The use of network theory to model disparate ship design information
NASA Astrophysics Data System (ADS)
Rigterink, Douglas; Piks, Rebecca; Singer, David J.
2014-06-01
This paper introduces the use of network theory to model and analyze disparate ship design information. This work will focus on a ship's distributed systems and their intra- and intersystem structures and interactions. The three system to be analyzed are: a passageway system, an electrical system, and a fire fighting system. These systems will be analyzed individually using common network metrics to glean information regarding their structures and attributes. The systems will also be subjected to community detection algorithms both separately and as a multiplex network to compare their similarities, differences, and interactions. Network theory will be shown to be useful in the early design stage due to its simplicity and ability to model any shipboard system.
EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks
Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman
2014-01-01
Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639
Latent geometry of bipartite networks
NASA Astrophysics Data System (ADS)
Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2017-03-01
Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
Hardware Realization of an Ethernet Packet Analyzer Search Engine
2000-06-30
specific for the home automation industry. This analyzer will be at the gateway of a network and analyze Ethernet packets as they go by. It will keep... home automation and not the computer network. This system is a stand-alone real-time network analyzer capable of decoding Ethernet protocols. The
Design and implementation of dynamic hybrid Honeypot network
NASA Astrophysics Data System (ADS)
Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang
2013-05-01
The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
Application of wireless sensor network technology in logistics information system
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-04-01
This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.
Organising a University Computer System: Analytical Notes.
ERIC Educational Resources Information Center
Jacquot, J. P.; Finance, J. P.
1990-01-01
Thirteen trends in university computer system development are identified, system user requirements are analyzed, critical system qualities are outlined, and three options for organizing a computer system are presented. The three systems include a centralized network, local network, and federation of local networks. (MSE)
A Novel Network Attack Audit System based on Multi-Agent Technology
NASA Astrophysics Data System (ADS)
Jianping, Wang; Min, Chen; Xianwen, Wu
A network attack audit system which includes network attack audit Agent, host audit Agent and management control center audit Agent is proposed. And the improved multi-agent technology is carried out in the network attack audit Agent which has achieved satisfactory audit results. The audit system in terms of network attack is just in-depth, and with the function improvement of network attack audit Agent, different attack will be better analyzed and audit. In addition, the management control center Agent should manage and analyze audit results from AA (or HA) and audit data on time. And the history files of network packets and host log data should also be audit to find deeper violations that cannot be found in real time.
De Brún, Aoife; McAuliffe, Eilish
2018-03-13
Health systems research recognizes the complexity of healthcare, and the interacting and interdependent nature of components of a health system. To better understand such systems, innovative methods are required to depict and analyze their structures. This paper describes social network analysis as a methodology to depict, diagnose, and evaluate health systems and networks therein. Social network analysis is a set of techniques to map, measure, and analyze social relationships between people, teams, and organizations. Through use of a case study exploring support relationships among senior managers in a newly established hospital group, this paper illustrates some of the commonly used network- and node-level metrics in social network analysis, and demonstrates the value of these maps and metrics to understand systems. Network analysis offers a valuable approach to health systems and services researchers as it offers a means to depict activity relevant to network questions of interest, to identify opinion leaders, influencers, clusters in the network, and those individuals serving as bridgers across clusters. The strengths and limitations inherent in the method are discussed, and the applications of social network analysis in health services research are explored.
A Process Management System for Networked Manufacturing
NASA Astrophysics Data System (ADS)
Liu, Tingting; Wang, Huifen; Liu, Linyan
With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.
Network analysis applications in hydrology
NASA Astrophysics Data System (ADS)
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
Systems and methods for modeling and analyzing networks
Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W
2013-10-29
The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.
System, apparatus and methods to implement high-speed network analyzers
Ezick, James; Lethin, Richard; Ros-Giralt, Jordi; Szilagyi, Peter; Wohlford, David E
2015-11-10
Systems, apparatus and methods for the implementation of high-speed network analyzers are provided. A set of high-level specifications is used to define the behavior of the network analyzer emitted by a compiler. An optimized inline workflow to process regular expressions is presented without sacrificing the semantic capabilities of the processing engine. An optimized packet dispatcher implements a subset of the functions implemented by the network analyzer, providing a fast and slow path workflow used to accelerate specific processing units. Such dispatcher facility can also be used as a cache of policies, wherein if a policy is found, then packet manipulations associated with the policy can be quickly performed. An optimized method of generating DFA specifications for network signatures is also presented. The method accepts several optimization criteria, such as min-max allocations or optimal allocations based on the probability of occurrence of each signature input bit.
Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.
ERIC Educational Resources Information Center
Pierre, Samuel
2001-01-01
Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…
Detection of network attacks based on adaptive resonance theory
NASA Astrophysics Data System (ADS)
Bukhanov, D. G.; Polyakov, V. M.
2018-05-01
The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.
"Time-dependent flow-networks"
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkentin, Nora; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marwan, Norbert; Kurths, Jürgen
2015-04-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply information or heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e. high computational complexity and fixed variety of the flows in the underlying system, we introduce a new, method of flow-networks for changing in time velocity fields including external forcing in the system, noise and temperature-decay. Method of the flow-network construction can be divided into several steps: first we obtain the linear recursive equation for the temperature time-series. Then we compute the correlation matrix for time-series averaging the tensor product over all realizations of the noise, which we interpret as a weighted adjacency matrix of the flow-network and analyze using network measures. We apply the method to different types of moving flows with geographical relevance such as meandering flow. Analyzing the flow-networks using network measures we find that our approach can highlight zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. Flow-networks can be powerful tool to understand the connection between system's dynamics and network's topology analyzed using network measures in order to shed light on different climatic phenomena.
Airport Surface Network Architecture Definition
NASA Technical Reports Server (NTRS)
Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.
2006-01-01
Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.
Robustness of Oscillatory Behavior in Correlated Networks
Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki
2015-01-01
Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574
Application of the GERTS II simulator in the industrial environment.
NASA Technical Reports Server (NTRS)
Whitehouse, G. E.; Klein, K. I.
1971-01-01
GERT was originally developed to aid in the analysis of stochastic networks. GERT can be used to graphically model and analyze complex systems. Recently a simulator model, GERTS II, has been developed to solve GERT Networks. The simulator language used in the development of this model was GASP II A. This paper discusses the possible application of GERTS II to model and analyze (1) assembly line operations, (2) project management networks, (3) conveyor systems and (4) inventory systems. Finally, an actual application dealing with a job shop loading problem is presented.
Astakhov, Vadim
2009-01-01
Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.
NASA Astrophysics Data System (ADS)
Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian
2016-05-01
A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.
Analyzing neuronal networks using discrete-time dynamics
NASA Astrophysics Data System (ADS)
Ahn, Sungwoo; Smith, Brian H.; Borisyuk, Alla; Terman, David
2010-05-01
We develop mathematical techniques for analyzing detailed Hodgkin-Huxley like models for excitatory-inhibitory neuronal networks. Our strategy for studying a given network is to first reduce it to a discrete-time dynamical system. The discrete model is considerably easier to analyze, both mathematically and computationally, and parameters in the discrete model correspond directly to parameters in the original system of differential equations. While these networks arise in many important applications, a primary focus of this paper is to better understand mechanisms that underlie temporally dynamic responses in early processing of olfactory sensory information. The models presented here exhibit several properties that have been described for olfactory codes in an insect’s Antennal Lobe. These include transient patterns of synchronization and decorrelation of sensory inputs. By reducing the model to a discrete system, we are able to systematically study how properties of the dynamics, including the complex structure of the transients and attractors, depend on factors related to connectivity and the intrinsic and synaptic properties of cells within the network.
Hybrid modeling and empirical analysis of automobile supply chain network
NASA Astrophysics Data System (ADS)
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Method and system for pattern analysis using a coarse-coded neural network
NASA Technical Reports Server (NTRS)
Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)
1994-01-01
A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.
Thinking on building the network cardiovasology of Chinese medicine.
Yu, Gui; Wang, Jie
2012-11-01
With advances in complex network theory, the thinking and methods regarding complex systems have changed revolutionarily. Network biology and network pharmacology were built by applying network-based approaches in biomedical research. The cardiovascular system may be regarded as a complex network, and cardiovascular diseases may be taken as the damage of structure and function of the cardiovascular network. Although Chinese medicine (CM) is effective in treating cardiovascular diseases, its mechanisms are still unclear. With the guidance of complex network theory, network biology and network pharmacology, network-based approaches could be used in the study of CM in preventing and treating cardiovascular diseases. A new discipline-network cardiovasology of CM was, therefore, developed. In this paper, complex network theory, network biology and network pharmacology were introduced and the connotation of "disease-syndrome-formula-herb" was illustrated from the network angle. Network biology could be used to analyze cardiovascular diseases and syndromes and network pharmacology could be used to analyze CM formulas and herbs. The "network-network"-based approaches could provide a new view for elucidating the mechanisms of CM treatment.
NASA Astrophysics Data System (ADS)
Gong, Tao; Shuai, Lan; Wu, Yicheng
2014-12-01
By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.
Study of Personalized Network Tutoring System Based on Emotional-cognitive Interaction
NASA Astrophysics Data System (ADS)
Qi, Manfei; Ma, Ding; Wang, Wansen
Aiming at emotion deficiency in present Network tutoring system, a lot of negative effects is analyzed and corresponding countermeasures are proposed. The model of Personalized Network tutoring system based on Emotional-cognitive interaction is constructed in the paper. The key techniques of realizing the system such as constructing emotional model and adjusting teaching strategies are also introduced.
Wang, Xin; Birch, Stephen; Ma, Huifen; Zhu, Weiming; Meng, Qingyue
2016-08-12
Facing the challenges of aging populations, increasing chronic diseases prevalence and health system fragmentation, there have been several pilots of integrated health systems in China. But little is known about their structure, mechanism and effectiveness. The aim of this paper is to analyze health system integration and develop recommendations for achieving integration. Huangzhong and Hualong counties in Qinghai province were studied as study sites, with only Huangzhong having implemented health system integration. Questionnaires, interviews, and health insurance records were sources of data. Social network analysis was employed to analyze integration, through structure measurement and effectiveness evaluation. Health system integration in Huangzhong is higher than in Hualong, so is system effectiveness. The patient referral network in Hualong has more "leapfrog" referrals. The information sharing networks in both counties are larger than the other types of networks. The average distance in the joint training network of Huangzhong is less than in Hualong. Meanwhile, there are deficiencies common to both systems. Both county health systems have strengths and limitations regarding system integration. The use of medical consortia in Huangzhong has contributed to system effectiveness. Future research might consider alternative more context specific models of health system integration.
Complex-network description of thermal quantum states in the Ising spin chain
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.
2018-05-01
We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio
2016-11-29
Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.
Securing Information with Complex Optical Encryption Networks
2015-08-11
Network Security, Network Vulnerability , Multi-dimentional Processing, optoelectronic devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to possess multi-disciplinary scientific...sophisticated optoelectronic principles and systems where he/she needs to process the information. However, in the military applications, most military
A study on efficient detection of network-based IP spoofing DDoS and malware-infected Systems.
Seo, Jung Woo; Lee, Sang Jin
2016-01-01
Large-scale network environments require effective detection and response methods against DDoS attacks. Depending on the advancement of IT infrastructure such as the server or network equipment, DDoS attack traffic arising from a few malware-infected systems capable of crippling the organization's internal network has become a significant threat. This study calculates the frequency of network-based packet attributes and analyzes the anomalies of the attributes in order to detect IP-spoofed DDoS attacks. Also, a method is proposed for the effective detection of malware infection systems triggering IP-spoofed DDoS attacks on an edge network. Detection accuracy and performance of the collected real-time traffic on a core network is analyzed thru the use of the proposed algorithm, and a prototype was developed to evaluate the performance of the algorithm. As a result, DDoS attacks on the internal network were detected in real-time and whether or not IP addresses were spoofed was confirmed. Detecting hosts infected by malware in real-time allowed the execution of intrusion responses before stoppage of the internal network caused by large-scale attack traffic.
Structural Behavioral Study on the General Aviation Network Based on Complex Network
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
The Study on the Communication Network of Wide Area Measurement System in Electricity Grid
NASA Astrophysics Data System (ADS)
Xiaorong, Cheng; Ying, Wang; Yangdan, Ni
Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.
Design of a Forecasting Service System for Monitoring of Vulnerabilities of Sensor Networks
NASA Astrophysics Data System (ADS)
Song, Jae-Gu; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo
This study aims to reduce security vulnerabilities of sensor networks which transmit data in an open environment by developing a forecasting service system. The system is to remove or monitor causes of breach incidents in advance. To that end, this research first examines general security vulnerabilities of sensor networks and analyzes characteristics of existing forecasting systems. Then, 5 steps of a forecasting service system are proposed in order to improve security responses.
General method to find the attractors of discrete dynamic models of biological systems.
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
General method to find the attractors of discrete dynamic models of biological systems
NASA Astrophysics Data System (ADS)
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
An efficient management system for wireless sensor networks.
Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu
2010-01-01
Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.
An interactive web-based system using cloud for large-scale visual analytics
NASA Astrophysics Data System (ADS)
Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.
2015-03-01
Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.
Network centrality measures and systemic risk: An application to the Turkish financial crisis
NASA Astrophysics Data System (ADS)
Kuzubaş, Tolga Umut; Ömercikoğlu, Inci; Saltoğlu, Burak
2014-07-01
In this paper, we analyze the performance of several network centrality measures in detecting systemically important financial institutions (SIFI) using data from the Turkish Interbank market during the financial crisis in 2000. We employ various network investigation tools such as volume, transactions, links, connectivity and reciprocity to gain a clearer picture of the network topology of the interbank market. We study the main borrower role of Demirbank in the crash of the banking system with network centrality measures which are extensively used in the network theory. This ex-post analysis of the crisis shows that centrality measures perform well in identifying and monitoring systemically important financial institutions which provide useful insights for financial regulations.
Persistent homology analysis of ion aggregations and hydrogen-bonding networks.
Xia, Kelin
2018-05-16
Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far as we know, these unique intrinsic topological features in ion aggregation systems have never been pointed out before. More importantly, our models can be directly used to quantitatively analyze the intrinsic topological invariants, including circles, loops, holes, and cavities, of any network-like structures, such as nanomaterials, colloidal systems, biomolecular assemblies, among others. These topological invariants cannot be described by traditional graph and network models.
Visual behavior characterization for intrusion and misuse detection
NASA Astrophysics Data System (ADS)
Erbacher, Robert F.; Frincke, Deborah
2001-05-01
As computer and network intrusions become more and more of a concern, the need for better capabilities, to assist in the detection and analysis of intrusions also increase. System administrators typically rely on log files to analyze usage and detect misuse. However, as a consequence of the amount of data collected by each machine, multiplied by the tens or hundreds of machines under the system administrator's auspices, the entirety of the data available is neither collected nor analyzed. This is compounded by the need to analyze network traffic data as well. We propose a methodology for analyzing network and computer log information visually based on the analysis of the behavior of the users. Each user's behavior is the key to determining their intent and overriding activity, whether they attempt to hide their actions or not. Proficient hackers will attempt to hide their ultimate activities, which hinders the reliability of log file analysis. Visually analyzing the users''s behavior however, is much more adaptable and difficult to counteract.
Failure Analysis of Network Based Accessible Pedestrian Signals in Closed-Loop Operation
DOT National Transportation Integrated Search
2011-03-01
The potential failure modes of a network based accessible pedestrian system were analyzed to determine the limitations and benefits of closed-loop operation. The vulnerabilities of the system are accessed using the industry standard process known as ...
Development of the disable software reporting system on the basis of the neural network
NASA Astrophysics Data System (ADS)
Gavrylenko, S.; Babenko, O.; Ignatova, E.
2018-04-01
The PE structure of malicious and secure software is analyzed, features are highlighted, binary sign vectors are obtained and used as inputs for training the neural network. A software model for detecting malware based on the ART-1 neural network was developed, optimal similarity coefficients were found, and testing was performed. The obtained research results showed the possibility of using the developed system of identifying malicious software in computer systems protection systems
Lin, Hui-Heng; Zhang, Le-Le; Yan, Ru; Lu, Jin-Jian; Hu, Yuanjia
2017-09-25
The U.S. Food and Drug Administration (FDA) approves new drugs every year. Drug targets are some of the most important interactive molecules for drugs, as they have a significant impact on the therapeutic effects of drugs. In this work, we thoroughly analyzed the data of small molecule drugs approved by the U.S. FDA between 2000 and 2015. Specifically, we focused on seven classes of new molecular entity (NME) classified by the anatomic therapeutic chemical (ATC) classification system. They were NMEs and their corresponding targets for the cardiovascular system, respiratory system, nerve system, general anti-infective systemic, genito-urinary system and sex hormones, alimentary tract and metabolisms, and antineoplastic and immunomodulating agents. To study the drug-target interaction on the systems level, we employed network topological analysis and multipartite network projections. As a result, the drug-target relations of different kinds of drugs were comprehensively characterized and global pictures of drug-target, drug-drug, and target-target interactions were visualized and analyzed from the perspective of network models.
Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.
Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron
2013-11-07
Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.
NASA Astrophysics Data System (ADS)
Siejka, Zbigniew
2017-09-01
GNSS systems are currently the basic tools for determination of the highest precision station coordinates (e.g. basic control network stations or stations used in the networks for geodynamic studies) as well as for land, maritime and air navigation. All of these tasks are carried out using active, large scale, satellite geodetic networks which are complex, intelligent teleinformatic systems offering post processing services along with corrections delivered in real-time for kinematic measurements. Many countries in the world, also in Europe, have built their own multifunctional networks and enhance them with their own GNSS augmentation systems. Nowadays however, in the era of international integration, there is a necessity to consider collective actions in order to build a unified system, covering e.g. the whole Europe or at least some of its regions. Such actions have already been undertaken in many regions of the world. In Europe such an example is the development for EUPOS which consists of active national networks built in central eastern European countries. So far experience and research show, that the critical areas for connecting these networks are border areas, in which the positioning accuracy decreases (Krzeszowski and Bosy, 2011). This study attempts to evaluate the border area compatibility of Polish ASG-EUPOS (European Position Determination System) reference stations and Ukrainian GeoTerrace system reference stations in the context of their future incorporation into the EUPOS. The two networks analyzed in work feature similar hardware parameters. In the ASG-EUPOS reference stations network, during the analyzed period, 2 stations (WLDW and CHEL) used only one system (GPS), while, in the GeoTerrace network, all the stations were equipped with both GPS and GLONASS receivers. The ASG EUPOS reference station network (95.6%) has its average completeness greater by about 6% when compared to the GeoTerrace network (89.8%).
Modeling Multiple Human-Automation Distributed Systems using Network-form Games
NASA Technical Reports Server (NTRS)
Brat, Guillaume
2012-01-01
The paper describes at a high-level the network-form game framework (based on Bayes net and game theory), which can be used to model and analyze safety issues in large, distributed, mixed human-automation systems such as NextGen.
How Unstable Are Complex Financial Systems? Analyzing an Inter-bank Network of Credit Relations
NASA Astrophysics Data System (ADS)
Sinha, Sitabhra; Thess, Maximilian; Markose, Sheri
The recent worldwide economic crisis of 2007-09 has focused attention on the need to analyze systemic risk in complex financial networks. We investigate the problem of robustness of such systems in the context of the general theory of dynamical stability in complex networks and, in particular, how the topology of connections influence the risk of the failure of a single institution triggering a cascade of successive collapses propagating through the network. We use data on bilateral liabilities (or exposure) in the derivatives market between 202 financial intermediaries based in USA and Europe in the last quarter of 2009 to empirically investigate the network structure of the over-the-counter (OTC) derivatives market. We observe that the network exhibits both heterogeneity in node properties and the existence of communities. It also has a prominent core-periphery organization and can resist large-scale collapse when subjected to individual bank defaults (however, failure of any bank in the core may result in localized collapse of the innermost core with substantial loss of capital) but is vulnerable to system-wide breakdown as a result of an accompanying liquidity crisis.
Interdependent networks - Topological percolation research and application in finance
NASA Astrophysics Data System (ADS)
Zhou, Di
This dissertation covers the two major parts of my Ph.D. research: i) developing a theoretical framework of complex networks and applying simulation and numerical methods to study the robustness of the network system, and ii) applying statistical physics concepts and methods to quantitatively analyze complex systems and applying the theoretical framework to study real-world systems. In part I, we focus on developing theories of interdependent networks as well as building computer simulation models, which includes three parts: 1) We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the networks significantly changes the critical density of failures, which can trigger the total disruption of the two-network system. Specifically, we find that the assortativity within a single network decreases the robustness of the entire system. 2) We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. We find that as the coupling strength q between the two networks reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2 , which separate the behaviors of the giant component as a function of p into three different regions, and for q2 < q < q 1 , we observe a hybrid order phase transition phenomenon. 3) We study the robustness of n interdependent networks with partially support-dependent relationship both analytically and numerically. We study a starlike network of n Erdos-Renyi (ER), SF networks and a looplike network of n ER networks, and we find for starlike networks, their phase transition regions change with n, but for looplike networks the phase regions change with average degree k . In part II, we apply concepts and methods developed in statistical physics to study economic systems. We analyze stock market indices and foreign exchange daily returns for 60 countries over the period of 1999-2012. We build a multi-layer network model based on different correlation measures, and introduce a dynamic network model to simulate and analyze the initializing and spreading of financial crisis. Using different computational approaches and econometric tests, we find atypical behavior of the cross correlations and community formations in the financial networks that we study during the financial crisis of 2008. For example, the overall correlation of stock market increases during crisis while the correlation between stock market and foreign exchange market decreases. The dramatic increase in correlations between a specific nation and other nations may indicate that this nation could trigger a global financial crisis. Specifically, core countries that have higher correlations with other countries and larger Gross Domestic Product (GDP) values spread financial crisis quite effectively, yet some countries with small GDPs like Greece and Cyprus are also effective in propagating systemic risk and spreading global financial crisis.
Development of a new software for analyzing 3-D fracture network
NASA Astrophysics Data System (ADS)
Um, Jeong-Gi; Noh, Young-Hwan; Choi, Yosoon
2014-05-01
A new software is presented to analyze fracture network in 3-D. Recently, we completed the software package based on information given in EGU2013. The software consists of several modules that play roles in management of borehole data, stochastic modelling of fracture network, construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes and production of cross-section diagrams. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. A case study was performed to analyze 3-D fracture network system at the Upper Devonian Grosmont Formation in Alberta, Canada. The results have suggested that the developed software is effective in modelling and visualizing 3-D fracture network system, and can provide useful information to tackle the geomechanical problems related to strength, deformability and hydraulic behaviours of the fractured rock masses. This presentation describes the concept and details of the development and implementation of the software.
2005-05-01
made. 4. Do military decision makers identify / analyze adverse consequences presently? Few do based on this research and most don’t do it effectively ...A HEURISTIC DECISION MAKING MODEL TO MITIGATE ADVERSE CONSEQUENCES IN A NETWORK CENTRIC WARFARE / SENSE AND RESPOND SYSTEM...ENS/05-01 A HEURISTIC DECISION MAKING MODEL TO MITIGATE ADVERSE CONSEQUENCES IN A NETWORK CENTRIC WARFARE / SENSE AND RESPOND SYSTEM
Interactive Planning under Uncertainty with Casual Modeling and Analysis
2006-01-01
Tool ( CAT ), a system for creating and analyzing causal models similar to Bayes networks. In order to use CAT as a tool for planning, users go through...an iterative process in which they use CAT to create and an- alyze alternative plans. One of the biggest difficulties is that the number of possible...Causal Analysis Tool ( CAT ), which is a tool for representing and analyzing causal networks sim- ilar to Bayesian networks. In order to represent plans
A recurrence network approach to analyzing forced synchronization in hydrodynamic systems
NASA Astrophysics Data System (ADS)
Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.
2016-11-01
Hydrodynamically self-excited systems can lock into external forcing, but their lock-in boundaries and the specific bifurcations through which they lock in can be difficult to detect. We propose using recurrence networks to analyze forced synchronization in a hydrodynamic system: a low-density jet. We find that as the jet bifurcates from periodicity (unforced) to quasiperiodicity (weak forcing) and then to lock-in (strong forcing), its recurrence network changes from a regular distribution of links between nodes (unforced) to a disordered topology (weak forcing) and then to a regular distribution again at lock-in (strong forcing). The emergence of order at lock-in can be either smooth or abrupt depending on the specific lock-in route taken. Furthermore, we find that before lock-in, the probability distribution of links in the network is a function of the characteristic scales of the system, which can be quantified with network measures and used to estimate the proximity to the lock-in boundaries. This study shows that recurrence networks can be used (i) to detect lock-in, (ii) to distinguish between different routes to lock-in, and (iii) as an early warning indicator of the proximity of a system to its lock-in boundaries. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Flow networks for Ocean currents
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen
2014-05-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.
A reliability analysis tool for SpaceWire network
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.
Petri Nets - A Mathematical Formalism to Analyze Chemical Reaction Networks.
Koch, Ina
2010-12-17
In this review we introduce and discuss Petri nets - a mathematical formalism to describe and analyze chemical reaction networks. Petri nets were developed to describe concurrency in general systems. We find most applications to technical and financial systems, but since about twenty years also in systems biology to model biochemical systems. This review aims to give a short informal introduction to the basic formalism illustrated by a chemical example, and to discuss possible applications to the analysis of chemical reaction networks, including cheminformatics. We give a short overview about qualitative as well as quantitative modeling Petri net techniques useful in systems biology, summarizing the state-of-the-art in that field and providing the main literature references. Finally, we discuss advantages and limitations of Petri nets and give an outlook to further development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xue, Jingxin
The article aims to completely, systematically and objectively analyze the current situation of Entrepreneurship Education in China with Ecological Systems Theory. From this perspective, the author discusses the structure, function and its basic features of higher education entrepreneur services network system, and puts forward the opinion that every entrepreneurship organization in higher education institution does not limited to only one platform. Different functional supporting platforms should be combined closed through composite functional organization to form an integrated network system, in which each unit would impels others' development.
