis tool that provides users with a view of the domain composition of proteins in interaction and complex records to help relate functional domains to protein interactions. An interaction network clustering tool has also been developed to help focus on regions of interest. Continued input from users has helped further mature the BIND data specification, which now includes the ability to store detailed information about genetic interactions. The BIND data specification is available as ASN.1 and XML DTD. PMID:12519993

  6. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    PubMed

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  7. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator

    PubMed Central

    Drewes, Rich; Zou, Quan; Goodman, Philip H.

    2008-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading “glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS. PMID:19506707

  8. Quantifiable and objective approach to organizational performance enhancement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholand, Andrew Joseph; Tausczik, Yla R.

    This report describes a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to identify socially situated relationships between individuals which, though subtle, are highly influential. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships aremore » latent or unrecognized. This report outlines the philosophical antecedents of SLNA, the mechanics of preprocessing, processing, and post-processing stages, and some example results obtained by applying this approach to a 15-month corporate discussion archive.« less

  9. Trace Replay and Network Simulation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acun, Bilge; Jain, Nikhil; Bhatele, Abhinav

    2015-03-23

    TraceR is a trace reply tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performances and understanding network behavior by simulating messaging in High Performance Computing applications on interconnection networks.

  10. Trace Replay and Network Simulation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Nikhil; Bhatele, Abhinav; Acun, Bilge

    TraceR Is a trace replay tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performance and understanding network behavior by simulating messaging In High Performance Computing applications on interconnection networks.

  11. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain.

    PubMed

    Calamante, Fernando; Masterton, Richard A J; Tournier, Jacques-Donald; Smith, Robert E; Willats, Lisa; Raffelt, David; Connelly, Alan

    2013-04-15

    MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Study of Tools for Network Discovery and Network Mapping

    DTIC Science & Technology

    2003-11-01

    connected to the switch. iv. Accessibility of historical data and event data In general, network discovery tools keep a history of the collected...has the following software dependencies: - Java Virtual machine 76 - Perl modules - RRD Tool - TomCat - PostgreSQL STRENGTHS AND...systems - provide a simple view of the current network status - generate alarms on status change - generate history of status change VISUAL MAP

  13. Metabolic Network Modeling of Microbial Communities

    PubMed Central

    Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.

    2015-01-01

    Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480

  14. Finding collaborators: toward interactive discovery tools for research network systems.

    PubMed

    Borromeo, Charles D; Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry

    2014-11-04

    Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows.

  15. Finding Collaborators: Toward Interactive Discovery Tools for Research Network Systems

    PubMed Central

    Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry

    2014-01-01

    Background Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. Objective The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Methods Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Results Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Conclusions Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows. PMID:25370463

  16. Convergence analysis of directed signed networks via an M-matrix approach

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan

    2018-04-01

    This paper aims at solving convergence problems on directed signed networks with multiple nodes, where interactions among nodes are described by signed digraphs. The convergence analysis is achieved by matrix-theoretic and graph-theoretic tools, in which M-matrices play a central role. The fundamental digon sign-symmetry assumption upon signed digraphs can be removed with the proposed analysis approach. Furthermore, necessary and sufficient conditions are established for semi-positive and positive stabilities of Laplacian matrices of signed digraphs, respectively. A benefit of this result is that given strong connectivity, a directed signed network can achieve bipartite consensus (or state stability) if and only if the signed digraph associated with it is structurally balanced (or unbalanced). If the interactions between nodes are described by a signed digraph only with spanning trees, a directed signed network can achieve interval bipartite consensus (or state stability) if and only if the signed digraph contains a structurally balanced (or unbalanced) rooted subgraph. Simulations are given to illustrate the developed results by considering signed networks associated with digon sign-unsymmetric signed digraphs.

  17. Psychology and social networks: a dynamic network theory perspective.

    PubMed

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  18. Electrical Mapping of Silver Nanowire Networks: A Versatile Tool for Imaging Network Homogeneity and Degradation Dynamics during Failure.

