Sample records for network ann techniques

  1. Supervised Learning in CINets

    DTIC Science & Technology

    2011-07-01

    supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property

  2. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment

    NASA Astrophysics Data System (ADS)

    Sahoo, Sasmita; Jha, Madan K.

    2013-12-01

    The potential of multiple linear regression (MLR) and artificial neural network (ANN) techniques in predicting transient water levels over a groundwater basin were compared. MLR and ANN modeling was carried out at 17 sites in Japan, considering all significant inputs: rainfall, ambient temperature, river stage, 11 seasonal dummy variables, and influential lags of rainfall, ambient temperature, river stage and groundwater level. Seventeen site-specific ANN models were developed, using multi-layer feed-forward neural networks trained with Levenberg-Marquardt backpropagation algorithms. The performance of the models was evaluated using statistical and graphical indicators. Comparison of the goodness-of-fit statistics of the MLR models with those of the ANN models indicated that there is better agreement between the ANN-predicted groundwater levels and the observed groundwater levels at all the sites, compared to the MLR. This finding was supported by the graphical indicators and the residual analysis. Thus, it is concluded that the ANN technique is superior to the MLR technique in predicting spatio-temporal distribution of groundwater levels in a basin. However, considering the practical advantages of the MLR technique, it is recommended as an alternative and cost-effective groundwater modeling tool.

  3. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

    PubMed Central

    Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

  4. A novel user classification method for femtocell network by using affinity propagation algorithm and artificial neural network.

    PubMed

    Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

  5. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    PubMed

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  6. Modeling the Malaysian motor insurance claim using artificial neural network and adaptive NeuroFuzzy inference system

    NASA Astrophysics Data System (ADS)

    Mohd Yunos, Zuriahati; Shamsuddin, Siti Mariyam; Ismail, Noriszura; Sallehuddin, Roselina

    2013-04-01

    Artificial neural network (ANN) with back propagation algorithm (BP) and ANFIS was chosen as an alternative technique in modeling motor insurance claims. In particular, an ANN and ANFIS technique is applied to model and forecast the Malaysian motor insurance data which is categorized into four claim types; third party property damage (TPPD), third party bodily injury (TPBI), own damage (OD) and theft. This study is to determine whether an ANN and ANFIS model is capable of accurately predicting motor insurance claim. There were changes made to the network structure as the number of input nodes, number of hidden nodes and pre-processing techniques are also examined and a cross-validation technique is used to improve the generalization ability of ANN and ANFIS models. Based on the empirical studies, the prediction performance of the ANN and ANFIS model is improved by using different number of input nodes and hidden nodes; and also various sizes of data. The experimental results reveal that the ANFIS model has outperformed the ANN model. Both models are capable of producing a reliable prediction for the Malaysian motor insurance claims and hence, the proposed method can be applied as an alternative to predict claim frequency and claim severity.

  7. Neural networks in chemistry

    NASA Astrophysics Data System (ADS)

    Zupan, Jure

    1995-04-01

    All problems that in some way are linked to handling of multi-variate experiments versus multi-variate responses can be approached by the group of methods that has recently became known as the artificial neural network (ANN) techniques. In this lecture, the types of the problems that can be solved by ANN techniques rather than the ANN techniques themselves will be addressed first. This issue is rather important due to the fact that the ANN techniques can be used for a very broad range of problems and choosing the wrong method can often result in either a failure to produce an effective solution or in a very time consuming and ineffective handling. Among the types of problems that can be solved by different ANN techniques the classification, mapping, look-up table, and modelling will be emphasized and discussed. Because all mentioned methods can be solved by different standard techniques, special emphasis will be paid to stress the advantages and drawbacks when employing different ANN techniques. Due to the fact that the range of possible use of ANN is so broad, even a very specific problem can be solved by many different ANN architectures or even using different learning strategies within ANN. In the second part the main learning strategies and corresponding choices of ANN architectures will be discussed. In this part the parameters and some guidelines how to select the method and the design of the ANNs will be shown on the examples of reported ANN applications in chemistry. The ANN learning strategies discussed will be back-propagation of errors, the Kohonen, and the counter propagation learning. The potential user of ANN should first, consider the problem, second, he must inspect the availability of data and the data themselves to decide for which ANN method they are best suited. In this respect, the amount of data, the dimensionality of the measurement space, the form of data (alphanumeric entries, binary, real, or even mixed forms of data) are crucial. After considering all this factors, the determination of the appropriate neural network architecture can be made. Additionally, the selection the optimal ANN involves the determination of specific internal parameters like the learning rate, the momentum term, the neighbourhood function, the time dependent decrease of corrections, etc. Even after all these decisions have been made the learning procedure itself is not a straightforward task. Here, the division of the entire ensemble of data into three data sets: training, controlling and the test set are crucial. This problem is addressed as well.

  8. A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications.

    PubMed

    Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod

    2016-08-06

    In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively.

  9. A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications

    PubMed Central

    Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod

    2016-01-01

    In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively. PMID:27509495

  10. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis.

    PubMed

    Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E

    2015-01-01

    To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.

  11. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    PubMed Central

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  12. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    PubMed

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  13. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1995-01-01

    Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  14. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.

    PubMed

    Mendenhall, Jeffrey; Meiler, Jens

    2016-02-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.

  15. Improving Quantitative Structure-Activity Relationship Models using Artificial Neural Networks Trained with Dropout

    PubMed Central

    Mendenhall, Jeffrey; Meiler, Jens

    2016-01-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery (LB-CADD) pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both Enrichment false positive rate (FPR) and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22–46% over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods. PMID:26830599

  16. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    ERIC Educational Resources Information Center

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  17. Use of artificial neural networks on optical track width measurements.

    PubMed

    Smith, Richard J; See, Chung W; Somekh, Mike G; Yacoot, Andrew

    2007-08-01

    We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.

  18. Use of artificial neural networks on optical track width measurements

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2007-08-01

    We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.

  19. Using artificial neural networks (ANN) for open-loop tomography

    NASA Astrophysics Data System (ADS)

    Osborn, James; De Cos Juez, Francisco Javier; Guzman, Dani; Butterley, Timothy; Myers, Richard; Guesalaga, Andres; Laine, Jesus

    2011-09-01

    The next generation of adaptive optics (AO) systems require tomographic techniques in order to correct for atmospheric turbulence along lines of sight separated from the guide stars. Multi-object adaptive optics (MOAO) is one such technique. Here, we present a method which uses an artificial neural network (ANN) to reconstruct the target phase given off-axis references sources. This method does not require any input of the turbulence profile and is therefore less susceptible to changing conditions than some existing methods. We compare our ANN method with a standard least squares type matrix multiplication method (MVM) in simulation and find that the tomographic error is similar to the MVM method. In changing conditions the tomographic error increases for MVM but remains constant with the ANN model and no large matrix inversions are required.

  20. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1992-08-01

    Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  1. Applications of artificial neural network in AIDS research and therapy.

    PubMed

    Sardari, S; Sardari, D

    2002-01-01

    In recent years considerable effort has been devoted to applying pattern recognition techniques to the complex task of data analysis in drug research. Artificial neural networks (ANN) methodology is a modeling method with great ability to adapt to a new situation, or control an unknown system, using data acquired in previous experiments. In this paper, a brief history of ANN and the basic concepts behind the computing, the mathematical and algorithmic formulation of each of the techniques, and their developmental background is presented. Based on the abilities of ANNs in pattern recognition and estimation of system outputs from the known inputs, the neural network can be considered as a tool for molecular data analysis and interpretation. Analysis by neural networks improves the classification accuracy, data quantification and reduces the number of analogues necessary for correct classification of biologically active compounds. Conformational analysis and quantifying the components in mixtures using NMR spectra, aqueous solubility prediction and structure-activity correlation are among the reported applications of ANN as a new modeling method. Ranging from drug design and discovery to structure and dosage form design, the potential pharmaceutical applications of the ANN methodology are significant. In the areas of clinical monitoring, utilization of molecular simulation and design of bioactive structures, ANN would make the study of the status of the health and disease possible and brings their predicted chemotherapeutic response closer to reality.

  2. Neural network explanation using inversion.

    PubMed

    Saad, Emad W; Wunsch, Donald C

    2007-01-01

    An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV, a new explanation algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm, that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity-complexity tradeoff. To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem, and compared with similar algorithms using benchmark problems.

  3. Sub-0.1 μm optical track width measurement

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2005-08-01

    In this paper, we will describe a technique that combines a common path scanning optical interferometer with artificial neural networks (ANN), to perform track width measurements that are significantly beyond the capability of conventional optical systems. Artificial neural networks have been used for many different applications. In the present case, ANNs are trained using profiles of known samples obtained from the scanning interferometer. They are then applied to tracks that have not previously been exposed to the networks. This paper will discuss the impacts of various ANN configurations, and the processing of the input signal on the training of the network. The profiles of the samples, which are used as the inputs to the ANNs, are obtained with a common path scanning optical interferometer. It provides extremely repeatable measurements, with very high signal to noise ratio, both are essential for the working of the ANNs. The characteristics of the system will be described. A number of samples with line widths ranging from 60nm-3μm have been measured to test the system. The system can measure line widths down to 60nm with a standard deviation of 3nm using optical wavelength of 633nm and a system numerical aperture of 0.3. These results will be presented in detail along with a discussion of the potential of this technique.

  4. Forecasting the discomfort levels within the greater Athens area, Greece using artificial neural networks and multiple criteria analysis

    NASA Astrophysics Data System (ADS)

    Vouterakos, P. A.; Moustris, K. P.; Bartzokas, A.; Ziomas, I. C.; Nastos, P. T.; Paliatsos, A. G.

    2012-12-01

    In this work, artificial neural networks (ANNs) were developed and applied in order to forecast the discomfort levels due to the combination of high temperature and air humidity, during the hot season of the year, in eight different regions within the Greater Athens area (GAA), Greece. For the selection of the best type and architecture of ANNs-forecasting models, the multiple criteria analysis (MCA) technique was applied. Three different types of ANNs were developed and tested with the MCA method. Concretely, the multilayer perceptron, the generalized feed forward networks (GFFN), and the time-lag recurrent networks were developed and tested. Results showed that the best ANNs type performance was achieved by using the GFFN model for the prediction of discomfort levels due to high temperature and air humidity within GAA. For the evaluation of the constructed ANNs, appropriate statistical indices were used. The analysis proved that the forecasting ability of the developed ANNs models is very satisfactory at a significant statistical level of p < 0.01.

  5. Chiral topological phases from artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl

    2018-05-01

    Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.

  6. A neural network approach for image reconstruction in electron magnetic resonance tomography.

    PubMed

    Durairaj, D Christopher; Krishna, Murali C; Murugesan, Ramachandran

    2007-10-01

    An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train a three-layer sigmoidal feed-forward, supervised, ANN to perform the image reconstruction. The network learns the relationship between the 'ideal' images that are reconstructed using filtered back projection (FBP) technique and the corresponding projection data (sinograms). The input layer of the network is provided with a training set that contains projection data from various phantoms as well as in vivo objects, acquired from an EMR imager. Twenty five different network configurations are investigated to test the ability of the generalization of the network. The trained ANN then reconstructs two-dimensional temporal spatial images that present the distribution of free radicals in biological systems. Image reconstruction by the trained neural network shows better time complexity than the conventional iterative reconstruction algorithms such as multiplicative algebraic reconstruction technique (MART). The network is further explored for image reconstruction from 'noisy' EMR data and the results show better performance than the FBP method. The network is also tested for its ability to reconstruct from limited-angle EMR data set.

  7. Investigation of bus transit schedule behavior modeling using advanced techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaputapu, R.; Demetsky, M.J.

    This research focused on investigating the application of artificial neural networks (ANN) and the Box-Jenkins technique for developing and testing schedule behavior models using data obtained for a test route from Tidewater Regional Transit`s AVL system. The three ANN architectures investigated were: Feedforward Network, Elman Network and Jordan Network. In addition, five different model structures were investigated. The time-series methodology was adopted for developing the schedule behavior models. Finally, the role of a schedule behavior model within the framework of an intelligent transit management system is defined and the potential utility of the schedule behavior model is discussed using anmore » example application.« less

  8. An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment

    PubMed Central

    de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James

    2012-01-01

    In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524

  9. Verification and Validation of KBS with Neural Network Components

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Callahan, John

    1996-01-01

    Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.

  10. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    PubMed

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  11. Soft computing methods for geoidal height transformation

    NASA Astrophysics Data System (ADS)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  12. A Practically Validated Intelligent Calibration Circuit Using Optimized ANN for Flow Measurement by Venturi

    NASA Astrophysics Data System (ADS)

    Venkata, Santhosh Krishnan; Roy, Binoy Krishna

    2016-03-01

    Design of an intelligent flow measurement technique using venturi flow meter is reported in this paper. The objectives of the present work are: (1) to extend the linearity range of measurement to 100 % of full scale input range, (2) to make the measurement technique adaptive to variations in discharge coefficient, diameter ratio of venturi nozzle and pipe (β), liquid density, and liquid temperature, and (3) to achieve the objectives (1) and (2) using an optimized neural network. The output of venturi flow meter is differential pressure. It is converted to voltage by using a suitable data conversion unit. A suitable optimized artificial neural network (ANN) is added, in place of conventional calibration circuit. ANN is trained, tested with simulated data considering variations in discharge coefficient, diameter ratio between venturi nozzle and pipe, liquid density, and liquid temperature. The proposed technique is then subjected to practical data for validation. Results show that the proposed technique has fulfilled the objectives.

  13. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-05-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.

  14. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    PubMed Central

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-01-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468

  15. Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2014-01-01

    Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems.

  16. Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks.

    PubMed

    Catto, James W F; Linkens, Derek A; Abbod, Maysam F; Chen, Minyou; Burton, Julian L; Feeley, Kenneth M; Hamdy, Freddie C

    2003-09-15

    New techniques for the prediction of tumor behavior are needed, because statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. Whereas artificial neural networks (ANN), the best-studied form of AI, have been used successfully, its hidden networks remain an obstacle to its acceptance. Neuro-fuzzy modeling (NFM), another AI method, has a transparent functional layer and is without many of the drawbacks of ANN. We have compared the predictive accuracies of NFM, ANN, and traditional statistical methods, for the behavior of bladder cancer. Experimental molecular biomarkers, including p53 and the mismatch repair proteins, and conventional clinicopathological data were studied in a cohort of 109 patients with bladder cancer. For all three of the methods, models were produced to predict the presence and timing of a tumor relapse. Both methods of AI predicted relapse with an accuracy ranging from 88% to 95%. This was superior to statistical methods (71-77%; P < 0.0006). NFM appeared better than ANN at predicting the timing of relapse (P = 0.073). The use of AI can accurately predict cancer behavior. NFM has a similar or superior predictive accuracy to ANN. However, unlike the impenetrable "black-box" of a neural network, the rules of NFM are transparent, enabling validation from clinical knowledge and the manipulation of input variables to allow exploratory predictions. This technique could be used widely in a variety of areas of medicine.

  17. Classification of cardiac patient states using artificial neural networks

    PubMed Central

    Kannathal, N; Acharya, U Rajendra; Lim, Choo Min; Sadasivan, PK; Krishnan, SM

    2003-01-01

    Electrocardiogram (ECG) is a nonstationary signal; therefore, the disease indicators may occur at random in the time scale. This may require the patient be kept under observation for long intervals in the intensive care unit of hospitals for accurate diagnosis. The present study examined the classification of the states of patients with certain diseases in the intensive care unit using their ECG and an Artificial Neural Networks (ANN) classification system. The states were classified into normal, abnormal and life threatening. Seven significant features extracted from the ECG were fed as input parameters to the ANN for classification. Three neural network techniques, namely, back propagation, self-organizing maps and radial basis functions, were used for classification of the patient states. The ANN classifier in this case was observed to be correct in approximately 99% of the test cases. This result was further improved by taking 13 features of the ECG as input for the ANN classifier. PMID:19649222

  18. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  19. Biologically inspired intelligent decision making

    PubMed Central

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2014-01-01

    Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems. PMID:24335433

  20. Evaluation of a parallel implementation of the learning portion of the backward error propagation neural network: experiments in artifact identification.

    PubMed Central

    Sittig, D. F.; Orr, J. A.

    1991-01-01

    Various methods have been proposed in an attempt to solve problems in artifact and/or alarm identification including expert systems, statistical signal processing techniques, and artificial neural networks (ANN). ANNs consist of a large number of simple processing units connected by weighted links. To develop truly robust ANNs, investigators are required to train their networks on huge training data sets, requiring enormous computing power. We implemented a parallel version of the backward error propagation neural network training algorithm in the widely portable parallel programming language C-Linda. A maximum speedup of 4.06 was obtained with six processors. This speedup represents a reduction in total run-time from approximately 6.4 hours to 1.5 hours. We conclude that use of the master-worker model of parallel computation is an excellent method for obtaining speedups in the backward error propagation neural network training algorithm. PMID:1807607

  1. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials

    PubMed Central

    Asteris, Panagiotis G.; Roussis, Panayiotis C.; Douvika, Maria G.

    2017-01-01

    This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature. PMID:28598400

  2. Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique

    NASA Astrophysics Data System (ADS)

    Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.

    2018-05-01

    The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.

  3. Line width measurement below 60 nm using an optical interferometer and artificial neural network

    NASA Astrophysics Data System (ADS)

    See, Chung W.; Smith, Richard J.; Somekh, Michael G.; Yacoot, Andrew

    2007-03-01

    We have recently described a technique for optical line-width measurements. The system currently is capable of measuring line-width down to 60 nm with a precision of 2 nm, and potentially should be able to measure down to 10nm. The system consists of an ultra-stable interferometer and artificial neural networks (ANNs). The former is used to generate optical profiles which are input to the ANNs. The outputs of the ANNs are the desired sample parameters. Different types of samples have been tested with equally impressive results. In this paper we will discuss the factors that are essential to extend the application of the technique. Two of the factors are signal conditioning and sample classification. Methods, including principal component analysis, that are capable of performing these tasks will be considered.

  4. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  5. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Tiwari, R. K.; Singh, S. B.

    2010-02-01

    The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.

  6. Projecting impacts of climate change on water availability using artificial neural network techniques

    USGS Publications Warehouse

    Swain, Eric D.; Gomez-Fragoso, Julieta; Torres-Gonzalez, Sigfredo

    2017-01-01

    Lago Loíza reservoir in east-central Puerto Rico is one of the primary sources of public water supply for the San Juan metropolitan area. To evaluate and predict the Lago Loíza water budget, an artificial neural network (ANN) technique is trained to predict river inflows. A method is developed to combine ANN-predicted daily flows with ANN-predicted 30-day cumulative flows to improve flow estimates. The ANN application trains well for representing 2007–2012 and the drier 1994–1997 periods. Rainfall data downscaled from global circulation model (GCM) simulations are used to predict 2050–2055 conditions. Evapotranspiration is estimated with the Hargreaves equation using minimum and maximum air temperatures from the downscaled GCM data. These simulated 2050–2055 river flows are input to a water budget formulation for the Lago Loíza reservoir for comparison with 2007–2012. The ANN scenarios require far less computational effort than a numerical model application, yet produce results with sufficient accuracy to evaluate and compare hydrologic scenarios. This hydrologic tool will be useful for future evaluations of the Lago Loíza reservoir and water supply to the San Juan metropolitan area.