Water Network Tool for Resilience (WNTR) User Manual
The Water Network Tool for Resilience (WNTR) is a new Python package designed to simulate and analyze resilience of water distribution networks to a variety of disaster scenarios. WNTR can help water utilities to explore the capacity of their systems to handle disasters and gui...
SNAP/SHOT Your Ability to Support That Next Application.
ERIC Educational Resources Information Center
Jones, Ernest L.
SNAP/SHOT (System Network Analysis Program-Simulated Host Overview Technique) is a discrete simulation of a network and/or host model available through IBM at the Raleigh System Center. The simulator provides an analysis of a total IBM Communications System. Input data must be obtained from RMF, SMF, and the CICS Analyzer to determine the existing…
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying
2010-04-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.
Distributed Computing Environment for Mine Warfare Command
1993-06-01
based system to a decentralized network of personal computers over the past several years. This thesis analyzes the progress of the evolution as of May of...network of personal computers over the past several years. This thesis analyzes the progress of the evolution as of May of 1992. The building blocks of a...85 A. BACKGROUND ............. .................. 85 B. PAST ENVIRONMENT ........... ............... 86 C. PRESENT ENVIRONMENT
Neural networks and MIMD-multiprocessors
NASA Technical Reports Server (NTRS)
Vanhala, Jukka; Kaski, Kimmo
1990-01-01
Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Posse, Christian
2005-09-15
The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabási-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using other methods and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Posse, Christian
2005-09-15
The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using standard power engineering methods, and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389
Robustness of weighted networks
NASA Astrophysics Data System (ADS)
Bellingeri, Michele; Cassi, Davide
2018-01-01
Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.
A framework for analyzing contagion in assortative banking networks
Hurd, Thomas R.; Gleeson, James P.; Melnik, Sergey
2017-01-01
We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk. PMID:28231324
A framework for analyzing contagion in assortative banking networks.
Hurd, Thomas R; Gleeson, James P; Melnik, Sergey
2017-01-01
We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk.
A Novel Characterization of Amalgamated Networks in Natural Systems
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-01-01
Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066
A Quantitative Experimental Study of the Effectiveness of Systems to Identify Network Attackers
ERIC Educational Resources Information Center
Handorf, C. Russell
2016-01-01
This study analyzed the meta-data collected from a honeypot that was run by the Federal Bureau of Investigation for a period of 5 years. This analysis compared the use of existing industry methods and tools, such as Intrusion Detection System alerts, network traffic flow and system log traffic, within the Open Source Security Information Manager…
Process-based network decomposition reveals backbone motif structure
Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen
2010-01-01
A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084
Self-organization of complex networks as a dynamical system
NASA Astrophysics Data System (ADS)
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Self-organization of complex networks as a dynamical system.
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
The development of Human Functional Brain Networks
Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L
2010-01-01
Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306
Bassett, Danielle S; Sporns, Olaf
2017-01-01
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844
System data communication structures for active-control transport aircraft, volume 1
NASA Technical Reports Server (NTRS)
Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.
1981-01-01
Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.
Analysis on the University’s Network Security Level System in the Big Data Era
NASA Astrophysics Data System (ADS)
Li, Tianli
2017-12-01
The rapid development of science and technology, the continuous expansion of the scope of computer network applications, has gradually improved the social productive forces, has had a positive impact on the increase production efficiency and industrial scale of China's different industries. Combined with the actual application of computer network in the era of large data, we can see the existence of influencing factors such as network virus, hacker and other attack modes, threatening network security and posing a potential threat to the safe use of computer network in colleges and universities. In view of this unfavorable development situation, universities need to pay attention to the analysis of the situation of large data age, combined with the requirements of network security use, to build a reliable network space security system from the equipment, systems, data and other different levels. To avoid the security risks exist in the network. Based on this, this paper will analyze the hierarchical security system of cyberspace security in the era of large data.
Radar signal categorization using a neural network
NASA Technical Reports Server (NTRS)
Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.
1991-01-01
Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.
Stability of a giant connected component in a complex network
NASA Astrophysics Data System (ADS)
Kitsak, Maksim; Ganin, Alexander A.; Eisenberg, Daniel A.; Krapivsky, Pavel L.; Krioukov, Dmitri; Alderson, David L.; Linkov, Igor
2018-01-01
We analyze the stability of the network's giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems.
Nonequilibrium transitions in complex networks: A model of social interaction
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; San Miguel, Maxi
2003-02-01
We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.
Distributed Coordinated Control of Large-Scale Nonlinear Networks
Kundu, Soumya; Anghel, Marian
2015-11-08
We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less
The analysis of thermal network of district heating system from investor point of view
NASA Astrophysics Data System (ADS)
Takács, Ján; Rácz, Lukáš
2016-06-01
The hydraulics of a thermal network of a district heating system is a very important issue, to which not enough attention is often paid. In this paper the authors want to point out some of the important aspects of the design and operation of thermal networks in district heating systems. The design boundary conditions of a heat distribution network and the requirements on active pressure - circulation pump - influencing the operation costs of the centralized district heating system as a whole, are analyzed in detail. The heat generators and the heat exchange stations are designed according to the design heat loads after thermal insulation, and modern boiler units are installed in the heating plant.
Interactome Networks and Human Disease
Vidal, Marc; Cusick, Michael E.; Barabási, Albert-László
2011-01-01
Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease. PMID:21414488
Suk, Jinweon; Kim, Seokhoon; Ryoo, Intae
2011-01-01
This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN) technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.
Finite wordlength implementation of a megachannel digital spectrum analyzer
NASA Technical Reports Server (NTRS)
Satorius, E. H.; Grimm, M. J.; Zimmerman, G. A.; Wilck, H. C.
1986-01-01
The results of an extensive system analysis of the megachannel spectrum analyzer currently being developed for use in various applications of the Deep Space Network are presented. The intent of this analysis is to quantify the effects of digital quantization errors on system performance. The results of this analysis provide useful guidelines for choosing various system design parameters to enhance system performance.
Major component analysis of dynamic networks of physiologic organ interactions
NASA Astrophysics Data System (ADS)
Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch
2015-09-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.
Predictability of Extreme Climate Events via a Complex Network Approach
NASA Astrophysics Data System (ADS)
Muhkin, D.; Kurths, J.
2017-12-01
We analyse climate dynamics from a complex network approach. This leads to an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. This concept is then applied to Monsoon data; in particular, we develop a general framework to predict extreme events by combining a non-linear synchronization technique with complex networks. Applying this method, we uncover a new mechanism of extreme floods in the eastern Central Andes which could be used for operational forecasts. Moreover, we analyze the Indian Summer Monsoon (ISM) and identify two regions of high importance. By estimating an underlying critical point, this leads to an improved prediction of the onset of the ISM; this scheme was successful in 2016 and 2017.
Polarity-specific high-level information propagation in neural networks.
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.
Polarity-specific high-level information propagation in neural networks
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals. PMID:24672472
Performance analysis of Integrated Communication and Control System networks
NASA Technical Reports Server (NTRS)
Halevi, Y.; Ray, A.
1990-01-01
This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.
Systems engineering technology for networks
NASA Technical Reports Server (NTRS)
1994-01-01
The report summarizes research pursued within the Systems Engineering Design Laboratory at Virginia Polytechnic Institute and State University between May 16, 1993 and January 31, 1994. The project was proposed in cooperation with the Computational Science and Engineering Research Center at Howard University. Its purpose was to investigate emerging systems engineering tools and their applicability in analyzing the NASA Network Control Center (NCC) on the basis of metrics and measures.
Neural network architectures to analyze OPAD data
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1992-01-01
A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.
Computer-Based Semantic Network in Molecular Biology: A Demonstration.
ERIC Educational Resources Information Center
Callman, Joshua L.; And Others
This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…
NASA Astrophysics Data System (ADS)
Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting
2016-10-01
Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.
NASA Astrophysics Data System (ADS)
Buldú, Javier M.; Papo, David
2018-03-01
Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].
Understanding genetic variation - the value of systems biology.
Hütt, Marc-Thorsten
2014-04-01
Pharmacology is currently transformed by the vast amounts of genome-associated information available for system-level interpretation. Here I review the potential of systems biology to facilitate this interpretation, thus paving the way for the emerging field of systems pharmacology. In particular, I will show how gene regulatory and metabolic networks can serve as a framework for interpreting high throughput data and as an interface to detailed dynamical models. In addition to the established connectivity analyses of effective networks, I suggest here to also analyze higher order architectural properties of effective networks. © 2013 The British Pharmacological Society.
Weighted complex network analysis of the Beijing subway system: Train and passenger flows
NASA Astrophysics Data System (ADS)
Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun
2017-05-01
In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.
Management of ATM-based networks supporting multimedia medical information systems
NASA Astrophysics Data System (ADS)
Whitman, Robert A.; Blaine, G. James; Fritz, Kevin; Goodgold, Ken; Heisinger, Patrick
1997-05-01
Medical information systems are acquiring the ability to collect and deliver many different types of medical information. In support of the increased network demands necessitated by these expanded capabilities, asynchronous transfer mode (ATM) based networks are being deployed in medical care systems. While ATM supplies a much greater line rate than currently deployed networks, the management and standards surrounding ATM are yet to mature. This paper explores the management and control issues surrounding an ATM network supporting medical information systems, and examines how management impacts network performance and robustness. A multivendor ATM network at the BJC Health System/Washington University and the applications using the network are discussed. Performance information for specific applications is presented and analyzed. Network management's influence on application reliability is outlined. The information collected is used to show how ATM network standards and management tools influence network reliability and performance. Performance of current applications using the ATM network is discussed. Special attention is given to issues encountered in implementation of hypertext transfer protocol over ATM internet protocol (IP) communications. A classical IP ATM implementation yields greater than twenty percent higher network performance over LANE. Maximum performance for a host's suite of applications can be obtained by establishing multiple individually engineered IP links through its ATM network connection.
DOT National Transportation Integrated Search
2013-05-01
On July 11, 2011, StarMetro, the local public transit agency in Tallahassee, Florida, restructured its entire bus network from a : downtown-focused radial system to a decentralized, grid-like system that local officials and agency leaders believed wo...
ERIC Educational Resources Information Center
Madhavan, Krishna; Johri, Aditya; Xian, Hanjun; Wang, G. Alan; Liu, Xiaomo
2014-01-01
The proliferation of digital information technologies and related infrastructure has given rise to novel ways of capturing, storing and analyzing data. In this paper, we describe the research and development of an information system called Interactive Knowledge Networks for Engineering Education Research (iKNEER). This system utilizes a framework…
Hyperbolicity measures democracy in real-world networks
NASA Astrophysics Data System (ADS)
Borassi, Michele; Chessa, Alessandro; Caldarelli, Guido
2015-09-01
In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. We provide two improvements in our understanding of this quantity: first of all, in our interpretation, a hyperbolic network is "aristocratic", since few elements "connect" the system, while a non-hyperbolic network has a more "democratic" structure with a larger number of crucial elements. The second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through this definition, we outline an "influence area" for the vertices in the graph. We show that in real networks the influence area of the highest degree vertex is small in what we define "local" networks (i.e., social or peer-to-peer networks), and large in "global" networks (i.e., power grid, metabolic networks, or autonomous system networks).
Yazdizadeh, Bahareh; Majdzadeh, Reza; Alami, Ali; Amrolalaei, Sima
2014-10-29
Formal knowledge networks are considered among the solutions for strengthening knowledge translation and one of the elements of innovative systems in developing and developed countries. In the year 2000, knowledge networks were established in Iran's health system to organize, lead, empower, and coordinate efforts made by health-related research centers in the country. Since the assessment of a knowledge network is one of the main requirements for its success, the current study was designed in two qualitative and quantitative sections to identify the strengths and weaknesses of the established knowledge networks and to assess their efficiency. In the qualitative section, semi-structured, in-depth interviews were held with network directors and secretaries. The interviews were analyzed through the framework approach. To analyze effectiveness, social network analysis approach was used. That is, by considering the networks' research council members as 'nodes', and the numbers of their joint articles--before and after the network establishments--as 'relations or ties', indices of density, clique, and centrality were calculated for each network. In the qualitative section, non-transparency of management, lack of goals, administrative problems were among the most prevalent issues observed. Currently, the most important challenges are the policies related to them and their management. In the quantitative section, we observed that density and clique indices had risen for some networks; however, the centrality index for the same networks was not as high. Consequently the attribution of density and clique indices to these networks was not possible. Therefore, consolidating and revising policies relevant to the networks and preparing a guide for establishing managing networks could prove helpful. To develop knowledge and technology in a country, networks need to solve the problems they face in management and governance. That is, the first step towards the realization of true knowledge networks in health system.
Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant
Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less
Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.
Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.
Potential of OFDM for next generation optical access
NASA Astrophysics Data System (ADS)
Fritzsche, Daniel; Weis, Erik; Breuer, Dirk
2011-01-01
This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.
Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
Qian, Hong; Beard, Daniel A
2005-04-22
The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
Impact of Drainage Networks on Cholera Outbreaks in Lusaka, Zambia
Suzuki, Hiroshi; Fujino, Yasuyuki; Kimura, Yoshinari; Cheelo, Meetwell
2009-01-01
Objectives. We investigated the association between precipitation patterns and cholera outbreaks and the preventative roles of drainage networks against outbreaks in Lusaka, Zambia. Methods. We collected data on 6542 registered cholera patients in the 2003–2004 outbreak season and on 6045 cholera patients in the 2005–2006 season. Correlations between monthly cholera incidences and amount of precipitation were examined. The distribution pattern of the disease was analyzed by a kriging spatial analysis method. We analyzed cholera case distribution and spatiotemporal cluster by using 2590 cholera cases traced with a global positioning system in the 2005–2006 season. The association between drainage networks and cholera cases was analyzed with regression analysis. Results. Increased precipitation was associated with the occurrence of cholera outbreaks, and insufficient drainage networks were statistically associated with cholera incidences. Conclusions. Insufficient coverage of drainage networks elevated the risk of cholera outbreaks. Integrated development is required to upgrade high-risk areas with sufficient infrastructure for a long-term cholera prevention strategy. PMID:19762668
Visual analysis and exploration of complex corporate shareholder networks
NASA Astrophysics Data System (ADS)
Tekušová, Tatiana; Kohlhammer, Jörn
2008-01-01
The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.
User's Manual: Thermal Radiation Analysis System TRASYS 2
NASA Technical Reports Server (NTRS)
Jensen, C. L.
1981-01-01
A digital computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems is presented. When used in conjunction with a generalized thermal analysis program such as the systems improved numerical differencing analyzer program, any thermal problem that can be expressed in terms of a lumped parameter R-C thermal network can be solved. The function of TRASYS is twofold. It provides: (a) Internode radiation interchange data; and (b) Incident and absorbed heat rate data from environmental radiant heat sources. Data of both types is provided in a format directly usable by the thermal analyzer programs. The system allows the user to write his own executive or driver program which organizes and directs the program library routines toward solution of each specific problem in the most expeditious manner. The user also may write his own output routines, thus the system data output can directly interface with any thermal analyzer using the R-C network concept.
Protein-Protein Interaction Network and Gene Ontology
NASA Astrophysics Data System (ADS)
Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah
Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.
Cascading Failures and Recovery in Networks of Networks
NASA Astrophysics Data System (ADS)
Havlin, Shlomo
Network science have been focused on the properties of a single isolated network that does not interact or depends on other networks. In reality, many real-networks, such as power grids, transportation and communication infrastructures interact and depend on other networks. I will present a framework for studying the vulnerability and the recovery of networks of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes like certain locations play a role in two networks -multiplex. This may happen recursively and can lead to a cascade of failures and to a sudden fragmentation of the system. I will present analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. I will show, that the general theory has many novel features that are not present in the classical network theory. When recovery of components is possible global spontaneous recovery of the networks and hysteresis phenomena occur and the theory suggests an optimal repairing strategy of system of systems. I will also show that interdependent networks embedded in space are significantly more vulnerable compared to non embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences.Thus, analyzing data of real network of networks is highly required to understand the system vulnerability. DTRA, ONR, Israel Science Foundation.
Using graph theory to analyze biological networks
2011-01-01
Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system. PMID:21527005
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg
2014-12-01
Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.
The research of network database security technology based on web service
NASA Astrophysics Data System (ADS)
Meng, Fanxing; Wen, Xiumei; Gao, Liting; Pang, Hui; Wang, Qinglin
2013-03-01
Database technology is one of the most widely applied computer technologies, its security is becoming more and more important. This paper introduced the database security, network database security level, studies the security technology of the network database, analyzes emphatically sub-key encryption algorithm, applies this algorithm into the campus-one-card system successfully. The realization process of the encryption algorithm is discussed, this method is widely used as reference in many fields, particularly in management information system security and e-commerce.
A historical perspective of the Global Transportation Network (GTN)
DOT National Transportation Integrated Search
2000-03-01
This thesis analyzes the changes within the Global Transportation Network (GTN)/In Transit Visibility (ITV) feeder systems and the subsequent ITV they provide by comparing the current position to the past and by examining future trends. Up until now,...
Functional Roles of Slow Enzyme Conformational Changes in Network Dynamics
Wu, Zhanghan; Xing, Jianhua
2012-01-01
Extensive studies from different fields reveal that many macromolecules, especially enzymes, show slow transitions among different conformations. This phenomenon is named such things as dynamic disorder, heterogeneity, hysteretic or mnemonic enzymes across these different fields, and has been directly demonstrated by single molecule enzymology and NMR studies recently. We analyzed enzyme slow conformational changes in the context of regulatory networks. A single enzymatic reaction with slow conformational changes can filter upstream network noises, and can either resonantly respond to the system stimulus at certain frequencies or respond adaptively for sustained input signals of the network fluctuations. It thus can serve as a basic functional motif with properties that are normally for larger intermolecular networks in the field of systems biology. We further analyzed examples including enzymes functioning against pH fluctuations, metabolic state change of Artemia embryos, and kinetic insulation of fluctuations in metabolic networks. The study also suggests that hysteretic enzymes may be building blocks of synthetic networks with various properties such as narrow-banded filtering. The work fills the missing gap between studies on enzyme biophysics and network level dynamics, and reveals that the coupling between the two is functionally important; it also suggests that the conformational dynamics of some enzymes may be evolutionally selected. PMID:23009855
DGs for Service Restoration to Critical Loads in a Secondary Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yin; Liu, Chen-Ching; Wang, Zhiwen
During a major outage in a secondary network distribution system, distributed generators (DGs) connected to the primary feeders as well as the secondary network can be used to serve critical loads. This paper proposed a resilience-oriented method to determine restoration strategies for secondary network distribution systems after a major disaster. Technical issues associated with the restoration process are analyzed, including the operation of network protectors, inrush currents caused by the energization of network transformers, synchronization of DGs to the network, and circulating currents among DGs. A look-ahead load restoration framework is proposed, incorporating technical issues associated with secondary networks, limitsmore » on DG capacity and generation resources, dynamic constraints, and operational limits. The entire outage duration is divided into a sequence of periods. Restoration strategies can be adjusted at the beginning of each period using the latest information. Finally, numerical simulation of the modified IEEE 342-node low voltage networked test system is performed to validate the effectiveness of the proposed method.« less
DGs for Service Restoration to Critical Loads in a Secondary Network
Xu, Yin; Liu, Chen-Ching; Wang, Zhiwen; ...
2017-08-25
During a major outage in a secondary network distribution system, distributed generators (DGs) connected to the primary feeders as well as the secondary network can be used to serve critical loads. This paper proposed a resilience-oriented method to determine restoration strategies for secondary network distribution systems after a major disaster. Technical issues associated with the restoration process are analyzed, including the operation of network protectors, inrush currents caused by the energization of network transformers, synchronization of DGs to the network, and circulating currents among DGs. A look-ahead load restoration framework is proposed, incorporating technical issues associated with secondary networks, limitsmore » on DG capacity and generation resources, dynamic constraints, and operational limits. The entire outage duration is divided into a sequence of periods. Restoration strategies can be adjusted at the beginning of each period using the latest information. Finally, numerical simulation of the modified IEEE 342-node low voltage networked test system is performed to validate the effectiveness of the proposed method.« less
Changes in the interaction of resting-state neural networks from adolescence to adulthood.
Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D
2009-08-01
This study examined how the mutual interactions of functionally integrated neural networks during resting-state fMRI differed between adolescence and adulthood. Independent component analysis (ICA) was used to identify functionally connected neural networks in 100 healthy participants aged 12-30 years. Hemodynamic timecourses that represented integrated neural network activity were analyzed with tools that quantified system "causal density" estimates, which indexed the proportion of significant Granger causality relationships among system nodes. Mutual influences among networks decreased with age, likely reflecting stronger within-network connectivity and more efficient between-network influences with greater development. Supplemental tests showed that this normative age-related reduction in causal density was accompanied by fewer significant connections to and from each network, regional increases in the strength of functional integration within networks, and age-related reductions in the strength of numerous specific system interactions. The latter included paths between lateral prefrontal-parietal circuits and "default mode" networks. These results contribute to an emerging understanding that activity in widely distributed networks thought to underlie complex cognition influences activity in other networks. (c) 2009 Wiley-Liss, Inc.
Interplay of node connectivity and epidemic rates in the dynamics of epidemic networks
Kostova, Tanya
2010-07-09
We present and analyze a discrete-time susceptible-infected epidemic network model which represents each host as a separate entity and allows heterogeneous hosts and contacts. We establish a necessary and sufficient condition for global stability of the disease-free equilibrium of the system (defined as epidemic controllability) which defines the epidemic reproduction number of the network. When this condition is not fulfilled, we show that the system has a unique, locally stable equilibrium. As a result, we further derive sufficient conditions for epidemic controllability in terms of the epidemic rates and the network topology.
Hydrological Monitoring System Design and Implementation Based on IOT
NASA Astrophysics Data System (ADS)
Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang
In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.
Control of a solar-energy-supplied electrical-power system without intermediate circuitry
NASA Astrophysics Data System (ADS)
Leistner, K.
A computer control system is developed for electric-power systems comprising solar cells and small numbers of users with individual centrally controlled converters (and storage facilities when needed). Typical system structures are reviewed; the advantages of systems without an intermediate network are outlined; the demands on a control system in such a network (optimizing generator working point and power distribution) are defined; and a flexible modular prototype system is described in detail. A charging station for lead batteries used in electric automobiles is analyzed as an example. The power requirements of the control system (30 W for generator control and 50 W for communications and distribution control) are found to limit its use to larger networks.
System Biology Approach: Gene Network Analysis for Muscular Dystrophy.
Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Giuliani, Alessandro
2018-01-01
Phenotypic changes at different organization levels from cell to entire organism are associated to changes in the pattern of gene expression. These changes involve the entire genome expression pattern and heavily rely upon correlation patterns among genes. The classical approach used to analyze gene expression data builds upon the application of supervised statistical techniques to detect genes differentially expressed among two or more phenotypes (e.g., normal vs. disease). The use of an a posteriori, unsupervised approach based on principal component analysis (PCA) and the subsequent construction of gene correlation networks can shed a light on unexpected behaviour of gene regulation system while maintaining a more naturalistic view on the studied system.In this chapter we applied an unsupervised method to discriminate DMD patient and controls. The genes having the highest absolute scores in the discrimination between the groups were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Moscow Institute of Physics and Technology
The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.
NASA Astrophysics Data System (ADS)
Festa, G.; Picozzi, M.; Alessandro, C.; Colombelli, S.; Cattaneo, M.; Chiaraluce, L.; Elia, L.; Martino, C.; Marzorati, S.; Supino, M.; Zollo, A.
2017-12-01
Earthquake early warning systems (EEWS) are systems nowadays contributing to the seismic risk mitigation actions, both in terms of losses and societal resilience, by issuing an alert promptly after the earthquake origin and before the ground shaking impacts the targets to be protected. EEWS systems can be grouped in two main classes: network based and stand-alone systems. Network based EEWS make use of dense seismic networks surrounding the fault (e.g. Near Fault Observatory; NFO) generating the event. The rapid processing of the P-wave early portion allows for the location and magnitude estimation of the event then used to predict the shaking through ground motion prediction equations. Stand-alone systems instead analyze the early P-wave signal to predict the ground shaking carried by the late S or surface waves, through empirically calibrated scaling relationships, at the recording site itself. We compared the network-based (PRESTo, PRobabilistic and Evolutionary early warning SysTem, www.prestoews.org, Satriano et al., 2011) and the stand-alone (SAVE, on-Site-Alert-leVEl, Caruso et al., 2017) systems, by analyzing their performance during the 2016-2017 Central Italy sequence. We analyzed 9 earthquakes having magnitude 5.0 < M < 6.5 at about 200 stations located within 200 km from the epicentral area, including stations of The Altotiberina NFO (TABOO). Performances are evaluated in terms of rate of success of ground shaking intensity prediction and available lead-time, i.e. the time available for security actions. PRESTo also evaluated the accuracy of location and magnitude. Both systems well predict the ground shaking nearby the event source, with a success rate around 90% within the potential damage zone. The lead-time is significantly larger for the network based system, increasing to more than 10s at 40 km from the event epicentre. The stand-alone system better performs in the near-source region showing a positive albeit small lead-time (<3s). Far away from the source, the performances slightly degrade, mostly owing to uncertain calibration of attenuation relationships. This study opens to the possibility of making EEWS operational in Italy, based on the available acceleration networks, by improving the capability of reducing the lead-time related to data telemetry.
Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Jianping; Han, Dun
2017-01-01
In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.
Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response
NASA Astrophysics Data System (ADS)
Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei
2018-01-01
Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.
Do the rich get richer? An empirical analysis of the Bitcoin transaction network.
Kondor, Dániel; Pósfai, Márton; Csabai, István; Vattay, Gábor
2014-01-01
The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only some macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze Bitcoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling law between the degree and wealth associated to individual nodes.
Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network
Kondor, Dániel; Pósfai, Márton; Csabai, István; Vattay, Gábor
2014-01-01
The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only some macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze Bitcoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling law between the degree and wealth associated to individual nodes. PMID:24505257
Cyclic subway networks are less risky in metropolises
NASA Astrophysics Data System (ADS)
Xiao, Ying; Zhang, Hai-Tao; Xu, Bowen; Zhu, Tao; Chen, Guanrong; Chen, Duxin
2018-02-01
Subways are crucial in modern transportation systems of metropolises. To quantitatively evaluate the potential risks of subway networks suffered from natural disasters or deliberate attacks, real data from seven Chinese subway systems are collected and their population distributions and anti-risk capabilities are analyzed. Counterintuitively, it is found that transfer stations with large numbers of connections are not the most crucial, but the stations and lines with large betweenness centrality are essential, if subway networks are being attacked. It is also found that cycles reduce such correlations due to the existence of alternative paths. To simulate the data-based observations, a network model is proposed to characterize the dynamics of subway systems under various intensities of attacks on stations and lines. This study sheds some light onto risk assessment of subway networks in metropolitan cities.
Statistically Validated Networks in Bipartite Complex Systems
Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N.
2011-01-01
Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved. PMID:21483858
Analysis of metro network performance from a complex network perspective
NASA Astrophysics Data System (ADS)
Wu, Xingtang; Dong, Hairong; Tse, Chi Kong; Ho, Ivan W. H.; Lau, Francis C. M.
2018-02-01
In this paper, the performance of metro networks is studied from a network science perspective. We review the structural efficiency of metro networks on the basis of a passenger's intuitive routing strategy that optimizes the number of transfers and the distance traveled.A new node centrality measure, called node occupying probability, is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are compared in terms of the node occupying probability and a few other performance parameters. Simulation results show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the most robust under random attack and target attack, respectively.
Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A
2017-04-01
Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.
2010-06-01
Ron’s Code 4 . . . . . . . . . . . . . . . . . . . 18 2.3.3 Virtual Private Network and Secure Shell Tunnels 19 2.3.4 Darknets ...created using Iodine. 2.2 Analyzing and Classifying Network Traffic Before the advent of Darknets and anonymizers like Tor (see Section 2.3), ana... darknets , and the Tor network. 2.3.1 Byte Padding. Byte padding is the most primitive obfuscation method used to hide payloads in network traffic. When byte
Analysis of the enzyme network involved in cattle milk production using graph theory.
Ghorbani, Sholeh; Tahmoorespur, Mojtaba; Masoudi Nejad, Ali; Nasiri, Mohammad; Asgari, Yazdan
2015-06-01
Understanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data. In the present work, the enzyme network involved in cattle milk production was reconstructed and analyzed based on available bovine genome information using several public datasets (NCBI, Uniprot, KEGG, and Brenda). The reconstructed network consisted of 3605 reactions named by KEGG compound numbers and 646 enzymes that catalyzed the corresponding reactions. The characteristics of the directed and undirected network were analyzed using Graph Theory. The mean path length was calculated to be4.39 and 5.41 for directed and undirected networks, respectively. The top 11 hub enzymes whose abnormality could harm bovine health and reduce milk production were determined. Therefore, the aim of constructing the enzyme centric network was twofold; first to find out whether such network followed the same properties of other biological networks, and second, to find the key enzymes. The results of the present study can improve our understanding of milk production in cattle. Also, analysis of the enzyme network can help improve the modeling and simulation of biological systems and help design desired phenotypes to increase milk production quality or quantity.
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian
2018-03-01
Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.
Active distribution network planning considering linearized system loss
NASA Astrophysics Data System (ADS)
Li, Xiao; Wang, Mingqiang; Xu, Hao
2018-02-01
In this paper, various distribution network planning techniques with DGs are reviewed, and a new distribution network planning method is proposed. It assumes that the location of DGs and the topology of the network are fixed. The proposed model optimizes the capacities of DG and the optimal distribution line capacity simultaneously by a cost/benefit analysis and the benefit is quantified by the reduction of the expected interruption cost. Besides, the network loss is explicitly analyzed in the paper. For simplicity, the network loss is appropriately simplified as a quadratic function of difference of voltage phase angle. Then it is further piecewise linearized. In this paper, a piecewise linearization technique with different segment lengths is proposed. To validate its effectiveness and superiority, the proposed distribution network planning model with elaborate linearization technique is tested on the IEEE 33-bus distribution network system.
A telehealth architecture for networked embedded systems: a case study in in vivo health monitoring.
Dabiri, Foad; Massey, Tammara; Noshadi, Hyduke; Hagopian, Hagop; Lin, C K; Tan, Robert; Schmidt, Jacob; Sarrafzadeh, Majid
2009-05-01
The improvement in processor performance through continuous breakthroughs in transistor technology has resulted in the proliferation of lightweight embedded systems. Advances in wireless technology and embedded systems have enabled remote healthcare and telemedicine. While medical examinations could previously extract only localized symptoms through snapshots, now continuous monitoring can discretely analyze how a patient's lifestyle affects his/her physiological conditions and if additional symptoms occur under various stimuli. We demonstrate how medical applications in particular benefit from a hierarchical networking scheme that will improve the quantity and quality of ubiquitous data collection. Our Telehealth networking infrastructure provides flexibility in terms of functionality and the type of applications that it supports. We specifically present a case study that demonstrates the effectiveness of our networked embedded infrastructure in an in vivo pressure application. Experimental results of the in vivo system demonstrate how it can wirelessly transmit pressure readings measuring from 0 to 1.5 lbf/in (2) with an accuracy of 0.02 lbf/in (2). The challenges in biocompatible packaging, transducer drift, power management, and in vivo signal transmission are also discussed. This research brings researchers a step closer to continuous, real-time systemic monitoring that will allow one to analyze the dynamic human physiology.
NASA Astrophysics Data System (ADS)
Gleiser, Pablo M.
2007-09-01
We analyze a collaboration network based on the Marvel Universe comic books. First, we consider the system as a binary network, where two characters are connected if they appear in the same publication. The analysis of degree correlations reveals that, in contrast to most real social networks, the Marvel Universe presents a disassortative mixing on the degree. Then, we use a weight measure to study the system as a weighted network. This allows us to find and characterize well defined communities. Through the analysis of the community structure and the clustering as a function of the degree we show that the network presents a hierarchical structure. Finally, we comment on possible mechanisms responsible for the particular motifs observed.
Advanced Computational Techniques for Power Tube Design.
1986-07-01
fixturing applications, in addition to the existing computer-aided engineering capabilities. o Helix TWT Manufacturing has Implemented a tooling and fixturing...illustrates the ajor features of this computer network. ) The backbone of our system is a Sytek Broadband Network (LAN) which Interconnects terminals and...automatic network analyzer (FANA) which electrically characterizes the slow-wave helices of traveling-wave tubes ( TWTs ) -- both for engineering design
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems
Medford, June; Prasad, Ashok
2014-01-01
Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102
Reliability studies of Integrated Modular Engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of Integrated Modular Engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
In ecological networks, network robustness should be large enough to confer intrinsic robustness for tolerating intrinsic parameter fluctuations, as well as environmental robustness for resisting environmental disturbances, so that the phenotype stability of ecological networks can be maintained, thus guaranteeing phenotype robustness. However, it is difficult to analyze the network robustness of ecological systems because they are complex nonlinear partial differential stochastic systems. This paper develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance sensitivity in ecological networks. We found that the phenotype robustness criterion for ecological networks is that if intrinsic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations and environmental disturbances. These results in robust ecological networks are similar to that in robust gene regulatory networks and evolutionary networks even they have different spatial-time scales. PMID:23515112
Deng, De-Ming; Lu, Yi-Ta; Chang, Cheng-Hung
2017-06-01
The legality of using simple kinetic schemes to determine the stochastic properties of a complex system depends on whether the fluctuations generated from hierarchical equivalent schemes are consistent with one another. To analyze this consistency, we perform lumping processes on the stochastic differential equations and the generalized fluctuation-dissipation theorem and apply them to networks with the frequently encountered Arrhenius-type transition rates. The explicit Langevin force derived from those networks enables us to calculate the state fluctuations caused by the intrinsic and extrinsic noises on the free energy surface and deduce their relations between kinetically equivalent networks. In addition to its applicability to wide classes of network related systems, such as those in structural and systems biology, the result sheds light on the fluctuation relations for general physical variables in Keizer's canonical theory.
Modeling formalisms in Systems Biology
2011-01-01
Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422
NASA Astrophysics Data System (ADS)
Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng
2018-02-01
Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.
Transversal homoclinic orbits in a transiently chaotic neural network.
Chen, Shyan-Shiou; Shih, Chih-Wen
2002-09-01
We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.
Analyzing Human Communication Networks in Organizations: Applications to Management Problems.
ERIC Educational Resources Information Center
Farace, Richard V.; Danowski, James A.
Investigating the networks of communication in organizations leads to an understanding of efficient and inefficient information dissemination as practiced in large systems. Most important in organizational communication is the role of the "liaison person"--the coordinator of intercommunication. When functioning efficiently, coordinators maintain…
Organization of complex networks
NASA Astrophysics Data System (ADS)
Kitsak, Maksim
Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how epidemics spread though networks. Our results indicate that a virus is more likely to infect a large area of a network if it originates at a node contained within k-core of high index k.
National law enforcement telecommunications network
NASA Technical Reports Server (NTRS)
Reilly, N. B.; Garrison, G. W.; Sohn, R. L.; Gallop, D. L.; Goldstein, B. L.
1975-01-01
Alternative approaches are analyzed to a National Law Enforcement Telecommunications Network (NALECOM) designed to service all state-to-state and state-to-national criminal justice communications traffic needs in the United States. Network topology options were analyzed, and equipment and personnel requirements for each option were defined in accordance with NALECOM functional specifications and design guidelines. Evaluation criteria were developed and applied to each of the options leading to specific conclusions. Detailed treatments of methods for determining traffic requirements, communication line costs, switcher configurations and costs, microwave costs, satellite system configurations and costs, facilities, operations and engineering costs, network delay analysis and network availability analysis are presented. It is concluded that a single regional switcher configuration is the optimum choice based on cost and technical factors. A two-region configuration is competitive. Multiple-region configurations are less competitive due to increasing costs without attending benefits.
A financial network perspective of financial institutions' systemic risk contributions
NASA Astrophysics Data System (ADS)
Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan
2016-08-01
This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.
Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C
2016-01-01
Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.
Percolation of a general network of networks.
Gao, Jianxi; Buldyrev, Sergey V; Stanley, H Eugene; Xu, Xiaoming; Havlin, Shlomo
2013-12-01
Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi (ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network (no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our insight on the resilience of coupled networks might help in designing robust interdependent systems.
NASA Technical Reports Server (NTRS)
Luck, R.; Ray, A.
1988-01-01
A method for compensating the effects of network-induced delays in integrated communication and control systems (ICCS) is proposed, and a finite-dimensional time-invariant ICCS model is developed. The problem of analyzing systems with time-varying and stochastic delays is circumvented by the application of a deterministic observer. For the case of controller-to-actuator delays, the observed design must rely on an extended model which represents the delays as additional states.
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
NASA Astrophysics Data System (ADS)
Sienkiewicz, J.; Holyst, J. A.
2005-05-01
We have examined a topology of 21 public transport networks in Poland. Our data exhibit several universal features in considered systems when they are analyzed from the point of view of evolving networks. Depending on the assumed definition of a network topology the degree distribution can follow a power law p(k) ˜ k-γ or can be described by an exponential function p(k) ˜ exp (-α k). In the first case one observes that mean distances between two nodes are a linear function of logarithms of their degrees product.
Chimera-like states in structured heterogeneous networks
NASA Astrophysics Data System (ADS)
Li, Bo; Saad, David
2017-04-01
Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.
Liang, Geng; Wang, Hong; Li, Wen; Li, Dazhong
2010-10-01
Data exchange patterns between nodes in WorldFIP fieldbus network are quite important and meaningful in improving the communication performance of WorldFIP network. Based on the basic communication ways supported in WorldFIP protocol, we propose two patterns for implementation of data exchange between peer nodes over WorldFIP network. Effects on communication performance of WorldFIP network in terms of some network parameters, such as number of bytes in user's data and turn-around time, in both the proposed patterns, are analyzed at length when different network speeds are applied. Such effects with the patterns of periodic message transmission using acknowledged and non-acknowledged messages, are also studied. Communication performance in both the proposed patterns are analyzed and compared. Practical applications of the research are presented. Through the study, it can be seen that different data exchange patterns make a great difference in improving communication efficiency with different network parameters, which is quite useful and helpful in the practical design of distributed systems based on WorldFIP network. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Alignment and integration of complex networks by hypergraph-based spectral clustering
NASA Astrophysics Data System (ADS)
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Alignment and integration of complex networks by hypergraph-based spectral clustering.
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
An iteration algorithm for optimal network flows
NASA Astrophysics Data System (ADS)
Woong, C. J.
1983-09-01
A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance. The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive saturation' and "max-slack', for various traffic requirement matrices and networks with fixed topology and link capacities.
Network coding multiuser scheme for indoor visible light communications
NASA Astrophysics Data System (ADS)
Zhang, Jiankun; Dang, Anhong
2017-12-01
Visible light communication (VLC) is a unique alternative for indoor data transfer and developing beyond point-to-point. However, for realizing high-capacity networks, VLC is facing challenges including the constrained bandwidth of the optical access point and random occlusion. A network coding scheme for VLC (NC-VLC) is proposed, with increased throughput and system robustness. Based on the Lambertian illumination model, theoretical decoding failure probability of the multiuser NC-VLC system is derived, and the impact of the system parameters on the performance is analyzed. Experiments demonstrate the proposed scheme successfully in the indoor multiuser scenario. These results indicate that the NC-VLC system shows a good performance under the link loss and random occlusion.
Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA
2008-06-10
A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; Huang, Tingwen; Huang, Junjian
2018-02-01
This paper investigates the fixed-time synchronization of complex networks (CNs) with nonidentical nodes and stochastic noise perturbations. By designing new controllers, constructing Lyapunov functions and using the properties of Weiner process, different synchronization criteria are derived according to whether the node systems in the CNs or the goal system satisfies the corresponding conditions. Moreover, the role of the designed controllers is analyzed in great detail by constructing a suitable comparison system and a new method is presented to estimate the settling time by utilizing the comparison system. Results of this paper can be applied to both directed and undirected weighted networks. Numerical simulations are offered to verify the effectiveness of our new results.
NASA Astrophysics Data System (ADS)
Ghaderi, A. H.; Darooneh, A. H.
The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.
On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels
2013-12-01
Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks
Alerts Visualization and Clustering in Network-based Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dr. Li; Gasior, Wade C; Dasireddy, Swetha
2010-04-01
Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administratormore » with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.« less
Systemic risk and heterogeneous leverage in banking networks
NASA Astrophysics Data System (ADS)
Kuzubaş, Tolga Umut; Saltoğlu, Burak; Sever, Can
2016-11-01
This study probes systemic risk implications of leverage heterogeneity in banking networks. We show that the presence of heterogeneous leverages drastically changes the systemic effects of defaults and the nature of the contagion in interbank markets. Using financial leverage data from the US banking system, through simulations, we analyze the systemic significance of different types of borrowers, the evolution of the network, the consequences of interbank market size and the impact of market segmentation. Our study is related to the recent Basel III regulations on systemic risk and the treatment of the Global Systemically Important Banks (GSIBs). We also assess the extent to which the recent capital surcharges on GSIBs may curb financial fragility. We show the effectiveness of surcharge policy for the most-levered banks vis-a-vis uniform capital injection.
Large-scale P2P network based distributed virtual geographic environment (DVGE)
NASA Astrophysics Data System (ADS)
Tan, Xicheng; Yu, Liang; Bian, Fuling
2007-06-01
Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.
Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system
NASA Astrophysics Data System (ADS)
Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook
2017-10-01
Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.
Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system.
Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook
2017-10-06
Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.
Game among interdependent networks: The impact of rationality on system robustness
NASA Astrophysics Data System (ADS)
Fan, Yuhang; Cao, Gongze; He, Shibo; Chen, Jiming; Sun, Youxian
2016-12-01
Many real-world systems are composed of interdependent networks that rely on one another. Such networks are typically designed and operated by different entities, who aim at maximizing their own payoffs. There exists a game among these entities when designing their own networks. In this paper, we study the game investigating how the rational behaviors of entities impact the system robustness. We first introduce a mathematical model to quantify the interacting payoffs among varying entities. Then we study the Nash equilibrium of the game and compare it with the optimal social welfare. We reveal that the cooperation among different entities can be reached to maximize the social welfare in continuous game only when the average degree of each network is constant. Therefore, the huge gap between Nash equilibrium and optimal social welfare generally exists. The rationality of entities makes the system inherently deficient and even renders it extremely vulnerable in some cases. We analyze our model for two concrete systems with continuous strategy space and discrete strategy space, respectively. Furthermore, we uncover some factors (such as weakening coupled strength of interdependent networks, designing a suitable topology dependence of the system) that help reduce the gap and the system vulnerability.
ERIC Educational Resources Information Center
Systems Architects, Inc., Randolph, MA.
A practical system for producing a union catalog of titles in the collections of the Library of Congress Division for the Blind and Physically Handicapped (DBPH), its regional network, and related agencies from a machine-readable data base is presented. The DBPH organization and operations and the associated regional library network are analyzed.…
Karbalaei, Reza; Allahyari, Marzieh; Rezaei-Tavirani, Mostafa; Asadzadeh-Aghdaei, Hamid; Zali, Mohammad Reza
2018-01-01
Analysis reconstruction networks from two diseases, NAFLD and Alzheimer`s diseases and their relationship based on systems biology methods. NAFLD and Alzheimer`s diseases are two complex diseases, with progressive prevalence and high cost for countries. There are some reports on relation and same spreading pathways of these two diseases. In addition, they have some similar risk factors, exclusively lifestyle such as feeding, exercises and so on. Therefore, systems biology approach can help to discover their relationship. DisGeNET and STRING databases were sources of disease genes and constructing networks. Three plugins of Cytoscape software, including ClusterONE, ClueGO and CluePedia, were used to analyze and cluster networks and enrichment of pathways. An R package used to define best centrality method. Finally, based on degree and Betweenness, hubs and bottleneck nodes were defined. Common genes between NAFLD and Alzheimer`s disease were 190 genes that used construct a network with STRING database. The resulting network contained 182 nodes and 2591 edges and comprises from four clusters. Enrichment of these clusters separately lead to carbohydrate metabolism, long chain fatty acid and regulation of JAK-STAT and IL-17 signaling pathways, respectively. Also seven genes selected as hub-bottleneck include: IL6, AKT1, TP53, TNF, JUN, VEGFA and PPARG. Enrichment of these proteins and their first neighbors in network by OMIM database lead to diabetes and obesity as ancestors of NAFLD and AD. Systems biology methods, specifically PPI networks, can be useful for analyzing complicated related diseases. Finding Hub and bottleneck proteins should be the goal of drug designing and introducing disease markers.
Building a Virtual Learning Network for Teachers in a Suburban School District
ERIC Educational Resources Information Center
Kurtzworth-Keen, Kristin A.
2011-01-01
Emerging research indicates that learning management systems such as Moodle can function as virtual, collaborative environments, where collegial interactions promote professional learning opportunities. This study deployed a mixed methods design in order to describe and analyze teacher participation in a virtual learning network (VLN) that was…
An Integrated Solution for Performing Thermo-fluid Conjugate Analysis
NASA Technical Reports Server (NTRS)
Kornberg, Oren
2009-01-01
A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
An Architecture for SCADA Network Forensics
NASA Astrophysics Data System (ADS)
Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet
Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.
Software Comparison for Renewable Energy Deployment in a Distribution Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objective of this report is to evaluate different software options for performing robust distributed generation (DG) power system modeling. The features and capabilities of four simulation tools, OpenDSS, GridLAB-D, CYMDIST, and PowerWorld Simulator, are compared to analyze their effectiveness in analyzing distribution networks with DG. OpenDSS and GridLAB-D, two open source software, have the capability to simulate networks with fluctuating data values. These packages allow the running of a simulation each time instant by iterating only the main script file. CYMDIST, a commercial software, allows for time-series simulation to study variations on network controls. PowerWorld Simulator, another commercialmore » tool, has a batch mode simulation function through the 'Time Step Simulation' tool, which obtains solutions for a list of specified time points. PowerWorld Simulator is intended for analysis of transmission-level systems, while the other three are designed for distribution systems. CYMDIST and PowerWorld Simulator feature easy-to-use graphical user interfaces (GUIs). OpenDSS and GridLAB-D, on the other hand, are based on command-line programs, which increase the time necessary to become familiar with the software packages.« less
Huang, Jiali; Ulanowicz, Robert E
2014-01-01
The quantification of growth and development is an important issue in economics, because these phenomena are closely related to sustainability. We address growth and development from a network perspective in which economic systems are represented as flow networks and analyzed using ecological network analysis (ENA). The Beijing economic system is used as a case study and 11 input-output (I-O) tables for 1985-2010 are converted into currency networks. ENA is used to calculate system-level indices to quantify the growth and development of Beijing. The contributions of each direct flow toward growth and development in 2010 are calculated and their implications for sustainable development are discussed. The results show that during 1985-2010, growth was the main attribute of the Beijing economic system. Although the system grew exponentially, its development fluctuated within only a small range. The results suggest that system ascendency should be increased in order to favor more sustainable development. Ascendency can be augmented in two ways: (1) strengthen those pathways with positive contributions to increasing ascendency and (2) weaken those with negative effects.
Huang, Jiali; Ulanowicz, Robert E.
2014-01-01
The quantification of growth and development is an important issue in economics, because these phenomena are closely related to sustainability. We address growth and development from a network perspective in which economic systems are represented as flow networks and analyzed using ecological network analysis (ENA). The Beijing economic system is used as a case study and 11 input–output (I-O) tables for 1985–2010 are converted into currency networks. ENA is used to calculate system-level indices to quantify the growth and development of Beijing. The contributions of each direct flow toward growth and development in 2010 are calculated and their implications for sustainable development are discussed. The results show that during 1985–2010, growth was the main attribute of the Beijing economic system. Although the system grew exponentially, its development fluctuated within only a small range. The results suggest that system ascendency should be increased in order to favor more sustainable development. Ascendency can be augmented in two ways: (1) strengthen those pathways with positive contributions to increasing ascendency and (2) weaken those with negative effects. PMID:24979465
Micro-Macro Analysis of Complex Networks
Marchiori, Massimo; Possamai, Lino
2015-01-01
Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a “classic” approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (“micro”) to a different scale level (“macro”), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability. PMID:25635812
McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy
2017-02-01
The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.
Mapping the online communication patterns of political conversations
NASA Astrophysics Data System (ADS)
Borondo, J.; Morales, A. J.; Benito, R. M.; Losada, J. C.
2014-11-01
The structure of the social networks in which individuals are embedded influences their political choices and therefore their voting behavior. Nowadays, social media represent a new channel for individuals to communicate, what together with the availability of the data, makes it possible to analyze the online social network resulting from political conversations. Here, by taking advantage of the recently developed techniques to analyze complex systems, we map the communication patterns resulting from Spanish political conversations. We identify the different existing communities, building networks of communities, and finding that users cluster themselves in politically homogeneous networks. We found that while most of the collective attention was monopolized by politicians, traditional media accounts were still the preferred sources from which to propagate information. Finally, we propose methods to analyze the use of different languages, finding a clear trend from sympathizers of several political parties to overuse or infra-use each language. We conclude that, on the light of a social media analysis perspective, the political conversation is constrained by both ideology and language.
Epidemic spreading on interconnected networks.
Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
Epidemic spreading on interconnected networks
NASA Astrophysics Data System (ADS)
Saumell-Mendiola, Anna; Serrano, M. Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
Modeling socio-cultural processes in network-centric environments
NASA Astrophysics Data System (ADS)
Santos, Eunice E.; Santos, Eugene, Jr.; Korah, John; George, Riya; Gu, Qi; Kim, Keumjoo; Li, Deqing; Russell, Jacob; Subramanian, Suresh
2012-05-01
The major focus in the field of modeling & simulation for network centric environments has been on the physical layer while making simplifications for the human-in-the-loop. However, the human element has a big impact on the capabilities of network centric systems. Taking into account the socio-behavioral aspects of processes such as team building, group decision-making, etc. are critical to realistically modeling and analyzing system performance. Modeling socio-cultural processes is a challenge because of the complexity of the networks, dynamism in the physical and social layers, feedback loops and uncertainty in the modeling data. We propose an overarching framework to represent, model and analyze various socio-cultural processes within network centric environments. The key innovation in our methodology is to simultaneously model the dynamism in both the physical and social layers while providing functional mappings between them. We represent socio-cultural information such as friendships, professional relationships and temperament by leveraging the Culturally Infused Social Network (CISN) framework. The notion of intent is used to relate the underlying socio-cultural factors to observed behavior. We will model intent using Bayesian Knowledge Bases (BKBs), a probabilistic reasoning network, which can represent incomplete and uncertain socio-cultural information. We will leverage previous work on a network performance modeling framework called Network-Centric Operations Performance and Prediction (N-COPP) to incorporate dynamism in various aspects of the physical layer such as node mobility, transmission parameters, etc. We validate our framework by simulating a suitable scenario, incorporating relevant factors and providing analyses of the results.
Multirelational organization of large-scale social networks in an online world
Szell, Michael; Lambiotte, Renaud; Thurner, Stefan
2010-01-01
The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations. PMID:20643965
Multirelational organization of large-scale social networks in an online world.
Szell, Michael; Lambiotte, Renaud; Thurner, Stefan
2010-08-03
The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franović, Igor, E-mail: franovic@ipb.ac.rs; Todorović, Kristina; Burić, Nikola
We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases,more » the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.« less
A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks
NASA Technical Reports Server (NTRS)
Cui, Zhenqian
1999-01-01
In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis.