    PubMed

    Sannicolo, Thomas; Charvin, Nicolas; Flandin, Lionel; Kraus, Silas; Papanastasiou, Dorina T; Celle, Caroline; Simonato, Jean-Pierre; Muñoz-Rojas, David; Jiménez, Carmen; Bellet, Daniel

    2018-05-22

    Electrical stability and homogeneity of silver nanowire (AgNW) networks are critical assets for increasing their robustness and reliability when integrated as transparent electrodes in devices. Our ability to distinguish defects, inhomogeneities, or inactive areas at the scale of the entire network is therefore a critical issue. We propose one-probe electrical mapping (1P-mapping) as a specific simple tool to study the electrical distribution in these discrete structures. 1P-mapping has allowed us to show that the tortuosity of the voltage equipotential lines of AgNW networks under bias decreases with increasing network density, leading to a better electrical homogeneity. The impact of the network fabrication technique on the electrical homogeneity of the resulting electrode has also been investigated. Then, by combining 1P-mapping with electrical resistance measurements and IR thermography, we propose a comprehensive analysis of the evolution of the electrical distribution in AgNW networks when subjected to increasing voltage stresses. We show that AgNW networks experience three distinctive stages: optimization, degradation, and breakdown. We also demonstrate that the failure dynamics of AgNW networks at high voltages occurs through a highly correlated and spatially localized mechanism. In particular the in situ formation of cracks could be clearly visualized. It consists of two steps: creation of a crack followed by propagation nearly parallel to the equipotential lines. Finally, we show that current can dynamically redistribute during failure, by following partially damaged secondary pathways through the crack.

  19. Global value chains: Building blocks and network dynamics

    NASA Astrophysics Data System (ADS)

    Tsekeris, Theodore

    2017-12-01

    The paper employs measures and tools from complex network analysis to enhance the understanding and interpretation of structural characteristics pertaining to the Global Value Chains (GVCs) during the period 1995-2011. The analysis involves the country, sector and country-sector value chain networks to identify main drivers of structural change. The results indicate significant intertemporal changes, mirroring the increased globalization in terms of network size, strength and connectivity. They also demonstrate higher clustering and increased concentration of the most influential countries and country-sectors relative to all others in the GVC network, with the geographical dimension to prevail over the sectoral dimension in the formation of value chains. The regionalization and less hierarchical organization drive country-sector production sharing, while the sectoral value chain network has become more integrated and more competitive over time. The findings suggest that the impact of country-sector policies and/or shocks may vary with the own-group and network-wide influence of each country, take place in multiple geographical scales, as GVCs have a block structure, and involve time dynamics.

  20. BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.

    PubMed

    Müssel, Christoph; Hopfensitz, Martin; Kestler, Hans A

    2010-05-15

    As the study of information processing in living cells moves from individual pathways to complex regulatory networks, mathematical models and simulation become indispensable tools for analyzing the complex behavior of such networks and can provide deep insights into the functioning of cells. The dynamics of gene expression, for example, can be modeled with Boolean networks (BNs). These are mathematical models of low complexity, but have the advantage of being able to capture essential properties of gene-regulatory networks. However, current implementations of BNs only focus on different sub-aspects of this model and do not allow for a seamless integration into existing preprocessing pipelines. BoolNet efficiently integrates methods for synchronous, asynchronous and probabilistic BNs. This includes reconstructing networks from time series, generating random networks, robustness analysis via perturbation, Markov chain simulations, and identification and visualization of attractors. The package BoolNet is freely available from the R project at http://cran.r-project.org/ or http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/ under Artistic License 2.0. hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online.

  1. Social network analysis in identifying influential webloggers: A preliminary study

    NASA Astrophysics Data System (ADS)

    Hasmuni, Noraini; Sulaiman, Nor Intan Saniah; Zaibidi, Nerda Zura

    2014-12-01

    In recent years, second generation of internet-based services such as weblog has become an effective communication tool to publish information on the Web. Weblogs have unique characteristics that deserve users' attention. Some of webloggers have seen weblogs as appropriate medium to initiate and expand business. These webloggers or also known as direct profit-oriented webloggers (DPOWs) communicate and share knowledge with each other through social interaction. However, survivability is the main issue among DPOW. Frequent communication with influential webloggers is one of the way to keep survive as DPOW. This paper aims to understand the network structure and identify influential webloggers within the network. Proper understanding of the network structure can assist us in knowing how the information is exchanged among members and enhance survivability among DPOW. 30 DPOW were involved in this study. Degree centrality and betweenness centrality measurement in Social Network Analysis (SNA) were used to examine the strength relation and identify influential webloggers within the network. Thus, webloggers with the highest value of these measurements are considered as the most influential webloggers in the network.

  2. Mapping one strong 'Ohana: using network analysis and GIS to enhance the effectiveness of a statewide coalition to prevent child abuse and neglect.