  7. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    PubMed

    Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.

  8. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques

    PubMed Central

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634

  9. An Indoor Positioning Technique Based on a Feed-Forward Artificial Neural Network Using Levenberg-Marquardt Learning Method

    NASA Astrophysics Data System (ADS)

    Pahlavani, P.; Gholami, A.; Azimi, S.

    2017-09-01

    This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.

  10. A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks

    NASA Astrophysics Data System (ADS)

    Zubaidi, Salah L.; Dooley, Jayne; Alkhaddar, Rafid M.; Abdellatif, Mawada; Al-Bugharbee, Hussein; Ortega-Martorell, Sandra

    2018-06-01

    Valid and dependable water demand prediction is a major element of the effective and sustainable expansion of municipal water infrastructures. This study provides a novel approach to quantifying water demand through the assessment of climatic factors, using a combination of a pretreatment signal technique, a hybrid particle swarm optimisation algorithm and an artificial neural network (PSO-ANN). The Singular Spectrum Analysis (SSA) technique was adopted to decompose and reconstruct water consumption in relation to six weather variables, to create a seasonal and stochastic time series. The results revealed that SSA is a powerful technique, capable of decomposing the original time series into many independent components including trend, oscillatory behaviours and noise. In addition, the PSO-ANN algorithm was shown to be a reliable prediction model, outperforming the hybrid Backtracking Search Algorithm BSA-ANN in terms of fitness function (RMSE). The findings of this study also support the view that water demand is driven by climatological variables.

  11. An Experimental Investigation into the Optimal Processing Conditions for the CO2 Laser Cladding of 20 MnCr5 Steel Using Taguchi Method and ANN

    NASA Astrophysics Data System (ADS)

    Mondal, Subrata; Bandyopadhyay, Asish.; Pal, Pradip Kumar

    2010-10-01

    This paper presents the prediction and evaluation of laser clad profile formed by means of CO2 laser applying Taguchi method and the artificial neural network (ANN). Laser cladding is one of the surface modifying technologies in which the desired surface characteristics of any component can be achieved such as good corrosion resistance, wear resistance and hardness etc. Laser is used as a heat source to melt the anti-corrosive powder of Inconel-625 (Super Alloy) to give a coating on 20 MnCr5 substrate. The parametric study of this technique is also attempted here. The data obtained from experiments have been used to develop the linear regression equation and then to develop the neural network model. Moreover, the data obtained from regression equations have also been used as supporting data to train the neural network. The artificial neural network (ANN) is used to establish the relationship between the input/output parameters of the process. The established ANN model is then indirectly integrated with the optimization technique. It has been seen that the developed neural network model shows a good degree of approximation with experimental data. In order to obtain the combination of process parameters such as laser power, scan speed and powder feed rate for which the output parameters become optimum, the experimental data have been used to develop the response surfaces.

  12. Application of the intelligent techniques in transplantation databases: a review of articles published in 2009 and 2010.

    PubMed

    Sousa, F S; Hummel, A D; Maciel, R F; Cohrs, F M; Falcão, A E J; Teixeira, F; Baptista, R; Mancini, F; da Costa, T M; Alves, D; Pisa, I T

    2011-05-01

    The replacement of defective organs with healthy ones is an old problem, but only a few years ago was this issue put into practice. Improvements in the whole transplantation process have been increasingly important in clinical practice. In this context are clinical decision support systems (CDSSs), which have reflected a significant amount of work to use mathematical and intelligent techniques. The aim of this article was to present consideration of intelligent techniques used in recent years (2009 and 2010) to analyze organ transplant databases. To this end, we performed a search of the PubMed and Institute for Scientific Information (ISI) Web of Knowledge databases to find articles published in 2009 and 2010 about intelligent techniques applied to transplantation databases. Among 69 retrieved articles, we chose according to inclusion and exclusion criteria. The main techniques were: Artificial Neural Networks (ANN), Logistic Regression (LR), Decision Trees (DT), Markov Models (MM), and Bayesian Networks (BN). Most articles used ANN. Some publications described comparisons between techniques or the use of various techniques together. The use of intelligent techniques to extract knowledge from databases of healthcare is increasingly common. Although authors preferred to use ANN, statistical techniques were equally effective for this enterprise. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A neural network for the prediction of performance parameters of transformer cores

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Booth, T.; Ilo, A.; Pfützner, H.

    1996-07-01

    The paper shows that Artificial Neural Networks (ANNs) may offer new possibilities for the prediction of transformer core performance parameters, i.e. no-load power losses and excitation. Basically this technique enables simulations with respect to different construction parameters most notably the characteristics of corner designs, i.e. the overlap length, the air gap length, and the number of steps. However, without additional physical knowledge incorporated into the ANN extrapolation beyond the training data limits restricts the predictive performance.

  14. Advanced Techniques of Artificial Networks Design for Radio Signal Detection

    NASA Astrophysics Data System (ADS)

    Danilin, S. N.; Shchanikov, S. A.; Iventev, A. A.; Zuev, A. D.

    2018-05-01

    This paper is concerned with the issue of secure radio communication of data between manned aircrafts, unmanned drones and control services. It is indicated that the use of artificial neural networks (ANN) enables correct identification of messages transmitted through radio channels and enhances identification quality by every measure. The authors designed and implemented a simulation modeling technology for ANN development, which enables signal detection with required accuracy in the context of noise jamming, natural and other types of noise.

  15. Data classification using metaheuristic Cuckoo Search technique for Levenberg Marquardt back propagation (CSLM) algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.

    2015-05-01

    A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.

  16. Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods

    NASA Astrophysics Data System (ADS)

    Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.

    2016-01-01

    According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.

  17. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  18. Optimal design approach for heating irregular-shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm-artificial neural network method

    NASA Astrophysics Data System (ADS)

    Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad

    2018-03-01

    In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.

  19. Assessing Breast Cancer Risk with an Artificial Neural Network

    PubMed

    Sepandi, Mojtaba; Taghdir, Maryam; Rezaianzadeh, Abbas; Rahimikazerooni, Salar

    2018-04-25

    Objectives: Radiologists face uncertainty in making decisions based on their judgment of breast cancer risk. Artificial intelligence and machine learning techniques have been widely applied in detection/recognition of cancer. This study aimed to establish a model to aid radiologists in breast cancer risk estimation. This incorporated imaging methods and fine needle aspiration biopsy (FNAB) for cyto-pathological diagnosis. Methods: An artificial neural network (ANN) technique was used on a retrospectively collected dataset including mammographic results, risk factors, and clinical findings to accurately predict the probability of breast cancer in individual patients. Area under the receiver-operating characteristic curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were used to evaluate discriminative performance. Result: The network incorporating the selected features performed best (AUC = 0.955). Sensitivity and specificity of the ANN were respectively calculated as 0.82 and 0.90. In addition, negative and positive predictive values were respectively computed as 0.90 and 0.80. Conclusion: ANN has potential applications as a decision-support tool to help underperforming practitioners to improve the positive predictive value of biopsy recommendations. Creative Commons Attribution License

  20. Superiority of artificial neural networks for a genetic classification procedure.

    PubMed

    Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D

    2015-08-19

    The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions.

  1. An Examination of Application of Artificial Neural Network in Cognitive Radios

    NASA Astrophysics Data System (ADS)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  2. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Panda, Rabindra K.; Pramanik, Niranjan; Bala, Biplab

    2010-06-01

    Simulation of water levels at different sections of a river using physically based flood routing models is quite cumbersome, because it requires many types of data such as hydrologic time series, river geometry, hydraulics of existing control structures and channel roughness coefficients. Normally in developing countries like India it is not easy to collect these data because of poor monitoring and record keeping. Therefore, an artificial neural network (ANN) technique is used as an effective alternative in hydrologic simulation studies. The present study aims at comparing the performance of the ANN technique with a widely used physically based hydrodynamic model in the MIKE 11 environment. The MIKE 11 hydrodynamic model was calibrated and validated for the monsoon periods (June-September) of the years 2006 and 2001, respectively. Feed forward neural network architecture with Levenberg-Marquardt (LM) back propagation training algorithm was used to train the neural network model using hourly water level data of the period June-September 2006. The trained ANN model was tested using data for the same period of the year 2001. Simulated water levels by the MIKE 11HD were compared with the corresponding water levels predicted by the ANN model. The results obtained from the ANN model were found to be much better than that of the MIKE 11HD results as indicated by the values of the goodness of fit indices used in the study. The Nash-Sutcliffe index ( E) and root mean square error (RMSE) obtained in case of the ANN model were found to be 0.8419 and 0.8939 m, respectively, during model testing, whereas in case of MIKE 11HD, the values of E and RMSE were found to be 0.7836 and 1.00 m, respectively, during model validation. The difference between the observed and simulated peak water levels obtained from the ANN model was found to be much lower than that of MIKE 11HD. The study reveals that the use of Levenberg-Marquardt algorithm with eight hidden neurons in the hidden layer is sufficient to produce satisfactory results.

  3. Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design.

    PubMed

    Huang, Ri-Bo; Du, Qi-Shi; Wei, Yu-Tuo; Pang, Zong-Wen; Wei, Hang; Chou, Kuo-Chen

    2009-02-07

    Predicting the bioactivity of peptides and proteins is an important challenge in drug development and protein engineering. In this study we introduce a novel approach, the so-called "physics and chemistry-driven artificial neural network (Phys-Chem ANN)", to deal with such a problem. Unlike the existing ANN approaches, which were designed under the inspiration of biological neural system, the Phys-Chem ANN approach is based on the physical and chemical principles, as well as the structural features of proteins. In the Phys-Chem ANN model the "hidden layers" are no longer virtual "neurons", but real structural units of proteins and peptides. It is a hybridization approach, which combines the linear free energy concept of quantitative structure-activity relationship (QSAR) with the advanced mathematical technique of ANN. The Phys-Chem ANN approach has adopted an iterative and feedback procedure, incorporating both machine-learning and artificial intelligence capabilities. In addition to making more accurate predictions for the bioactivities of proteins and peptides than is possible with the traditional QSAR approach, the Phys-Chem ANN approach can also provide more insights about the relationship between bioactivities and the structures involved than the ANN approach does. As an example of the application of the Phys-Chem ANN approach, a predictive model for the conformational stability of human lysozyme is presented.

  4. An ultra-low-voltage electronic implementation of inertial neuron model with nonmonotonous Liao's activation function.

    PubMed

    Kant, Nasir Ali; Dar, Mohamad Rafiq; Khanday, Farooq Ahmad

    2015-01-01

    The output of every neuron in neural network is specified by the employed activation function (AF) and therefore forms the heart of neural networks. As far as the design of artificial neural networks (ANNs) is concerned, hardware approach is preferred over software one because it promises the full utilization of the application potential of ANNs. Therefore, besides some arithmetic blocks, designing AF in hardware is the most important for designing ANN. While attempting to design the AF in hardware, the designs should be compatible with the modern Very Large Scale Integration (VLSI) design techniques. In this regard, the implemented designs should: only be in Metal Oxide Semiconductor (MOS) technology in order to be compatible with the digital designs, provide electronic tunability feature, and be able to operate at ultra-low voltage. Companding is one of the promising circuit design techniques for achieving these goals. In this paper, 0.5 V design of Liao's AF using sinh-domain technique is introduced. Furthermore, the function is tested by implementing inertial neuron model. The performance of the AF and inertial neuron model have been evaluated through simulation results, using the PSPICE software with the MOS transistor models provided by the 0.18-μm Taiwan Semiconductor Manufacturer Complementary Metal Oxide Semiconductor (TSM CMOS) process.

  5. Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch

    PubMed Central

    Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed

    2012-01-01

    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043

  6. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2017-05-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  7. Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.

    PubMed

    Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim

    2012-10-22

    Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.

  8. Simulation of CO2 Solubility in Polystyrene-b-Polybutadieneb-Polystyrene (SEBS) by artificial intelligence network (ANN) method

    NASA Astrophysics Data System (ADS)

    Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.

    2018-05-01

    This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.

  9. D Coordinate Transformation Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Konakoglu, B.; Cakır, L.; Gökalp, E.

    2016-10-01

    Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.

  10. A novel application of artificial neural network for wind speed estimation

    NASA Astrophysics Data System (ADS)

    Fang, Da; Wang, Jianzhou

    2017-05-01

    Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.

  11. NMR Parameters Determination through ACE Committee Machine with Genetic Implanted Fuzzy Logic and Genetic Implanted Neural Network

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa; Gholami, Amin

    2015-06-01

    Free fluid porosity and rock permeability, undoubtedly the most critical parameters of hydrocarbon reservoir, could be obtained by processing of nuclear magnetic resonance (NMR) log. Despite conventional well logs (CWLs), NMR logging is very expensive and time-consuming. Therefore, idea of synthesizing NMR log from CWLs would be of a great appeal among reservoir engineers. For this purpose, three optimization strategies are followed. Firstly, artificial neural network (ANN) is optimized by virtue of hybrid genetic algorithm-pattern search (GA-PS) technique, then fuzzy logic (FL) is optimized by means of GA-PS, and eventually an alternative condition expectation (ACE) model is constructed using the concept of committee machine to combine outputs of optimized and non-optimized FL and ANN models. Results indicated that optimization of traditional ANN and FL model using GA-PS technique significantly enhances their performances. Furthermore, the ACE committee of aforementioned models produces more accurate and reliable results compared with a singular model performing alone.

  12. A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Shen, G. Q.; Xing, Y. F.

    2014-03-01

    Based on the artificial neural network (ANN) technique, an objective sound quality evaluation (SQE) model for synthesis annoyance of vehicle interior noises is presented in this paper. According to the standard named GB/T18697, firstly, the interior noises under different working conditions of a sample vehicle are measured and saved in a noise database. Some mathematical models for loudness, sharpness and roughness of the measured vehicle noises are established and performed by Matlab programming. Sound qualities of the vehicle interior noises are also estimated by jury tests following the anchored semantic differential (ASD) procedure. Using the objective and subjective evaluation results, furthermore, an ANN-based model for synthetical annoyance evaluation of vehicle noises, so-called ANN-SAE, is developed. Finally, the ANN-SAE model is proved by some verification tests with the leave-one-out algorithm. The results suggest that the proposed ANN-SAE model is accurate and effective and can be directly used to estimate sound quality of the vehicle interior noises, which is very helpful for vehicle acoustical designs and improvements. The ANN-SAE approach may be extended to deal with other sound-related fields for product quality evaluations in SQE engineering.

  13. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  14. A hybrid deep neural network and physically based distributed model for river stage prediction

    NASA Astrophysics Data System (ADS)

    hitokoto, Masayuki; sakuraba, Masaaki

    2016-04-01

    We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network architecture of the ANN model, sensitivity analysis was done by the case study approach. The prediction result was evaluated by the superior 4 flood events by the leave-one-out cross validation. The prediction result of the basic 4 layer ANN was better than the conventional 3 layer ANN model. However, the result did not reproduce well the biggest flood event, supposedly because the lack of the sufficient high-water level flood event in the training data. The result of the hybrid model outperforms the basic ANN model and distributed model, especially improved the performance of the basic ANN model in the biggest flood event.

  15. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  16. Quantitative structure–activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods

    PubMed Central

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure–activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7−7−1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure–activity relationship model suggested is robust and satisfactory. PMID:26600858

  17. Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques.

    PubMed

    Deeb, Omar; Shaik, Basheerulla; Agrawal, Vijay K

    2014-10-01

    Quantitative Structure-Activity Relationship (QSAR) models for binding affinity constants (log Ki) of 78 flavonoid ligands towards the benzodiazepine site of GABA (A) receptor complex were calculated using the machine learning methods: artificial neural network (ANN) and support vector machine (SVM) techniques. The models obtained were compared with those obtained using multiple linear regression (MLR) analysis. The descriptor selection and model building were performed with 10-fold cross-validation using the training data set. The SVM and MLR coefficient of determination values are 0.944 and 0.879, respectively, for the training set and are higher than those of ANN models. Though the SVM model shows improvement of training set fitting, the ANN model was superior to SVM and MLR in predicting the test set. Randomization test is employed to check the suitability of the models.

  18. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

    NASA Astrophysics Data System (ADS)

    Mandal, Sukomal; Rao, Subba; N., Harish; Lokesha

    2012-06-01

    The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

  19. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems.

    PubMed

    Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz

    2008-02-01

    A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.

  20. Use of artificial neural network for spatial rainfall analysis

    NASA Astrophysics Data System (ADS)

    Paraskevas, Tsangaratos; Dimitrios, Rozos; Andreas, Benardos

    2014-04-01

    In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County, Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural Network (ANN) that uses the feed-forward back-propagation algorithm as an alternative interpolating technique. A Geographic Information System (GIS) was utilized to process the data derived by the ANN and to create a continuous surface that represented the spatial mean annual precipitation distribution. The ANN introduced an optimization procedure that was implemented during training, adjusting the hidden number of neurons and the convergence of the ANN in order to select the best network architecture. The performance of the ANN was evaluated using three standard statistical evaluation criteria applied to the study area and showed good performance. The outcomes were also compared with the results obtained from a previous study in the area of research which used a linear regression analysis for the estimation of the mean annual precipitation values giving more accurate results. The information and knowledge gained from the present study could improve the accuracy of analysis concerning hydrology and hydrogeological models, ground water studies, flood related applications and climate analysis studies.

  1. Comparison of hybrid spectral-decomposition artificial neural network models for understanding climatic forcing of groundwater levels

    NASA Astrophysics Data System (ADS)

    Abrokwah, K.; O'Reilly, A. M.

    2017-12-01

    Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.

  2. Comparison of Conceptual and Neural Network Rainfall-Runoff Models

    NASA Astrophysics Data System (ADS)

    Vidyarthi, V. K.; Jain, A.

    2014-12-01

    Rainfall-runoff (RR) model is a key component of any water resource application. There are two types of techniques usually employed for RR modeling: physics based and data-driven techniques. Although the physics based models have been used for operational purposes for a very long time, they provide only reasonable accuracy in modeling and forecasting. On the other hand, the Artificial Neural Networks (ANNs) have been reported to provide superior modeling performance; however, they have not been acceptable by practitioners, decision makers and water resources engineers as operational tools. The ANNs one of the data driven techniques, became popular for efficient modeling of the complex natural systems in the last couple of decades. In this paper, the comparative results for conceptual and ANN models in RR modeling are presented. The conceptual models were developed by the use of rainfall-runoff library (RRL) and genetic algorithm (GA) was used for calibration of these models. Feed-forward neural network model structure trained by Levenberg-Marquardt (LM) training algorithm has been adopted here to develop all the ANN models. The daily rainfall, runoff and various climatic data derived from Bird creek basin, Oklahoma, USA were employed to develop all the models included here. Daily potential evapotranspiration (PET), which was used in conceptual model development, was calculated by the use of Penman equation. The input variables were selected on the basis of correlation analysis. The performance evaluation statistics such as average absolute relative error (AARE), Pearson's correlation coefficient (R) and threshold statistics (TS) were used for assessing the performance of all the models developed here. The results obtained in this study show that the ANN models outperform the conventional conceptual models due to their ability to learn the non-linearity and complexity inherent in data of rainfall-runoff process in a more efficient manner. There is a strong need to carry out such studies to prove the superiority of ANN models over conventional methods in an attempt to make them acceptable by water resources community responsible for the operation of water resources systems.