Performance issues in management of the Space Station Information System
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1988-01-01
The onboard segment of the Space Station Information System (SSIS), called the Data Management System (DMS), will consist of a Fiber Distributed Data Interface (FDDI) token-ring network. The performance of the DMS in scenarios involving two kinds of network management is analyzed. In the first scenario, how the transmission of routine management messages impacts performance of the DMS is examined. In the second scenario, techniques for ensuring low latency of real-time control messages in an emergency are examined.
Technology Infusion of CodeSonar into the Space Network Ground Segment
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2009-01-01
This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.
Bayesian networks and statistical analysis application to analyze the diagnostic test accuracy
NASA Astrophysics Data System (ADS)
Orzechowski, P.; Makal, Jaroslaw; Onisko, A.
2005-02-01
The computer aided BPH diagnosis system based on Bayesian network is described in the paper. First result are compared to a given statistical method. Different statistical methods are used successfully in medicine for years. However, the undoubted advantages of probabilistic methods make them useful in application in newly created systems which are frequent in medicine, but do not have full and competent knowledge. The article presents advantages of the computer aided BPH diagnosis system in clinical practice for urologists.
Quantum neural networks: Current status and prospects for development
NASA Astrophysics Data System (ADS)
Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.
2014-11-01
The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.
Effects of the bipartite structure of a network on performance of recommenders
NASA Astrophysics Data System (ADS)
Wang, Qing-Xian; Li, Jian; Luo, Xin; Xu, Jian-Jun; Shang, Ming-Sheng
2018-02-01
Recommender systems aim to predict people's preferences for online items by analyzing their historical behaviors. A recommender can be modeled as a high-dimensional and sparse bipartite network, where the key issue is to understand the relation between the network structure and a recommender's performance. To address this issue, we choose three network characteristics, clustering coefficient, network density and user-item ratio, as the analyzing targets. For the cluster coefficient, we adopt the Degree-preserving rewiring algorithm to obtain a series of bipartite network with varying cluster coefficient, while the degree of user and item keep unchanged. Furthermore, five state-of-the-art recommenders are applied on two real datasets. The performances of recommenders are measured by both numerical and physical metrics. These results show that a recommender's performance is positively related to the clustering coefficient of a bipartite network. Meanwhile, higher density of a bipartite network can provide more accurate but less diverse or novel recommendations. Furthermore, the user-item ratio is positively correlated with the accuracy metrics but negatively correlated with the diverse and novel metrics.
On-board processing satellite network architectures for broadband ISDN
NASA Technical Reports Server (NTRS)
Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye
1992-01-01
Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grudka, Andrzej; National Quantum Information Centre of Gdansk, PL-81-824 Sopot; Horodecki, Pawel
2010-06-15
We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.
On the robustness of complex heterogeneous gene expression networks.
Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M
2005-04-01
We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul
2011-01-01
GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.
Alzahrani, Ahmed; Qureshi, Muhammad Shuaib; Thayananthan, Vijey
2017-10-23
This paper aims to analyze possible next generation of networked radio frequency identification (NGN-RFID) system for customer relationship management (CRM) in healthcare industries. Customer relationship and its management techniques in a specific healthcare industry are considered in this development. The key objective of using NGN-RFID scheme is to enhance the handling of patients' data to improve the CRM efficiency in healthcare industries. The proposed NGN-RFID system is one of the valid points to improve the ability of CRM by analyzing different prior and current traditional approaches. The legacy of customer relationship management will be improved by using this modern NGN-RFID technology without affecting the novelty.
Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2017-03-01
We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.
Understanding the complexity of human gait dynamics
NASA Astrophysics Data System (ADS)
Scafetta, Nicola; Marchi, Damiano; West, Bruce J.
2009-06-01
Time series of human gait stride intervals exhibit fractal and multifractal properties under several conditions. Records from subjects walking at normal, slow, and fast pace speed are analyzed to determine changes in the fractal scalings as a function of the stress condition of the system. Records from subjects with different age from children to elderly and patients suffering from neurodegenerative disease are analyzed to determine changes in the fractal scalings as a function of the physical maturation or degeneration of the system. A supercentral pattern generator model is presented to simulate the above two properties that are typically found in dynamical network performance: that is, how a dynamical network responds to stress and to evolution.
Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network
NASA Astrophysics Data System (ADS)
Yang, Bin
2017-07-01
Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately
NASA Astrophysics Data System (ADS)
Yasuda, Kenji
2012-08-01
We have developed methods and systems of analyzing epigenetic information in cells to expand our understanding of how living systems are determined. Because cells are minimum units reflecting epigenetic information, which is considered to map the history of a parallel-processing recurrent network of biochemical reactions, their behaviors cannot be explained by considering only conventional deonucleotide (DNA) information-processing events. The role of epigenetic information on cells, which complements their genetic information, was inferred by comparing predictions from genetic information with cell behaviour observed under conditions chosen to reveal adaptation processes and community effects. A system of analyzing epigenetic information, on-chip cellomics technology, has been developed starting from the twin complementary viewpoints of cell regulation as an “algebraic” system (emphasis on temporal aspects) and as a “geometric” system (emphasis on spatial aspects) exploiting microfabrication technology and a reconstructive approach of cellular systems not only for single cell-based subjects such as Escherichia coli and macrophages but also for cellular networks like the community effect of cardiomyocytes and plasticity in neuronal networks. One of the most important contributions of this study was to be able to reconstruct the concept of a cell regulatory network from the “local” (molecules expressed at certain times and places) to the “global” (the cell as a viable, functioning system). Knowledge of epigenetic information, which we can control and change during cell lives, complements the genetic variety, and these two types of information are indispensable for living organisms. This new knowlege has the potential to be the basis of cell-based biological and medical fields such as those involving cell-based drug screening and the regeneration of organs from stem cells.
NASA Astrophysics Data System (ADS)
Xi, Huixing
2017-03-01
With the continuous development of network technology and the rapid spread of the Internet, computer networks have been around the world every corner. However, the network attacks frequently occur. The ARP protocol vulnerability is one of the most common vulnerabilities in the TCP / IP four-layer architecture. The network protocol vulnerabilities can lead to the intrusion and attack of the information system, and disable or disable the normal defense function of the system [1]. At present, ARP spoofing Trojans spread widely in the LAN, the network security to run a huge hidden danger, is the primary threat to LAN security. In this paper, the author summarizes the research status and the key technologies involved in ARP protocol, analyzes the formation mechanism of ARP protocol vulnerability, and analyzes the feasibility of the attack technique. Based on the summary of the common defensive methods, the advantages and disadvantages of each defense method. At the same time, the current defense method is improved, and the advantage of the improved defense algorithm is given. At the end of this paper, the appropriate test method is selected and the test environment is set up. Experiment and test are carried out for each proposed improved defense algorithm.
Output power distributions of mobile radio base stations based on network measurements
NASA Astrophysics Data System (ADS)
Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.
2013-04-01
In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.
Decision support systems and methods for complex networks
Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA
2012-02-28
Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.
Approaching human language with complex networks
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).
Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections
Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2016-01-01
With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. PMID:27455270
Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections.
Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2016-07-22
With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.
The Role of Asymmetric Interactions on the Effect of Habitat Destruction in Mutualistic Networks
Abramson, Guillermo; Trejo Soto, Claudia A.; Oña, Leonardo
2011-01-01
Plant-pollinator mutualistic networks are asymmetric in their interactions: specialist plants are pollinated by generalist animals, while generalist plants are pollinated by a broad range involving specialists and generalists. It has been suggested that this asymmetric –or disassortative– assemblage could play an important role in determining the observed equal susceptibility of specialist and generalist plants under habitat destruction. At the core of the analysis of the phenomenon lies the observation that specialist plants, otherwise candidates to extinction, could cope with the disruption thanks to their interaction with a few generalist pollinators. We present a theoretical framework that supports this thesis. We analyze a dynamical model of a system of mutualistic plants and pollinators, subject to the destruction of their habitat. We analyze and compare two families of interaction topologies, ranging from highly assortative to highly disassortative ones, as well as real pollination networks. We found that several features observed in natural systems are predicted by the mathematical model. First, there is a tendency to increase the asymmetry of the network as a result of the extinctions. Second, an entropy measure of the differential susceptibility to extinction of specialist and generalist species show that they tend to balance when the network is disassortative. Finally, the disappearance of links in the network, as a result of extinctions, shows that specialist plants preserve more connections than the corresponding plants in an assortative system, enabling them to resist the disruption. PMID:21698298
Competitive dynamics of lexical innovations in multi-layer networks
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto
2014-04-01
We study the introduction of lexical innovations into a community of language users. Lexical innovations, i.e. new term added to people's vocabulary, plays an important role in the process of language evolution. Nowadays, information is spread through a variety of networks, including, among others, online and offline social networks and the World Wide Web. The entire system, comprising networks of different nature, can be represented as a multi-layer network. In this context, lexical innovations diffusion occurs in a peculiar fashion. In particular, a lexical innovation can undergo three different processes: its original meaning is accepted; its meaning can be changed or misunderstood (e.g. when not properly explained), hence more than one meaning can emerge in the population. Lastly, in the case of a loan word, it can be translated into the population language (i.e. defining a new lexical innovation or using a synonym) or into a dialect spoken by part of the population. Therefore, lexical innovations cannot be considered simply as information. We develop a model for analyzing this scenario using a multi-layer network comprising a social network and a media network. The latter represents the set of all information systems of a society, e.g. television, the World Wide Web and radio. Furthermore, we identify temporal directed edges between the nodes of these two networks. In particular, at each time-step, nodes of the media network can be connected to randomly chosen nodes of the social network and vice versa. In doing so, information spreads through the whole system and people can share a lexical innovation with their neighbors or, in the event they work as reporters, by using media nodes. Lastly, we use the concept of "linguistic sign" to model lexical innovations, showing its fundamental role in the study of these dynamics. Many numerical simulations have been performed to analyze the proposed model and its outcomes.
Digital Signal Processing and Control for the Study of Gene Networks
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun
2016-04-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks.
Shin, Yong-Jun
2016-04-22
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks
Shin, Yong-Jun
2016-01-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828
Network Anomaly Detection Based on Wavelet Analysis
NASA Astrophysics Data System (ADS)
Lu, Wei; Ghorbani, Ali A.
2008-12-01
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Real-time camera-based face detection using a modified LAMSTAR neural network system
NASA Astrophysics Data System (ADS)
Girado, Javier I.; Sandin, Daniel J.; DeFanti, Thomas A.; Wolf, Laura K.
2003-03-01
This paper describes a cost-effective, real-time (640x480 at 30Hz) upright frontal face detector as part of an ongoing project to develop a video-based, tetherless 3D head position and orientation tracking system. The work is specifically targeted for auto-stereoscopic displays and projection-based virtual reality systems. The proposed face detector is based on a modified LAMSTAR neural network system. At the input stage, after achieving image normalization and equalization, a sub-window analyzes facial features using a neural network. The sub-window is segmented, and each part is fed to a neural network layer consisting of a Kohonen Self-Organizing Map (SOM). The output of the SOM neural networks are interconnected and related by correlation-links, and can hence determine the presence of a face with enough redundancy to provide a high detection rate. To avoid tracking multiple faces simultaneously, the system is initially trained to track only the face centered in a box superimposed on the display. The system is also rotationally and size invariant to a certain degree.
Weighted Networks at the Polish Market
NASA Astrophysics Data System (ADS)
Chmiel, A. M.; Sienkiewicz, J.; Suchecki, K.; Hołyst, J. A.
During the last few years various models of networks [1,2] have become a powerful tool for analysis of complex systems in such distant fields as Internet [3], biology [4], social groups [5], ecology [6] and public transport [7]. Modeling behavior of economical agents is a challenging issue that has also been studied from a network point of view. The examples of such studies are models of financial networks [8], supply chains [9, 10], production networks [11], investment networks [12] or collective bank bankrupcies [13, 14]. Relations between different companies have been already analyzed using several methods: as networks of shareholders [15], networks of correlations between stock prices [16] or networks of board directors [17]. In several cases scaling laws for network characteristics have been observed.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
NASA Technical Reports Server (NTRS)
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
Stochastic availability analysis of operational data systems in the Deep Space Network
NASA Technical Reports Server (NTRS)
Issa, T. N.
1991-01-01
Existing availability models of standby redundant systems consider only an operator's performance and its interaction with the hardware performance. In the case of operational data systems in the Deep Space Network (DSN), in addition to an operator system interface, a controller reconfigures the system and links a standby unit into the network data path upon failure of the operating unit. A stochastic (Markovian) process technique is used to model and analyze the availability performance and occurrence of degradation due to partial failures are quantitatively incorporated into the model. Exact expressions of the steady state availability and proportion degraded performance measures are derived for the systems under study. The interaction among the hardware, operator, and controller performance parameters and that interaction's effect on data availability are evaluated and illustrated for an operational data processing system.
SINDA, Systems Improved Numerical Differencing Analyzer
NASA Technical Reports Server (NTRS)
Fink, L. C.; Pan, H. M. Y.; Ishimoto, T.
1972-01-01
Computer program has been written to analyze group of 100-node areas and then provide for summation of any number of 100-node areas to obtain temperature profile. SINDA program options offer user variety of methods for solution of thermal analog modes presented in network format.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Rao, Qiaomeng
2018-01-01
In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.
Computer-assisted cervical cancer screening using neural networks.
Mango, L J
1994-03-15
A practical and effective system for the computer-assisted screening of conventionally prepared cervical smears is presented and described. Recent developments in neural network technology have made computerized analysis of the complex cellular scenes found on Pap smears possible. The PAPNET Cytological Screening System uses neural networks to automatically analyze conventional smears by locating and recognizing potentially abnormal cells. It then displays images of these objects for review and final diagnosis by qualified cytologists. The results of the studies presented indicate that the PAPNET system could be a useful tool for both the screening and rescreening of cervical smears. In addition, the system has been shown to be sensitive to some types of abnormalities which have gone undetected during manual screening.
The Deep Space Network: Noise temperature concepts, measurements, and performance
NASA Technical Reports Server (NTRS)
Stelzried, C. T.
1982-01-01
The use of higher operational frequencies is being investigated for improved performance of the Deep Space Network. Noise temperature and noise figure concepts are used to describe the noise performance of these receiving systems. The ultimate sensitivity of a linear receiving system is limited by the thermal noise of the source and the quantum noise of the receiver amplifier. The atmosphere, antenna and receiver amplifier of an Earth station receiving system are analyzed separately and as a system. Performance evaluation and error analysis techniques are investigated. System noise temperature and antenna gain parameters are combined to give an overall system figure of merit G/T. Radiometers are used to perform radio ""star'' antenna and system sensitivity calibrations. These are analyzed and the performance of several types compared to an idealized total power radiometer. The theory of radiative transfer is applicable to the analysis of transmission medium loss. A power series solution in terms of the transmission medium loss is given for the solution of the noise temperature contribution.
Applications of Network Visualisation in Infectious Disease Management
2006-12-01
White, D.R. P-Systems: a structural model for kinship studies. Connections. 24, 22–33. 2001. [13] White, D.R., Batagelj , V., and Mrvar , A. Analyzing...Infectious Disease Management 12 - 6 RTO-MP-IST-063 [14] De Nooy, W., Mrvar , A., and Batagelj , V. Exploratory social network analysis with Pajek...Workspace for the World-Wide Web, Proceedings of the ACM Human Factors in Computing Systems, pp, 111. 1996 . [7] Plaisant, C. Facilitating Data
Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina
2015-01-01
Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.
Reliability analysis in interdependent smart grid systems
NASA Astrophysics Data System (ADS)
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
Thermodynamics of random reaction networks.
Fischer, Jakob; Kleidon, Axel; Dittrich, Peter
2015-01-01
Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.
Thermodynamics of Random Reaction Networks
Fischer, Jakob; Kleidon, Axel; Dittrich, Peter
2015-01-01
Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751
Neural network application to comprehensive engine diagnostics
NASA Technical Reports Server (NTRS)
Marko, Kenneth A.
1994-01-01
We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.
Performance Evaluation of Communication Software Systems for Distributed Computing
NASA Technical Reports Server (NTRS)
Fatoohi, Rod
1996-01-01
In recent years there has been an increasing interest in object-oriented distributed computing since it is better quipped to deal with complex systems while providing extensibility, maintainability, and reusability. At the same time, several new high-speed network technologies have emerged for local and wide area networks. However, the performance of networking software is not improving as fast as the networking hardware and the workstation microprocessors. This paper gives an overview and evaluates the performance of the Common Object Request Broker Architecture (CORBA) standard in a distributed computing environment at NASA Ames Research Center. The environment consists of two testbeds of SGI workstations connected by four networks: Ethernet, FDDI, HiPPI, and ATM. The performance results for three communication software systems are presented, analyzed and compared. These systems are: BSD socket programming interface, IONA's Orbix, an implementation of the CORBA specification, and the PVM message passing library. The results show that high-level communication interfaces, such as CORBA and PVM, can achieve reasonable performance under certain conditions.
NASA Astrophysics Data System (ADS)
Shyu, Mei-Ling; Sainani, Varsha
The increasing number of network security related incidents have made it necessary for the organizations to actively protect their sensitive data with network intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of data while not placing a significantly added load on the monitoring systems and networks. This requires good data mining strategies which take less time and give accurate results. In this study, a novel data mining assisted multiagent-based intrusion detection system (DMAS-IDS) is proposed, particularly with the support of multiclass supervised classification. These agents can detect and take predefined actions against malicious activities, and data mining techniques can help detect them. Our proposed DMAS-IDS shows superior performance compared to central sniffing IDS techniques, and saves network resources compared to other distributed IDS with mobile agents that activate too many sniffers causing bottlenecks in the network. This is one of the major motivations to use a distributed model based on multiagent platform along with a supervised classification technique.
Beyond business process redesign: redefining Baxter's business network.
Short, J E; Venkatraman, N
1992-01-01
Business process redesign has focused almost exclusively on improving the firm's internal operations. Although internal efficiency and effectiveness are important objectives, the authors argue that business network redesign--reconceptualizing the role of the firm and its key business processes in the larger business network--is of greater strategic importance. To support their argument, they analyze the evolution of Baxter's ASAP system, one of the most publicized but inadequately understood strategic information systems of the 1980s. They conclude by examining whether ASAP's early successes have positioned the firm well for the changing hospital supplies marketplace of the 1990s.
A Large Scale Dynamical System Immune Network Modelwith Finite Connectivity
NASA Astrophysics Data System (ADS)
Uezu, T.; Kadono, C.; Hatchett, J.; Coolen, A. C. C.
We study a model of an idiotypic immune network which was introduced by N. K. Jerne. It is known that in immune systems there generally exist several kinds of immune cells which can recognize any particular antigen. Taking this fact into account and assuming that each cell interacts with only a finite number of other cells, we analyze a large scale immune network via both numerical simulations and statistical mechanical methods, and show that the distribution of the concentrations of antibodies becomes non-trivial for a range of values of the strength of the interaction and the connectivity.
Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis
NASA Technical Reports Server (NTRS)
Pelton, Joseph N.
1991-01-01
The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.
NASA Astrophysics Data System (ADS)
Obara, Shin'ya; Kudo, Kazuhiko
Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.
H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.
Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua
2014-10-01
This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.
Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny
2016-01-01
We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702
Reliability Analysis and Modeling of ZigBee Networks
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.
Hidden Connectivity in Networks with Vulnerable Classes of Nodes
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Danziger, Michael M.; Zlatić, Vinko
2016-10-01
In many complex systems representable as networks, nodes can be separated into different classes. Often these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color and develop a "color-avoiding" percolation. We present an analytic theory for random networks and a numerical algorithm for all networks, with which we can determine which nodes are color-avoiding connected and whether the maximal set percolates in the system. We find that the interaction of topology and color distribution implies a rich critical behavior, with critical values and critical exponents depending both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we show how color-avoiding percolation can be used as the basis for new topologically aware secure communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of hidden structure in a wide range of natural and technological systems.
Estimating Performance of Single Bus, Shared Memory Multiprocessors
1987-05-01
Chandy78] K.M. Chandy, C.M. Sauer, "Approximate methods for analyzing queuing network models of computing systems," Computing Surveys, vol10 , no 3...Denning78] P. Denning, J. Buzen, "The operational analysis of queueing network models", Computing Sur- veys, vol10 , no 3, September 1978, pp 225-261
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
... regular security audits and have been certified for operation. The CPSC observes all industry and Federal government best practices for network security. CPSC staff regularly analyzes its systems for vulnerabilities and malware, and monitor the network for real-time intrusion attempts. B. Estimated Burden The CPSC...
NASA Astrophysics Data System (ADS)
Guan, Jun; Xu, Xiaoyu; Xing, Lizhi
2018-03-01
The input-output table is comprehensive and detailed in describing national economic systems with abundance of economic relationships depicting information of supply and demand among industrial sectors. This paper focuses on how to quantify the degree of competition on the global value chain (GVC) from the perspective of econophysics. Global Industrial Strongest Relevant Network models are established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output (ICIO) tables and then have them transformed into Global Industrial Resource Competition Network models to analyze the competitive relationships based on bibliographic coupling approach. Three indicators well suited for the weighted and undirected networks with self-loops are introduced here, including unit weight for competitive power, disparity in the weight for competitive amplitude and weighted clustering coefficient for competitive intensity. Finally, these models and indicators were further applied empirically to analyze the function of industrial sectors on the basis of the latest World Input-Output Database (WIOD) in order to reveal inter-sector competitive status during the economic globalization.
The system of technical diagnostics of the industrial safety information network
NASA Astrophysics Data System (ADS)
Repp, P. V.
2017-01-01
This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.
Smart unattended sensor networks with scene understanding capabilities
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2006-05-01
Unattended sensor systems are new technologies that are supposed to provide enhanced situation awareness to military and law enforcement agencies. A network of such sensors cannot be very effective in field conditions only if it can transmit visual information to human operators or alert them on motion. In the real field conditions, events may happen in many nodes of a network simultaneously. But the real number of control personnel is always limited, and attention of human operators can be simply attracted to particular network nodes, while more dangerous threat may be unnoticed at the same time in the other nodes. Sensor networks would be more effective if equipped with a system that is similar to human vision in its abilities to understand visual information. Human vision uses for that a rough but wide peripheral system that tracks motions and regions of interests, narrow but precise foveal vision that analyzes and recognizes objects in the center of selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an 'understandable' Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level knowledge system.
A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System
Yoo, Seong-eun
2013-01-01
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388
A wireless sensor network-based portable vehicle detector evaluation system.
Yoo, Seong-eun
2013-01-17
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.
Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730
Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.
Military clouds: utilization of cloud computing systems at the battlefield
NASA Astrophysics Data System (ADS)
Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai
2012-05-01
Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.
Data Auditor: Analyzing Data Quality Using Pattern Tableaux
NASA Astrophysics Data System (ADS)
Srivastava, Divesh
Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.
Saez-Rodriguez, Julio; Gayer, Stefan; Ginkel, Martin; Gilles, Ernst Dieter
2008-08-15
The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.ned as chemical systems. Such a decomposition would be very useful as most quantitative models are de.ned using the latter, more detailed formalism. Here, we introduce a novel method to decompose biochemical networks into modules so that the bidirectional (retroactive) couplings among the modules are minimized. Our approach adapts a method to detect community structures, and applies it to the so-called retroactivity matrix that characterizes the couplings of the network. Only the structure of the network, e.g. in SBML format, is required. Furthermore, the modularized models can be loaded into ProMoT, a modeling tool which supports modular modeling. This allows visualization of the models, exploiting their modularity and easy generation of models of one or several modules for further analysis. The method is applied to several relevant cases, including an entangled model of the EGF-induced MAPK cascade and a comprehensive model of EGF signaling, demonstrating its ability to uncover meaningful modules. Our approach can thus help to analyze large networks, especially when little a priori knowledge on the structure of the network is available. The decomposition algorithms implemented in MATLAB (Mathworks, Inc.) are freely available upon request. ProMoT is freely available at http://www.mpi-magdeburg.mpg.de/projects/promot. Supplementary data are available at Bioinformatics online.
Uhart, Marina; Flores, Gabriel; Bustos, Diego M.
2016-01-01
Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976
How the ownership structures cause epidemics in financial markets: A network-based simulation model
NASA Astrophysics Data System (ADS)
Dastkhan, Hossein; Gharneh, Naser Shams
2018-02-01
Analysis of systemic risks and contagions is one of the main challenges of policy makers and researchers in the recent years. Network theory is introduced as a main approach in the modeling and simulation of financial and economic systems. In this paper, a simulation model is introduced based on the ownership network to analyze the contagion and systemic risk events. For this purpose, different network structures with different values for parameters are considered to investigate the stability of the financial system in the presence of different kinds of idiosyncratic and aggregate shocks. The considered network structures include Erdos-Renyi, core-periphery, segregated and power-law networks. Moreover, the results of the proposed model are also calculated for a real ownership network. The results show that the network structure has a significant effect on the probability and the extent of contagion in the financial systems. For each network structure, various values for the parameters results in remarkable differences in the systemic risk measures. The results of real case show that the proposed model is appropriate in the analysis of systemic risk and contagion in financial markets, identification of systemically important firms and estimation of market loss when the initial failures occur. This paper suggests a new direction in the modeling of contagion in the financial markets, in particular that the effects of new kinds of financial exposure are clarified. This paper's idea and analytical results may also be useful for the financial policy makers, portfolio managers and the firms to conduct their investment in the right direction.
The Applied Mathematics for Power Systems (AMPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less
Neuro-parity pattern recognition system and method
Gross, Kenneth C.; Singer, Ralph M.; Van Alstine, Rollin G.; Wegerich, Stephan W.; Yue, Yong
2000-01-01
A method and system for monitoring a process and determining its condition. Initial data is sensed, a first set of virtual data is produced by applying a system state analyzation to the initial data, a second set of virtual data is produced by applying a neural network analyzation to the initial data and a parity space analyzation is applied to the first and second set of virtual data and also to the initial data to provide a parity space decision about the condition of the process. A logic test can further be applied to produce a further system decision about the state of the process.