    PubMed

    Cardazone, Gina; U Sy, Angela; Chik, Ivan; Corlew, Laura Kate

    2014-06-01

    Network analysis and GIS enable the presentation of meaningful data about organizational relationships and community characteristics, respectively. Together, these tools can provide a concrete representation of the ecological context in which coalitions operate, and may help coalitions identify opportunities for growth and enhanced effectiveness. This study uses network analysis and GIS mapping as part of an evaluation of the One Strong 'Ohana (OSO) campaign. The OSO campaign was launched in 2012 via a partnership between the Hawai'i Children's Trust Fund (HCTF) and the Joyful Heart Foundation. The OSO campaign uses a collaborative approach aimed at increasing public awareness of child maltreatment and protective factors that can prevent maltreatment, as well as enhancing the effectiveness of the HCTF Coalition. This study focuses on three elements of the OSO campaign evaluation: (1) Network analysis exploring the relationships between 24 active Coalition member organizations, (2) GIS mapping of responses to a randomized statewide phone survey (n = 1,450) assessing awareness of factors contributing to child maltreatment, and (3) Combined GIS maps and network data, illustrating opportunities for geographically-targeted coalition building and public awareness activities.

  3. Analysis of citation networks as a new tool for scientific research

    DOE PAGES

    Vasudevan, R. K.; Ziatdinov, M.; Chen, C.; ...

    2016-12-06

    The rapid growth of scientific publications necessitates new methods to understand the direction of scientific research within fields of study, ascertain the importance of particular groups, authors, or institutions, compute metrics that can determine the importance (centrality) of particular seminal papers, and provide insight into the social (collaboration) networks that are present. We present one such method based on analysis of citation networks, using the freely available CiteSpace Program. We use citation network analysis on three examples, including a single material that has been widely explored in the last decade (BiFeO 3), two small subfields with a minimal number ofmore » authors (flexoelectricity and Kitaev physics), and a much wider field with thousands of publications pertaining to a single technique (scanning tunneling microscopy). Interpretation of the analysis and key insights into the fields, such as whether the fields are experiencing resurgence or stagnation, are discussed, and author or collaboration networks that are prominent are determined. Such methods represent a paradigm shift in our way of dealing with the large volume of scientific publications and could change the way literature searches and reviews are conducted, as well as how the impact of specific work is assessed.« less

  4. Analysis of citation networks as a new tool for scientific research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, R. K.; Ziatdinov, M.; Chen, C.

    The rapid growth of scientific publications necessitates new methods to understand the direction of scientific research within fields of study, ascertain the importance of particular groups, authors, or institutions, compute metrics that can determine the importance (centrality) of particular seminal papers, and provide insight into the social (collaboration) networks that are present. We present one such method based on analysis of citation networks, using the freely available CiteSpace Program. We use citation network analysis on three examples, including a single material that has been widely explored in the last decade (BiFeO 3), two small subfields with a minimal number ofmore » authors (flexoelectricity and Kitaev physics), and a much wider field with thousands of publications pertaining to a single technique (scanning tunneling microscopy). Interpretation of the analysis and key insights into the fields, such as whether the fields are experiencing resurgence or stagnation, are discussed, and author or collaboration networks that are prominent are determined. Such methods represent a paradigm shift in our way of dealing with the large volume of scientific publications and could change the way literature searches and reviews are conducted, as well as how the impact of specific work is assessed.« less

  5. A graph-based system for network-vulnerability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, L.P.; Phillips, C.

    1998-06-01

    This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less

  6. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    PubMed

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  7. Situation Awareness. Report of Break-Out Group 4.

    DTIC Science & Technology

    2006-10-01

    abstraction of the objects and contents, which are displayed and analysed with a visualisation tool. To get a clear picture of the situation around you do...cities, villages etc.). It is possible for other types of information to be visualised /handled similarly for network and data analysis. A good example...interesting feature of a visualisation tool concerning reliability/uncertainty might be the possibility to show/hide uncertain information. This means that

  8. Informative Feature Selection for Object Recognition via Sparse PCA

    DTIC Science & Technology

    2011-04-07

    constraint on images collected from low-power camera net- works instead of high-end photography is that establishing wide-baseline feature correspondence of...variable selection tool for selecting informative features in the object images captured from low-resolution cam- era sensor networks. Firstly, we...More examples can be found in Figure 4 later. 3. Identifying Informative Features Classical PCA is a well established tool for the analysis of high

  9. Synthetic biology: Novel approaches for microbiology.

    PubMed

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  10. Trace-back and trace-forward tools developed ad hoc and used during the STEC O104:H4 outbreak 2011 in Germany and generic concepts for future outbreak situations.