  3. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.

    PubMed

    Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht

    2018-04-22

    Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Near real-time analysis of extrinsic Fabry-Perot interferometric sensors under damped vibration using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dua, Rohit; Watkins, Steve E.

    2009-03-01

    Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.

  5. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  6. Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN)

    NASA Astrophysics Data System (ADS)

    Salleh, S. A.; Rahman, A. S. A. Abd; Othman, A. N.; Mohd, W. M. N. Wan

    2018-02-01

    As different approach produces different results, it is crucial to determine the methods that are accurate in order to perform analysis towards the event. This research aim is to compare the Rank Reciprocal (MCDM) and Artificial Neural Network (ANN) analysis techniques in determining susceptible zones of landslide hazard. The study is based on data obtained from various sources such as local authority; Dewan Bandaraya Kuala Lumpur (DBKL), Jabatan Kerja Raya (JKR) and other agencies. The data were analysed and processed using Arc GIS. The results were compared by quantifying the risk ranking and area differential. It was also compared with the zonation map classified by DBKL. The results suggested that ANN method gives better accuracy compared to MCDM with 18.18% higher accuracy assessment of the MCDM approach. This indicated that ANN provides more reliable results and it is probably due to its ability to learn from the environment thus portraying realistic and accurate result.

  7. The modelling of lead removal from water by deep eutectic solvents functionalized CNTs: artificial neural network (ANN) approach.

    PubMed

    Fiyadh, Seef Saadi; AlSaadi, Mohammed Abdulhakim; AlOmar, Mohamed Khalid; Fayaed, Sabah Saadi; Hama, Ako R; Bee, Sharifah; El-Shafie, Ahmed

    2017-11-01

    The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb 2+ . Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb 2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R 2 ) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R 2 of 0.9956 with MSE of 1.66 × 10 -4 . The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.

  8. Implementations of back propagation algorithm in ecosystems applications

    NASA Astrophysics Data System (ADS)

    Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed

    2015-05-01

    Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert ecosystem analyzer for many applications in ecological fields. The pilot ecosystem analyzer shows promising ability for generalization and requires further tuning and refinement of the basis neural network system for optimal performance.

  9. Artificial intelligence in the diagnosis of low back pain.

    PubMed

    Mann, N H; Brown, M D

    1991-04-01

    Computerized methods are used to recognize the characteristics of patient pain drawings. Artificial neural network (ANN) models are compared with expert predictions and traditional statistical classification methods when placing the pain drawings of low back pain patients into one of five clinically significant categories. A discussion is undertaken outlining the differences in these classifiers and the potential benefits of the ANN model as an artificial intelligence technique.

  10. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.

    PubMed

    Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut

    2008-09-25

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  11. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854

  12. Prediction of heat transfer coefficients for forced convective boiling of N2-hydrocarbon mixtures at cryogenic conditions using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Barroso-Maldonado, J. M.; Belman-Flores, J. M.; Ledesma, S.; Aceves, S. M.

    2018-06-01

    A key problem faced in the design of heat exchangers, especially for cryogenic applications, is the determination of convective heat transfer coefficients in two-phase flow such as condensation and boiling of non-azeotropic refrigerant mixtures. This paper proposes and evaluates three models for estimating the convective coefficient during boiling. These models are developed using computational intelligence techniques. The performance of the proposed models is evaluated using the mean relative error (mre), and compared to two existing models: the modified Granryd's correlation and the Silver-Bell-Ghaly method. The three proposed models are distinguished by their architecture. The first is based on directly measured parameters (DMP-ANN), the second is based on equivalent Reynolds and Prandtl numbers (eq-ANN), and the third on effective Reynolds and Prandtl numbers (eff-ANN). The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.

  13. Computer vision-based method for classification of wheat grains using artificial neural network.

    PubMed

    Sabanci, Kadir; Kayabasi, Ahmet; Toktas, Abdurrahim

    2017-06-01

    A simplified computer vision-based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high-resolution camera and subjected to pre-processing. The main visual features of four dimensions, three colors and five textures are acquired using image-processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. Seven input parameters that are most effective on the classifying results are determined using the correlation-based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10 -6 by the simplified ANN model. This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia

    NASA Astrophysics Data System (ADS)

    Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg

    2013-03-01

    Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.

  15. Acquaintance to Artificial Neural Networks and use of artificial intelligence as a diagnostic tool for tuberculosis: A review.

    PubMed

    Dande, Payal; Samant, Purva

    2018-01-01

    Tuberculosis [TB] has afflicted numerous nations in the world. As per a report by the World Health Organization [WHO], an estimated 1.4 million TB deaths in 2015 and an additional 0.4 million deaths resulting from TB disease among people living with HIV, were observed. Most of the TB deaths can be prevented if it is detected at an early stage. The existing processes of diagnosis like blood tests or sputum tests are not only tedious but also take a long time for analysis and cannot differentiate between different drug resistant stages of TB. The need to find newer prompt methods for disease detection has been aided by the latest Artificial Intelligence [AI] tools. Artificial Neural Network [ANN] is one of the important tools that is being used widely in diagnosis and evaluation of medical conditions. This review aims at providing brief introduction to various AI tools that are used in TB detection and gives a detailed description about the utilization of ANN as an efficient diagnostic technique. The paper also provides a critical assessment of ANN and the existing techniques for their diagnosis of TB. Researchers and Practitioners in the field are looking forward to use ANN and other upcoming AI tools such as Fuzzy-logic, genetic algorithms and artificial intelligence simulation as a promising current and future technology tools towards tackling the global menace of Tuberculosis. Latest advancements in the diagnostic field include the combined use of ANN with various other AI tools like the Fuzzy-logic, which has led to an increase in the efficacy and specificity of the diagnostic techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Application of an artificial neural network to pump card diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashenayi, K.; Lea, J.F.; Kemp, F.

    1994-12-01

    Beam pumping is the most frequently used artificial-lift technique for oil production. Downhole pump cards are used to evaluate performance of the pumping unit. Pump cards can be generated from surface dynamometer cards using a 1D wave equation with viscous damping, as suggested by Gibbs and Neely. Pump cards contain significant information describing the behavior of the pump. However, interpretation of these cards is tedious and time-consuming; hence, an automated system capable of interpreting these cards could speed interpretation and warn of pump failures. This work presents the results of a DOS-based computer program capable of correctly classifying pump cards.more » The program uses a hybrid artificial neural network (ANN) to identify significant features of the pump card. The hybrid ANN uses classical and sinusoidal perceptrons. The network is trained using an error-back-propagation technique. The program correctly identified pump problems for more than 180 different training and test pump cards. The ANN takes a total of 80 data points as input. Sixty data points are collected from the pump card perimeter, and the remaining 20 data points represent the slope at selected points on the pump card perimeter. Pump problem conditions are grouped into 11 distinct classes. The network is capable of identifying one or more of these problem conditions for each pump card. Eight examples are presented and discussed.« less

  17. Neurocontrol and fuzzy logic: Connections and designs

    NASA Technical Reports Server (NTRS)

    Werbos, Paul J.

    1991-01-01

    Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.

  18. Locating Groundwater Pollution Source using Breakthrough Curve Characteristics and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Jain, A.; Srivastava, R.

    2005-12-01

    The identification of pollution sources in aquifers is an important area of research not only for the hydrologists but also for the local and Federal agencies and defense organizations. Once the data in terms of pollutant concentration measurements at observation wells become known, it is important to identify the polluting industry in order to implement punitive or remedial measures. Traditionally, hydrologists have relied on the conceptual methods for the identification of groundwater pollution sources. The problem of identification of groundwater pollution sources using the conceptual methods requires a thorough understanding of the groundwater flow and contaminant transport processes and inverse modeling procedures that are highly complex and difficult to implement. Recently, the soft computing techniques, such as artificial neural networks (ANNs) and genetic algorithms, have provided an attractive and easy to implement alternative to solve complex problems efficiently. Some researchers have used ANNs for the identification of pollution sources in aquifers. A major problem with most previous studies using ANNs has been the large size of the neural networks that are needed to model the inverse problem. The breakthrough curves at an observation well may consist of hundreds of concentration measurements, and presenting all of them to the input layer of an ANN not only results in humongous networks but also requires large amount of training and testing data sets to develop the ANN models. This paper presents the results of a study aimed at using certain characteristics of the breakthrough curves and ANNs for determining the distance of the pollution source from a given observation well. Two different neural network models are developed that differ in the manner of characterizing the breakthrough curves. The first ANN model uses five parameters, similar to the synthetic unit hydrograph parameters, to characterize the breakthrough curves. The five parameters employed are peak concentration, time to peak concentration, the widths of the breakthrough curves at 50% and 75% of the peak concentration, and the time base of the breakthrough curve. The second ANN model employs only the first four parameters leaving out the time base. The measurement of breakthrough curve at an observation well involves very high costs in sample collection at suitable time intervals and analysis for various contaminants. The receding portions of the breakthrough curves are normally very long and excluding the time base from modeling would result in considerable cost savings. The feed-forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithm, are employed in this study. The ANN models for the two approaches were developed using simulated data generated for conservative pollutant transport through a homogeneous aquifer. A new approach for ANN training using back-propagation is employed that considers two different error statistics to prevent over-training and under-training of the ANNs. The preliminary results indicate that the ANNs are able to identify the location of the pollution source very efficiently from both the methods of the breakthrough curves characterization.

  19. Non-Invasive Detection of CH-46 AFT Gearbox Faults Using Digital Pattern Recognition and Classification Techniques

    DTIC Science & Technology

    1999-05-05

    processing and artificial neural network (ANN) technology. The detector will classify incipient faults based on real-tine vibration data taken from the...provided the vibration data necessary to develop and test the feasibility of en artificial neural network for fault classification. This research

  20. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    USDA-ARS?s Scientific Manuscript database

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  1. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  2. Artificial Intelligence Techniques to Optimize the EDC/NHS-Mediated Immobilization of Cellulase on Eudragit L-100

    PubMed Central

    Zhang, Yu; Xu, Jing-Liang; Yuan, Zhen-Hong; Qi, Wei; Liu, Yun-Yun; He, Min-Chao

    2012-01-01

    Two artificial intelligence techniques, namely artificial neural network (ANN) and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R2 = 0.99). Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful. PMID:22942683

  3. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks

    PubMed Central

    Mostafa, Hesham; Pedroni, Bruno; Sheik, Sadique; Cauwenberghs, Gert

    2017-01-01

    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks. PMID:28932180

  4. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks.

    PubMed

    Mostafa, Hesham; Pedroni, Bruno; Sheik, Sadique; Cauwenberghs, Gert

    2017-01-01

    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.

  5. Digital Family History Data Mining with Neural Networks: A Pilot Study.

    PubMed

    Hoyt, Robert; Linnville, Steven; Thaler, Stephen; Moore, Jeffrey

    2016-01-01

    Following the passage of the Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, electronic health records were widely adopted by eligible physicians and hospitals in the United States. Stage 2 meaningful use menu objectives include a digital family history but no stipulation as to how that information should be used. A variety of data mining techniques now exist for these data, which include artificial neural networks (ANNs) for supervised or unsupervised machine learning. In this pilot study, we applied an ANN-based simulation to a previously reported digital family history to mine the database for trends. A graphical user interface was created to display the input of multiple conditions in the parents and output as the likelihood of diabetes, hypertension, and coronary artery disease in male and female offspring. The results of this pilot study show promise in using ANNs to data mine digital family histories for clinical and research purposes.

  6. The use of wavelet packet transform and artificial neural networks in analysis and classification of dysphonic voices.

    PubMed

    Crovato, César David Paredes; Schuck, Adalberto

    2007-10-01

    This paper presents a dysphonic voice classification system using the wavelet packet transform and the best basis algorithm (BBA) as dimensionality reductor and 06 artificial neural networks (ANN) acting as specialist systems. Each ANN was a 03-layer multilayer perceptron with 64 input nodes, 01 output node and in the intermediary layer the number of neurons depends on the related training pathology group. The dysphonic voice database was separated in five pathology groups and one healthy control group. Each ANN was trained and associated with one of the 06 groups, and fed by the best base tree (BBT) nodes' entropy values, using the multiple cross validation (MCV) method and the leave-one-out (LOO) variation technique and success rates obtained were 87.5%, 95.31%, 87.5%, 100%, 96.87% and 89.06% for the groups 01 to 06, respectively.

  7. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedic, Vladimir, E-mail: vnedic@kg.ac.rs; Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs; Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs

    2014-11-15

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. Themore » output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.« less

  8. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT,more » status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation.« less

  9. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    We have tested and deployed Artificial Neural Network (ANN) data mining techniques to analyze remotely sensed multi-channel imaging data from MODIS, GOES, and AVHRR. The goal is to train the ANN to learn the signatures of wildfires in remotely sensed data in order to automate the detection process. We train the ANN using the set of human-detected wildfires in the U.S., which are provided by the Hazard Mapping System (HMS) wildfire detection group at NOAA/NESDIS. The ANN is trained to mimic the behavior of fire detection algorithms and the subjective decision- making by N O M HMS Fire Analysts. We use a local extremum search in order to isolate fire pixels, and then we extract a 7x7 pixel array around that location in 3 spectral channels. The corresponding 147 pixel values are used to populate a 147-dimensional input vector that is fed into the ANN. The ANN accuracy is tested and overfitting is avoided by using a subset of the training data that is set aside as a test data set. We have achieved an automated fire detection accuracy of 80-92%, depending on a variety of ANN parameters and for different instrument channels among the 3 satellites. We believe that this system can be deployed worldwide or for any region to detect wildfires automatically in satellite imagery of those regions. These detections can ultimately be used to provide thermal inputs to climate models.

  10. Modeling and Multiresponse Optimization for Anaerobic Codigestion of Oil Refinery Wastewater and Chicken Manure by Using Artificial Neural Network and the Taguchi Method

    PubMed Central

    Hemmat, Abbas; Kafashan, Jalal; Huang, Hongying

    2017-01-01

    To study the optimum process conditions for pretreatments and anaerobic codigestion of oil refinery wastewater (ORWW) with chicken manure, L9 (34) Taguchi's orthogonal array was applied. The biogas production (BGP), biomethane content (BMP), and chemical oxygen demand solubilization (CODS) in stabilization rate were evaluated as the process outputs. The optimum conditions were obtained by using Design Expert software (Version 7.0.0). The results indicated that the optimum conditions could be achieved with 44% ORWW, 36°C temperature, 30 min sonication, and 6% TS in the digester. The optimum BGP, BMP, and CODS removal rates by using the optimum conditions were 294.76 mL/gVS, 151.95 mL/gVS, and 70.22%, respectively, as concluded by the experimental results. In addition, the artificial neural network (ANN) technique was implemented to develop an ANN model for predicting BGP yield and BMP content. The Levenberg-Marquardt algorithm was utilized to train ANN, and the architecture of 9-19-2 for the ANN model was obtained. PMID:29441352

  11. Monthly monsoon rainfall forecasting using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ganti, Ravikumar

    2014-10-01

    Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.

  12. On the classification techniques in data mining for microarray data classification

    NASA Astrophysics Data System (ADS)

    Aydadenta, Husna; Adiwijaya

    2018-03-01

    Cancer is one of the deadly diseases, according to data from WHO by 2015 there are 8.8 million more deaths caused by cancer, and this will increase every year if not resolved earlier. Microarray data has become one of the most popular cancer-identification studies in the field of health, since microarray data can be used to look at levels of gene expression in certain cell samples that serve to analyze thousands of genes simultaneously. By using data mining technique, we can classify the sample of microarray data thus it can be identified with cancer or not. In this paper we will discuss some research using some data mining techniques using microarray data, such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5, and simulation of Random Forest algorithm with technique of reduction dimension using Relief. The result of this paper show performance measure (accuracy) from classification algorithm (SVM, ANN, Naive Bayes, kNN, C4.5, and Random Forets).The results in this paper show the accuracy of Random Forest algorithm higher than other classification algorithms (Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5). It is hoped that this paper can provide some information about the speed, accuracy, performance and computational cost generated from each Data Mining Classification Technique based on microarray data.

  13. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations.

    PubMed

    León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa

    2018-01-01

    This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.

  14. Modelling local GPS/levelling geoid undulations using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Saka, M. H.

    2005-04-01

    The use of GPS for establishing height control in an area where levelling data are available can involve the so-called GPS/levelling technique. Modelling of the GPS/levelling geoid undulations has usually been carried out using polynomial surface fitting, least-squares collocation (LSC) and finite-element methods. Artificial neural networks (ANNs) have recently been used for many investigations, and proven to be effective in solving complex problems represented by noisy and missing data. In this study, a feed-forward ANN structure, learning the characteristics of the training data through the back-propagation algorithm, is employed to model the local GPS/levelling geoid surface. The GPS/levelling geoid undulations for Istanbul, Turkey, were estimated from GPS and precise levelling measurements obtained during a field study in the period 1998-99. The results are compared to those produced by two well-known conventional methods, namely polynomial fitting and LSC, in terms of root mean square error (RMSE) that ranged from 3.97 to 5.73 cm. The results show that ANNs can produce results that are comparable to polynomial fitting and LSC. The main advantage of the ANN-based surfaces seems to be the low deviations from the GPS/levelling data surface, which is particularly important for distorted levelling networks.

  15. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh R., V.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  16. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    PubMed

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  17. Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data

    NASA Astrophysics Data System (ADS)

    Pereira Filho, Augusto José; dos Santos, Cláudia Cristina

    2006-02-01

    Artificial neural networks (ANN) are widely used in a myriad of fields of research and development, including the predictability of time series. This work is concerned with one of such applications to simulate and to forecast stage level and streamflow at the Tamanduateí river watershed, one of the main tributaries of the Alto Tietê river watershed in São Paulo State, Brazil. This heavily urbanized watershed is within the Metropolitan Area of São Paulo (MASP) where recurrent flash floods affect a population of more than 17 million inhabitants. Flash floods events between 1991 and 1995 were selected and divided up into three groups for training, verification and forecasting purposes. Weather radar rainfall estimation and telemetric stage level and streamflow data were input to a three-layer feed forward ANN trained with the Linear Least Square Simplex training algorithm (LLSSIM) by Hsu et al. [Hsu, K.L., Gupta, H.V., Sorooshian, S., 1996. A superior training strategy for three-layer feed forward artificial neural networks. Tucson, University of Arizona. (Technique report, HWR no. 96-030, Department of Hydrology and Water Resources)]. The performance of the ANN is improved by 40% when either streamflow or stage level were input together with the rainfall. The ANN simulated flood waves tend to be dominated by phase errors. The ANN showed slightly better results then a multi-parameter auto-regression model and indicates its usefulness in flash flood forecasting.