Complex and unexpected dynamics in simple genetic regulatory networks
NASA Astrophysics Data System (ADS)
Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey
2014-03-01
One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.
Kinetic signature of fractal-like filament networks formed by orientational linear epitaxy.
Hwang, Wonmuk; Eryilmaz, Esma
2014-07-11
We study a broad class of epitaxial assembly of filament networks on lattice surfaces. Over time, a scale-free behavior emerges with a 2.5-3 power-law exponent in filament length distribution. Partitioning between the power-law and exponential behaviors in a network can be used to find the stage and kinetic parameters of the assembly process. To analyze real-world networks, we develop a computer program that measures the network architecture in experimental images. Application to triaxial networks of collagen fibrils shows quantitative agreement with our model. Our unifying approach can be used for characterizing and controlling the network formation that is observed across biological and nonbiological systems.
Ecology Based Decentralized Agent Management System
NASA Technical Reports Server (NTRS)
Peysakhov, Maxim D.; Cicirello, Vincent A.; Regli, William C.
2004-01-01
The problem of maintaining a desired number of mobile agents on a network is not trivial, especially if we want a completely decentralized solution. Decentralized control makes a system more r e bust and less susceptible to partial failures. The problem is exacerbated on wireless ad hoc networks where host mobility can result in significant changes in the network size and topology. In this paper we propose an ecology-inspired approach to the management of the number of agents. The approach associates agents with living organisms and tasks with food. Agents procreate or die based on the abundance of uncompleted tasks (food). We performed a series of experiments investigating properties of such systems and analyzed their stability under various conditions. We concluded that the ecology based metaphor can be successfully applied to the management of agent populations on wireless ad hoc networks.
Synchronization control in multiplex networks of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
He, Wangli; Xu, Zhiwei; Du, Wenli; Chen, Guanrong; Kubota, Naoyuki; Qian, Feng
2017-12-01
This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.
2013-06-01
fixed sensors located along the perimeter of the FOB. The video is analyzed for facial recognition to alert the Network Operations Center (NOC...the UAV is processed on board for facial recognition and video for behavior analysis is sent directly to the Network Operations Center (NOC). Video...captured by the fixed sensors are sent directly to the NOC for facial recognition and behavior analysis processing. The multi- directional signal
Neural Network Classifies Teleoperation Data
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido
1994-01-01
Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.
2004-09-01
protection. Firewalls, Intrusion Detection Systems (IDS’s), Anti-Virus (AV) software , and routers are such tools used. In recent years, computer security...associated with operating systems, application software , and computing hardware. When IDS’s are utilized on a host computer or network, there are two...primary approaches to detecting and / or preventing attacks. Traditional IDS’s, like most AV software , rely on known “signatures” to detect attacks
Methods and tools for profiling and control of distributed systems
NASA Astrophysics Data System (ADS)
Sukharev, R.; Lukyanchikov, O.; Nikulchev, E.; Biryukov, D.; Ryadchikov, I.
2018-02-01
This article is devoted to the topic of profiling and control of distributed systems. Distributed systems have a complex architecture, applications are distributed among various computing nodes, and many network operations are performed. Therefore, today it is important to develop methods and tools for profiling distributed systems. The article analyzes and standardizes methods for profiling distributed systems that focus on simulation to conduct experiments and build a graph model of the system. The theory of queueing networks is used for simulation modeling of distributed systems, receiving and processing user requests. To automate the above method of profiling distributed systems the software application was developed with a modular structure and similar to a SCADA-system.
Method for network analyzation and apparatus
Bracht, Roger B.; Pasquale, Regina V.
2001-01-01
A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.
A Social Network System Based on an Ontology in the Korea Institute of Oriental Medicine
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Han, Jeong-Min; Song, Mi-Young
We in this paper propose a social network based on ontology in Korea Institute of Oriental Medicine (KIOM). By using the social network, researchers can find collaborators and share research results with others so that studies in Korean Medicine fields can be activated. For this purpose, first, personal profiles, scholarships, careers, licenses, academic activities, research results, and personal connections for all of researchers in KIOM are collected. After relationship and hierarchy among ontology classes and attributes of classes are defined through analyzing the collected information, a social network ontology are constructed using FOAF and OWL. This ontology can be easily interconnected with other social network by FOAF and provide the reasoning based on OWL ontology. In future, we construct the search and reasoning system using the ontology. Moreover, if the social network is activated, we will open it to whole Korean Medicine fields.
Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S.S.
The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less
Robust autoassociative memory with coupled networks of Kuramoto-type oscillators
NASA Astrophysics Data System (ADS)
Heger, Daniel; Krischer, Katharina
2016-08-01
Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.
Mascia, Daniele; Di Vincenzo, Fausto; Cicchetti, Americo
2012-05-01
Policymakers stimulate competition in universalistic health-care systems while encouraging the formation of service provision networks among hospital organizations. This article addresses a gap in the extant literature by empirically analyzing simultaneous collaboration and competition between hospitals within the Italian National Health Service, where important procompetition reforms have been implemented. To explore how rising competition between hospitals relates to their propensity to collaborate with other local providers. Longitudinal data on interhospital collaboration and competition collected in an Italian region from 2003 to 2007 are analyzed. Social network analysis techniques are applied to study the structure and dynamics of interhospital collaboration. Negative binomial regressions are employed to explore how interhospital competition relates to the collaborative network over time. Competition among providers does not hinder interhospital collaboration. Collaboration is primarily local, with resource complementarity and differentials in the volume of activity and hospital performance explaining the propensity to collaborate. Formation of collaborative networks among hospitals is not hampered by reforms aimed at fostering market forces. Because procompetition reforms elicit peculiar forms of managed competition in universalistic health systems, studies are needed to clarify whether the positive association between interhospital competition and collaboration can be generalized to other health-care settings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks
Vollmer, Todd; Manic, Milos
2014-05-01
A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, anmore » established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices.« less
Default cascades in complex networks: topology and systemic risk.
Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano
2013-09-26
The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only--but substantially--when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011.
Modeling MAC layer for powerline communications networks
NASA Astrophysics Data System (ADS)
Hrasnica, Halid; Haidine, Abdelfatteh
2001-02-01
The usage of electrical power distribution networks for voice and data transmission, called Powerline Communications, becomes nowadays more and more attractive, particularly in the telecommunication access area. The most important reasons for that are the deregulation of the telecommunication market and a fact that the access networks are still property of former monopolistic companies. In this work, first we analyze a PLC network and system structure as well as a disturbance scenario in powerline networks. After that, we define a logical structure of the powerline MAC layer and propose the reservation MAC protocols for the usage in the PLC network which provides collision free data transmission. This makes possible better network utilization and realization of QoS guarantees which can make PLC networks competitive to other access technologies.
NASA Astrophysics Data System (ADS)
Loginov, E. L.; Raikov, A. N.
2015-04-01
The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.
How Deep Neural Networks Can Improve Emotion Recognition on Video Data
2016-09-25
HOW DEEP NEURAL NETWORKS CAN IMPROVE EMOTION RECOGNITION ON VIDEO DATA Pooya Khorrami1 , Tom Le Paine1, Kevin Brady2, Charlie Dagli2, Thomas S...this work, we present a system that per- forms emotion recognition on video data using both con- volutional neural networks (CNNs) and recurrent...neural net- works (RNNs). We present our findings on videos from the Audio/Visual+Emotion Challenge (AV+EC2015). In our experiments, we analyze the effects
Approaching human language with complex networks.
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis and logical modeling of biological signaling transduction networks
NASA Astrophysics Data System (ADS)
Sun, Zhongyao
The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.
Randomizing growing networks with a time-respecting null model
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Mariani, Manuel Sebastian; Zhang, Yi-Cheng; Medo, Matúš
2018-05-01
Complex networks are often used to represent systems that are not static but grow with time: People make new friendships, new papers are published and refer to the existing ones, and so forth. To assess the statistical significance of measurements made on such networks, we propose a randomization methodology—a time-respecting null model—that preserves both the network's degree sequence and the time evolution of individual nodes' degree values. By preserving the temporal linking patterns of the analyzed system, the proposed model is able to factor out the effect of the system's temporal patterns on its structure. We apply the model to the citation network of Physical Review scholarly papers and the citation network of US movies. The model reveals that the two data sets are strikingly different with respect to their degree-degree correlations, and we discuss the important implications of this finding on the information provided by paradigmatic node centrality metrics such as indegree and Google's PageRank. The randomization methodology proposed here can be used to assess the significance of any structural property in growing networks, which could bring new insights into the problems where null models play a critical role, such as the detection of communities and network motifs.
Self-avoiding walks on scale-free networks
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.
2005-01-01
Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > /
Wireless Sensor Networks for Ambient Assisted Living
Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe
2013-01-01
This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665
NASA Astrophysics Data System (ADS)
Zai, Wenjiao; Wang, Bo; Liu, Jichun; Shi, Haobo; Zeng, Pingliang
2018-02-01
The investment decision model of trans-regional transmission network in the context of Global Energy Internet was studied in this paper. The key factors affecting the trans-regional transmission network investment income: the income tax rate, the loan interest rate, the expected return on investment of the investment subject, the per capita GDP and so on were considered in the transmission network investment income model. First, according to the principle of system dynamics, the causality diagram of key factors was constructed. Then, the dynamic model of transmission investment decision was established. A case study of the power transmission network between China and Mongolia, through the simulation of the system dynamic model, the influence of the above key factors on the investment returns was analyzed, and the feasibility and effectiveness of the model was proved.
Percolation in real multiplex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Radicchi, Filippo
2016-12-01
We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.
Dubbs, Nicole L; Bazzoli, Gloria J; Shortell, Stephen M; Kralovec, Peter D
2004-02-01
To (a) assess how the original cluster categories of hospital-led health networks and systems have changed over time; (b) identify any new patterns of cluster configurations; and (c) demonstrate how additional data can be used to refine and enhance the taxonomy measures. DATA SOURCES; 1994 and 1998 American Hospital Association (AHA) Annual Survey of Hospitals. As in the original taxonomy, separate cluster solutions are identified for health networks and health systems by applying three strategic/structural dimensions (differentiation, integration, and centralization) to three components of the health service/product continuum (hospital services, physician arrangements, and provider-based insurance activities). Factor, cluster, and discriminant analyses are used to analyze the 1998 data. Descriptive and comparative methods are used to analyze the updated 1998 taxonomy relative to the original 1994 version. The 1998 cluster categories are similar to the original taxonomy, however, they reveal some new organizational configurations. For the health networks, centralization of product/service lines is occurring more selectively than in the past. For the health systems, participation has grown in and dispersed across a more diverse set of decentralized organizational forms. For both networks and systems, the definition of centralization has changed over time. In its updated form, the taxonomy continues to provide policymakers and practitioners with a descriptive and contextual framework against which to assess organizational programs and policies. There is a need to continue to revisit the taxonomy from time to time because of the persistent evolution of the U.S. health care industry and the consequent shifting of organizational configurations in this arena. There is also value in continuing to move the taxonomy in the direction of refinement/expansion as new opportunities become available.
System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks
Miao, Yingbo; Zhang, Liangcai; Wang, Yang; Feng, Rennan; Yang, Lei; Zhang, Shihua; Jiang, Yongshuai; Liu, Guiyou
2014-01-01
Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM. PMID:25243143
Fault tree analysis for data-loss in long-term monitoring networks.
Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S
2009-01-01
Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.
Characterizing air quality data from complex network perspective.
Fan, Xinghua; Wang, Li; Xu, Huihui; Li, Shasha; Tian, Lixin
2016-02-01
Air quality depends mainly on changes in emission of pollutants and their precursors. Understanding its characteristics is the key to predicting and controlling air quality. In this study, complex networks were built to analyze topological characteristics of air quality data by correlation coefficient method. Firstly, PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) indexes of eight monitoring sites in Beijing were selected as samples from January 2013 to December 2014. Secondly, the C-C method was applied to determine the structure of phase space. Points in the reconstructed phase space were considered to be nodes of the network mapped. Then, edges were determined by nodes having the correlation greater than a critical threshold. Three properties of the constructed networks, degree distribution, clustering coefficient, and modularity, were used to determine the optimal value of the critical threshold. Finally, by analyzing and comparing topological properties, we pointed out that similarities and difference in the constructed complex networks revealed influence factors and their different roles on real air quality system.
Network dynamics and systems biology
NASA Astrophysics Data System (ADS)
Norrell, Johannes A.
The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the transition point, called critical, exhibit many of the features of regulatory networks, and recent studies suggest that some specific regulatory networks are indeed near-critical. We ask whether certain statistical measures of the ensemble behavior of large continuous networks are reproduced by Boolean models. We find that, in spite of the lack of correspondence between attractors observed in smaller systems, the statistical characterization given by the continuous and Boolean models show close agreement, and the transition between order and disorder known in Boolean systems can occur in continuous systems as well. One effect that is not present in Boolean systems, the failure of information to propagate down chains of elements of arbitrary length, is present in a class of continuous networks. In these systems, a modified Boolean theory that takes into account the collective effect of propagation failure on chains throughout the network gives a good description of the observed behavior. We find that propagation failure pushes the system toward greater order, resulting in a partial or complete suppression of the disordered phase. Finally, we explore a dynamical process of direct biological relevance: asymmetric cell division in A. thaliana. The long term goal is to develop a model for the process that accurately accounts for both wild type and mutant behavior. To contribute to this endeavor, we use confocal microscopy to image roots in a SHORT-ROOT inducible mutant. We compute correlation functions between the locations of asymmetrically divided cells, and we construct stochastic models based on a few simple assumptions that accurately predict the non-zero correlations. Our result shows that intracellular processes alone cannot be responsible for the observed divisions, and that an intercell signaling mechanism could account for the measured correlations.
The role of symmetry in neural networks and their Laplacian spectra.
de Lange, Siemon C; van den Heuvel, Martijn P; de Reus, Marcel A
2016-11-01
Human and animal nervous systems constitute complexly wired networks that form the infrastructure for neural processing and integration of information. The organization of these neural networks can be analyzed using the so-called Laplacian spectrum, providing a mathematical tool to produce systems-level network fingerprints. In this article, we examine a characteristic central peak in the spectrum of neural networks, including anatomical brain network maps of the mouse, cat and macaque, as well as anatomical and functional network maps of human brain connectivity. We link the occurrence of this central peak to the level of symmetry in neural networks, an intriguing aspect of network organization resulting from network elements that exhibit similar wiring patterns. Specifically, we propose a measure to capture the global level of symmetry of a network and show that, for both empirical networks and network models, the height of the main peak in the Laplacian spectrum is strongly related to node symmetry in the underlying network. Moreover, examination of spectra of duplication-based model networks shows that neural spectra are best approximated using a trade-off between duplication and diversification. Taken together, our results facilitate a better understanding of neural network spectra and the importance of symmetry in neural networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Critical behavior of the XY-rotor model on regular and small-world networks
NASA Astrophysics Data System (ADS)
De Nigris, Sarah; Leoncini, Xavier
2013-07-01
We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ<1.5 the model behaves like a short-range one and no phase transition occurs. For γ>1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.
Massive Social Network Analysis: Mining Twitter for Social Good
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ediger, David; Jiang, Karl; Riedy, Edward J.
Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Tooklit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system.more » Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.« less
Computer-aided design of biological circuits using TinkerCell
Bergmann, Frank T; Sauro, Herbert M
2010-01-01
Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. PMID:21327060
NASA Technical Reports Server (NTRS)
Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.
1998-01-01
Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.
NASA Astrophysics Data System (ADS)
Takaesu, M.; Horikawa, H.; Sueki, K.; Kamiya, S.; Nakamura, T.; Nakano, M.; Takahashi, N.; Sonoda, A.; Tsuboi, S.
2014-12-01
Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we installed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors; strong-motion and broadband seismometers, quartz and differential pressure gauges, hydrophone, and thermometer. The stations are densely distributed with an average spatial interval of 15-20 km and cover near coastal areas to the trench axis. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. The data are based on WIN32 format in the private network and finally archived in SEED format in the management center to combine waveform data with related metadata. We are developing a web-based application system to easily download seismic waveform data of DONET. In this system, users can select 20 Hz broadband (BH type) and 200 Hz strong-motion (EH type) data and download them in SEED. Users can also search events from the options of time periods, magnitude, source area and depth in a GUI platform. Event data are produced referring to event catalogues from USGS and JMA (Japan Meteorological Agency). The thresholds of magnitudes for the production are M6 for far-field and M4 for local events using the USGS and JMA lists, respectively. Available data lengths depend on magnitudes and epicentral distances. In this presentation, we briefly introduce DONET stations and then show our developed application system. We open DONET data through the system and want them to be widely recognized so that many users analyze. We also discuss next plans for further developments of the system.
Tabor, Whitney; Cho, Pyeong W; Dankowicz, Harry
2013-01-01
Human participants and recurrent ("connectionist") neural networks were both trained on a categorization system abstractly similar to natural language systems involving irregular ("strong") classes and a default class. Both the humans and the networks exhibited staged learning and a generalization pattern reminiscent of the Elsewhere Condition (Kiparsky, 1973). Previous connectionist accounts of related phenomena have often been vague about the nature of the networks' encoding systems. We analyzed our network using dynamical systems theory, revealing topological and geometric properties that can be directly compared with the mechanisms of non-connectionist, rule-based accounts. The results reveal that the networks "contain" structures related to mechanisms posited by rule-based models, partly vindicating the insights of these models. On the other hand, they support the one mechanism (OM), as opposed to the more than one mechanism (MOM), view of symbolic abstraction by showing how the appearance of MOM behavior can arise emergently from one underlying set of principles. The key new contribution of this study is to show that dynamical systems theory can allow us to explicitly characterize the relationship between the two perspectives in implemented models. © 2013 Cognitive Science Society, Inc.
An overview of the technical design of MSAT mobile satellite communications services
NASA Astrophysics Data System (ADS)
Davies, N. George
The Canadian MSAT mobile satellite communications system is being implemented in cooperation with the American Mobile Satellite Consortium (AMSC). Two satellites are to be jointly acquired and each satellite is expected to backup the other. This paper describes the technical concepts of the services to be offered and the baseline planning of the infrastructure for the ground segment. MSAT service requirements are analyzed for mobile radio, telephone, data, and aeronautical services. The MSAT system will use nine beams in a narrow range of L-band frequencies with frequency reuse. Beams may be added to cover flight information areas in the Atlantic and Pacific oceans. The elements of the network architecture are: a network control centre, data hub stations, gateway stations, base stations, mobile terminals, and a signalling system to interconnect the elements of the system. The network control center will manage the network and allocate space segment capacity; data hub stations will support a switched packet mobile data service; the gateway stations will provide interconnection to the public telephone system and data networks; and the base stations will support private circuit switched voice and data services. Several alternative designs for the signalling system are described.
Long, Haiming; Zhang, Ji; Tang, Nengyu
2017-01-01
This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.
Defense Strategies for Asymmetric Networked Systems with Discrete Components.
Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun
2018-05-03
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.
Defense Strategies for Asymmetric Networked Systems with Discrete Components
Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.
2018-01-01
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588
Design of on-board Bluetooth wireless network system based on fault-tolerant technology
NASA Astrophysics Data System (ADS)
You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang
2007-11-01
In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.
Parameter Requirements for Description of Alternative LINC Systems. Final Report.
ERIC Educational Resources Information Center
Center for Applied Linguistics, Washington, DC. Language Information Network and Clearinghouse System.
This study was undertaken for the Center for Applied Linguistics to survey and analyze its information system program for the language sciences. The study identifies and defines the generalized sets of parameters required for subsequent quantitative analysis of proposed alternative Language Information Network and Clearinghouse Systems by means of…
Neural network expert system for X-ray analysis of welded joints
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Lapik, N. V.; Popova, N. V.
2018-03-01
The use of intelligent technologies for the automated analysis of product quality is one of the main trends in modern machine building. At the same time, rapid development in various spheres of human activity is experienced by methods associated with the use of artificial neural networks, as the basis for building automated intelligent diagnostic systems. Technologies of machine vision allow one to effectively detect the presence of certain regularities in the analyzed designation, including defects of welded joints according to radiography data.
Breakdown of interdependent directed networks.
Liu, Xueming; Stanley, H Eugene; Gao, Jianxi
2016-02-02
Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.
Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, Jared Lee; Kurtz, Nolan Scot
2014-09-01
The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance aremore » investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.« less
NASA Astrophysics Data System (ADS)
Holme, Petter; Saramäki, Jari
2012-10-01
A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.
A neural-visualization IDS for honeynet data.
Herrero, Álvaro; Zurutuza, Urko; Corchado, Emilio
2012-04-01
Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzed.
Performance Evaluation of Peer-to-Peer Progressive Download in Broadband Access Networks
NASA Astrophysics Data System (ADS)
Shibuya, Megumi; Ogishi, Tomohiko; Yamamoto, Shu
P2P (Peer-to-Peer) file sharing architectures have scalable and cost-effective features. Hence, the application of P2P architectures to media streaming is attractive and expected to be an alternative to the current video streaming using IP multicast or content delivery systems because the current systems require expensive network infrastructures and large scale centralized cache storage systems. In this paper, we investigate the P2P progressive download enabling Internet video streaming services. We demonstrated the capability of the P2P progressive download in both laboratory test network as well as in the Internet. Through the experiments, we clarified the contribution of the FTTH links to the P2P progressive download in the heterogeneous access networks consisting of FTTH and ADSL links. We analyzed the cause of some download performance degradation occurred in the experiment and discussed about the effective methods to provide the video streaming service using P2P progressive download in the current heterogeneous networks.
Enabling parallel simulation of large-scale HPC network systems
Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; ...
2016-04-07
Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less
Enabling parallel simulation of large-scale HPC network systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.
Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less
Nicotine increases brain functional network efficiency.
Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R
2012-10-15
Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.
[A network to promote health systems based on primary health care in the Region of the Americas].
Herrera Vázquez, María Magdalena; Rodríguez Avila, Nuria; Nebot Adell, Carme; Montenegro, Hernán
2007-05-01
To identify the relational components of an international network of organizations that provide technical and financial assistance to promote the development of health systems based on primary health care in the countries of the Region of the Americas; to analyze the linkages that would allow the collaborating partners of the Pan American Health Organization (PAHO) to work together on health issues; and to determine the basic theoretical elements that can help to develop action strategies that support advocacy efforts by a network. This was a qualitative and quantitative cross-sectional study based on identifying key informants and on analyzing social networks. Ethnographic and relational information from 46 international organizations was collected through a self-administered semistructured questionnaire. From 46 international health cooperation organizations, 29 decision makers from 29 organizations participated (63.0% response rate). The structure and the strength of the network was evaluated in terms of density, closeness, clustering, and centralization. The statistical analysis was done using computer programs that included UCINET, Pajek, and Microsoft Access. We found a structurally centralized theoretical network, whose nodes were clustered into four central subgroups linked by a shared vision. The leadership, influence, and political interests reflected the formal and technical-cooperation linkages, the formal support for health systems based on primary health care, and the flow of resources being more often technical ones than financial ones. The interorganizational relational components and the social-action ties that were identified could help in the development and consolidation of a thematic network for advocacy and for the management of technical and financial assistance that supports primary health care in the Americas. The linkages for joint action that were identified could advance international cooperation in developing health systems based on primary health care, once PAHO formulates clear implementation strategies and takes a leadership position in mobilizing financial resources and in creating informal and interpersonal linkages for action.
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Emerging hierarchies in dynamically adapting webs
NASA Astrophysics Data System (ADS)
Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.
A novel word spotting method based on recurrent neural networks.
Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst
2012-02-01
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.
Distributed dynamic simulations of networked control and building performance applications
Yahiaoui, Azzedine
2017-01-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135
Ontology- and graph-based similarity assessment in biological networks.
Wang, Haiying; Zheng, Huiru; Azuaje, Francisco
2010-10-15
A standard systems-based approach to biomarker and drug target discovery consists of placing putative biomarkers in the context of a network of biological interactions, followed by different 'guilt-by-association' analyses. The latter is typically done based on network structural features. Here, an alternative analysis approach in which the networks are analyzed on a 'semantic similarity' space is reported. Such information is extracted from ontology-based functional annotations. We present SimTrek, a Cytoscape plugin for ontology-based similarity assessment in biological networks. http://rosalind.infj.ulst.ac.uk/SimTrek.html francisco.azuaje@crp-sante.lu Supplementary data are available at Bioinformatics online.
Developing an Intelligent System for Diagnosis of Asthma Based on Artificial Neural Network.
Alizadeh, Behrouz; Safdari, Reza; Zolnoori, Maryam; Bashiri, Azadeh
2015-08-01
Lack of proper diagnosis and inadequate treatment of asthma, leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different modes was made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. So considering the data mining approaches due to the nature of medical data is necessary.
Implementation of medical monitor system based on networks
NASA Astrophysics Data System (ADS)
Yu, Hui; Cao, Yuzhen; Zhang, Lixin; Ding, Mingshi
2006-11-01
In this paper, the development trend of medical monitor system is analyzed and portable trend and network function become more and more popular among all kinds of medical monitor devices. The architecture of medical network monitor system solution is provided and design and implementation details of medical monitor terminal, monitor center software, distributed medical database and two kind of medical information terminal are especially discussed. Rabbit3000 system is used in medical monitor terminal to implement security administration of data transfer on network, human-machine interface, power management and DSP interface while DSP chip TMS5402 is used in signal analysis and data compression. Distributed medical database is designed for hospital center according to DICOM information model and HL7 standard. Pocket medical information terminal based on ARM9 embedded platform is also developed to interactive with center database on networks. Two kernels based on WINCE are customized and corresponding terminal software are developed for nurse's routine care and doctor's auxiliary diagnosis. Now invention patent of the monitor terminal is approved and manufacture and clinic test plans are scheduled. Applications for invention patent are also arranged for two medical information terminals.