    PubMed

    Weiser, Armin A; Gross, Stefan; Schielke, Anika; Wigger, Jan-Frederik; Ernert, Andrea; Adolphs, Julian; Fetsch, Alexandra; Müller-Graf, Christine; Käsbohrer, Annemarie; Mosbach-Schulz, Olaf; Appel, Bernd; Greiner, Matthias

    2013-03-01

    The Shiga toxin-producing Escherichia coli O104:H4 outbreak in Germany in 2011 required the development of appropriate tools in real-time for tracing suspicious foods along the supply chain, namely salad ingredients, sprouts, and seeds. Food commodities consumed at locations identified as most probable site of infection (outbreak clusters) were traced back in order to identify connections between different disease clusters via the supply chain of the foods. A newly developed relational database with integrated consistency and plausibility checks was used to collate these data for further analysis. Connections between suppliers, distributors, and producers were visualized in network graphs and geographic projections. Finally, this trace-back and trace-forward analysis led to the identification of sprouts produced by a horticultural farm in Lower Saxony as vehicle for the pathogen, and a specific lot of fenugreek seeds imported from Egypt as the most likely source of contamination. Network graphs have proven to be a powerful tool for summarizing and communicating complex trade relationships to various stake holders. The present article gives a detailed description of the newly developed tracing tools and recommendations for necessary requirements and improvements for future foodborne outbreak investigations.

  11. Modeling biological pathway dynamics with timed automata.

    PubMed

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.

  12. A BEFORE AND AFTER TRIAL OF THE EFFECTIVENESS OF NETWORK ANALYSIS IN HEALTH OPERATIONS MANAGEMENT.

    PubMed

    Bhalwar, R; Srivastava, M; Verma, S S; Vaze, M; Tilak, V W

    1996-10-01

    An intervention trial using "before-and-after" approach was undertaken to address the question whether network analysis as a health managerial tool of control can favourably affect the delays that occur in planning and executing the antimalaria operations of a Station Health Organization in a large military station. Exposure variable of interest was intervention with a network diagram, by which the potential causes of delay along the various activities were assessed and remedial measures were introduced during the second year. Sample size was calculated using conventional alpha and beta error levels. The study indicated that there was a definite beneficial outcome in that the operations could be started as well as completed in time during the intervention year. There was reduction in time requirement in 5 out of the 9 activities, the exact 'p' value being 0.08, by both parametric and non-parametric tests. The use of network analysis in health care management has been recommended.

  13. Parallelization of Nullspace Algorithm for the computation of metabolic pathways

    PubMed Central

    Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel

    2011-01-01

    Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581

  14. Topological analysis of metabolic networks based on petri net theory.

    PubMed

    Zevedei-Oancea, Ionela; Schuster, Stefan

    2011-01-01

    Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

  15. Topological analysis of metabolic networks based on Petri net theory.

    PubMed

    Zevedei-Oancea, Ionela; Schuster, Stefan

    2003-01-01

    Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

  16. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    PubMed

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  17. Construct and Compare Gene Coexpression Networks with DAPfinder and DAPview.

    PubMed

    Skinner, Jeff; Kotliarov, Yuri; Varma, Sudhir; Mine, Karina L; Yambartsev, Anatoly; Simon, Richard; Huyen, Yentram; Morgun, Andrey

    2011-07-14

    DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.

  18. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.

    PubMed

    Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie

    2015-01-01

    Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.

  19. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less

  20. Optimal Mass Transport for Statistical Estimation, Image Analysis, Information Geometry, and Control

    DTIC Science & Technology

    2017-01-10

    Metric Uncertainty for Spectral Estimation based on Nevanlinna-Pick Interpolation, (with J. Karlsson) Intern. Symp. on the Math . Theory of Networks and...Systems, Melbourne 2012. 22. Geometric tools for the estimation of structured covariances, (with L. Ning, X. Jiang) Intern. Symposium on the Math . Theory...estimation and the reversibility of stochastic processes, (with Y. Chen, J. Karlsson) Proc. Int. Symp. on Math . Theory of Networks and Syst., July

Top