  18. Investigation of Error Patterns in Geographical Databases

    NASA Technical Reports Server (NTRS)

    Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.

  19. Scaling of counter-current imbibition recovery curves using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud

    2018-06-01

    Scaling imbibition curves are of great importance in the characterization and simulation of oil production from naturally fractured reservoirs. Different parameters such as matrix porosity and permeability, oil and water viscosities, matrix dimensions, and oil/water interfacial tensions have an effective on the imbibition process. Studies on the scaling imbibition curves along with the consideration of different assumptions have resulted in various scaling equations. In this work, using an artificial neural network (ANN) method, a novel technique is presented for scaling imbibition recovery curves, which can be used for scaling the experimental and field-scale imbibition cases. The imbibition recovery curves for training and testing the neural network were gathered through the simulation of different scenarios using a commercial reservoir simulator. In this ANN-based method, six parameters were assumed to have an effect on the imbibition process and were considered as the inputs for training the network. Using the ‘Bayesian regularization’ training algorithm, the network was trained and tested. Training and testing phases showed superior results in comparison with the other scaling methods. It is concluded that using the new technique is useful for scaling imbibition recovery curves, especially for complex cases, for which the common scaling methods are not designed.

  20. Multiscale Bayesian neural networks for soil water content estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.

    2008-08-01

    Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil hydraulic parameters at the local/fine scale from soil physical properties at coarser-scale and across different spatial extents. This approach could potentially be used for soil hydraulic properties estimation and downscaling.

  1. Analysing 21cm signal with artificial neural network

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Hayato; a Semelin, Benoit

    2018-05-01

    The 21cm signal at epoch of reionization (EoR) should be observed within next decade. We expect that cosmic 21cm signal at the EoR provides us both cosmological and astrophysical information. In order to extract fruitful information from observation data, we need to develop inversion method. For such a method, we introduce artificial neural network (ANN) which is one of the machine learning techniques. We apply the ANN to inversion problem to constrain astrophysical parameters from 21cm power spectrum. We train the architecture of the neural network with 70 training datasets and apply it to 54 test datasets with different value of parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameter sets at a given redshift and also find that the accuracy of reconstruction is improved by increasing the number of given redshifts. We conclude that the ANN is viable inversion method whose main strength is that they require a sparse extrapolation of the parameter space and thus should be usable with full simulation.

  2. Predicting high-risk preterm birth using artificial neural networks.

    PubMed

    Catley, Christina; Frize, Monique; Walker, C Robin; Petriu, Dorina C

    2006-07-01

    A reengineered approach to the early prediction of preterm birth is presented as a complimentary technique to the current procedure of using costly and invasive clinical testing on high-risk maternal populations. Artificial neural networks (ANNs) are employed as a screening tool for preterm birth on a heterogeneous maternal population; risk estimations use obstetrical variables available to physicians before 23 weeks gestation. The objective was to assess if ANNs have a potential use in obstetrical outcome estimations in low-risk maternal populations. The back-propagation feedforward ANN was trained and tested on cases with eight input variables describing the patient's obstetrical history; the output variables were: 1) preterm birth; 2) high-risk preterm birth; and 3) a refined high-risk preterm birth outcome excluding all cases where resuscitation was delivered in the form of free flow oxygen. Artificial training sets were created to increase the distribution of the underrepresented class to 20%. Training on the refined high-risk preterm birth model increased the network's sensitivity to 54.8%, compared to just over 20% for the nonartificially distributed preterm birth model.

  3. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development.

    PubMed

    Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana

    2016-01-01

    This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.

  4. Overview of artificial neural networks.

    PubMed

    Zou, Jinming; Han, Yi; So, Sung-Sau

    2008-01-01

    The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.

  5. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study.

    PubMed

    Li, Qiongge; Chan, Maria F

    2017-01-01

    Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.

  6. Supervised Machine Learning for Regionalization of Environmental Data: Distribution of Uranium in Groundwater in Ukraine

    NASA Astrophysics Data System (ADS)

    Govorov, Michael; Gienko, Gennady; Putrenko, Viktor

    2018-05-01

    In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.

  7. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data

    NASA Astrophysics Data System (ADS)

    Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na

    2016-05-01

    Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

  8. Artificial neural networks in gynaecological diseases: current and potential future applications.

    PubMed

    Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios

    2010-10-01

    Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.

  9. Data Assimilation using Artificial Neural Networks for the global FSU atmospheric model

    NASA Astrophysics Data System (ADS)

    Cintra, Rosangela; Cocke, Steven; Campos Velho, Haroldo

    2015-04-01

    Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. Uncertainty is the characteristic of the atmosphere, coupled with inevitable inadequacies in observations and computer models and increase errors in weather forecasts. Data assimilation is a technique to generate an initial condition to a weather or climate forecasts. This paper shows the results of a data assimilation technique using artificial neural networks (ANN) to obtain the initial condition to the atmospheric general circulation model (AGCM) for the Florida State University in USA. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model with a vertical sigma coordinate. All variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. The LETKF data assimilation experiments are based in synthetic observations data (surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity). For the ANN data assimilation scheme, we use Multilayer Perceptron (MLP-DA) with supervised training algorithm where ANN receives input vectors with their corresponding response or target output from LETKF scheme. An automatic tool that finds the optimal representation to these ANNs configures the MLP-DA in this experiment. After the training process, the scheme MLP-DA is seen as a function of data assimilation where the inputs are observations and a short-range forecast to each model grid point. The ANNs were trained with data from each month of 2001, 2002, 2003, and 2004. A hind-casting experiment for data assimilation cycle using MLP-DA was performed with synthetic observations for January 2005. The numerical results demonstrate the effectiveness of the ANN technique for atmospheric data assimilation, since the analyses (initial conditions) have similar quality to LETKF analyses. The major advantage of using MLP-DA is the computational performance, which is faster than LETKF. The reduced computational cost allows the inclusion of greater number of observations and new data sources and the use of high resolution of models, which ensures the accuracy of analysis and of its weather prediction

  10. A Squeezed Artificial Neural Network for the Symbolic Network Reliability Functions of Binary-State Networks.

    PubMed

    Yeh, Wei-Chang

    Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.

  11. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output.more » (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)« less

  12. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    PubMed

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  13. Detection of Wildfires with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Umphlett, B.; Leeman, J.; Morrissey, M. L.

    2011-12-01

    Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty network parameters were recorded to characterize performance. These parameters were plotted with various data display techniques to determine which network configuration was not only most accurate in fire classification, but also the most computationally efficient. The most accurate fire classification network used all six channels of AVHRR data to achieve an accuracy ranging from 73-90%.

  14. An artificial neural network method for lumen and media-adventitia border detection in IVUS.

    PubMed

    Su, Shengran; Hu, Zhenghui; Lin, Qiang; Hau, William Kongto; Gao, Zhifan; Zhang, Heye

    2017-04-01

    Intravascular ultrasound (IVUS) has been well recognized as one powerful imaging technique to evaluate the stenosis inside the coronary arteries. The detection of lumen border and media-adventitia (MA) border in IVUS images is the key procedure to determine the plaque burden inside the coronary arteries, but this detection could be burdensome to the doctor because of large volume of the IVUS images. In this paper, we use the artificial neural network (ANN) method as the feature learning algorithm for the detection of the lumen and MA borders in IVUS images. Two types of imaging information including spatial, neighboring features were used as the input data to the ANN method, and then the different vascular layers were distinguished accordingly through two sparse auto-encoders and one softmax classifier. Another ANN was used to optimize the result of the first network. In the end, the active contour model was applied to smooth the lumen and MA borders detected by the ANN method. The performance of our approach was compared with the manual drawing method performed by two IVUS experts on 461 IVUS images from four subjects. Results showed that our approach had a high correlation and good agreement with the manual drawing results. The detection error of the ANN method close to the error between two groups of manual drawing result. All these results indicated that our proposed approach could efficiently and accurately handle the detection of lumen and MA borders in the IVUS images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator

    PubMed Central

    Bouallègue, Soufiene; Garrido, Aitor J.; Haggège, Joseph

    2018-01-01

    Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances. PMID:29695127

  16. Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.

    PubMed

    Ghefiri, Khaoula; Bouallègue, Soufiene; Garrido, Izaskun; Garrido, Aitor J; Haggège, Joseph

    2018-04-24

    Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.

  17. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition.

    PubMed

    Wang, Wen-chuan; Chau, Kwok-wing; Qiu, Lin; Chen, Yang-bo

    2015-05-01

    Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Artificial Neural Networks: A New Approach for Predicting Application Behavior. AIR 2001 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…

  19. Learning-based computing techniques in geoid modeling for precise height transformation

    NASA Astrophysics Data System (ADS)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  20. Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Jintao, Xue; Liming, Ye; Yufei, Liu; Chunyan, Li; Han, Chen

    2017-05-01

    This research was to develop a method for noninvasive and fast blood glucose assay in vivo. Near-infrared (NIR) spectroscopy, a more promising technique compared to other methods, was investigated in rats with diabetes and normal rats. Calibration models are generated by two different multivariate strategies: partial least squares (PLS) as linear regression method and artificial neural networks (ANN) as non-linear regression method. The PLS model was optimized individually by considering spectral range, spectral pretreatment methods and number of model factors, while the ANN model was studied individually by selecting spectral pretreatment methods, parameters of network topology, number of hidden neurons, and times of epoch. The results of the validation showed the two models were robust, accurate and repeatable. Compared to the ANN model, the performance of the PLS model was much better, with lower root mean square error of validation (RMSEP) of 0.419 and higher correlation coefficients (R) of 96.22%.

  1. System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue

    2017-09-01

    A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.

  2. Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi-Qun; Hu, Sha; Liu, Jun; Zhang, Qi-Jun

    2011-03-01

    In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. Project supported by the National Natural Science Foundation of China (Grant No. 60776052).

  3. Development of metamodels for predicting aerosol dispersion in ventilated spaces

    NASA Astrophysics Data System (ADS)

    Hoque, Shamia; Farouk, Bakhtier; Haas, Charles N.

    2011-04-01

    Artificial neural network (ANN) based metamodels were developed to describe the relationship between the design variables and their effects on the dispersion of aerosols in a ventilated space. A Hammersley sequence sampling (HSS) technique was employed to efficiently explore the multi-parameter design space and to build numerical simulation scenarios. A detailed computational fluid dynamics (CFD) model was applied to simulate these scenarios. The results derived from the CFD simulations were used to train and test the metamodels. Feed forward ANN's were developed to map the relationship between the inputs and the outputs. The predictive ability of the neural network based metamodels was compared to linear and quadratic metamodels also derived from the same CFD simulation results. The ANN based metamodel performed well in predicting the independent data sets including data generated at the boundaries. Sensitivity analysis showed that particle tracking time to residence time and the location of input and output with relation to the height of the room had more impact than the other dimensionless groups on particle behavior.

  4. Broiler weight estimation based on machine vision and artificial neural network.

    PubMed

    Amraei, S; Abdanan Mehdizadeh, S; Salari, S

    2017-04-01

    1. Machine vision and artificial neural network (ANN) procedures were used to estimate live body weight of broiler chickens in 30 1-d-old broiler chickens reared for 42 d. 2. Imaging was performed two times daily. To localise chickens within the pen, an ellipse fitting algorithm was used and the chickens' head and tail removed using the Chan-Vese method. 3. The correlations between the body weight and 6 physical extracted features indicated that there were strong correlations between body weight and the 5 features including area, perimeter, convex area, major and minor axis length. 5. According to statistical analysis there was no significant difference between morning and afternoon data over 42 d. 6. In an attempt to improve the accuracy of live weight approximation different ANN techniques, including Bayesian regulation, Levenberg-Marquardt, Scaled conjugate gradient and gradient descent were used. Bayesian regulation with R 2 value of 0.98 was the best network for prediction of broiler weight. 7. The accuracy of the machine vision technique was examined and most errors were less than 50 g.

  5. Ion track based tunable device as humidity sensor: a neural network approach

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the linear regression model. This demonstrates the suitability of neural networks to perform such modeling.

  6. A comparison of non-parametric techniques to estimate incident photosynthetically active radiation from MODIS for monitoring primary production

    NASA Astrophysics Data System (ADS)

    Brown, M. G. L.; He, T.; Liang, S.

    2016-12-01

    Satellite-derived estimates of incident photosynthetically active radiation (PAR) can be used to monitor global change, are required by most terrestrial ecosystem models, and can be used to estimate primary production according to the theory of light use efficiency. Compared with parametric approaches, non-parametric techniques that include an artificial neural network (ANN), support vector machine regression (SVM), an artificial bee colony (ABC), and a look-up table (LUT) do not require many ancillary data as inputs for the estimation of PAR from satellite data. In this study, a selection of machine learning methods to estimate PAR from MODIS top of atmosphere (TOA) radiances are compared to a LUT approach to determine which techniques might best handle the nonlinear relationship between TOA radiance and incident PAR. Evaluation of these methods (ANN, SVM, and LUT) is performed with ground measurements at seven SURFRAD sites. Due to the design of the ANN, it can handle the nonlinear relationship between TOA radiance and PAR better than linearly interpolating between the values in the LUT; however, training the ANN has to be carried out on an angular-bin basis, which results in a LUT of ANNs. The SVM model may be better for incorporating multiple viewing angles than the ANN; however, both techniques require a large amount of training data, which may introduce a regional bias based on where the most training and validation data are available. Based on the literature, the ABC is a promising alternative to an ANN, SVM regression and a LUT, but further development for this application is required before concrete conclusions can be drawn. For now, the LUT method outperforms the machine-learning techniques, but future work should be directed at developing and testing the ABC method. A simple, robust method to estimate direct and diffuse incident PAR, with minimal inputs and a priori knowledge, would be very useful for monitoring global change of primary production, particularly of pastures and rangeland, which have implications for livestock and food security. Future work will delve deeper into the utility of satellite-derived PAR estimation for monitoring primary production in pasture and rangelands.

  7. Investigation of a Neural Network Implementation of a TCP Packet Anomaly Detection System

    DTIC Science & Technology

    2004-05-01

    reconnatre les nouvelles variantes d’attaque. Les réseaux de neurones artificiels (ANN) ont les capacités d’apprendre à partir de schémas et de...Computational Intelligence Techniques in Intrusion Detection Systems. In IASTED International Conference on Neural Networks and Computational Intelligence , pp...Neural Network Training: Overfitting May be Harder than Expected. In Proceedings of the Fourteenth National Conference on Artificial Intelligence , AAAI-97

  8. Identification and discrimination of oral asaccharolytic Eubacterium spp. by pyrolysis mass spectrometry and artificial neural networks.

    PubMed

    Goodacre, R; Hiom, S J; Cheeseman, S L; Murdoch, D; Weightman, A J; Wade, W G

    1996-02-01

    Curie-point pyrolysis mass spectra were obtained from 29 oral asaccharolytic Eubacterium strains and 6 abscess isolates previously identified as Peptostreptococcus heliotrinreducens. Pyrolysis mass spectrometry (PyMS) with cluster analysis was able to clarify the taxonomic position of this group of organisms. Artificial neural networks (ANNS) were then trained by supervised learning (with the back-propagation algorithm) to recognize the strains from their pyrolysis mass spectra; all Eubacterium strains were correctly identified, and the abscess isolates were identified as un-named Eubacterium taxon C2 and were distinct from the type strain of P. heliotrinreducens. These results demonstrate that the combination of PyMS and ANNs provides a rapid and accurate identification technique.

  9. Applications of Artificial Neural Networks in Structural Engineering with Emphasis on Continuum Models

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    1998-01-01

    The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.

  10. Forecasting of natural gas consumption with neural network and neuro fuzzy system

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan

    2010-05-01

    The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting

  11. Application of Two-Dimensional AWE Algorithm in Training Multi-Dimensional Neural Network Model

    DTIC Science & Technology

    2003-07-01

    hybrid scheme . the general neural network method (Table 3.1). The training process of the software- ACKNOWLEDGMENT "Neuralmodeler" is shown in Fig. 3.2...engineering. Artificial neural networks (ANNs) have emerged Training a neural network model is the key of as a powerful technique for modeling general neural...coefficients am, the derivatives method of moments (MoM). The variables in the of matrix I have to be generated . A closed form model are frequency

  12. Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction: comparison of RSM and ANN techniques.

    PubMed

    Mousavi, Seyed Mahdi; Niaei, Aligholi; Salari, Dariush; Panahi, Parvaneh Nakhostin; Samandari, Masoud

    2013-01-01

    A response surface methodology (RSM) involving a central composite design was applied to the modelling and optimization of a preparation of Mn/active carbon nanocatalysts in NH3-SCR of NO at 250 degrees C and the results were compared with the artificial neural network (ANN) predicted values. The catalyst preparation parameters, including metal loading (wt%), calcination temperature and pre-oxidization degree (v/v% HNO3) were selected as influence factors on catalyst efficiency. In the RSM model, the predicted values of NO conversion were found to be in good agreement with the experimental values. Pareto graphic analysis showed that all the chosen parameters and some of the interactions were effective on response. The optimization results showed that maximum NO conversion was achieved at the optimum conditions: 10.2 v/v% HNO3, 6.1 wt% Mn loading and calcination at 480 degrees C. The ANN model was developed by a feed-forward back propagation network with the topology 3, 8 and 1 and a Levenberg-Marquardt training algorithm. The mean square error for the ANN and RSM models were 0.339 and 1.176, respectively, and the R2 values were 0.991 and 0.972, respectively, indicating the superiority of ANN in capturing the nonlinear behaviour of the system and being accurate in estimating the values of the NO conversion.

  13. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks—a case study

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Tiwari, R. K.; Singh, S. B.

    2005-02-01

    This paper deals with the application of artificial neural networks (ANN) technique for the study of a case history using 1-D inversion of vertical electrical resistivity sounding (VES) data from the Puga valley, Kashmir, India. The study area is important for its rich geothermal resources as well as from the tectonic point of view as it is located near the collision boundary of the Indo-Asian crustal plates. In order to understand the resistivity structure and layer thicknesses, we used here three-layer feedforward neural networks to model and predict measured VES data. Three algorithms, e.g. back-propagation (BP), adaptive back-propagation (ABP) and Levenberg-Marquardt algorithm (LMA) were applied to the synthetic as well as real VES field data and efficiency of supervised training network are compared. Analyses suggest that LMA is computationally faster and give results, which are comparatively more accurate and consistent than BP and ABP. The results obtained using the ANN inversions are remarkably correlated with the available borehole litho-logs. The feasibility study suggests that ANN methods offer an excellent complementary tool for the direct detection of layered resistivity structure.