Cyber War Game in Temporal Networks
Cho, Jin-Hee; Gao, Jianxi
2016-01-01
In a cyber war game where a network is fully distributed and characterized by resource constraints and high dynamics, attackers or defenders often face a situation that may require optimal strategies to win the game with minimum effort. Given the system goal states of attackers and defenders, we study what strategies attackers or defenders can take to reach their respective system goal state (i.e., winning system state) with minimum resource consumption. However, due to the dynamics of a network caused by a node’s mobility, failure or its resource depletion over time or action(s), this optimization problem becomes NP-complete. We propose two heuristic strategies in a greedy manner based on a node’s two characteristics: resource level and influence based on k-hop reachability. We analyze complexity and optimality of each algorithm compared to optimal solutions for a small-scale static network. Further, we conduct a comprehensive experimental study for a large-scale temporal network to investigate best strategies, given a different environmental setting of network temporality and density. We demonstrate the performance of each strategy under various scenarios of attacker/defender strategies in terms of win probability, resource consumption, and system vulnerability. PMID:26859840
Cooperation stimulation strategies for peer-to-peer wireless live video-sharing social networks.
Lin, W Sabrina; Zhao, H Vicky; Liu, K J Ray
2010-07-01
Human behavior analysis in video sharing social networks is an emerging research area, which analyzes the behavior of users who share multimedia content and investigates the impact of human dynamics on video sharing systems. Users watching live streaming in the same wireless network share the same limited bandwidth of backbone connection to the Internet, thus, they might want to cooperate with each other to obtain better video quality. These users form a wireless live-streaming social network. Every user wishes to watch video with high quality while paying as little as possible cost to help others. This paper focuses on providing incentives for user cooperation. We propose a game-theoretic framework to model user behavior and to analyze the optimal strategies for user cooperation simulation in wireless live streaming. We first analyze the Pareto optimality and the time-sensitive bargaining equilibrium of the two-person game. We then extend the solution to the multiuser scenario. We also consider potential selfish users' cheating behavior and malicious users' attacking behavior and analyze the performance of the proposed strategies with the existence of cheating users and malicious attackers. Both our analytical and simulation results show that the proposed strategies can effectively stimulate user cooperation, achieve cheat free and attack resistance, and help provide reliable services for wireless live streaming applications.
NASA Astrophysics Data System (ADS)
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Access point selection game with mobile users using correlated equilibrium.
Sohn, Insoo
2015-01-01
One of the most important issues in wireless local area network (WLAN) systems with multiple access points (APs) is the AP selection problem. Game theory is a mathematical tool used to analyze the interactions in multiplayer systems and has been applied to various problems in wireless networks. Correlated equilibrium (CE) is one of the powerful game theory solution concepts, which is more general than the Nash equilibrium for analyzing the interactions in multiplayer mixed strategy games. A game-theoretic formulation of the AP selection problem with mobile users is presented using a novel scheme based on a regret-based learning procedure. Through convergence analysis, we show that the joint actions based on the proposed algorithm achieve CE. Simulation results illustrate that the proposed algorithm is effective in a realistic WLAN environment with user mobility and achieves maximum system throughput based on the game-theoretic formulation.
Access Point Selection Game with Mobile Users Using Correlated Equilibrium
Sohn, Insoo
2015-01-01
One of the most important issues in wireless local area network (WLAN) systems with multiple access points (APs) is the AP selection problem. Game theory is a mathematical tool used to analyze the interactions in multiplayer systems and has been applied to various problems in wireless networks. Correlated equilibrium (CE) is one of the powerful game theory solution concepts, which is more general than the Nash equilibrium for analyzing the interactions in multiplayer mixed strategy games. A game-theoretic formulation of the AP selection problem with mobile users is presented using a novel scheme based on a regret-based learning procedure. Through convergence analysis, we show that the joint actions based on the proposed algorithm achieve CE. Simulation results illustrate that the proposed algorithm is effective in a realistic WLAN environment with user mobility and achieves maximum system throughput based on the game-theoretic formulation. PMID:25785726
Detecting malicious chaotic signals in wireless sensor network
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Kumari, Sangeeta
2018-02-01
In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.
Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network
NASA Astrophysics Data System (ADS)
Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song
2013-11-01
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.
Shareholding relationships in the Euro Area banking market: A network perspective
NASA Astrophysics Data System (ADS)
Pecora, Nicolò; Spelta, Alessandro
2015-09-01
In this paper we analyze the topological properties of the network of the Euro Area banking market network, with the primary aim of assessing the importance of a bank in the financial system with respect to ownership and control of other credit institutions. The network displays power law distributions in both binary and weighted degree metrics indicating a robust yet fragile structure and a direct link between an increase of control diversification and a rise in the market power. Therefore while in good time the network is seemingly robust, in bad times many banks can simultaneously go into distress. This behavior paves the way for Central bank's actions. In particular we investigate whether the Single Supervisory Mechanism introduced by the European Central Banks and based on banks' total asset is a good proxy to quantify their systemic importance. Results indicate that not all the financial institutions with high valued total assets are systemically important but only few of them. Moreover the network structure reveals that control is highly concentrated, with few important shareholders approximately controlling a separate subset of banks.
Sign: large-scale gene network estimation environment for high performance computing.
Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .
Network analysis: A new way of understanding psychopathology?
Fonseca-Pedrero, Eduardo
Current taxonomic systems are based on a descriptive and categorical approach where psychopathological symptoms and signs are caused by a hypothetical underlying mental disorder. In order to circumvent the limitations of classification systems, it is necessary to incorporate new conceptual and psychometric models that allow to understand, analyze and intervene in psychopathological phenomena from another perspective. The main goal was to present a new approach called network analysis for its application in the field of psychopathology. First of all, a brief introduction where psychopathological disorders are conceived as complex dynamic systems was carried out. Key concepts, as well as the different types of networks and the procedures for their estimation, are discussed. Following this, centrality measures, important for the understanding of the network as well as to examine the relevance of the variables within the network were addressed. These factors were then exemplified by estimating a network of self-reported psychopathological symptoms in a representative sample of adolescents. Finally, a brief recapitulation is made and future lines of research are discussed. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
Advanced functional network analysis in the geosciences: The pyunicorn package
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen
2013-04-01
Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.
Finite Energy and Bounded Attacks on Control System Sensor Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M
Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) has been in securing the networks using information security techniques and protection and reliability concerns at the control system level against random hardware and software failures. However, besides these failures the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis and detection methods need to be developed. In this paper, sensor signalmore » attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop system under optimal signal attacks are provided. Illustrative numerical examples are provided together with an application to a power network with distributed LQ controllers.« less
Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.
Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico
2017-01-01
Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.
NASA Astrophysics Data System (ADS)
Gong, X.; Wu, Q.
2017-12-01
Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.
Structural analysis of health-relevant policy-making information exchange networks in Canada.
Contandriopoulos, Damien; Benoît, François; Bryant-Lukosius, Denise; Carrier, Annie; Carter, Nancy; Deber, Raisa; Duhoux, Arnaud; Greenhalgh, Trisha; Larouche, Catherine; Leclerc, Bernard-Simon; Levy, Adrian; Martin-Misener, Ruth; Maximova, Katerina; McGrail, Kimberlyn; Nykiforuk, Candace; Roos, Noralou; Schwartz, Robert; Valente, Thomas W; Wong, Sabrina; Lindquist, Evert; Pullen, Carolyn; Lardeux, Anne; Perroux, Melanie
2017-09-20
Health systems worldwide struggle to identify, adopt, and implement in a timely and system-wide manner the best-evidence-informed-policy-level practices. Yet, there is still only limited evidence about individual and institutional best practices for fostering the use of scientific evidence in policy-making processes The present project is the first national-level attempt to (1) map and structurally analyze-quantitatively-health-relevant policy-making networks that connect evidence production, synthesis, interpretation, and use; (2) qualitatively investigate the interaction patterns of a subsample of actors with high centrality metrics within these networks to develop an in-depth understanding of evidence circulation processes; and (3) combine these findings in order to assess a policy network's "absorptive capacity" regarding scientific evidence and integrate them into a conceptually sound and empirically grounded framework. The project is divided into two research components. The first component is based on quantitative analysis of ties (relationships) that link nodes (participants) in a network. Network data will be collected through a multi-step snowball sampling strategy. Data will be analyzed structurally using social network mapping and analysis methods. The second component is based on qualitative interviews with a subsample of the Web survey participants having central, bridging, or atypical positions in the network. Interviews will focus on the process through which evidence circulates and enters practice. Results from both components will then be integrated through an assessment of the network's and subnetwork's effectiveness in identifying, capturing, interpreting, sharing, reframing, and recodifying scientific evidence in policy-making processes. Knowledge developed from this project has the potential both to strengthen the scientific understanding of how policy-level knowledge transfer and exchange functions and to provide significantly improved advice on how to ensure evidence plays a more prominent role in public policies.
SISSY: An example of a multi-threaded, networked, object-oriented databased application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scipioni, B.; Liu, D.; Song, T.
1993-05-01
The Systems Integration Support SYstem (SISSY) is presented and its capabilities and techniques are discussed. It is fully automated data collection and analysis system supporting the SSCL`s systems analysis activities as they relate to the Physics Detector and Simulation Facility (PDSF). SISSY itself is a paradigm of effective computing on the PDSF. It uses home-grown code (C++), network programming (RPC, SNMP), relational (SYBASE) and object-oriented (ObjectStore) DBMSs, UNIX operating system services (IRIX threads, cron, system utilities, shells scripts, etc.), and third party software applications (NetCentral Station, Wingz, DataLink) all of which act together as a single application to monitor andmore » analyze the PDSF.« less
On-board processing architectures for satellite B-ISDN services
NASA Technical Reports Server (NTRS)
Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris
1991-01-01
Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.
Community core detection in transportation networks
NASA Astrophysics Data System (ADS)
De Leo, Vincenzo; Santoboni, Giovanni; Cerina, Federica; Mureddu, Mario; Secchi, Luca; Chessa, Alessandro
2013-10-01
This work analyzes methods for the identification and the stability under perturbation of a territorial community structure with specific reference to transportation networks. We considered networks of commuters for a city and an insular region. In both cases, we have studied the distribution of commuters’ trips (i.e., home-to-work trips and vice versa). The identification and stability of the communities’ cores are linked to the land-use distribution within the zone system, and therefore their proper definition may be useful to transport planners.
Coexistence and survival in conservative Lotka-Volterra networks.
Knebel, Johannes; Krüger, Torben; Weber, Markus F; Frey, Erwin
2013-04-19
Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network's interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time.
Growth dominates choice in network percolation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.
2013-09-01
The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.
2012-01-01
Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329
BiNA: A Visual Analytics Tool for Biological Network Data
Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael
2014-01-01
Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056
Shutters, Shade T; Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M A
2018-01-01
Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence-or connectedness-which is equivalent to the density of a city's weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks.
Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M. A.
2018-01-01
Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence–or connectedness–which is equivalent to the density of a city’s weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks. PMID:29734354
Moving Large Data Sets Over High-Performance Long Distance Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Stephen W; Poole, Stephen W; Ruwart, Thomas
2011-04-01
In this project we look at the performance characteristics of three tools used to move large data sets over dedicated long distance networking infrastructure. Although performance studies of wide area networks have been a frequent topic of interest, performance analyses have tended to focus on network latency characteristics and peak throughput using network traffic generators. In this study we instead perform an end-to-end long distance networking analysis that includes reading large data sets from a source file system and committing large data sets to a destination file system. An evaluation of end-to-end data movement is also an evaluation of themore » system configurations employed and the tools used to move the data. For this paper, we have built several storage platforms and connected them with a high performance long distance network configuration. We use these systems to analyze the capabilities of three data movement tools: BBcp, GridFTP, and XDD. Our studies demonstrate that existing data movement tools do not provide efficient performance levels or exercise the storage devices in their highest performance modes. We describe the device information required to achieve high levels of I/O performance and discuss how this data is applicable in use cases beyond data movement performance.« less
[Reliability theory based on quality risk network analysis for Chinese medicine injection].
Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui
2014-08-01
A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.
Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Popok, Daniel
1999-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Tabu Search enhances network robustness under targeted attacks
NASA Astrophysics Data System (ADS)
Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi
2016-03-01
We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.
Two-layer wireless distributed sensor/control network based on RF
NASA Astrophysics Data System (ADS)
Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo
2006-11-01
A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.
Cascaded Segmentation-Detection Networks for Word-Level Text Spotting.
Qin, Siyang; Manduchi, Roberto
2017-11-01
We introduce an algorithm for word-level text spotting that is able to accurately and reliably determine the bounding regions of individual words of text "in the wild". Our system is formed by the cascade of two convolutional neural networks. The first network is fully convolutional and is in charge of detecting areas containing text. This results in a very reliable but possibly inaccurate segmentation of the input image. The second network (inspired by the popular YOLO architecture) analyzes each segment produced in the first stage, and predicts oriented rectangular regions containing individual words. No post-processing (e.g. text line grouping) is necessary. With execution time of 450 ms for a 1000 × 560 image on a Titan X GPU, our system achieves good performance on the ICDAR 2013, 2015 benchmarks [2], [1].
Small vulnerable sets determine large network cascades in power grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less
Wang, Huan-Huan; Liu, Shu-Ming; Jiang, Shuaiz; Meng, Fan-Lin; Bai, Lu
2013-01-01
In the last few decades, anti-negative pressure facility (ANPF) has been emerged as a revolutionary approach for sloving the pollution in the Second Water Supply System (SWSS) in China. This study analyzed implications of the safety in SWSS with ANPF, utilizing the water distribution network hydraulic model. A method of hydraulic simulation and security assessment was presented which was able to reflect the number and location of nodes that can be installed in ANPF. Benchmark results through two instance networks showed that 67% and 89% of nodes in each network did not fit the ANPFs for installation. The simple and pratical algorithm was recommended in the water distribution network design and planing in order to increase the security of SWSS.
Default Cascades in Complex Networks: Topology and Systemic Risk
Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano
2013-01-01
The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only – but substantially – when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011. PMID:24067913
Small vulnerable sets determine large network cascades in power grids
Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.
2017-11-17
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less
Visibility graphlet approach to chaotic time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutua, Stephen; Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega; Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn
Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems.more » Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.« less
Optimal placement of FACTS devices using optimization techniques: A review
NASA Astrophysics Data System (ADS)
Gaur, Dipesh; Mathew, Lini
2018-03-01
Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.
Formal specification and design techniques for wireless sensor and actuator networks.
Martínez, Diego; González, Apolinar; Blanes, Francisco; Aquino, Raúl; Simo, José; Crespo, Alfons
2011-01-01
A current trend in the development and implementation of industrial applications is to use wireless networks to communicate the system nodes, mainly to increase application flexibility, reliability and portability, as well as to reduce the implementation cost. However, the nondeterministic and concurrent behavior of distributed systems makes their analysis and design complex, often resulting in less than satisfactory performance in simulation and test bed scenarios, which is caused by using imprecise models to analyze, validate and design these systems. Moreover, there are some simulation platforms that do not support these models. This paper presents a design and validation method for Wireless Sensor and Actuator Networks (WSAN) which is supported on a minimal set of wireless components represented in Colored Petri Nets (CPN). In summary, the model presented allows users to verify the design properties and structural behavior of the system.
Somvanshi, Pramod Rajaram; Venkatesh, K V
2014-03-01
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.
Architectural impact of FDDI network on scheduling hard real-time traffic
NASA Technical Reports Server (NTRS)
Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh
1991-01-01
The architectural impact on guaranteeing synchronous message deadlines in FDDI (Fiber Distributed Data Interface) token ring networks is examined. The FDDI network does not have facility to support (global) priority arbitration which is a useful facility for scheduling hard real time activities. As a result, it was found that the worst case utilization of synchronous traffic in an FDDI network can be far less than that in a centralized single processor system. Nevertheless, it is proposed and analyzed that a scheduling method can guarantee deadlines of synchronous messages having traffic utilization up to 33 pct., the highest to date.
The complexity and robustness of metro networks
NASA Astrophysics Data System (ADS)
Derrible, Sybil; Kennedy, Christopher
2010-09-01
Transportation systems, being real-life examples of networks, are particularly interesting to analyze from the viewpoint of the new and rapidly emerging field of network science. Two particular concepts seem to be particularly relevant: scale-free patterns and small-worlds. By looking at 33 metro systems in the world, this paper adapts network science methodologies to the transportation literature, and offers one application to the robustness of metros; here, metro refers to urban rail transit with exclusive right-of-way, whether it is underground, at grade or elevated. We find that most metros are indeed scale-free (with scaling factors ranging from 2.10 to 5.52) and small-worlds; they show atypical behaviors, however, with increasing size. In particular, the presence of transfer-hubs (stations hosting more than three lines) results in relatively large scaling factors. The analysis provides insights/recommendations for increasing the robustness of metro networks. Smaller networks should focus on creating transfer stations, thus generating cycles to offer alternative routes. For larger networks, few stations seem to detain a certain monopole on transferring, it is therefore important to create additional transfers, possibly at the periphery of city centers; the Tokyo system seems to remarkably incorporate these properties.
Dynamic and interacting complex networks
NASA Astrophysics Data System (ADS)
Dickison, Mark E.
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w < wc) where the disease reaches a large fraction of the population from a phase (w > wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. In the fourth chapter, we study epidemic processes on interconnected network systems, and find two distinct regimes. In strongly-coupled network systems, epidemics occur simultaneously across the entire system at a critical value betac. In contrast, in weakly-coupled network systems, a mixed phase exists below betac where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.
Satellite networks in the ISDN era
NASA Astrophysics Data System (ADS)
Amadesi, P.; Haines, P.; Patacchini, A.
1986-12-01
The development of an integrated service digital network (ISDN) capable of supporting a wide range of services using a small set of standard multipurpose user-network interfaces is examined. The ISDN environment is expected to consist of functional elements such as, circuit switching, packet switching, and common channel signaling. The use of satellites or fiber optics in the ISDN is evaluated. The relation between satellites and the ISDN in the short-, medium-, and long-terms is analyzed. The recommendations of the consultative committee, CCIR, concerning the definition of the hypothetical reference digital path and the required quality and availability for ISDN applications, and the proposed plans of Eutelsat and Intelsat for satellite systems compatible with an ISDN are discussed. The application of business satellite networks and packet satellite networks to an ISDN is studied. The long-term objectives for an ISDN is a wideband system that accommodates digital transmission on circuit and packet switched bases.
Data reliability in complex directed networks
NASA Astrophysics Data System (ADS)
Sanz, Joaquín; Cozzo, Emanuele; Moreno, Yamir
2013-12-01
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economics, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of the newest, best performing models—due to Guimerá and Sales-Pardo in 2009—to directed networks. The new methodology is able to identify missing and spurious directed interactions with more precision than previous approaches, which renders it particularly useful for analyzing data reliability in systems like trophic webs, gene regulatory networks, communication patterns and several social systems. We also show, using real-world networks, how the method can be employed to help search for new interactions in an efficient way.
Analysis of Network Vulnerability Under Joint Node and Link Attacks
NASA Astrophysics Data System (ADS)
Li, Yongcheng; Liu, Shumei; Yu, Yao; Cao, Ting
2018-03-01
The security problem of computer network system is becoming more and more serious. The fundamental reason is that there are security vulnerabilities in the network system. Therefore, it’s very important to identify and reduce or eliminate these vulnerabilities before they are attacked. In this paper, we are interested in joint node and link attacks and propose a vulnerability evaluation method based on the overall connectivity of the network to defense this attack. Especially, we analyze the attack cost problem from the attackers’ perspective. The purpose is to find the set of least costs for joint links and nodes, and their deletion will lead to serious network connection damage. The simulation results show that the vulnerable elements obtained from the proposed method are more suitable for the attacking idea of the malicious persons in joint node and link attack. It is easy to find that the proposed method has more realistic protection significance.
Two classes of bipartite networks: nested biological and social systems.
Burgos, Enrique; Ceva, Horacio; Hernández, Laura; Perazzo, R P J; Devoto, Mariano; Medan, Diego
2008-10-01
Bipartite graphs have received some attention in the study of social networks and of biological mutualistic systems. A generalization of a previous model is presented, that evolves the topology of the graph in order to optimally account for a given contact preference rule between the two guilds of the network. As a result, social and biological graphs are classified as belonging to two clearly different classes. Projected graphs, linking the agents of only one guild, are obtained from the original bipartite graph. The corresponding evolution of its statistical properties is also studied. An example of a biological mutualistic network is analyzed in detail, and it is found that the model provides a very good fitting of all the main statistical features. The model also provides a proper qualitative description of the same features observed in social webs, suggesting the possible reasons underlying the difference in the organization of these two kinds of bipartite networks.
Synchronization in scale-free networks: The role of finite-size effects
NASA Astrophysics Data System (ADS)
Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.
2015-06-01
Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
Electric power systems represent complex systems involving many electrical components whoseoperation has to be planned, analyzed, monitored and controlled. The time-scale of tasks in electricpower systems extends from long term planning years ahead to milliseconds in the area of control. The behavior of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements.
Web-based multi-channel analyzer
Gritzo, Russ E.
2003-12-23
The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.
Research on centrality of urban transport network nodes
NASA Astrophysics Data System (ADS)
Wang, Kui; Fu, Xiufen
2017-05-01
Based on the actual data of urban transport in Guangzhou, 19,150 bus stations in Guangzhou (as of 2014) are selected as nodes. Based on the theory of complex network, the network model of Guangzhou urban transport is constructed. By analyzing the degree centrality index, betweenness centrality index and closeness centrality index of nodes in the network, the level of centrality of each node in the network is studied. From a different point of view to determine the hub node of Guangzhou urban transport network, corresponding to the city's key sites and major transfer sites. The reliability of the network is determined by the stability of some key nodes (transport hub station). The research of network node centralization can provide a theoretical basis for the rational allocation of urban transport network sites and public transport system planning.
Charge transport network dynamics in molecular aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-07-20
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive withmore » charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.« less
Retinal Connectomics: Towards Complete, Accurate Networks
Marc, Robert E.; Jones, Bryan W.; Watt, Carl B.; Anderson, James R.; Sigulinsky, Crystal; Lauritzen, Scott
2013-01-01
Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 1012–1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532
DOT National Transportation Integrated Search
2010-01-01
The Smart Grid is a cyber-physical system comprised of physical components, such as transmission lines and generators, and a : network of embedded systems deployed for their cyber control. Our objective is to qualitatively and quantitatively analyze ...
Nicotine Increases Brain Functional Network Efficiency
Wylie, Korey P.; Rojas, Donald C.; Tanabe, Jody; Martin, Laura F.; Tregellas, Jason R.
2012-01-01
Despite the use of cholinergic therapies in Alzheimer’s disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting-state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network’s tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer’s disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. PMID:22796985
Network theory and its applications in economic systems
NASA Astrophysics Data System (ADS)
Huang, Xuqing
This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008 - 2011.
Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network
Yang, Bin; Zhang, Jianfeng
2017-01-01
Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme. PMID:28657588
Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network.
Yang, Bin; Zhang, Jianfeng
2017-06-28
Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme.
Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.
Housh, Mashor; Ohar, Ziv
2017-03-01
The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stokes-Draut, Jennifer; Taptich, Michael; Kavvada, Olga; Horvath, Arpad
2017-11-01
Climate change is making water supply less predictable, even unreliable, in parts of the world. Urban water providers, especially in already arid areas, will need to diversify their water resources by switching to alternative sources and negotiating trading agreements to create more resilient and interdependent networks. The increasing complexity of these networks will likely require more operational electricity. The ability to document, visualize, and analyze water-energy relationships will be critical to future water planning, especially as data needed to conduct the analyses become increasingly available. We have developed a network model and decision-support tool, WESTNet, to perform these tasks. Herein, WESTNet was used to analyze a model of California’s 2010 urban water network as well as the projected system for 2020 and 2030. Results for California’s ten hydrologic regions show that the average number of water sources per utility and total electricity consumption for supplying water will increase in spite of decreasing per-capita water consumption. Electricity intensity (kWh m-3) will increase in arid regions of the state due to shifts to alternative water sources such as indirect potable water reuse, desalination, and water transfers. In wetter, typically less populated, regions, reduced water demand for electricity-intensive supplies will decrease the electricity intensity of the water supply mix, though total electricity consumption will increase due to urban population growth. The results of this study provide a baseline for comparing current and potential innovations to California’s water system. The WESTNet tool can be applied to diverse water systems in any geographic region at a variety of scales to evaluate an array of network-dependent water-energy parameters.
Finding disturbances in on-farm biogas production.
Antonio, Pereira-Querol Marco; Laura, Seppänen
2012-01-01
When implementing innovations, disturbances are very likely to take place. Disturbances are undesirable because they can lead to unwanted outcomes, such as economic losses and work overload to workers. However, they can be powerful opportunities for learning and re-designing innovations. Here, we will present activity theoretical tools for analyzing disturbances in a way that they could be used as learning opportunities. We illustrate the proposed tools by analyzing a disturbance that took place during the implementation of a project of biogas production. By interpreting the disturbance process with a network of activity systems, we found that on-farm disturbances were formed as ruptures, innovations and asynchronies originated in other activity systems. This finding suggests that disturbances are outcomes of the functioning of networks, rather than simple results of failure of individuals or technical devices. The proposed tools could be used in interventions to help practitioners and ergonomists to recognize the systemic and networked nature of problems, and therefore, realize that they may require the collaboration of actors from different activities. In this sense, disturbances may be turned into opportunities for learning and developing innovations. We conclude by discussing how the method could be used in ergonomic design and intervention.
NASA Astrophysics Data System (ADS)
Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.
2016-05-01
Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.
Learning, memory, and the role of neural network architecture.
Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M
2011-06-01
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.
The architecture of dynamic reservoir in the echo state network
NASA Astrophysics Data System (ADS)
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
A graph-based network-vulnerability analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.; Gaylor, T.