  14. Ground Motion Prediction Model Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dhanya, J.; Raghukanth, S. T. G.

    2018-03-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  15. Modification of Hazen's equation in coarse grained soils by soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Marschalko, Marian; Bednarik, Martin; Fojtova, Lucie

    2013-04-01

    Hazen first proposed a Relationship between coefficient of permeability (k) and effective grain size (d10) was first proposed by Hazen, and it was then extended by some other researchers. However many attempts were done for estimation of k, correlation coefficients (R2) of the models were generally lower than ~0.80 and whole grain size distribution curves were not included in the assessments. Soft computing techniques such as; artificial neural networks, fuzzy inference systems, genetic algorithms, etc. and their hybrids are now being successfully used as an alternative tool. In this study, use of some soft computing techniques such as Artificial Neural Networks (ANNs) (MLP, RBF, etc.) and Adaptive Neuro-Fuzzy Inference System (ANFIS) for prediction of permeability of coarse grained soils was described, and Hazen's equation was then modificated. It was found that the soft computing models exhibited high performance in prediction of permeability coefficient. However four different kinds of ANN algorithms showed similar prediction performance, results of MLP was found to be relatively more accurate than RBF models. The most reliable prediction was obtained from ANFIS model.

  16. Neural networks to classify speaker independent isolated words recorded in radio car environments

    NASA Astrophysics Data System (ADS)

    Alippi, C.; Simeoni, M.; Torri, V.

    1993-02-01

    Many applications, in particular the ones requiring nonlinear signal processing, have proved Artificial Neural Networks (ANN's) to be invaluable tools for model free estimation. The classifying abilities of ANN's are addressed by testing their performance in a speaker independent word recognition application. A real world case requiring implementation of compact integrated devices is taken into account: the classification of isolated words in radio car environment. A multispeaker database of isolated words was recorded in different environments. Data were first processed to determinate the boundaries of each word and then to extract speech features, the latter accomplished by using cepstral coefficient representation, log area ratios and filters bank techniques. Multilayered perceptron and adaptive vector quantization neural paradigms were tested to find a reasonable compromise between performances and network simplicity, fundamental requirement for the implementation of compact real time running neural devices.

  17. Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model

    NASA Astrophysics Data System (ADS)

    García-Rodríguez, M. J.; Malpica, J. A.

    2010-06-01

    This paper presents an approach for assessing earthquake-triggered landslide susceptibility using artificial neural networks (ANNs). The computational method used for the training process is a back-propagation learning algorithm. It is applied to El Salvador, one of the most seismically active regions in Central America, where the last severe destructive earthquakes occurred on 13 January 2001 (Mw 7.7) and 13 February 2001 (Mw 6.6). The first one triggered more than 600 landslides (including the most tragic, Las Colinas landslide) and killed at least 844 people. The ANN is designed and programmed to develop landslide susceptibility analysis techniques at a regional scale. This approach uses an inventory of landslides and different parameters of slope instability: slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness. The information obtained from ANN is then used by a Geographic Information System (GIS) to map the landslide susceptibility. In a previous work, a Logistic Regression (LR) was analysed with the same parameters considered in the ANN as independent variables and the occurrence or non-occurrence of landslides as dependent variables. As a result, the logistic approach determined the importance of terrain roughness and soil type as key factors within the model. The results of the landslide susceptibility analysis with ANN are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone. Finally, a comparative analysis of the ANN and LR models are made. The advantages and disadvantages of both approaches are discussed using Receiver Operating Characteristic (ROC) curves.

  18. Learning free energy landscapes using artificial neural networks.

    PubMed

    Sidky, Hythem; Whitmer, Jonathan K

    2018-03-14

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  19. Learning free energy landscapes using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Sidky, Hythem; Whitmer, Jonathan K.

    2018-03-01

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  20. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

    NASA Astrophysics Data System (ADS)

    Yousif, Adil; Elfaki, Faiz

    2017-12-01

    The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

  1. Analysis of the effects of geological and geomorphological factors on earthquake triggered landslides using artificial neural networks (ANN)

    NASA Astrophysics Data System (ADS)

    Kawabata, D.; Bandibas, J.

    2007-12-01

    The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic and geologic features, rock types and vegetative cover are important base factors of landslide occurrence. However, determining the relationship between these factors and landslide occurrence is very difficult using conventional mathematical analysis. The use of an advanced computing technique for this kind of analysis is very important. Artificial neural network (ANN) has recently been included in the list of analytical tools for a wide range of applications in the natural sciences research fields. One of the advantages of using ANN for pattern recognition is that it can handle data at any measurement scale ranging from nominal, ordinal to linear and ratio, and any form of data distribution (Wang et al., 1995). In addition, it can easily handle qualitative variables making it widely used in integrated analysis of spatial data from multiple sources for predicting and classification. This study focuses on the definition of the relationship between geological factors and landslide occurrence using artificial neural networks. The study also focuses on the effect of the DTMs (e.g. ASTER DTM, ALSM, digitized from paper map and digital photogrammetric measurement data). The main aim of the study is to generate landslide susceptibility index map using the defined relationship using ANN. Landslide data in the Chuetsu region were used in this research. The 2004 earthquake triggered many landslides in the region. The initial results of the study showed that ANN is more accurate in defining the relationship between geological and geomorphological factors and landslide occurrence. It also determined the best combination of geological and geomorphological factors that is directly related to landslide occurrence.

  2. Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering

    NASA Astrophysics Data System (ADS)

    Elangasinghe, M. A.; Singhal, N.; Dirks, K. N.; Salmond, J. A.; Samarasinghe, S.

    2014-09-01

    This paper uses artificial neural networks (ANN), combined with k-means clustering, to understand the complex time series of PM10 and PM2.5 concentrations at a coastal location of New Zealand based on data from a single site. Out of available meteorological parameters from the network (wind speed, wind direction, solar radiation, temperature, relative humidity), key factors governing the pattern of the time series concentrations were identified through input sensitivity analysis performed on the trained neural network model. The transport pathways of particulate matter under these key meteorological parameters were further analysed through bivariate concentration polar plots and k-means clustering techniques. The analysis shows that the external sources such as marine aerosols and local sources such as traffic and biomass burning contribute equally to the particulate matter concentrations at the study site. These results are in agreement with the results of receptor modelling by the Auckland Council based on Positive Matrix Factorization (PMF). Our findings also show that contrasting concentration-wind speed relationships exist between marine aerosols and local traffic sources resulting in very noisy and seemingly large random PM10 concentrations. The inclusion of cluster rankings as an input parameter to the ANN model showed a statistically significant (p < 0.005) improvement in the performance of the ANN time series model and also showed better performance in picking up high concentrations. For the presented case study, the correlation coefficient between observed and predicted concentrations improved from 0.77 to 0.79 for PM2.5 and from 0.63 to 0.69 for PM10 and reduced the root mean squared error (RMSE) from 5.00 to 4.74 for PM2.5 and from 6.77 to 6.34 for PM10. The techniques presented here enable the user to obtain an understanding of potential sources and their transport characteristics prior to the implementation of costly chemical analysis techniques or advanced air dispersion models.

  3. Securing Digital Images Integrity using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  4. A modified artificial neural network based prediction technique for tropospheric radio refractivity

    PubMed Central

    Javeed, Shumaila; Javed, Wajahat; Atif, M.; Uddin, Mueen

    2018-01-01

    Radio refractivity plays a significant role in the development and design of radio systems for attaining the best level of performance. Refractivity in the troposphere is one of the features affecting electromagnetic waves, and hence the communication system interrupts. In this work, a modified artificial neural network (ANN) based model is applied to predict the refractivity. The suggested ANN model comprises three modules: the data preparation module, the feature selection module, and the forecast module. The first module applies pre-processing to make the data compatible for the feature selection module. The second module discards irrelevant and redundant data from the input set. The third module uses ANN for prediction. The ANN model applies a sigmoid activation function and a multi-variate auto regressive model to update the weights during the training process. In this work, the refractivity is predicted and estimated based on ten years (2002–2011) of meteorological data, such as the temperature, pressure, and humidity, obtained from the Pakistan Meteorological Department (PMD), Islamabad. The refractivity is estimated using the method suggested by the International Telecommunication Union (ITU). The refractivity is predicted for the year 2012 using the database of the previous ten years, with the help of ANN. The ANN model is implemented in MATLAB. Next, the estimated and predicted refractivity levels are validated against each other. The predicted and actual values (PMD data) of the atmospheric parameters agree with each other well, and demonstrate the accuracy of the proposed ANN method. It was further found that all parameters have a strong relationship with refractivity, in particular the temperature and humidity. The refractivity values are higher during the rainy season owing to a strong association with the relative humidity. Therefore, it is important to properly cater the signal communication system during hot and humid weather. Based on the results, the proposed ANN method can be used to develop a refractivity database, which is highly important in a radio communication system. PMID:29494609

  5. Comparison of two different artificial neural networks for prostate biopsy indication in two different patient populations.

    PubMed

    Stephan, Carsten; Xu, Chuanliang; Finne, Patrik; Cammann, Henning; Meyer, Hellmuth-Alexander; Lein, Michael; Jung, Klaus; Stenman, Ulf-Hakan

    2007-09-01

    Different artificial neural networks (ANNs) using total prostate-specific antigen (PSA) and percentage of free PSA (%fPSA) have been introduced to enhance the specificity of prostate cancer detection. The applicability of independently trained ANN and logistic regression (LR) models to different populations regarding the composition (screening versus referred) and different PSA assays has not yet been tested. Two ANN and LR models using PSA (range 4 to 10 ng/mL), %fPSA, prostate volume, digital rectal examination findings, and patient age were tested. A multilayer perceptron network (MLP) was trained on 656 screening participants (Prostatus PSA assay) and another ANN (Immulite-based ANN [iANN]) was constructed on 606 multicentric urologically referred men. These and other assay-adapted ANN models, including one new iANN-based ANN, were used. The areas under the curve for the iANN (0.736) and MLP (0.745) were equal but showed no differences to %fPSA (0.725) in the Finnish group. Only the new iANN-based ANN reached a significant larger area under the curve (0.77). At 95% sensitivity, the specificities of MLP (33%) and the new iANN-based ANN (34%) were significantly better than the iANN (23%) and %fPSA (19%). Reverse methodology using the MLP model on the referred patients revealed, in contrast, a significant improvement in the areas under the curve for iANN and MLP (each 0.83) compared with %fPSA (0.70). At 90% and 95% sensitivity, the specificities of all LR and ANN models were significantly greater than those for %fPSA. The ANNs based on different PSA assays and populations were mostly comparable, but the clearly different patient composition also allowed with assay adaptation no unbiased ANN application to the other cohort. Thus, the use of ANNs in other populations than originally built is possible, but has limitations.

  6. Real-Time Smart Grids Control for Preventing Cascading Failures and Blackout using Neural Networks: Experimental Approach for N-1-1 Contingency

    NASA Astrophysics Data System (ADS)

    Zarrabian, Sina; Belkacemi, Rabie; Babalola, Adeniyi A.

    2016-12-01

    In this paper, a novel intelligent control is proposed based on Artificial Neural Networks (ANN) to mitigate cascading failure (CF) and prevent blackout in smart grid systems after N-1-1 contingency condition in real-time. The fundamental contribution of this research is to deploy the machine learning concept for preventing blackout at early stages of its occurrence and to make smart grids more resilient, reliable, and robust. The proposed method provides the best action selection strategy for adaptive adjustment of generators' output power through frequency control. This method is able to relieve congestion of transmission lines and prevent consecutive transmission line outage after N-1-1 contingency condition. The proposed ANN-based control approach is tested on an experimental 100 kW test system developed by the authors to test intelligent systems. Additionally, the proposed approach is validated on the large-scale IEEE 118-bus power system by simulation studies. Experimental results show that the ANN approach is very promising and provides accurate and robust control by preventing blackout. The technique is compared to a heuristic multi-agent system (MAS) approach based on communication interchanges. The ANN approach showed more accurate and robust response than the MAS algorithm.

  7. Predicting the Impact of Multiwalled Carbon Nanotubes on the Cement Hydration Products and Durability of Cementitious Matrix Using Artificial Neural Network Modeling Technique

    PubMed Central

    Fakhim, Babak; Hassani, Abolfazl; Rashidi, Alimorad; Ghodousi, Parviz

    2013-01-01

    In this study the feasibility of using the artificial neural networks modeling in predicting the effect of MWCNT on amount of cement hydration products and improving the quality of cement hydration products microstructures of cement paste was investigated. To determine the amount of cement hydration products thermogravimetric analysis was used. Two critical parameters of TGA test are PHPloss and CHloss. In order to model the TGA test results, the ANN modeling was performed on these parameters separately. In this study, 60% of data are used for model calibration and the remaining 40% are used for model verification. Based on the highest efficiency coefficient and the lowest root mean square error, the best ANN model was chosen. The results of TGA test implied that the cement hydration is enhanced in the presence of the optimum percentage (0.3 wt%) of MWCNT. Moreover, since the efficiency coefficient of the modeling results of CH and PHP loss in both the calibration and verification stages was more than 0.96, it was concluded that the ANN could be used as an accurate tool for modeling the TGA results. Another finding of this study was that the ANN prediction in higher ages was more precise. PMID:24489487

  8. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks.

    PubMed

    Sadrawi, Muammar; Fan, Shou-Zen; Abbod, Maysam F; Jen, Kuo-Kuang; Shieh, Jiann-Shing

    2015-01-01

    This study evaluated the depth of anesthesia (DoA) index using artificial neural networks (ANN) which is performed as the modeling technique. Totally 63-patient data is addressed, for both modeling and testing of 17 and 46 patients, respectively. The empirical mode decomposition (EMD) is utilized to purify between the electroencephalography (EEG) signal and the noise. The filtered EEG signal is subsequently extracted to achieve a sample entropy index by every 5-second signal. Then, it is combined with other mean values of vital signs, that is, electromyography (EMG), heart rate (HR), pulse, systolic blood pressure (SBP), diastolic blood pressure (DBP), and signal quality index (SQI) to evaluate the DoA index as the input. The 5 doctor scores are averaged to obtain an output index. The mean absolute error (MAE) is utilized as the performance evaluation. 10-fold cross-validation is performed in order to generalize the model. The ANN model is compared with the bispectral index (BIS). The results show that the ANN is able to produce lower MAE than BIS. For the correlation coefficient, ANN also has higher value than BIS tested on the 46-patient testing data. Sensitivity analysis and cross-validation method are applied in advance. The results state that EMG has the most effecting parameter, significantly.

  9. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks

    PubMed Central

    Sadrawi, Muammar; Fan, Shou-Zen; Abbod, Maysam F.; Jen, Kuo-Kuang; Shieh, Jiann-Shing

    2015-01-01

    This study evaluated the depth of anesthesia (DoA) index using artificial neural networks (ANN) which is performed as the modeling technique. Totally 63-patient data is addressed, for both modeling and testing of 17 and 46 patients, respectively. The empirical mode decomposition (EMD) is utilized to purify between the electroencephalography (EEG) signal and the noise. The filtered EEG signal is subsequently extracted to achieve a sample entropy index by every 5-second signal. Then, it is combined with other mean values of vital signs, that is, electromyography (EMG), heart rate (HR), pulse, systolic blood pressure (SBP), diastolic blood pressure (DBP), and signal quality index (SQI) to evaluate the DoA index as the input. The 5 doctor scores are averaged to obtain an output index. The mean absolute error (MAE) is utilized as the performance evaluation. 10-fold cross-validation is performed in order to generalize the model. The ANN model is compared with the bispectral index (BIS). The results show that the ANN is able to produce lower MAE than BIS. For the correlation coefficient, ANN also has higher value than BIS tested on the 46-patient testing data. Sensitivity analysis and cross-validation method are applied in advance. The results state that EMG has the most effecting parameter, significantly. PMID:26568957

  10. Study of complete interconnect reliability for a GaAs MMIC power amplifier

    NASA Astrophysics Data System (ADS)

    Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao

    2018-05-01

    By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.

  11. Toward automatic time-series forecasting using neural networks.

    PubMed

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  12. Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Shirvany, Yazdan; Hayati, Mohsen; Moradian, Rostam

    2008-12-01

    We present a method to solve boundary value problems using artificial neural networks (ANN). A trial solution of the differential equation is written as a feed-forward neural network containing adjustable parameters (the weights and biases). From the differential equation and its boundary conditions we prepare the energy function which is used in the back-propagation method with momentum term to update the network parameters. We improved energy function of ANN which is derived from Schrodinger equation and the boundary conditions. With this improvement of energy function we can use unsupervised training method in the ANN for solving the equation. Unsupervised training aims to minimize a non-negative energy function. We used the ANN method to solve Schrodinger equation for few quantum systems. Eigenfunctions and energy eigenvalues are calculated. Our numerical results are in agreement with their corresponding analytical solution and show the efficiency of ANN method for solving eigenvalue problems.

  13. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  14. Impact of horizontal and vertical localization scales on microwave sounder SAPHIR radiance assimilation

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, C.; Balaji, C.

    2016-05-01

    In the present study, the effect of horizontal and vertical localization scales on the assimilation of direct SAPHIR radiances is studied. An Artificial Neural Network (ANN) has been used as a surrogate for the forward radiative calculations. The training input dataset for ANN consists of vertical layers of atmospheric pressure, temperature, relative humidity and other hydrometeor profiles with 6 channel Brightness Temperatures (BTs) as output. The best neural network architecture has been arrived at, by a neuron independence study. Since vertical localization of radiance data requires weighting functions, a ANN has been trained for this purpose. The radiances were ingested into the NWP using the Ensemble Kalman Filter (EnKF) technique. The horizontal localization has been taken care of, by using a Gaussian localization function centered around the observed coordinates. Similarly, the vertical localization is accomplished by assuming a function which depends on the weighting function of the channel to be assimilated. The effect of both horizontal and vertical localizations has been studied in terms of ensemble spread in the precipitation. Aditionally, improvements in 24 hr forecast from assimilation are also reported.

  15. A Method for Determining Pseudo-measurement State Values for Topology Observability of State Estimation in Power Systems

    NASA Astrophysics Data System (ADS)

    Urano, Shoichi; Mori, Hiroyuki

    This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.

  16. Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox

    ERIC Educational Resources Information Center

    Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima

    2011-01-01

    Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…

  17. Uncertainty analysis of neural network based flood forecasting models: An ensemble based approach for constructing prediction interval

    NASA Astrophysics Data System (ADS)

    Kasiviswanathan, K.; Sudheer, K.

    2013-05-01

    Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived prediction interval for a selected hydrograph in the validation data set is presented in Fig 1. It is noted that most of the observed flows lie within the constructed prediction interval, and therefore provides information about the uncertainty of the prediction. One specific advantage of the method is that when ensemble mean value is considered as a forecast, the peak flows are predicted with improved accuracy by this method compared to traditional single point forecasted ANNs. Fig. 1 Prediction Interval for selected hydrograph

  18. Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution

    ERIC Educational Resources Information Center

    Lerner, Warren D.

    2013-01-01

    In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…

  19. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    NASA Astrophysics Data System (ADS)

    Correa, R.; Chesta, M. A.; Morales, J. R.; Dinator, M. I.; Requena, I.; Vila, I.

    2006-08-01

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.

  20. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods.

    PubMed

    Wu, P; Zeng, Y Z; Wang, C M

    2004-03-01

    Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.

  1. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.

    PubMed

    Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo

    2004-01-01

    This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.