1998-05-03
This paper presents a graph based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example themore » class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level of effort for the attacker, various graph algorithms such as shortest path algorithms can identify the attack paths with the highest probability of success.« less
A graph-based network-vulnerability analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.; Gaylor, T.
1998-01-01
This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the classmore » of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
Biffi, E; Menegon, A; Regalia, G; Maida, S; Ferrigno, G; Pedrocchi, A
2011-08-15
Modern drug discovery for Central Nervous System pathologies has recently focused its attention to in vitro neuronal networks as models for the study of neuronal activities. Micro Electrode Arrays (MEAs), a widely recognized tool for pharmacological investigations, enable the simultaneous study of the spiking activity of discrete regions of a neuronal culture, providing an insight into the dynamics of networks. Taking advantage of MEAs features and making the most of the cross-correlation analysis to assess internal parameters of a neuronal system, we provide an efficient method for the evaluation of comprehensive neuronal network activity. We developed an intra network burst correlation algorithm, we evaluated its sensitivity and we explored its potential use in pharmacological studies. Our results demonstrate the high sensitivity of this algorithm and the efficacy of this methodology in pharmacological dose-response studies, with the advantage of analyzing the effect of drugs on the comprehensive correlative properties of integrated neuronal networks. Copyright © 2011 Elsevier B.V. All rights reserved.
Learning in Artificial Neural Systems
NASA Technical Reports Server (NTRS)
Matheus, Christopher J.; Hohensee, William E.
1987-01-01
This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.
Recommendation in evolving online networks
NASA Astrophysics Data System (ADS)
Hu, Xiao; Zeng, An; Shang, Ming-Sheng
2016-02-01
Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.
Research on the information security system in electrical gis system in mobile application
NASA Astrophysics Data System (ADS)
Zhou, Chao; Feng, Renjun; Jiang, Haitao; Huang, Wei; Zhu, Daohua
2017-05-01
With the rapid development of social informatization process, the demands of government, enterprise, and individuals for spatial information becomes larger. In addition, the combination of wireless network technology and spatial information technology promotes the generation and development of mobile technologies. In today’s rapidly developed information technology field, network technology and mobile communication have become the two pillar industries by leaps and bounds. They almost absorbed and adopted all the latest information, communication, computer, electronics and so on new technologies. Concomitantly, the network coverage is more and more big, the transmission rate is faster and faster, the volume of user’s terminal is smaller and smaller. What’s more, from LAN to WAN, from wired network to wireless network, from wired access to mobile wireless access, people’s demand for communication technology is increasingly higher. As a result, mobile communication technology is facing unprecedented challenges as well as unprecedented opportunities. When combined with the existing mobile communication network, it led to the development of leaps and bounds. However, due to the inherent dependence of the system on the existing computer communication network, information security problems cannot be ignored. Today’s information security has penetrated into all aspects of life. Information system is a complex computer system, and it’s physical, operational and management vulnerabilities constitute the security vulnerability of the system. Firstly, this paper analyzes the composition of mobile enterprise network and information security threat. Secondly, this paper puts forward the security planning and measures, and constructs the information security structure.
Toward a Scalable Visualization System for Network Traffic Monitoring
NASA Astrophysics Data System (ADS)
Malécot, Erwan Le; Kohara, Masayoshi; Hori, Yoshiaki; Sakurai, Kouichi
With the multiplication of attacks against computer networks, system administrators are required to monitor carefully the traffic exchanged by the networks they manage. However, that monitoring task is increasingly laborious because of the augmentation of the amount of data to analyze. And that trend is going to intensify with the explosion of the number of devices connected to computer networks along with the global rise of the available network bandwidth. So system administrators now heavily rely on automated tools to assist them and simplify the analysis of the data. Yet, these tools provide limited support and, most of the time, require highly skilled operators. Recently, some research teams have started to study the application of visualization techniques to the analysis of network traffic data. We believe that this original approach can also allow system administrators to deal with the large amount of data they have to process. In this paper, we introduce a tool for network traffic monitoring using visualization techniques that we developed in order to assist the system administrators of our corporate network. We explain how we designed the tool and some of the choices we made regarding the visualization techniques to use. The resulting tool proposes two linked representations of the network traffic and activity, one in 2D and the other in 3D. As 2D and 3D visualization techniques have different assets, we resulted in combining them in our tool to take advantage of their complementarity. We finally tested our tool in order to evaluate the accuracy of our approach.
Computational analysis of complex systems: Applications to population dynamics and networks
NASA Astrophysics Data System (ADS)
Molnar, Ferenc
In most complex evolving systems, we can often find a critical subset of the constituents that can initiate a global change in the entire system. For example, in complex networks, a critical subset of nodes can efficiently spread information, influence, or control dynamical processes over the entire network. Similarly, in nonlinear dynamics, we can locate key variables, or find the necessary parameters, to reach the attraction basin of a desired global state. In both cases, a fundamental goal is finding the ability to efficiently control these systems. We study two distinct complex systems in this dissertation, exploring these topics. First, we analyze a population dynamics model describing interactions of sex-structured population groups. Specifically, we analyze how a sex-linked genetic trait's ecological consequence (population survival or extinction) can be influenced by the presence of sex-specific cultural mortality traits, motivated by the desire to expand the theoretical understanding of the role of biased sex ratios in organisms. We analyze dynamics within a single population group, as well as between competing groups. We find that there is a finite range of sex ratio bias that can be maintained in stable equilibrium by sex-specific mortalities. We also find that the outcome of an invasion and the ensuing between-group competition depends not on larger equilibrium group densities, but on the higher allocation of sex-ratio genes. When we extend the model with diffusive dispersal, we find that a critical patch size for achieving positive growth only exists if the population expands into an empty environment. If a resident population is already present that can be exploited by the invading group, then any small seed of invader can advance from rarity, in the mean-field approximation, as long as the local competition dynamics favors the invader's survival. Most spatial models assume initial populations with a uniform distribution inside a finite patch; a simple, but not a cost-efficient approach. We show, using a novel application of simulated annealing, that a specific, non-trivial shape of spatial distribution can minimize the total cost of successful invasion, i.e., the cost of ecological restoration. Further, our approach can be generalized to essentially any reaction-diffusion model with diffusive spreading. In the second part of the dissertation we conduct an extensive study of minimum dominating sets (MDS) in complex networks; particularly, in scale-free networks. MDS is the smallest subset of nodes in a network that can reach every other node as nearest neighbors, thus it provides a key subset of nodes that play critical role in controllability and observability of social, biological, and technological networks. Continued interest in network control, monitoring and influencing of complex networks motivates our research of understanding the properties and practical application-related issues of the MDS. Our study of the scaling behavior reveals that the size of MDS always scales linearly with network size, as long as the power-law degree exponent gamma of the degree distribution is larger than 2. However, when gamma<2, a domination transition occurs, allowing the MDS size to become O(1), leading to easily dominated networks, under certain structural conditions. Motivated by practical applicability in large networks, we develop a new dominating set selection method, derived from probabilistic node selection techniques, which can select small dominating sets without complete network topology information. We also show that the effectiveness of our method, as well as the effectiveness of other heuristics of dominating set selection, strongly depends on the assortativity of networks. Finally, we conduct a numerical study to analyze the fraction of nodes that remain dominated, after the network is damaged, and some nodes are removed. We find that dominating sets optimized for small size are particularly vulnerable to damage; a significant amount of "domination coverage" may be lost if key dominator nodes are deleted. However, we also find that increasing the redundancy of dominating sets by adding a few well-picked nodes can successfully increase the post-damage dominated fraction of the network. Based on this idea, we develop two algorithms to build dominating sets with flexible balance between size and damage resilience.
Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M
As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signalsmore » are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.« less
Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G
NASA Technical Reports Server (NTRS)
Gaski, J. D.; Lewis, D. R.; Thompson, L. R.
1972-01-01
New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format.
NASA Astrophysics Data System (ADS)
Kotegawa, Tatsuya
Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.
Drainage fracture networks in elastic solids with internal fluid generation
NASA Astrophysics Data System (ADS)
Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Galland, Olivier; Renard, François; Meakin, Paul; Jamtveit, Bjørn; Dysthe, Dag K.
2013-06-01
Experiments in which CO2 gas was generated by the yeast fermentation of sugar in an elastic layer of gelatine gel confined between two glass plates are described and analyzed theoretically. The CO2 gas pressure causes the gel layer to fracture. The gas produced is drained on short length scales by diffusion and on long length scales by flow in a fracture network, which has topological properties that are intermediate between river networks and hierarchical-fracture networks. A simple model for the experimental system with two parameters that characterize the disorder and the intermediate (river-fracture) topology of the network was developed and the results of the model were compared with the experimental results.
Theory of Turing Patterns on Time Varying Networks.
Petit, Julien; Lauwens, Ben; Fanelli, Duccio; Carletti, Timoteo
2017-10-06
The process of pattern formation for a multispecies model anchored on a time varying network is studied. A nonhomogeneous perturbation superposed to an homogeneous stable fixed point can be amplified following the Turing mechanism of instability, solely instigated by the network dynamics. By properly tuning the frequency of the imposed network evolution, one can make the examined system behave as its averaged counterpart, over a finite time window. This is the key observation to derive a closed analytical prediction for the onset of the instability in the time dependent framework. Continuously and piecewise constant periodic time varying networks are analyzed, setting the framework for the proposed approach. The extension to nonperiodic settings is also discussed.
NASA Astrophysics Data System (ADS)
Christensen, Claire Petra
Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social network (a city) into which a disease is introduced. The results of simulations in populations spanning two orders of magnitude are compared to prevaccine era measles data for England and Wales and demonstrate that the simulations are able to capture the quantitative and qualitative features of epidemics in populations as small as 10,000 people. The work presented in Chapter 5 validates the utility of network simulation in concurrently probing contact network dynamics and disease dynamics.
Long, Haiming; Tang, Nengyu
2017-01-01
This study considers the effect of an industry’s network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry’s conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry’s systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust. PMID:28683130
Kroening, Sharon E.
2008-01-01
Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper Floridan aquifer, distributed between developed and undeveloped parts of the basin. Water samples collected should be analyzed for a wide range of constituents, including physical properties, nutrients, suspended sediment, and constituents associated with increased urban development such as pesticides, other trace organic compounds associated with domestic and industrial waste, and trace elements.
Extended mind and after: socially extended mind and actor-network.
Kono, Tetsuya
2014-03-01
The concept of extended mind has been impressively developed over the last 10 years by many philosophers and cognitive scientists. The extended mind thesis (EM) affirms that the mind is not simply ensconced inside the head, but extends to the whole system of brain-body-environment. Recently, some philosophers and psychologists try to adapt the idea of EM to the domain of social cognition research. Mind is socially extended (SEM). However, EM/SEM theory has problems to analyze the interactions among a subject and its surroundings with opposition, antagonism, or conflict; it also tends to think that the environment surrounding the subject is passive or static, and to neglect the power of non-human actants to direct and regulate the human subject. In these points, actor-network theory (ANT) proposed by Latour and Callon is more persuasive, while sharing some important ideas with EM/SEM theory. Actor-network is a hybrid community which is composed of a series of heterogeneous elements, animate and inanimate for a certain period of time. I shall conclude that EM/SEM could be best analyzed as a special case of actor-network. EM/SEM is a system which can be controlled by a human agent alone. In order to understand collective behavior, philosophy and psychology have to study the actor-network in which human individuals are situated.
Study of bidirectional broadband passive optical network (BPON) using EDFA
NASA Astrophysics Data System (ADS)
Almalaq, Yasser
Optical line terminals (OLTs) and number of optical network units (ONUs) are two main parts of passive optical network (PON). OLT is placed at the central office of the service providers, the ONUs are located near to the end subscribers. When compared with point-to-point design, a PON decreases the number of fiber used and central office components required. Broadband PON (BPON), which is one type of PON, can support high-speed voice, data and video services to subscribers' residential homes and small businesses. In this research, by using erbium doped fiber amplifier (EDFA), the performance of bi-directional BPON is experimented and tested for both downstream and upstream traffic directions. Ethernet PON (E-PON) and gigabit PON (G-PON) are the two other kinds of passive optical network besides BPON. The most beneficial factor of using BPON is it's reduced cost. The cost of the maintenance between the central office and the users' side is suitable because of the use of passive components, such as a splitter in the BPON architecture. In this work, a bidirectional BPON has been analyzed for both downstream and upstream cases by using bit error rate analyzer (BER). BER analyzers test three factors that are the maximum Q factor, minimum bit error rate, and eye height. In other words, parameters such as maximum Q factor, minimum bit error rate, and eye height can be analyzed utilized a BER tester. Passive optical components such as a splitter, optical circulator, and filters have been used in modeling and simulations. A 12th edition Optiwave simulator has been used in order to analyze the bidirectional BPON system. The system has been tested under several conditions such as changing the fiber length, extinction ratio, dispersion, and coding technique. When a long optical fiber above 40km was used, an EDFA was used in order to improve the quality of the signal.
Network structure impacts global commodity trade growth and resilience.
Kharrazi, Ali; Rovenskaya, Elena; Fath, Brian D
2017-01-01
Global commodity trade networks are critical to our collective sustainable development. Their increasing interconnectedness pose two practical questions: (i) Do the current network configurations support their further growth? (ii) How resilient are these networks to economic shocks? We analyze the data of global commodity trade flows from 1996 to 2012 to evaluate the relationship between structural properties of the global commodity trade networks and (a) their dynamic growth, as well as (b) the resilience of their growth with respect to the 2009 global economic shock. Specifically, we explore the role of network efficiency and redundancy using the information theory-based network flow analysis. We find that, while network efficiency is positively correlated with growth, highly efficient systems appear to be less resilient, losing more and gaining less growth following an economic shock. While all examined networks are rather redundant, we find that network redundancy does not hinder their growth. Moreover, systems exhibiting higher levels of redundancy lose less and gain more growth following an economic shock. We suggest that a strategy to support making global trade networks more efficient via, e.g., preferential trade agreements and higher specialization, can promote their further growth; while a strategy to increase the global trade networks' redundancy via e.g., more abundant free-trade agreements, can improve their resilience to global economic shocks.
Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.
Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing
2017-01-01
Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.
Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min
2008-12-01
Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled.
Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA
de Souza, Alisson C. D.; Fernandes, Marcelo A. C.
2014-01-01
This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918
Local Difference Measures between Complex Networks for Dynamical System Model Evaluation
Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374
Local difference measures between complex networks for dynamical system model evaluation.
Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.
Signature neural networks: definition and application to multidimensional sorting problems.
Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo
2011-01-01
In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.
NASA Astrophysics Data System (ADS)
Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.
2015-04-01
The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.
Rural health network development: public policy issues and state initiatives.
Casey, M M; Wellever, A; Moscovice, I
1997-02-01
Rural health networks are a potential way for rural health care systems to improve access to care, reduce costs, and enhance quality of care. Networks provide a means for rural providers to contract with managed care organizations, develop their own managed care entities, share resources, and structure practice opportunities to support recruitment and retention of rural physicians and other health care professionals. The results of early network development initiatives indicate a need for state officials and others interested in encouraging network development to agree on common rural health network definitions, to identify clearly the goals of network development programs, and to document and analyze program outcomes. Future network development efforts need to be much more comprehensive if they are to have a significant impact on rural health care. This article analyzes public policy issues related to integrated rural health network development, discusses current efforts to encourage network development in rural areas, and suggests actions that states may take if they desire to support rural health network development. These actions include adopting a formal rural health network definition, providing networks with alternatives to certain regulatory requirements, and providing incentives such as matching grants, loans, or technical assistance. Without public sector support for networks, managed care options may continue to be unavailable in many less densely populated rural areas of the country, and locally controlled rural health networks are unlikely to develop as an alternative to the dominant pattern of managed care expansion by large urban entities. Implementation of Medicare reform legislation could provide significant incentives for the development of rural health networks, depending on the reimbursement provisions, financial solvency standards, and antitrust exemptions for provider-sponsored networks in the final legislation and federal regulations.
Analysis of economics of a TV broadcasting satellite for additional nationwide TV programs
NASA Technical Reports Server (NTRS)
Becker, D.; Mertens, G.; Rappold, A.; Seith, W.
1977-01-01
The influence of a TV broadcasting satellite, transmitting four additional TV networks was analyzed. It is assumed that the cost of the satellite systems will be financed by the cable TV system operators. The additional TV programs increase income by attracting additional subscribers. Two economic models were established: (1) each local network is regarded as an independent economic unit with individual fees (cost price model) and (2) all networks are part of one public cable TV company with uniform fees (uniform price model). Assumptions are made for penetration as a function of subscription rates. Main results of the study are: the installation of a TV broadcasting satellite improves the economics of CTV-networks in both models; the overall coverage achievable by the uniform price model is significantly higher than that achievable by the cost price model.
A Study on Secure Medical-Contents Strategies with DRM Based on Cloud Computing
Měsíček, Libor; Choi, Jongsun
2018-01-01
Many hospitals and medical clinics have been using a wearable sensor in its health care system because the wearable sensor, which is able to measure the patients' biometric information, has been developed to analyze their patients remotely. The measured information is saved to a server in a medical center, and the server keeps the medical information, which also involves personal information, on a cloud system. The server and network devices are used by connecting each other, and sensitive medical records are dealt with remotely. However, these days, the attackers, who try to attack the server or the network systems, are increasing. In addition, the server and the network system have a weak protection and security policy against the attackers. In this paper, it is suggested that security compliance of medical contents should be followed to improve the level of security. As a result, the medical contents are kept safely. PMID:29796233
Formal Specification and Design Techniques for Wireless Sensor and Actuator Networks
Martínez, Diego; González, Apolinar; Blanes, Francisco; Aquino, Raúl; Simo, José; Crespo, Alfons
2011-01-01
A current trend in the development and implementation of industrial applications is to use wireless networks to communicate the system nodes, mainly to increase application flexibility, reliability and portability, as well as to reduce the implementation cost. However, the nondeterministic and concurrent behavior of distributed systems makes their analysis and design complex, often resulting in less than satisfactory performance in simulation and test bed scenarios, which is caused by using imprecise models to analyze, validate and design these systems. Moreover, there are some simulation platforms that do not support these models. This paper presents a design and validation method for Wireless Sensor and Actuator Networks (WSAN) which is supported on a minimal set of wireless components represented in Colored Petri Nets (CPN). In summary, the model presented allows users to verify the design properties and structural behavior of the system. PMID:22344203
A Study on Secure Medical-Contents Strategies with DRM Based on Cloud Computing.
Ko, Hoon; Měsíček, Libor; Choi, Jongsun; Hwang, Seogchan
2018-01-01
Many hospitals and medical clinics have been using a wearable sensor in its health care system because the wearable sensor, which is able to measure the patients' biometric information, has been developed to analyze their patients remotely. The measured information is saved to a server in a medical center, and the server keeps the medical information, which also involves personal information, on a cloud system. The server and network devices are used by connecting each other, and sensitive medical records are dealt with remotely. However, these days, the attackers, who try to attack the server or the network systems, are increasing. In addition, the server and the network system have a weak protection and security policy against the attackers. In this paper, it is suggested that security compliance of medical contents should be followed to improve the level of security. As a result, the medical contents are kept safely.
Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights.
Bae, Tae-Suk; Grejner-Brzezinska, Dorota; Mader, Gerald; Dennis, Michael
2015-10-26
New guidelines and procedures for real-time (RT) network-based solutions are required in order to support Global Navigation Satellite System (GNSS) derived heights. Two kinds of experiments were carried out to analyze the performance of the network-based real-time kinematic (RTK) solutions. New test marks were installed in different surrounding environments, and the existing GPS benchmarks were used for analyzing the effect of different factors, such as baseline lengths, antenna types, on the final accuracy and reliability of the height estimation. The RT solutions are categorized into three groups: single-base RTK, multiple-epoch network RTK (mRTN), and single-epoch network RTK (sRTN). The RTK solution can be biased up to 9 mm depending on the surrounding environment, but there was no notable bias for a longer reference base station (about 30 km) In addition, the occupation time for the network RTK was investigated in various cases. There is no explicit bias in the solution for different durations, but smoother results were obtained for longer durations. Further investigation is needed into the effect of changing the occupation time between solutions and into the possibility of using single-epoch solutions in precise determination of heights by GNSS.
Optimal topologies for maximizing network transmission capacity
NASA Astrophysics Data System (ADS)
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
The value of prior knowledge in machine learning of complex network systems.
Ferranti, Dana; Krane, David; Craft, David
2017-11-15
Our overall goal is to develop machine-learning approaches based on genomics and other relevant accessible information for use in predicting how a patient will respond to a given proposed drug or treatment. Given the complexity of this problem, we begin by developing, testing and analyzing learning methods using data from simulated systems, which allows us access to a known ground truth. We examine the benefits of using prior system knowledge and investigate how learning accuracy depends on various system parameters as well as the amount of training data available. The simulations are based on Boolean networks-directed graphs with 0/1 node states and logical node update rules-which are the simplest computational systems that can mimic the dynamic behavior of cellular systems. Boolean networks can be generated and simulated at scale, have complex yet cyclical dynamics and as such provide a useful framework for developing machine-learning algorithms for modular and hierarchical networks such as biological systems in general and cancer in particular. We demonstrate that utilizing prior knowledge (in the form of network connectivity information), without detailed state equations, greatly increases the power of machine-learning algorithms to predict network steady-state node values ('phenotypes') and perturbation responses ('drug effects'). Links to codes and datasets here: https://gray.mgh.harvard.edu/people-directory/71-david-craft-phd. dcraft@broadinstitute.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Emergence, evolution and scaling of online social networks.
Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng
2014-01-01
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
Real-time determination of fringe pattern frequencies: An application to pressure measurement
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Piroozan, Parham
2007-05-01
Retrieving information in real time from fringe patterns is a topic of a great deal of interest in scientific and engineering applications of optical methods. This paper presents a method for fringe frequency determination based on the capability of neural networks to recognize signals that are similar but not identical to signals used to train the neural network. Sampled patterns are generated by calibration and stored in memory. Incoming patterns are analyzed by a back-propagation neural network at the speed of the recording device, a CCD camera. This method of information retrieval is utilized to measure pressures on a boundary layer flow. The sensor combines optics and electronics to analyze dynamic pressure distributions and to feed information to a control system that is capable to preserve the stability of the flow.
A graph-based system for network-vulnerability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.
1998-06-01
This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
Atmospheric cloud physics thermal systems analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.
Bifurcations of large networks of two-dimensional integrate and fire neurons.
Nicola, Wilten; Campbell, Sue Ann
2013-08-01
Recently, a class of two-dimensional integrate and fire models has been used to faithfully model spiking neurons. This class includes the Izhikevich model, the adaptive exponential integrate and fire model, and the quartic integrate and fire model. The bifurcation types for the individual neurons have been thoroughly analyzed by Touboul (SIAM J Appl Math 68(4):1045-1079, 2008). However, when the models are coupled together to form networks, the networks can display bifurcations that an uncoupled oscillator cannot. For example, the networks can transition from firing with a constant rate to burst firing. This paper introduces a technique to reduce a full network of this class of neurons to a mean field model, in the form of a system of switching ordinary differential equations. The reduction uses population density methods and a quasi-steady state approximation to arrive at the mean field system. Reduced models are derived for networks with different topologies and different model neurons with biologically derived parameters. The mean field equations are able to qualitatively and quantitatively describe the bifurcations that the full networks display. Extensions and higher order approximations are discussed.
Social-ecological network analysis of scale mismatches in estuary watershed restoration.
Sayles, Jesse S; Baggio, Jacopo A
2017-03-07
Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social-ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners' assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social-ecological (or social-environmental) misalignments, also known as scale mismatches.
Social–ecological network analysis of scale mismatches in estuary watershed restoration
Sayles, Jesse S.
2017-01-01
Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social–ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners’ assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social–ecological (or social–environmental) misalignments, also known as scale mismatches. PMID:28223529
Data Integration in Computer Distributed Systems
NASA Astrophysics Data System (ADS)
Kwiecień, Błażej
In this article the author analyze a problem of data integration in a computer distributed systems. Exchange of information between different levels in integrated pyramid of enterprise process is fundamental with regard to efficient enterprise work. Communication and data exchange between levels are not always the same cause of necessity of different network protocols usage, communication medium, system response time, etc.
Automated Consultation for the Diagnosis of Interplanetary Telecommunications
NASA Technical Reports Server (NTRS)
Quan, A. G.; Schwuttke, U. M.; Herstein, J. S.; Spagnuolo, J. S.; Burleigh, S.
1995-01-01
SHARP (Spacecraft Health Automated Reasoning Program) is a knowledge-based system for the diagnosis of problems in NASA's Deep Space Network (DSN) telecommunications system. This system provides the means of communication between a spacecraft and operations personnel at Jet Propulsion Laboratory. SHARP analyzes problems that occur in both the on-board spacecraft telecom subsystem, and the DSN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrada, J.J.; Osborne-Lee, I.W.; Grizzaffi, P.A.
Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applicationsmore » of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.« less
NASA Astrophysics Data System (ADS)
White, Robert R.; Wren, James; Davis, Heath R.; Galassi, Mark; Starr, Daniel; Vestrand, W. T.; Wozniak, P.
2004-09-01
The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.
Title: Chimeras in small, globally coupled networks: Experiments and stability analysis
NASA Astrophysics Data System (ADS)
Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi
Since the initial observation of chimera states, there has been much discussion of the conditions under which these states emerge. The emphasis thus far has mainly been to analyze large networks of coupled oscillators; however, recent studies have begun to focus on the opposite limit: what is the smallest system of coupled oscillators in which chimeras can exist? We experimentally observe chimeras and other partially synchronous patterns in a network of four globally-coupled chaotic opto-electronic oscillators. By examining the equations of motion, we demonstrate that symmetries in the network topology allow a variety of synchronous states to exist, including cluster synchronous states and a chimera state. Using the group theoretical approach recently developed for analyzing cluster synchronization, we show how to derive the variational equations for these synchronous patterns and calculate their linear stability. The stability analysis gives good agreement with our experimental results. Both experiments and simulations suggest that these chimera states often appear in regions of multistability between global, cluster, and desynchronized states.