  2. Investigation of rat exploratory behavior via evolving artificial neural networks.

    PubMed

    Costa, Ariadne de Andrade; Tinós, Renato

    2016-09-01

    Neuroevolution comprises the use of evolutionary computation to define the architecture and/or to train artificial neural networks (ANNs). This strategy has been employed to investigate the behavior of rats in the elevated plus-maze, which is a widely used tool for studying anxiety in mice and rats. Here we propose a neuroevolutionary model, in which both the weights and the architecture of artificial neural networks (our virtual rats) are evolved by a genetic algorithm. This model is an improvement of a previous model that involves the evolution of just the weights of the ANN by the genetic algorithm. In order to compare both models, we analyzed traditional measures of anxiety behavior, like the time spent and the number of entries in both open and closed arms of the maze. When compared to real rat data, our findings suggest that the results from the model introduced here are statistically better than those from other models in the literature. In this way, the neuroevolution of architecture is clearly important for the development of the virtual rats. Moreover, this technique allowed the comprehension of the importance of different sensory units and different number of hidden neurons (performing as memory) in the ANNs (virtual rats). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Vitela, Javier E.; Martinell, Julio J.

    1998-02-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN.

  4. Automatic system for radar echoes filtering based on textural features and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hedir, Mehdia; Haddad, Boualem

    2017-10-01

    Among the very popular Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been retained to process Ground Echoes (GE) on meteorological radar images taken from Setif (Algeria) and Bordeaux (France) with different climates and topologies. To achieve this task, AI techniques were associated with textural approaches. We used Gray Level Co-occurrence Matrix (GLCM) and Completed Local Binary Pattern (CLBP); both methods were largely used in image analysis. The obtained results show the efficiency of texture to preserve precipitations forecast on both sites with the accuracy of 98% on Bordeaux and 95% on Setif despite the AI technique used. 98% of GE are suppressed with SVM, this rate is outperforming ANN skills. CLBP approach associated to SVM eliminates 98% of GE and preserves precipitations forecast on Bordeaux site better than on Setif's, while it exhibits lower accuracy with ANN. SVM classifier is well adapted to the proposed application since the average filtering rate is 95-98% with texture and 92-93% with CLBP. These approaches allow removing Anomalous Propagations (APs) too with a better accuracy of 97.15% with texture and SVM. In fact, textural features associated to AI techniques are an efficient tool for incoherent radars to surpass spurious echoes.

  5. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.

    PubMed

    Agarwalla, Swapna; Sarma, Kandarpa Kumar

    2016-06-01

    Automatic Speaker Recognition (ASR) and related issues are continuously evolving as inseparable elements of Human Computer Interaction (HCI). With assimilation of emerging concepts like big data and Internet of Things (IoT) as extended elements of HCI, ASR techniques are found to be passing through a paradigm shift. Oflate, learning based techniques have started to receive greater attention from research communities related to ASR owing to the fact that former possess natural ability to mimic biological behavior and that way aids ASR modeling and processing. The current learning based ASR techniques are found to be evolving further with incorporation of big data, IoT like concepts. Here, in this paper, we report certain approaches based on machine learning (ML) used for extraction of relevant samples from big data space and apply them for ASR using certain soft computing techniques for Assamese speech with dialectal variations. A class of ML techniques comprising of the basic Artificial Neural Network (ANN) in feedforward (FF) and Deep Neural Network (DNN) forms using raw speech, extracted features and frequency domain forms are considered. The Multi Layer Perceptron (MLP) is configured with inputs in several forms to learn class information obtained using clustering and manual labeling. DNNs are also used to extract specific sentence types. Initially, from a large storage, relevant samples are selected and assimilated. Next, a few conventional methods are used for feature extraction of a few selected types. The features comprise of both spectral and prosodic types. These are applied to Recurrent Neural Network (RNN) and Fully Focused Time Delay Neural Network (FFTDNN) structures to evaluate their performance in recognizing mood, dialect, speaker and gender variations in dialectal Assamese speech. The system is tested under several background noise conditions by considering the recognition rates (obtained using confusion matrices and manually) and computation time. It is found that the proposed ML based sentence extraction techniques and the composite feature set used with RNN as classifier outperform all other approaches. By using ANN in FF form as feature extractor, the performance of the system is evaluated and a comparison is made. Experimental results show that the application of big data samples has enhanced the learning of the ASR system. Further, the ANN based sample and feature extraction techniques are found to be efficient enough to enable application of ML techniques in big data aspects as part of ASR systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Early driver fatigue detection from electroencephalography signals using artificial neural networks.

    PubMed

    King, L M; Nguyen, H T; Lal, S K L

    2006-01-01

    This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).

  7. Analysis of Closely Related Antioxidant Nutraceuticals Using the Green Analytical Methodology of ANN and Smart Spectrophotometric Methods.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2017-01-01

    Two new, simple, and specific green analytical methods are proposed: zero-crossing first-derivative and chemometric-based spectrophotometric artificial neural network (ANN). The proposed methods were used for the simultaneous estimation of two closely related antioxidant nutraceuticals, coenzyme Q10 (Q10) and vitamin E, in their mixtures and pharmaceutical preparations. The first method is based on the handling of spectrophotometric data with the first-derivative technique, in which both nutraceuticals were determined in ethanol, each at the zero crossing of the other. The amplitudes of the first-derivative spectra for Q10 and vitamin E were recorded at 285 and 235 nm respectively, and correlated with their concentrations. The linearity ranges of Q10 and vitamin E were 10-60 and 5.6-70 μg⋅mL-1, respectively. The second method, ANN, is a multivariate calibration method and it was developed and applied for the simultaneous determination of both analytes. A training set of 90 different synthetic mixtures containing Q10 and vitamin E in the ranges of 0-100 and 0-556 μg⋅mL-1, respectively, was prepared in ethanol. The absorption spectra of the training set were recorded in the spectral region of 230-300 nm. By relating the concentration sets (x-block) with their corresponding absorption data (y-block), gradient-descent back-propagation ANN calibration could be computed. To validate the proposed network, a set of 45 synthetic mixtures of the two drugs was used. Both proposed methods were successfully applied for the assay of Q10 and vitamin E in their laboratory-prepared mixtures and in their pharmaceutical tablets with excellent recovery. These methods offer advantages over other methods because of low-cost equipment, time-saving measures, and environmentally friendly materials. In addition, no chemical separation prior to analysis was needed. The ANN method was superior to the derivative technique because ANN can determine both drugs under nonlinear experimental conditions. Consequently, ANN would be the method of choice in the routine analysis of Q10 and vitamin E tablets. No interference from common pharmaceutical additives was observed. Student's t-test and the F-test were used to compare the two methods. No significant difference was recorded.

  8. Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors.

    PubMed

    Kim, Seongjung; Kim, Jongman; Ahn, Soonjae; Kim, Youngho

    2018-04-18

    Deaf people use sign or finger languages for communication, but these methods of communication are very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication restrictions. In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors. The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in 17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network (ANN)-based classifier. As the number of classifiers (1 to 8) and size of training data (50 to 300) increased, the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that of the general ANN.

  9. Daily pan evaporation modelling using a neuro-fuzzy computing technique

    NASA Astrophysics Data System (ADS)

    Kişi, Özgür

    2006-10-01

    SummaryEvaporation, as a major component of the hydrologic cycle, is important in water resources development and management. This paper investigates the abilities of neuro-fuzzy (NF) technique to improve the accuracy of daily evaporation estimation. Five different NF models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity are developed to evaluate degree of effect of each of these variables on evaporation. A comparison is made between the estimates provided by the NF model and the artificial neural networks (ANNs). The Stephens-Stewart (SS) method is also considered for the comparison. Various statistic measures are used to evaluate the performance of the models. Based on the comparisons, it was found that the NF computing technique could be employed successfully in modelling evaporation process from the available climatic data. The ANN also found to perform better than the SS method.

  10. Neural networks in data analysis and modeling for detecting littoral oil-spills by airborne laser fluorosensor remote sensing

    NASA Astrophysics Data System (ADS)

    Lin, Bin; An, Jubai; Brown, Carl E.; Chen, Weiwei

    2003-05-01

    In this paper an artificial neural network (ANN) approach, which is based on flexible nonlinear models for a very broad class of transfer functions, is applied for multi-spectral data analysis and modeling of airborne laser fluorosensor in order to differentiate between classes of oil on water surface. We use three types of algorithm: Perceptron Network, Back-Propagation (B-P) Network and Self-Organizing feature Maps (SOM) Network. Using the data in form of 64-channel spectra as inputs, the ANN presents the analysis and estimation results of the oil type on the basis of the type of background materials as outputs. The ANN is trained and tested using sample data set to the network. The results of the above 3 types of network are compared in this paper. It is proved that the training has developed a network that not only fits the training data, but also fits real-world data that the network will process operationally. The ANN model would play a significant role in the ocean oil-spill identification in the future.

  11. Implementation of neural network for color properties of polycarbonates

    NASA Astrophysics Data System (ADS)

    Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.

    2014-05-01

    In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.

  12. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  13. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H; Liu, W; Ruan, D

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition.more » During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human subjects. Research supported by National Institutes of Health National Cancer Institute Grant R01 CA159471-01.« less

  14. Skilful rainfall forecasts from artificial neural networks with long duration series and single-month optimization

    NASA Astrophysics Data System (ADS)

    Abbot, John; Marohasy, Jennifer

    2017-11-01

    General circulation models, which forecast by first modelling actual conditions in the atmosphere and ocean, are used extensively for monthly rainfall forecasting. We show how more skilful monthly and seasonal rainfall forecasts can be achieved through the mining of historical climate data using artificial neural networks (ANNs). This technique is demonstrated for two agricultural regions of Australia: the wheat belt of Western Australia and the sugar growing region of coastal Queensland. The most skilful monthly rainfall forecasts measured in terms of Ideal Point Error (IPE), and a score relative to climatology, are consistently achieved through the use of ANNs optimized for each month individually, and also by choosing to input longer historical series of climate indices. Using the longer series restricts the number of climate indices that can be used.

  15. Fault detection and isolation for complex system

    NASA Astrophysics Data System (ADS)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  16. Optimization of Artificial Neural Network using Evolutionary Programming for Prediction of Cascading Collapse Occurrence due to the Hidden Failure Effect

    NASA Astrophysics Data System (ADS)

    Idris, N. H.; Salim, N. A.; Othman, M. M.; Yasin, Z. M.

    2018-03-01

    This paper presents the Evolutionary Programming (EP) which proposed to optimize the training parameters for Artificial Neural Network (ANN) in predicting cascading collapse occurrence due to the effect of protection system hidden failure. The data has been collected from the probability of hidden failure model simulation from the historical data. The training parameters of multilayer-feedforward with backpropagation has been optimized with objective function to minimize the Mean Square Error (MSE). The optimal training parameters consists of the momentum rate, learning rate and number of neurons in first hidden layer and second hidden layer is selected in EP-ANN. The IEEE 14 bus system has been tested as a case study to validate the propose technique. The results show the reliable prediction of performance validated through MSE and Correlation Coefficient (R).

  17. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India.

    PubMed

    Deb, Dibyendu; Singh, J P; Deb, Shovik; Datta, Debajit; Ghosh, Arunava; Chaurasia, R S

    2017-10-20

    Determination of above ground biomass (AGB) of any forest is a longstanding scientific endeavor, which helps to estimate net primary productivity, carbon stock and other biophysical parameters of that forest. With advancement of geospatial technology in last few decades, AGB estimation now can be done using space-borne and airborne remotely sensed data. It is a well-established, time saving and cost effective technique with high precision and is frequently applied by the scientific community. It involves development of allometric equations based on correlations of ground-based forest biomass measurements with vegetation indices derived from remotely sensed data. However, selection of the best-fit and explanatory models of biomass estimation often becomes a difficult proposition with respect to the image data resolution (spatial and spectral) as well as the sensor platform position in space. Using Resourcesat-2 satellite data and Normalized Difference Vegetation Index (NDVI), this pilot scale study compared traditional linear and nonlinear models with an artificial intelligence-based non-parametric technique, i.e. artificial neural network (ANN) for formulation of the best-fit model to determine AGB of forest of the Bundelkhand region of India. The results confirmed the superiority of ANN over other models in terms of several statistical significance and reliability assessment measures. Accordingly, this study proposed the use of ANN instead of traditional models for determination of AGB and other bio-physical parameters of any dry deciduous forest of tropical sub-humid or semi-arid area. In addition, large numbers of sampling sites with different quadrant sizes for trees, shrubs, and herbs as well as application of LiDAR data as predictor variable were recommended for very high precision modelling in ANN for a large scale study.

  18. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  19. Artificial intelligence in sports biomechanics: new dawn or false hope?

    PubMed

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  20. [The research of near-infrared blood glucose measurement using particle swarm optimization and artificial neural network].

    PubMed

    Dai, Juan; Ji, Zhong; Du, Yubao

    2017-08-01

    Existing near-infrared non-invasive blood glucose detection modelings mostly detect multi-spectral signals with different wavelength, which is not conducive to the popularization of non-invasive glucose meter at home and does not consider the physiological glucose dynamics of individuals. In order to solve these problems, this study presented a non-invasive blood glucose detection model combining particle swarm optimization (PSO) and artificial neural network (ANN) by using the 1 550 nm near-infrared absorbance as the independent variable and the concentration of blood glucose as the dependent variable, named as PSO-2ANN. The PSO-2ANN model was based on two sub-modules of neural networks with certain structures and arguments, and was built up after optimizing the weight coefficients of the two networks by particle swarm optimization. The results of 10 volunteers were predicted by PSO-2ANN. It was indicated that the relative error of 9 volunteers was less than 20%; 98.28% of the predictions of blood glucose by PSO-2ANN were distributed in the regions A and B of Clarke error grid, which confirmed that PSO-2ANN could offer higher prediction accuracy and better robustness by comparison with ANN. Additionally, even the physiological glucose dynamics of individuals may be different due to the influence of environment, temper, mental state and so on, PSO-2ANN can correct this difference only by adjusting one argument. The PSO-2ANN model provided us a new prospect to overcome individual differences in blood glucose prediction.

  1. Fast discrimination of traditional Chinese medicine according to geographical origins with FTIR spectroscopy and advanced pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wang, Yan; Xu, Kexin

    2006-08-01

    Combined with Fourier transform infrared (FTIR) spectroscopy and three kinds of pattern recognition techniques, 53 traditional Chinese medicine danshen samples were rapidly discriminated according to geographical origins. The results showed that it was feasible to discriminate using FTIR spectroscopy ascertained by principal component analysis (PCA). An effective model was built by employing the Soft Independent Modeling of Class Analogy (SIMCA) and PCA, and 82% of the samples were discriminated correctly. Through use of the artificial neural network (ANN)-based back propagation (BP) network, the origins of danshen were completely classified.

  2. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  3. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation.

    PubMed

    Votano, Joseph R; Parham, Marc; Hall, L Mark; Hall, Lowell H; Kier, Lemont B; Oloff, Scott; Tropsha, Alexander

    2006-11-30

    Four modeling techniques, using topological descriptors to represent molecular structure, were employed to produce models of human serum protein binding (% bound) on a data set of 1008 experimental values, carefully screened from publicly available sources. To our knowledge, this data is the largest set on human serum protein binding reported for QSAR modeling. The data was partitioned into a training set of 808 compounds and an external validation test set of 200 compounds. Partitioning was accomplished by clustering the compounds in a structure descriptor space so that random sampling of 20% of the whole data set produced an external test set that is a good representative of the training set with respect to both structure and protein binding values. The four modeling techniques include multiple linear regression (MLR), artificial neural networks (ANN), k-nearest neighbors (kNN), and support vector machines (SVM). With the exception of the MLR model, the ANN, kNN, and SVM QSARs were ensemble models. Training set correlation coefficients and mean absolute error ranged from r2=0.90 and MAE=7.6 for ANN to r2=0.61 and MAE=16.2 for MLR. Prediction results from the validation set yielded correlation coefficients and mean absolute errors which ranged from r2=0.70 and MAE=14.1 for ANN to a low of r2=0.59 and MAE=18.3 for the SVM model. Structure descriptors that contribute significantly to the models are discussed and compared with those found in other published models. For the ANN model, structure descriptor trends with respect to their affects on predicted protein binding can assist the chemist in structure modification during the drug design process.

  4. Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO.

    PubMed

    Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Xiong, Kangning; Wei, Xionghui

    2017-12-21

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) magnetic nanocomposites were prepared and then applied in the Cu(II) removal from aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and superconduction quantum interference device magnetometer were performed to characterize the nZVI/rGO nanocomposites. In order to reduce the number of experiments and the economic cost, response surface methodology (RSM) combined with artificial intelligence (AI) techniques, such as artificial neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), has been utilized as a major tool that can model and optimize the removal processes, because a tremendous advance has recently been made on AI that may result in extensive applications. Based on RSM, ANN-GA and ANN-PSO were employed to model the Cu(II) removal process and optimize the operating parameters, e.g., operating temperature, initial pH, initial concentration and contact time. The ANN-PSO model was proven to be an effective tool for modeling and optimizing the Cu(II) removal with a low absolute error and a high removal efficiency. Furthermore, the isotherm, kinetic, thermodynamic studies and the XPS analysis were performed to explore the mechanisms of Cu(II) removal process.

  5. River flow modeling using artificial neural networks in Kapuas river, West Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Herawati, Henny; Suripin, Suharyanto

    2017-11-01

    Kapuas River is located in the province of West Kalimantan. Kapuas river length is 1,086 km and river basin areas about 100,000 Km2. The availability of river flow data in the Long River and very wide catchments are difficult to obtain, while river flow data are essential for planning waterworks. To predict the water flow in the catchment area requires a lot of hydrology coefficient, so it is very difficult to predict and obtain results that closer to the real conditions. This paper demonstrates that artificial neural network (ANN) could be used to predict the water flow. The ANN technique can be used to predict the incidence of water discharge that occurs in the Kapuas River based on rainfall and evaporation data. With the data available to do training on the artificial neural network model is obtained mean square error (MSE) 0.00007. The river flow predictions could be carried out after the training. The results showed differences in water discharge measurement and prediction of about 4%.

  6. Artificial Neural Network Based Mission Planning Mechanism for Spacecraft

    NASA Astrophysics Data System (ADS)

    Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying

    2018-04-01

    The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.

  7. [Algorithms of artificial neural networks--practical application in medical science].

    PubMed

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  8. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting

    NASA Astrophysics Data System (ADS)

    Luk, K. C.; Ball, J. E.; Sharma, A.

    2000-01-01

    Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.

  9. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and ANFIS) has limited success.

  10. A Novel Higher Order Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Xu, Shuxiang

    2010-05-01

    In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.

  11. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  12. Machine learning on-a-chip: a high-performance low-power reusable neuron architecture for artificial neural networks in ECG classifications.

    PubMed

    Sun, Yuwen; Cheng, Allen C

    2012-07-01

    Artificial neural networks (ANNs) are a promising machine learning technique in classifying non-linear electrocardiogram (ECG) signals and recognizing abnormal patterns suggesting risks of cardiovascular diseases (CVDs). In this paper, we propose a new reusable neuron architecture (RNA) enabling a performance-efficient and cost-effective silicon implementation for ANN. The RNA architecture consists of a single layer of physical RNA neurons, each of which is designed to use minimal hardware resource (e.g., a single 2-input multiplier-accumulator is used to compute the dot product of two vectors). By carefully applying the principal of time sharing, RNA can multiplexs this single layer of physical neurons to efficiently execute both feed-forward and back-propagation computations of an ANN while conserving the area and reducing the power dissipation of the silicon. A three-layer 51-30-12 ANN is implemented in RNA to perform the ECG classification for CVD detection. This RNA hardware also allows on-chip automatic training update. A quantitative design space exploration in area, power dissipation, and execution speed between RNA and three other implementations representative of different reusable hardware strategies is presented and discussed. Compared with an equivalent software implementation in C executed on an embedded microprocessor, the RNA ASIC achieves three orders of magnitude improvements in both the execution speed and the energy efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.

    PubMed

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-02-04

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step.

  14. Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings Using Time-Domain Features

    NASA Astrophysics Data System (ADS)

    Samanta, B.; Al-Balushi, K. R.

    2003-03-01

    A procedure is presented for fault diagnosis of rolling element bearings through artificial neural network (ANN). The characteristic features of time-domain vibration signals of the rotating machinery with normal and defective bearings have been used as inputs to the ANN consisting of input, hidden and output layers. The features are obtained from direct processing of the signal segments using very simple preprocessing. The input layer consists of five nodes, one each for root mean square, variance, skewness, kurtosis and normalised sixth central moment of the time-domain vibration signals. The inputs are normalised in the range of 0.0 and 1.0 except for the skewness which is normalised between -1.0 and 1.0. The output layer consists of two binary nodes indicating the status of the machine—normal or defective bearings. Two hidden layers with different number of neurons have been used. The ANN is trained using backpropagation algorithm with a subset of the experimental data for known machine conditions. The ANN is tested using the remaining set of data. The effects of some preprocessing techniques like high-pass, band-pass filtration, envelope detection (demodulation) and wavelet transform of the vibration signals, prior to feature extraction, are also studied. The results show the effectiveness of the ANN in diagnosis of the machine condition. The proposed procedure requires only a few features extracted from the measured vibration data either directly or with simple preprocessing. The reduced number of inputs leads to faster training requiring far less iterations making the procedure suitable for on-line condition monitoring and diagnostics of machines.

  15. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.

  16. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  17. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    NASA Technical Reports Server (NTRS)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  18. [Application of an artificial neural network in the design of sustained-release dosage forms].

    PubMed

    Wei, X H; Wu, J J; Liang, W Q

    2001-09-01

    To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.

  19. Predicting survival of Escherichia coli O157:H7 in dry fermented sausage using artificial neural networks.

    PubMed

    Palanichamy, A; Jayas, D S; Holley, R A

    2008-01-01

    The Canadian Food Inspection Agency required the meat industry to ensure Escherichia coli O157:H7 does not survive (experiences > or = 5 log CFU/g reduction) in dry fermented sausage (salami) during processing after a series of foodborne illness outbreaks resulting from this pathogenic bacterium occurred. The industry is in need of an effective technique like predictive modeling for estimating bacterial viability, because traditional microbiological enumeration is a time-consuming and laborious method. The accuracy and speed of artificial neural networks (ANNs) for this purpose is an attractive alternative (developed from predictive microbiology), especially for on-line processing in industry. Data from a study of interactive effects of different levels of pH, water activity, and the concentrations of allyl isothiocyanate at various times during sausage manufacture in reducing numbers of E. coli O157:H7 were collected. Data were used to develop predictive models using a general regression neural network (GRNN), a form of ANN, and a statistical linear polynomial regression technique. Both models were compared for their predictive error, using various statistical indices. GRNN predictions for training and test data sets had less serious errors when compared with the statistical model predictions. GRNN models were better and slightly better for training and test sets, respectively, than was the statistical model. Also, GRNN accurately predicted the level of allyl isothiocyanate required, ensuring a 5-log reduction, when an appropriate production set was created by interpolation. Because they are simple to generate, fast, and accurate, ANN models may be of value for industrial use in dry fermented sausage manufacture to reduce the hazard associated with E. coli O157:H7 in fresh beef and permit production of consistently safe products from this raw material.

  20. An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts.

    PubMed

    Barghash, Mahmoud

    2015-01-01

    Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN's performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.

  1. Artificial neural network detects human uncertainty

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  2. Application of principal component regression and artificial neural network in FT-NIR soluble solids content determination of intact pear fruit

    NASA Astrophysics Data System (ADS)

    Ying, Yibin; Liu, Yande; Fu, Xiaping; Lu, Huishan

    2005-11-01

    The artificial neural networks (ANNs) have been used successfully in applications such as pattern recognition, image processing, automation and control. However, majority of today's applications of ANNs is back-propagate feed-forward ANN (BP-ANN). In this paper, back-propagation artificial neural networks (BP-ANN) were applied for modeling soluble solid content (SSC) of intact pear from their Fourier transform near infrared (FT-NIR) spectra. One hundred and sixty-four pear samples were used to build the calibration models and evaluate the models predictive ability. The results are compared to the classical calibration approaches, i.e. principal component regression (PCR), partial least squares (PLS) and non-linear PLS (NPLS). The effects of the optimal methods of training parameters on the prediction model were also investigated. BP-ANN combine with principle component regression (PCR) resulted always better than the classical PCR, PLS and Weight-PLS methods, from the point of view of the predictive ability. Based on the results, it can be concluded that FT-NIR spectroscopy and BP-ANN models can be properly employed for rapid and nondestructive determination of fruit internal quality.

  3. Applications of artificial neural networks in medical science.

    PubMed

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  4. Deep Learning in Medical Imaging: General Overview

    PubMed Central

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  5. Deep Learning in Medical Imaging: General Overview.

    PubMed

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  6. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.

    PubMed

    Ongen, Atakan; Ozcan, H Kurtulus; Arayıcı, Semiha

    2013-12-15

    This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  8. A novel post-processing scheme for two-dimensional electrical impedance tomography based on artificial neural networks

    PubMed Central

    2017-01-01

    Objective Electrical Impedance Tomography (EIT) is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort. Methods In this paper, a post-processing technique based on an artificial neural network (ANN) is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver. Conclusion Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms. Significance This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications. PMID:29206856

  9. Statistical downscaling rainfall using artificial neural network: significantly wetter Bangkok?

    NASA Astrophysics Data System (ADS)

    Vu, Minh Tue; Aribarg, Thannob; Supratid, Siriporn; Raghavan, Srivatsan V.; Liong, Shie-Yui

    2016-11-01

    Artificial neural network (ANN) is an established technique with a flexible mathematical structure that is capable of identifying complex nonlinear relationships between input and output data. The present study utilizes ANN as a method of statistically downscaling global climate models (GCMs) during the rainy season at meteorological site locations in Bangkok, Thailand. The study illustrates the applications of the feed forward back propagation using large-scale predictor variables derived from both the ERA-Interim reanalyses data and present day/future GCM data. The predictors are first selected over different grid boxes surrounding Bangkok region and then screened by using principal component analysis (PCA) to filter the best correlated predictors for ANN training. The reanalyses downscaled results of the present day climate show good agreement against station precipitation with a correlation coefficient of 0.8 and a Nash-Sutcliffe efficiency of 0.65. The final downscaled results for four GCMs show an increasing trend of precipitation for rainy season over Bangkok by the end of the twenty-first century. The extreme values of precipitation determined using statistical indices show strong increases of wetness. These findings will be useful for policy makers in pondering adaptation measures due to flooding such as whether the current drainage network system is sufficient to meet the changing climate and to plan for a range of related adaptation/mitigation measures.

  10. Application of artificial neural network to fMRI regression analysis.

    PubMed

    Misaki, Masaya; Miyauchi, Satoru

    2006-01-15

    We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.

  11. Investigating the management performance of disinfection analysis of water distribution networks using data mining approaches.

    PubMed

    Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur

    2018-06-13

    Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.

  12. Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Lin; Gupta, Hoshin V.; Gao, Xiaogang; Sorooshian, Soroosh; Imam, Bisher

    2002-12-01

    Artificial neural networks (ANNs) can be useful in the prediction of hydrologic variables, such as streamflow, particularly when the underlying processes have complex nonlinear interrelationships. However, conventional ANN structures suffer from network training issues that significantly limit their widespread application. This paper presents a multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose structure has been designed for rapid, precise, and inexpensive estimation of network structure/parameters and system outputs. More important, SOLO provides features that facilitate insight into the underlying processes, thereby extending its usefulness beyond forecast applications as a tool for scientific investigations. These characteristics are demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model performance are evaluated in comparison with other commonly used modeling approaches, including multilayer feedforward ANNs, linear time series modeling, and conceptual rainfall-runoff modeling.

  13. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  14. Assessment and prediction of short term hospital admissions: the case of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Kassomenos, P.; Papaloukas, C.; Petrakis, M.; Karakitsios, S.

    The contribution of air pollution on hospital admissions due to respiratory and heart diseases is a major issue in the health-environmental perspective. In the present study, an attempt was made to run down the relationships between air pollution levels and meteorological indexes, and corresponding hospital admissions in Athens, Greece. The available data referred to a period of eight years (1992-2000) including the daily number of hospital admissions due to respiratory and heart diseases, hourly mean concentrations of CO, NO 2, SO 2, O 3 and particulates in several monitoring stations, as well as, meteorological data (temperature, relative humidity, wind speed/direction). The relations among the above data were studied through widely used statistical techniques (multivariate stepwise analyses) and Artificial Neural Networks (ANNs). Both techniques revealed that elevated particulate concentrations are the dominant parameter related to hospital admissions (an increase of 10 μg m -3 leads to an increase of 10.2% in the number of admissions), followed by O 3 and the rest of the pollutants (CO, NO 2 and SO 2). Meteorological parameters also play a decisive role in the formation of air pollutant levels affecting public health. Consequently, increased/decreased daily hospital admissions are related to specific types of meteorological conditions that favor/do not favor the accumulation of pollutants in an urban complex. In general, the role of meteorological factors seems to be underestimated by stepwise analyses, while ANNs attribute to them a more important role. Comparison of the two models revealed that ANN adaptation in complicate environmental issues presents improved modeling results compared to a regression technique. Furthermore, the ANN technique provides a reliable model for the prediction of the daily hospital admissions based on air quality data and meteorological indices, undoubtedly useful for regulatory purposes.

  15. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  16. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  17. Rainfall prediction methodology with binary multilayer perceptron neural networks

    NASA Astrophysics Data System (ADS)

    Esteves, João Trevizoli; de Souza Rolim, Glauco; Ferraudo, Antonio Sergio

    2018-05-01

    Precipitation, in short periods of time, is a phenomenon associated with high levels of uncertainty and variability. Given its nature, traditional forecasting techniques are expensive and computationally demanding. This paper presents a soft computing technique to forecast the occurrence of rainfall in short ranges of time by artificial neural networks (ANNs) in accumulated periods from 3 to 7 days for each climatic season, mitigating the necessity of predicting its amount. With this premise it is intended to reduce the variance, rise the bias of data and lower the responsibility of the model acting as a filter for quantitative models by removing subsequent occurrences of zeros values of rainfall which leads to bias the and reduces its performance. The model were developed with time series from ten agriculturally relevant regions in Brazil, these places are the ones with the longest available weather time series and and more deficient in accurate climate predictions, it was available 60 years of daily mean air temperature and accumulated precipitation which were used to estimate the potential evapotranspiration and water balance; these were the variables used as inputs for the ANNs models. The mean accuracy of the model for all the accumulated periods were 78% on summer, 71% on winter 62% on spring and 56% on autumn, it was identified that the effect of continentality, the effect of altitude and the volume of normal precipitation, have an direct impact on the accuracy of the ANNs. The models have peak performance in well defined seasons, but looses its accuracy in transitional seasons and places under influence of macro-climatic and mesoclimatic effects, which indicates that this technique can be used to indicate the eminence of rainfall with some limitations.

  18. Artificial Neural Networks: an overview and their use in the analysis of the AMPHORA-3 dataset.

    PubMed

    Buscema, Paolo Massimo; Massini, Giulia; Maurelli, Guido

    2014-10-01

    The Artificial Adaptive Systems (AAS) are theories with which generative algebras are able to create artificial models simulating natural phenomenon. Artificial Neural Networks (ANNs) are the more diffused and best-known learning system models in the AAS. This article describes an overview of ANNs, noting its advantages and limitations for analyzing dynamic, complex, non-linear, multidimensional processes. An example of a specific ANN application to alcohol consumption in Spain, as part of the EU AMPHORA-3 project, during 1961-2006 is presented. Study's limitations are noted and future needed research using ANN methodologies are suggested.

  19. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    PubMed

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    NASA Astrophysics Data System (ADS)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  1. Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope?

    PubMed Central

    Bartlett, Roger

    2006-01-01

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements (‘techniques’) and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key Points Expert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis. Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear. Other AI applications, including Evolutionary Computation, have received little attention. PMID:24357939

  2. Neural Network Prediction of ICU Length of Stay Following Cardiac Surgery Based on Pre-Incision Variables

    PubMed Central

    Pothula, Venu M.; Yuan, Stanley C.; Maerz, David A.; Montes, Lucresia; Oleszkiewicz, Stephen M.; Yusupov, Albert; Perline, Richard

    2015-01-01

    Background Advanced predictive analytical techniques are being increasingly applied to clinical risk assessment. This study compared a neural network model to several other models in predicting the length of stay (LOS) in the cardiac surgical intensive care unit (ICU) based on pre-incision patient characteristics. Methods Thirty six variables collected from 185 cardiac surgical patients were analyzed for contribution to ICU LOS. The Automatic Linear Modeling (ALM) module of IBM-SPSS software identified 8 factors with statistically significant associations with ICU LOS; these factors were also analyzed with the Artificial Neural Network (ANN) module of the same software. The weighted contributions of each factor (“trained” data) were then applied to data for a “new” patient to predict ICU LOS for that individual. Results Factors identified in the ALM model were: use of an intra-aortic balloon pump; O2 delivery index; age; use of positive cardiac inotropic agents; hematocrit; serum creatinine ≥ 1.3 mg/deciliter; gender; arterial pCO2. The r2 value for ALM prediction of ICU LOS in the initial (training) model was 0.356, p <0.0001. Cross validation in prediction of a “new” patient yielded r2 = 0.200, p <0.0001. The same 8 factors analyzed with ANN yielded a training prediction r2 of 0.535 (p <0.0001) and a cross validation prediction r2 of 0.410, p <0.0001. Two additional predictive algorithms were studied, but they had lower prediction accuracies. Our validated neural network model identified the upper quartile of ICU LOS with an odds ratio of 9.8(p <0.0001). Conclusions ANN demonstrated a 2-fold greater accuracy than ALM in prediction of observed ICU LOS. This greater accuracy would be presumed to result from the capacity of ANN to capture nonlinear effects and higher order interactions. Predictive modeling may be of value in early anticipation of risks of post-operative morbidity and utilization of ICU facilities. PMID:26710254

  3. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles.

    PubMed

    Dhiman, Nitesh; Markandeya; Singh, Amrita; Verma, Neeraj K; Ajaria, Nidhi; Patnaik, Satyakam

    2017-05-01

    ZnO NPs were synthesized by a prudent green chemistry approach in presence of polyacrylamide grafted guar gum polymer (pAAm-g-GG) to ensure uniform morphology, and functionality and appraised for their ability to degrade photocatalytically Acridine Orange (AO) dye. These ZnO@pAAm-g-GG NPs were thoroughly characterized by various spectroscopic, XRD and electron microscopic techniques. The relative quantity of ZnO NPs in polymeric matrix has been estimated by spectro-analytical procedure; AAS and TGA analysis. The impact of process parameters viz. NP's dose, contact time and AO dye concentration on percentage photocatalytic degradation of AO dyes were evaluated using multivariate optimizing tools, Response Surface Methodology (RSM) involving Box-Behnken Design (BBD) and Artificial Neural Network (ANN). Congruity of the BBD statistical model was implied by R 2 value 0.9786 and F-value 35.48. At RSM predicted optimal condition viz. ZnO@pAAm-g-GG NP's dose of 0.2g/L, contact time of 210min and AO dye concentration 10mg/L, a maximum of 98% dye degradation was obtained. ANOVA indicated appropriateness of the model for dye degradation owing to "Prob.>F" less than 0.05 for variable parameters. We further, employed three layers feed forward ANN model for validating the BBD process parameters and suitability of our chosen model. The evaluation of Levenberg-Marquardt algorithm (ANN1) and Gradient Descent with adaptive learning rate (ANN2) model employed to scrutinize the best method and found experimental values of AO dye degradation were in close to those with predicated value of ANN 2 modeling with minimum error. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-09-06

    Analytical and numerical methods have been used to extract essential engineering parameters such as elastic modulus, Poisson׳s ratio, permeability and diffusion coefficient from experimental data in various types of biological tissues. The major limitation associated with analytical techniques is that they are often only applicable to problems with simplified assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the simplified assumptions but require substantial computational expertise, which is not always available. In this paper, we propose a novel approach that combines inverse and forward artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion coefficient of cartilage without any need for computational modeling. In this approach, an inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage given the concentration-time curves. Robust estimation of the diffusion coefficients, however, requires introducing certain levels of stochastic variations during the training process. Determining the required level of stochastic variation is performed by coupling the inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns the concentration-time curve as output. Combined together, forward-inverse ANNs enable computationally inexperienced users to obtain accurate and fast estimation of the diffusion coefficients of cartilage zones. The diffusion coefficients estimated using the proposed approach are compared with those determined using direct scanning of the parameter space as the optimization approach. It has been shown that both approaches yield comparable results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A new evolutionary system for evolving artificial neural networks.

    PubMed

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  6. Gross domestic product estimation based on electricity utilization by artificial neural network

    NASA Astrophysics Data System (ADS)

    Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.

    2018-01-01

    The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.

  7. Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks.

    PubMed

    Lai, Jinxing; Qiu, Junling; Feng, Zhihua; Chen, Jianxun; Fan, Haobo

    2016-01-01

    In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.

  8. Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks

    PubMed Central

    Lai, Jinxing

    2016-01-01

    In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587

  9. Performing particle image velocimetry using artificial neural networks: a proof-of-concept

    NASA Astrophysics Data System (ADS)

    Rabault, Jean; Kolaas, Jostein; Jensen, Atle

    2017-12-01

    Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.

  10. Neural network modeling and prediction of resistivity structures using VES Schlumberger data over a geothermal area

    NASA Astrophysics Data System (ADS)

    Singh, Upendra K.; Tiwari, R. K.; Singh, S. B.