The signal extraction of fetal heart rate based on wavelet transform and BP neural network
NASA Astrophysics Data System (ADS)
Yang, Xiao Hong; Zhang, Bang-Cheng; Fu, Hu Dai
2005-04-01
This paper briefly introduces the collection and recognition of bio-medical signals, designs the method to collect FM signals. A detailed discussion on the system hardware, structure and functions is also given. Under LabWindows/CVI,the hardware and the driver do compatible, the hardware equipment work properly actively. The paper adopts multi threading technology for real-time analysis and makes use of latency time of CPU effectively, expedites program reflect speed, improves the program to perform efficiency. One threading is collecting data; the other threading is analyzing data. Using the method, it is broaden to analyze the signal in real-time. Wavelet transform to remove the main interference in the FM and by adding time-window to recognize with BP network; Finally the results of collecting signals and BP networks are discussed. 8 pregnant women's signals of FM were collected successfully by using the sensor. The correctness rate of BP network recognition is about 83.3% by using the above measure.
Computer-aided design of biological circuits using TinkerCell.
Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M
2010-01-01
Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze, and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. © 2010 Landes Bioscience
Sensor Data Qualification Technique Applied to Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Simon, Donald L.
2013-01-01
This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.
Ecological Network Analysis for a Low-Carbon and High-Tech Industrial Park
Lu, Yi; Su, Meirong; Liu, Gengyuan; Chen, Bin; Zhou, Shiyi; Jiang, Meiming
2012-01-01
Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs) seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA) International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA). Integrating the Network Utility Analysis (NUA), Network Control Analysis (NCA), and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment. PMID:23365516
An E-Hospital Security Architecture
NASA Astrophysics Data System (ADS)
Tian, Fang; Adams, Carlisle
In this paper, we introduce how to use cryptography in network security and access control of an e-hospital. We first define the security goal of the e-hospital system, and then we analyze the current application system. Our idea is proposed on the system analysis and the related regulations of patients' privacy protection. The security of the whole application system is strengthened through layered security protection. Three security domains in the e-hospital system are defined according to their sensitivity level, and for each domain, we propose different security protections. We use identity based cryptography to establish secure communication channel in the backbone network and policy based cryptography to establish secure communication channel between end users and the backbone network. We also use policy based cryptography in the access control of the application system. We use a symmetric key cryptography to protect the real data in the database. The identity based and policy based cryptography are all based on elliptic curve cryptography—a public key cryptography.
A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks
NASA Astrophysics Data System (ADS)
Carrilho, Sergio; Esaki, Hiroshi
Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heberlein, L.T.; Dias, G.V.; Levitt, K.N.
1989-11-01
The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, ourmore » work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.« less
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Tate-Brown, Judy M.
2009-01-01
Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.
Network structure impacts global commodity trade growth and resilience
Rovenskaya, Elena; Fath, Brian D.
2017-01-01
Global commodity trade networks are critical to our collective sustainable development. Their increasing interconnectedness pose two practical questions: (i) Do the current network configurations support their further growth? (ii) How resilient are these networks to economic shocks? We analyze the data of global commodity trade flows from 1996 to 2012 to evaluate the relationship between structural properties of the global commodity trade networks and (a) their dynamic growth, as well as (b) the resilience of their growth with respect to the 2009 global economic shock. Specifically, we explore the role of network efficiency and redundancy using the information theory-based network flow analysis. We find that, while network efficiency is positively correlated with growth, highly efficient systems appear to be less resilient, losing more and gaining less growth following an economic shock. While all examined networks are rather redundant, we find that network redundancy does not hinder their growth. Moreover, systems exhibiting higher levels of redundancy lose less and gain more growth following an economic shock. We suggest that a strategy to support making global trade networks more efficient via, e.g., preferential trade agreements and higher specialization, can promote their further growth; while a strategy to increase the global trade networks’ redundancy via e.g., more abundant free-trade agreements, can improve their resilience to global economic shocks. PMID:28207790
Right-side-stretched multifractal spectra indicate small-worldness in networks
NASA Astrophysics Data System (ADS)
Oświȩcimka, Paweł; Livi, Lorenzo; Drożdż, Stanisław
2018-04-01
Complex network formalism allows to explain the behavior of systems composed by interacting units. Several prototypical network models have been proposed thus far. The small-world model has been introduced to mimic two important features observed in real-world systems: i) local clustering and ii) the possibility to move across a network by means of long-range links that significantly reduce the characteristic path length. A natural question would be whether there exist several ;types; of small-world architectures, giving rise to a continuum of models with properties (partially) shared with other models belonging to different network families. Here, we take advantage of the interplay between network theory and time series analysis and propose to investigate small-world signatures in complex networks by analyzing multifractal characteristics of time series generated from such networks. In particular, we suggest that the degree of right-sided asymmetry of multifractal spectra is linked with the degree of small-worldness present in networks. This claim is supported by numerical simulations performed on several parametric models, including prototypical small-world networks, scale-free, fractal and also real-world networks describing protein molecules. Our results also indicate that right-sided asymmetry emerges with the presence of the following topological properties: low edge density, low average shortest path, and high clustering coefficient.
Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP
NASA Astrophysics Data System (ADS)
Sahiner, Huseyin
While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.
Review On Applications Of Neural Network To Computer Vision
NASA Astrophysics Data System (ADS)
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
a Mini Multi-Gas Detection System Based on Infrared Principle
NASA Astrophysics Data System (ADS)
Zhijian, Xie; Qiulin, Tan
2006-12-01
To counter the problems of gas accidents in coal mines, family safety resulted from using gas, a new infrared detection system with integration and miniaturization has been developed. The infrared detection optics principle used in developing this system is mainly analyzed. The idea that multi gas detection is introduced and guided through analyzing single gas detection is got across. Through researching the design of cell structure, the cell with integration and miniaturization has been devised. The way of data transmission on Controller Area Network (CAN) bus is explained. By taking Single-Chip Microcomputer (SCM) as intelligence handling, the functional block diagram of gas detection system is designed with its hardware and software system analyzed and devised. This system designed has reached the technology requirement of lower power consumption, mini-volume, big measure range, and able to realize multi-gas detection.
Assessment of Critical Events Corridors through Multivariate Cascading Outages Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Samaan, Nader A.; Diao, Ruisheng
2011-10-17
Massive blackouts of electrical power systems in North America over the past decade has focused increasing attention upon ways to identify and simulate network events that may potentially lead to widespread network collapse. This paper summarizes a method to simulate power-system vulnerability to cascading failures to a supplied set of initiating events synonymously termed as Extreme Events. The implemented simulation method is currently confined to simulating steady state power-system response to a set of extreme events. The outlined method of simulation is meant to augment and provide a new insight into bulk power transmission network planning that at present remainsmore » mainly confined to maintaining power system security for single and double component outages under a number of projected future network operating conditions. Although one of the aims of this paper is to demonstrate the feasibility of simulating network vulnerability to cascading outages, a more important goal has been to determine vulnerable parts of the network that may potentially be strengthened in practice so as to mitigate system susceptibility to cascading failures. This paper proposes to demonstrate a systematic approach to analyze extreme events and identify vulnerable system elements that may be contributing to cascading outages. The hypothesis of critical events corridors is proposed to represent repeating sequential outages that can occur in the system for multiple initiating events. The new concept helps to identify system reinforcements that planners could engineer in order to 'break' the critical events sequences and therefore lessen the likelihood of cascading outages. This hypothesis has been successfully validated with a California power system model.« less
Testing and reference model analysis of FTTH system
NASA Astrophysics Data System (ADS)
Feng, Xiancheng; Cui, Wanlong; Chen, Ying
2009-08-01
With rapid development of Internet and broadband access network, the technologies of xDSL, FTTx+LAN , WLAN have more applications, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network.. Fiber to the Home (FTTH) will be the goal of telecommunications cable broadband access. In accordance with the development trend of telecommunication services, to enhance the capacity of integrated access network, to achieve triple-play (voice, data, image), based on the existing optical Fiber to the curb (FTTC), Fiber To The Zone (FTTZ), Fiber to the Building (FTTB) user optical cable network, the optical fiber can extend to the FTTH system of end-user by using EPON technology. The article first introduced the basic components of FTTH system; and then explain the reference model and reference point for testing of the FTTH system; Finally, by testing connection diagram, the testing process, expected results, primarily analyze SNI Interface Testing, PON interface testing, Ethernet performance testing, UNI interface testing, Ethernet functional testing, PON functional testing, equipment functional testing, telephone functional testing, operational support capability testing and so on testing of FTTH system. ...
Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc
2017-01-01
Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780
Network Theory: A Primer and Questions for Air Transportation Systems Applications
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.
2004-01-01
A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.
Huang, Shu-Li; Lee, Ying-Chieh; Budd, William W; Yang, Min-Chia
2012-04-01
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.
Structural Bioinformatics of the Interactome
Petrey, Donald; Honig, Barry
2014-01-01
The last decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information, and to analyze this information so as to infer both the function of individual molecules and how they interact to modulate the behavior of biological systems. Here we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance the basic understanding of biological systems and their disregulation, and how they are being applied in drug development. PMID:24895853
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
Deep graphs—A general framework to represent and analyze heterogeneous complex systems across scales
NASA Astrophysics Data System (ADS)
Traxl, Dominik; Boers, Niklas; Kurths, Jürgen
2016-06-01
Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.
Traxl, Dominik; Boers, Niklas; Kurths, Jürgen
2016-06-01
Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.
NASA Astrophysics Data System (ADS)
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Coexistencia e integracion de comunicaciones inalambricas en sistemas de transmision opticos
NASA Astrophysics Data System (ADS)
Perez Soler, Joaquin
Current network and telecommunication systems are required to provide higher data rates in access networks to an increasing number of users. This fact is mainly due to the increase in the Internet traffic data, which is related with the higher demand of online videogames and software, the increased complexity in the content of web pages, the joint distribution of audio-visual and added-value online content, and the introduction of high-definition services and contents such as video on demand, as a result of a society increasingly more interconnected. In order to satisfy these higher data rates requirements, new techniques for the joint distribution of several wireless communication systems are proposed in this Thesis. The aim of these techniques is to facilitate the deployment of an integrated access network at the customer premises, enabling the integration of optical transmission over an optical access network and radio-frequency transmission in the same infrastructure. Two main wireless communication systems are considered in this Thesis, WiMAX (Worldwide Interoperability for Microwave Access) and UWB (Ultra-Wide Band) according to WiMedia Alliance recommendation. Comparing the bit rate and expected range, WiMAX and UWB are complementary radio technologies expected to coexist in a near future in integrated access networks. The optical access network considered in this Thesis can be regarded as a FTTH network (Fibre-to-the-Home). The wireless signals are natively transmitted over optical network, that is, without frequency upconversion and remodulation stages, over one or several optical carriers. This technology, which is known as Radio-over-Fibre (RoF), is well suited for integrated access networks. First, the requirements for the wireless convergence of services based on Multi-Band Orthogonal-Frequency Division-Multiplexing UWB (MB-OFDM UWB) and WiMAX 802.16e in Wireless Personal Area Networks (WPAN) are stated. The aim of this study is to provide relevant protection margins in order to ensure the coexistence between both technologies. The obtained protection margins are of great interest for the development of advanced interference mitigation techniques such as DAA (Detect-and-Avoid), in the framework of future cognitive radio technologies. In a second step, the wireless coexistence of MB-OFDM UWB and WiMAX technologies is analyzed from the point of view of access networks based on RoF systems. Two experimental field trials are here carried out. In the first one, the wireless convergence is evaluated in a multi-mode fibre RoF system, whereas in the second one, the RoF system is based on a standard single-mode fibre. These experimental results provide relevant fibre link transmission distances to enable the deployment of RoF networks. Moreover, a new optical transmission technique based on polarization division multiplexing is proposed and experimentally evaluated in order to ensure the wireless coexistence in RoF systems. Finally, the impact of the electro-optical Mach-Zehnder modulator is analyzed, since the dynamic range of this device limits the performance of the RoF system. Moreover, a new optical linearization technique for Mach-Zehnder modulators is proposed and evaluated in order to overcome this limitation.
Bockholt, Henry J.; Scully, Mark; Courtney, William; Rachakonda, Srinivas; Scott, Adam; Caprihan, Arvind; Fries, Jill; Kalyanam, Ravi; Segall, Judith M.; de la Garza, Raul; Lane, Susan; Calhoun, Vince D.
2009-01-01
A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining. PMID:20461147
Innovative Active Networking Services
2004-03-01
implementation of the ML programming language and runtime system. OCaml offers a programming environment that can be formally analyzed; 3. University... language such as Java or OCaml . A typical PLANet (PLAN Active network) node would look as in Figure 1. The University of Kansas /ITTC 6 Innovative... language . Hence we will be discussing it alone. 2.1.2 OCaml OCaml provides several of the design goals required for a service level language . Some of
Computation in Dynamically Bounded Asymmetric Systems
Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney
2015-01-01
Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645
Cyber-physical approach to the network-centric robotics control task
NASA Astrophysics Data System (ADS)
Muliukha, Vladimir; Ilyashenko, Alexander; Zaborovsky, Vladimir; Lukashin, Alexey
2016-10-01
Complex engineering tasks concerning control for groups of mobile robots are developed poorly. In our work for their formalization we use cyber-physical approach, which extends the range of engineering and physical methods for a design of complex technical objects by researching the informational aspects of communication and interaction between objects and with an external environment [1]. The paper analyzes network-centric methods for control of cyber-physical objects. Robots or cyber-physical objects interact with each other by transmitting information via computer networks using preemptive queueing system and randomized push-out mechanism [2],[3]. The main field of application for the results of our work is space robotics. The selection of cyber-physical systems as a special class of designed objects is due to the necessity of integrating various components responsible for computing, communications and control processes. Network-centric solutions allow using universal means for the organization of information exchange to integrate different technologies for the control system.
Neural network face recognition using wavelets
NASA Astrophysics Data System (ADS)
Karunaratne, Passant V.; Jouny, Ismail I.
1997-04-01
The recognition of human faces is a phenomenon that has been mastered by the human visual system and that has been researched extensively in the domain of computer neural networks and image processing. This research is involved in the study of neural networks and wavelet image processing techniques in the application of human face recognition. The objective of the system is to acquire a digitized still image of a human face, carry out pre-processing on the image as required, an then, given a prior database of images of possible individuals, be able to recognize the individual in the image. The pre-processing segment of the system includes several procedures, namely image compression, denoising, and feature extraction. The image processing is carried out using Daubechies wavelets. Once the images have been passed through the wavelet-based image processor they can be efficiently analyzed by means of a neural network. A back- propagation neural network is used for the recognition segment of the system. The main constraints of the system is with regard to the characteristics of the images being processed. The system should be able to carry out effective recognition of the human faces irrespective of the individual's facial-expression, presence of extraneous objects such as head-gear or spectacles, and face/head orientation. A potential application of this face recognition system would be as a secondary verification method in an automated teller machine.
Fuzzy neural network for flow estimation in sewer systems during wet weather.
Shen, Jun; Shen, Wei; Chang, Jian; Gong, Ning
2006-02-01
Estimation of the water flow from rainfall intensity during storm events is important in hydrology, sewer system control, and environmental protection. The runoff-producing behavior of a sewer system changes from one storm event to another because rainfall loss depends not only on rainfall intensities, but also on the state of the soil and vegetation, the general condition of the climate, and so on. As such, it would be difficult to obtain a precise flowrate estimation without sufficient a priori knowledge of these factors. To establish a model for flow estimation, one can also use statistical methods, such as the neural network STORMNET, software developed at Lyonnaise des Eaux, France, analyzing the relation between rainfall intensity and flowrate data of the known storm events registered in the past for a given sewer system. In this study, the authors propose a fuzzy neural network to estimate the flowrate from rainfall intensity. The fuzzy neural network combines four STORMNETs and fuzzy deduction to better estimate the flowrates. This study's system for flow estimation can be calibrated automatically by using known storm events; no data regarding the physical characteristics of the drainage basins are required. Compared with the neural network STORMNET, this method reduces the mean square error of the flow estimates by approximately 20%. Experimental results are reported herein.
Bifurcation Phenomena of Opinion Dynamics in Complex Networks
NASA Astrophysics Data System (ADS)
Guo, Long; Cai, Xu
In this paper, we study the opinion dynamics of Improved Deffuant model (IDM), where the convergence parameter μ is a function of the opposite’s degree K according to the celebrity effect, in small-world network (SWN) and scale-free network (SFN). Generically, the system undergoes a phase transition from the plurality state to the polarization state and to the consensus state as the confidence parameter ɛ increasing. Furthermore, the evolution of the steady opinion s * as a function of ɛ, and the relation between the minority steady opinion s_{*}^{min} and the individual connectivity k also have been analyzed. Our present work shows the crucial role of the confidence parameter and the complex system topology in the opinion dynamics of IDM.
NASA Astrophysics Data System (ADS)
Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.
2017-05-01
Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1987-07-01
Theoretical analysis of integrated local area network model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up during video and voice calls during periods of little movement in the images and periods of silence in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamicaly controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real-time multimedia workstation EDDY, which integrates video, voice, and data traffic flows. Protocols supporting variable-bandwidth, fixed-quality packetized video transport are described in detail.
NASA Astrophysics Data System (ADS)
Gil, Maria José Alvarez; Kulcsar, Borbala; Aksoy, Dilan
The trends in the automotive industry changed radically from the beginning of the 80s. Increasing competition, new systems and developments compelled the companies to re-evaluate and re-design their investments and processes, by extending their networks to other parts of the world in order to gain more market. This trend could be observed first in the Western-European countries and later in Eastern-Europe. With entering new areas the companies had to face with several difficulties coming inter alia from the decisions of supplier network and information system implementation. In our study we analyze the strategic decisions of major carmaker companies entering the Eastern-European market. Our research includes two case studies of the Hungarian automotive sector.
Synchronization in networks with heterogeneous coupling delays
NASA Astrophysics Data System (ADS)
Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor
2018-01-01
Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.
Reliability Modeling of Microelectromechanical Systems Using Neural Networks
NASA Technical Reports Server (NTRS)
Perera. J. Sebastian
2000-01-01
Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.
NASA Astrophysics Data System (ADS)
Sumarna; Astono, J.; Purwanto, A.; Agustika, D. K.
2018-04-01
Phonocardiograph (PCG) system consisting of an electronic stethoscope, mic condenser, mic preamp, and the battery has been developed. PCG system is used to detect heart abnormalities. Although PCG is not popular because of many things that affect its performance, in this research we try to reduce the factors that affecting its consistency To find out whether the system is repeatable and reliable the system have to be characterized first. This research aims to see whether the PCG system can provide the same results for measurements of the same patient. Characterization of the system is done by analyzing whether the PCG system can recognize the S1 and S2 part of the same person. From the recording result, S1 and S2 then transformed by using Discrete Wavelet Transform of Haar mother wavelet of level 1 and extracted the feature by using data range of approximation coefficients. The result was analyzed by using pattern recognition system of backpropagation neural network. Partially obtained data used as training data and partly used as test data. From the results of the pattern recognition system, it can be concluded that the system accuracy in recognizing S1 reach 87.5% and S2 only hit 67%.
Cequier, Ángel; Ariza-Solé, Albert; Elola, Francisco J; Fernández-Pérez, Cristina; Bernal, José L; Segura, José V; Iñiguez, Andrés; Bertomeu, Vicente
2017-03-01
To analyze the association between the development of network systems of care for ST-segment elevation myocardial infarction (STEMI) in the autonomous communities (AC) of Spain and the regional rate of percutaneous coronary intervention (PCI) and in-hospital mortality. From 2003 to 2012, data from the minimum basic data set of the Spanish taxpayer-funded health system were analyzed, including admissions from general hospitals. Diagnoses of STEMI and related procedures were codified by the International Diseases Classification. Discharge episodes (n = 302 471) were distributed in 3 groups: PCI (n = 116 621), thrombolysis (n = 46 720), or no reperfusion (n = 139 130). Crude mortality throughout the evaluation period was higher for the no-PCI or thrombolysis group (17.3%) than for PCI (4.8%) and thrombolysis (8.6%) (P < .001). For the aggregate of all communities, the PCI rate increased (21.6% in 2003 vs 54.5% in 2012; P < .001) with a decrease in risk-standardized mortality rates (10.2% in 2003; 6.8% in 2012; P < .001). Significant differences were observed in the PCI rate across the AC. The development of network systems was associated with a 50% increase in the PCI rate (P < .001) and a 14% decrease in risk-standardized mortality rates (P < .001). From 2003 to 2012, the PCI rate in STEMI substantially increased in Spain. The development of network systems was associated with an increase in the PCI rate and a decrease in in-hospital mortality. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
Developing an Approach for Analyzing and Verifying System Communication
NASA Technical Reports Server (NTRS)
Stratton, William C.; Lindvall, Mikael; Ackermann, Chris; Sibol, Deane E.; Godfrey, Sally
2009-01-01
This slide presentation reviews a project for developing an approach for analyzing and verifying the inter system communications. The motivation for the study was that software systems in the aerospace domain are inherently complex, and operate under tight constraints for resources, so that systems of systems must communicate with each other to fulfill the tasks. The systems of systems requires reliable communications. The technical approach was to develop a system, DynSAVE, that detects communication problems among the systems. The project enhanced the proven Software Architecture Visualization and Evaluation (SAVE) tool to create Dynamic SAVE (DynSAVE). The approach monitors and records low level network traffic, converting low level traffic into meaningful messages, and displays the messages in a way the issues can be detected.
Phase transitions in Pareto optimal complex networks
NASA Astrophysics Data System (ADS)
Seoane, Luís F.; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network.
Fernández-Garcia, Raul; Gil, Ignacio
2017-03-14
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks.
Liu, Meiqin; Zhang, Senlin
2008-10-01
A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.
VoIP attacks detection engine based on neural network
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Slachta, Jiri
2015-05-01
The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.
Dynamics of epidemic diseases on a growing adaptive network
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-01-01
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists. PMID:28186146
Dynamics of epidemic diseases on a growing adaptive network.
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-10
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Evolution of regulatory networks towards adaptability and stability in a changing environment
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Dynamics of epidemic diseases on a growing adaptive network
NASA Astrophysics Data System (ADS)
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-01
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Identification of hybrid node and link communities in complex networks
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-01-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010
Identification of hybrid node and link communities in complex networks.
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-02
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Identification of hybrid node and link communities in complex networks
NASA Astrophysics Data System (ADS)
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
Low-rank network decomposition reveals structural characteristics of small-world networks
NASA Astrophysics Data System (ADS)
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-12-01
Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.
Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan
2017-10-25
Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862
Investigating Cell Criticality
NASA Astrophysics Data System (ADS)
Serra, R.; Villani, M.; Damiani, C.; Graudenzi, A.; Ingrami, P.; Colacci, A.
Random Boolean networks provide a way to give a precise meaning to the notion that living beings are in a critical state. Some phenomena which are observed in real biological systems (distribution of "avalanches" in gene knock-out experiments) can be modeled using random Boolean networks, and the results can be analytically proven to depend upon the Derrida parameter, which also determines whether the network is critical. By comparing observed and simulated data one can then draw inferences about the criticality of biological cells, although with some care because of the limited number of experimental observations. The relationship between the criticality of a single network and that of a set of interacting networks, which simulate a tissue or a bacterial colony, is also analyzed by computer simulations.
NASA Astrophysics Data System (ADS)
Giraud, Francois
1999-10-01
This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as the sole sources of power, whose variations influence the system variables. Since both subsystems have different dynamics, their respective responses are expected to impact differently the whole system behavior. The dispatchability of the battery-supported system as well as its stability and reliability during gusts and/or cloud passage is also discussed. In the fifth step, the goal is to determine to what extent the overall power quality of the grid would be affected by a proliferation of Utility-interactive hybrid system and whether recourse to bulky or individual filtering and voltage controller is necessary. The final stage of the research includes a steady-state analysis of two-year operation (May 96--Apr 98) of the system, with a discussion on system reliability, on any loss of supply probability, and on the effects of the randomness in the wind and solar radiation upon the system design optimization.
Real-Time SCADA Cyber Protection Using Compression Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyle G. Roybal; Gordon H Rueff
2013-11-01
The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) has a critical mission to secure the energy infrastructure from cyber attack. Through DOE-OE’s Cybersecurity for Energy Delivery Systems (CEDS) program, the Idaho National Laboratory (INL) has developed a method to detect malicious traffic on Supervisory, Control, and Data Acquisition (SCADA) network using a data compression technique. SCADA network traffic is often repetitive with only minor differences between packets. Research performed at the INL showed that SCADA network traffic has traits desirable for using compression analysis to identify abnormal network traffic. An open source implementation of a Lempel-Ziv-Welchmore » (LZW) lossless data compression algorithm was used to compress and analyze surrogate SCADA traffic. Infected SCADA traffic was found to have statistically significant differences in compression when compared against normal SCADA traffic at the packet level. The initial analyses and results are clearly able to identify malicious network traffic from normal traffic at the packet level with a very high confidence level across multiple ports and traffic streams. Statistical differentiation between infected and normal traffic level was possible using a modified data compression technique at the 99% probability level for all data analyzed. However, the conditions tested were rather limited in scope and need to be expanded into more realistic simulations of hacking events using techniques and approaches that are better representative of a real-world attack on a SCADA system. Nonetheless, the use of compression techniques to identify malicious traffic on SCADA networks in real time appears to have significant merit for infrastructure protection.« less
A thermodynamic analysis of a novel bidirectional district heating and cooling network
Zarin Pass, R.; Wetter, M.; Piette, M. A.
2017-11-29
In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less
A thermodynamic analysis of a novel bidirectional district heating and cooling network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarin Pass, R.; Wetter, M.; Piette, M. A.
In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less