    2013-03-01

    This paper presents the effects of several parameters on the artificial neural networks (ANN) inversion of vertical electrical sounding (VES) data. Sensitivity of ANN parameters was examined on the performance of adaptive backpropagation (ABP) and Levenberg-Marquardt algorithms (LMA) to test the robustness to noisy synthetic as well as field geophysical data and resolving capability of these methods for predicting the subsurface resistivity layers. We trained, tested and validated ANN using the synthetic VES data as input to the networks and layer parameters of the models as network output. ANN learning parameters are varied and corresponding observations are recorded. The sensitivity analysis of synthetic data and real model demonstrate that ANN algorithms applied in VES data inversion should be considered well not only in terms of accuracy but also in terms of high computational efforts. Also the analysis suggests that ANN model with its various controlling parameters are largely data dependent and hence no unique architecture can be designed for VES data analysis. ANN based methods are also applied to the actual VES field data obtained from the tectonically vital geothermal areas of Jammu and Kashmir, India. Analysis suggests that both the ABP and LMA are suitable methods for 1-D VES modeling. But the LMA method provides greater degree of robustness than the ABP in case of 2-D VES modeling. Comparison of the inversion results with known lithology correlates well and also reveals the additional significant feature of reconsolidated breccia of about 7.0 m thickness beneath the overburden in some cases like at sounding point RDC-5. We may therefore conclude that ANN based methods are significantly faster and efficient for detection of complex layered resistivity structures with a relatively greater degree of precision and resolution.

  11. Applications of artificial neural networks (ANNs) in food science.

    PubMed

    Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A

    2007-01-01

    Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.

  12. Application of artificial neural networks to establish a predictive mortality risk model in children admitted to a paediatric intensive care unit.

    PubMed

    Chan, C H; Chan, E Y; Ng, D K; Chow, P Y; Kwok, K L

    2006-11-01

    Paediatric risk of mortality and paediatric index of mortality (PIM) are the commonly-used mortality prediction models (MPM) in children admitted to paediatric intensive care unit (PICU). The current study was undertaken to develop a better MPM using artificial neural network, a domain of artificial intelligence. The purpose of this retrospective case series was to compare an artificial neural network (ANN) model and PIM with the observed mortality in a cohort of patients admitted to a five-bed PICU in a Hong Kong non-teaching general hospital. The patients were under the age of 17 years and admitted to our PICU from April 2001 to December 2004. Data were collected from each patient admitted to our PICU. All data were randomly allocated to either the training or validation set. The data from the training set were used to construct a series of ANN models. The data from the validation set were used to validate the ANN and PIM models. The accuracy of ANN models and PIM was assessed by area under the receiver operator characteristics (ROC) curve and calibration. All data were randomly allocated to either the training (n=274) or validation set (n=273). Three ANN models were developed using the data from the training set, namely ANN8 (trained with variables required for PIM), ANN9 (trained with variables required for PIM and pre-ICU intubation) and ANN23 (trained with variables required for ANN9 and 14 principal ICU diagnoses). Three ANN models and PIM were used to predict mortality in the validation set. We found that PIM and ANN9 had a high ROC curve (PIM: 0.808, 95 percent confidence interval 0.552 to 1.000, ANN9: 0.957, 95 percent confidence interval 0.915 to 1.000), whereas ANN8 and ANN23 gave a suboptimal area under the ROC curve. ANN8 required only five variables for the calculation of risk, compared with eight for PIM. The current study demonstrated the process of predictive mortality risk model development using ANN. Further multicentre studies are required to produce a representative ANN-based mortality prediction model for use in different PICUs.

  13. Some new classification methods for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia

    2006-10-01

    Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.

  14. Artificial neural networks to predict activity type and energy expenditure in youth.

    PubMed

    Trost, Stewart G; Wong, Weng-Keen; Pfeiffer, Karen A; Zheng, Yonglei

    2012-09-01

    Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous-intensity games or sports. During each trial, participants wore an ActiGraph GT1M on the right hip, and VO2 was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square error (RMSE). As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.

  15. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis.

    PubMed

    Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q

    2017-03-01

    Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.

  16. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series

    NASA Astrophysics Data System (ADS)

    Du, Kongchang; Zhao, Ying; Lei, Jiaqiang

    2017-09-01

    In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.

  17. Estimation of dew point temperature using neuro-fuzzy and neural network techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Kim, Sungwon; Shiri, Jalal

    2013-11-01

    This study investigates the ability of two different artificial neural network (ANN) models, generalized regression neural networks model (GRNNM) and Kohonen self-organizing feature maps neural networks model (KSOFM), and two different adaptive neural fuzzy inference system (ANFIS) models, ANFIS model with sub-clustering identification (ANFIS-SC) and ANFIS model with grid partitioning identification (ANFIS-GP), for estimating daily dew point temperature. The climatic data that consisted of 8 years of daily records of air temperature, sunshine hours, wind speed, saturation vapor pressure, relative humidity, and dew point temperature from three weather stations, Daego, Pohang, and Ulsan, in South Korea were used in the study. The estimates of ANN and ANFIS models were compared according to the three different statistics, root mean square errors, mean absolute errors, and determination coefficient. Comparison results revealed that the ANFIS-SC, ANFIS-GP, and GRNNM models showed almost the same accuracy and they performed better than the KSOFM model. Results also indicated that the sunshine hours, wind speed, and saturation vapor pressure have little effect on dew point temperature. It was found that the dew point temperature could be successfully estimated by using T mean and R H variables.

  18. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    NASA Astrophysics Data System (ADS)

    Pietrowski, Wojciech; Górny, Konrad

    2017-12-01

    Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  19. Cost-Aware Design of a Discrimination Strategy for Unexploded Ordnance Cleanup

    DTIC Science & Technology

    2011-02-25

    Acronyms ANN: Artificial Neural Network AUC: Area Under the Curve BRAC: Base Realignment And Closure DLRT: Distance Likelihood Ratio Test EER...Discriminative Aggregate Nonparametric [25] Artificial Neural Network ANN Discriminative Aggregate Parametric [33] 11 Results and Discussion Task #1

  20. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    PubMed

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  1. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting

    PubMed Central

    Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627

  2. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    PubMed

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  3. Risk factors for Apgar score using artificial neural networks.

    PubMed

    Ibrahim, Doaa; Frize, Monique; Walker, Robin C

    2006-01-01

    Artificial Neural Networks (ANNs) have been used in identifying the risk factors for many medical outcomes. In this paper, the risk factors for low Apgar score are introduced. This is the first time, to our knowledge, that the ANNs are used for Apgar score prediction. The medical domain of interest used is the perinatal database provided by the Perinatal Partnership Program of Eastern and Southeastern Ontario (PPPESO). The ability of the feed forward back propagation ANNs to generate strong predictive model with the most influential variables is tested. Finally, minimal sets of variables (risk factors) that are important in predicting Apgar score outcome without degrading the ANN performance are identified.

  4. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification

    PubMed Central

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R2) and root mean square errors of prediction (RMSEP) were determined as R2 > 0.944 and RMSEP < 1.782 for PLS and R2 > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317

  5. Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G × N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA)

    PubMed Central

    Arab, Mohammad M.; Yadollahi, Abbas; Ahmadi, Hamed; Eftekhari, Maliheh; Maleki, Masoud

    2017-01-01

    The efficiency of a hybrid systems method which combined artificial neural networks (ANNs) as a modeling tool and genetic algorithms (GAs) as an optimizing method for input variables used in ANN modeling was assessed. Hence, as a new technique, it was applied for the prediction and optimization of the plant hormones concentrations and combinations for in vitro proliferation of Garnem (G × N15) rootstock as a case study. Optimizing hormones combination was surveyed by modeling the effects of various concentrations of cytokinin–auxin, i.e., BAP, KIN, TDZ, IBA, and NAA combinations (inputs) on four growth parameters (outputs), i.e., micro-shoots number per explant, length of micro-shoots, developed callus weight (CW) and the quality index (QI) of plantlets. Calculation of statistical values such as R2 (coefficient of determination) related to the accuracy of ANN-GA models showed a considerably higher prediction accuracy for ANN models, i.e., micro-shoots number: R2 = 0.81, length of micro-shoots: R2 = 0.87, CW: R2 = 0.88, QI: R2 = 0.87. According to the results, among the input variables, BAP (19.3), KIN (9.64), and IBA (2.63) showed the highest values of variable sensitivity ratio for proliferation rate. The GA showed that media containing 1.02 mg/l BAP in combination with 0.098 mg/l IBA could lead to the optimal proliferation rate (10.53) for G × N15 rootstock. Another objective of the present study was to compare the performance of predicted and optimized cytokinin–auxin combination with the best optimized obtained concentrations of our other experiments. Considering three growth parameters (length of micro-shoots, micro-shoots number, and proliferation rate), the last treatment was found to be superior to the rest of treatments for G × N15 rootstock in vitro multiplication. Very little difference between the ANN predicted and experimental data confirmed high capability of ANN-GA method in predicting new optimized protocols for plant in vitro propagation. PMID:29163583

  6. Nonlinear channel equalization for QAM signal constellation using artificial neural networks.

    PubMed

    Patra, J C; Pal, R N; Baliarsingh, R; Panda, G

    1999-01-01

    Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.

  7. Neural network versus classical time series forecasting models

    NASA Astrophysics Data System (ADS)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  8. Fault tolerance of artificial neural networks with applications in critical systems

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  9. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Yin, Liting; Ning, Jicai

    2018-07-01

    Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.

  10. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.

    PubMed

    Cai, Binghuang; Jiang, Xia

    2014-04-01

    Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    PubMed Central

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575

  12. Computer-aided detection and diagnosis of masses and clustered microcalcifications from digital mammograms

    NASA Astrophysics Data System (ADS)

    Nishikawa, Robert M.; Giger, Maryellen L.; Doi, Kunio; Vyborny, Carl J.; Schmidt, Robert A.; Metz, Charles E.; Wu, Chris Y.; Yin, Fang-Fang; Jiang, Yulei; Huo, Zhimin; Lu, Ping; Zhang, Wei; Ema, Takahiro; Bick, Ulrich; Papaioannou, John; Nagel, Rufus H.

    1993-07-01

    We are developing an 'intelligent' workstation to assist radiologists in diagnosing breast cancer from mammograms. The hardware for the workstation will consist of a film digitizer, a high speed computer, a large volume storage device, a film printer, and 4 high resolution CRT monitors. The software for the workstation is a comprehensive package of automated detection and classification schemes. Two rule-based detection schemes have been developed, one for breast masses and the other for clustered microcalcifications. The sensitivity of both schemes is 85% with a false-positive rate of approximately 3.0 and 1.5 false detections per image, for the mass and cluster detection schemes, respectively. Computerized classification is performed by an artificial neural network (ANN). The ANN has a sensitivity of 100% with a specificity of 60%. Currently, the ANN, which is a three-layer, feed-forward network, requires as input ratings of 14 different radiographic features of the mammogram that were determined subjectively by a radiologist. We are in the process of developing automated techniques to objectively determine these 14 features. The workstation will be placed in the clinical reading area of the radiology department in the near future, where controlled clinical tests will be performed to measure its efficacy.

  13. Application of Artificial Neural Networks to the Development of Improved Multi-Sensor Retrievals of Near-Surface Air Temperature and Humidity Over Ocean

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne

    2012-01-01

    Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.

  14. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks.

    PubMed

    Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.

  15. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks

    PubMed Central

    Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236

  16. Weight-elimination neural networks applied to coronary surgery mortality prediction.

    PubMed

    Ennett, Colleen M; Frize, Monique

    2003-06-01

    The objective was to assess the effectiveness of the weight-elimination cost function in improving classification performance of artificial neural networks (ANNs) and to observe how changing the a priori distribution of the training set affects network performance. Backpropagation feedforward ANNs with and without weight-elimination estimated mortality for coronary artery surgery patients. The ANNs were trained and tested on cases with 32 input variables describing the patient's medical history; the output variable was in-hospital mortality (mortality rates: training 3.7%, test 3.8%). Artificial training sets with mortality rates of 20%, 50%, and 80% were created to observe the impact of training with a higher-than-normal prevalence. When the results were averaged, weight-elimination networks achieved higher sensitivity rates than those without weight-elimination. Networks trained on higher-than-normal prevalence achieved higher sensitivity rates at the cost of lower specificity and correct classification. The weight-elimination cost function can improve the classification performance when the network is trained with a higher-than-normal prevalence. A network trained with a moderately high artificial mortality rate (artificial mortality rate of 20%) can improve the sensitivity of the model without significantly affecting other aspects of the model's performance. The ANN mortality model achieved comparable performance as additive and statistical models for coronary surgery mortality estimation in the literature.

  17. Artificial Neural Network Models for Long Lead Streamflow Forecasts using Climate Information

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Devineni, N.

    2007-12-01

    Information on season ahead stream flow forecasts is very beneficial for the operation and management of water supply systems. Daily streamflow conditions at any particular reservoir primarily depend on atmospheric and land surface conditions including the soil moisture and snow pack. On the other hand recent studies suggest that developing long lead streamflow forecasts (3 months ahead) typically depends on exogenous climatic conditions particularly Sea Surface Temperature conditions (SST) in the tropical oceans. Examples of some oceanic variables are El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Identification of such conditions that influence the moisture transport into a given basin poses many challenges given the nonlinear dependency between the predictors (SST) and predictand (stream flows). In this study, we apply both linear and nonlinear dependency measures to identify the predictors that influence the winter flows into the Neuse basin. The predictor identification approach here adopted uses simple correlation coefficients to spearman rank correlation measures for detecting nonlinear dependency. All these dependency measures are employed with a lag 3 time series of the high flow season (January - February - March) using 75 years (1928-2002) of stream flows recorded in to the Falls Lake, Neuse River Basin. Developing streamflow forecasts contingent on these exogenous predictors will play an important role towards improved water supply planning and management. Recently, the soft computing techniques, such as artificial neural networks (ANNs) have provided an alternative method to solve complex problems efficiently. ANNs are data driven models which trains on the examples given to it. The ANNs functions as universal approximators and are non linear in nature. This paper presents a study aiming towards using climatic predictors for 3 month lead time streamflow forecast. ANN models representing the physical process of the system are developed between the identified predictors and the predictand. Predictors used are the scores of Principal Components Analysis (PCA). The models were tested and validated. The feed- forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithms are employed in the current study. The performance of the ANN-model forecasts are evaluated using various performance evaluation measures such as correlation coefficient, root mean square error (RMSE). The preliminary results shows that ANNs are efficient to forecast long lead time streamflows using climatic predictors.

  18. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.

    PubMed

    Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda

    2015-11-04

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  19. Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings.

    PubMed

    Tigges, P; Kathmann, N; Engel, R R

    1997-07-01

    Though artificial neural networks (ANN) are excellent tools for pattern recognition problems when signal to noise ratio is low, the identification of decision relevant features for ANN input data is still a crucial issue. The experience of the ANN designer and the existing knowledge and understanding of the problem seem to be the only links for a specific construction. In the present study a backpropagation ANN based on modified raw data inputs showed encouraging results. Investigating the specific influences of prototypical input patterns on a specially designed ANN led to a new sparse and efficient input data presentation. This data coding obtained by a semiautomatic procedure combining existing expert knowledge and the internal representation structures of the raw data based ANN yielded a list of feature vectors, each representing the relevant information for saccade identification. The feature based ANN produced a reduction of the error rate of nearly 40% compared with the raw data ANN. An overall correct classification of 92% of so far unknown data was realized. The proposed method of extracting internal ANN knowledge for the production of a better input data representation is not restricted to EOG recordings, and could be used in various fields of signal analysis.

  20. Artificial neural networks: fundamentals, computing, design, and application.

    PubMed

    Basheer, I A; Hajmeer, M

    2000-12-01

    Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. The attractiveness of ANNs comes from their remarkable information processing characteristics pertinent mainly to nonlinearity, high parallelism, fault and noise tolerance, and learning and generalization capabilities. This paper aims to familiarize the reader with ANN-based computing (neurocomputing) and to serve as a useful companion practical guide and toolkit for the ANNs modeler along the course of ANN project development. The history of the evolution of neurocomputing and its relation to the field of neurobiology is briefly discussed. ANNs are compared to both expert systems and statistical regression and their advantages and limitations are outlined. A bird's eye review of the various types of ANNs and the related learning rules is presented, with special emphasis on backpropagation (BP) ANNs theory and design. A generalized methodology for developing successful ANNs projects from conceptualization, to design, to implementation, is described. The most common problems that BPANNs developers face during training are summarized in conjunction with possible causes and remedies. Finally, as a practical application, BPANNs were used to model the microbial growth curves of S. flexneri. The developed model was reasonably accurate in simulating both training and test time-dependent growth curves as affected by temperature and pH.

  1. Comparison on three classification techniques for sex estimation from the bone length of Asian children below 19 years old: an analysis using different group of ages.

    PubMed

    Darmawan, M F; Yusuf, Suhaila M; Kadir, M R Abdul; Haron, H

    2015-02-01

    Sex estimation is used in forensic anthropology to assist the identification of individual remains. However, the estimation techniques tend to be unique and applicable only to a certain population. This paper analyzed sex estimation on living individual child below 19 years old using the length of 19 bones of left hand applied for three classification techniques, which were Discriminant Function Analysis (DFA), Support Vector Machine (SVM) and Artificial Neural Network (ANN) multilayer perceptron. These techniques were carried out on X-ray images of the left hand taken from an Asian population data set. All the 19 bones of the left hand were measured using Free Image software, and all the techniques were performed using MATLAB. The group of age "16-19" years old and "7-9" years old were the groups that could be used for sex estimation with as their average of accuracy percentage was above 80%. ANN model was the best classification technique with the highest average of accuracy percentage in the two groups of age compared to other classification techniques. The results show that each classification technique has the best accuracy percentage on each different group of age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    NASA Astrophysics Data System (ADS)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  3. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?

    PubMed

    Dobchev, Dimitar; Karelson, Mati

    2016-07-01

    Artificial neural networks (ANNs) are highly adaptive nonlinear optimization algorithms that have been applied in many diverse scientific endeavors, ranging from economics, engineering, physics, and chemistry to medical science. Notably, in the past two decades, ANNs have been used widely in the process of drug discovery. In this review, the authors discuss advantages and disadvantages of ANNs in drug discovery as incorporated into the quantitative structure-activity relationships (QSAR) framework. Furthermore, the authors examine the recent studies, which span over a broad area with various diseases in drug discovery. In addition, the authors attempt to answer the question about the expectations of the ANNs in drug discovery and discuss the trends in this field. The old pitfalls of overtraining and interpretability are still present with ANNs. However, despite these pitfalls, the authors believe that ANNs have likely met many of the expectations of researchers and are still considered as excellent tools for nonlinear data modeling in QSAR. It is likely that ANNs will continue to be used in drug development in the future.

  4. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.

    PubMed

    Taheri, Mahboobeh; Mohebbi, Ali

    2008-08-30

    In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.

  5. Copula Entropy coupled with Wavelet Neural Network Model for Hydrological Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Yue, JiGuang; Liu, ShuGuang; Wang, Li

    2018-02-01

    Artificial Neural network(ANN) has been widely used in hydrological forecasting. in this paper an attempt has been made to find an alternative method for hydrological prediction by combining Copula Entropy(CE) with Wavelet Neural Network(WNN), CE theory permits to calculate mutual information(MI) to select Input variables which avoids the limitations of the traditional linear correlation(LCC) analysis. Wavelet analysis can provide the exact locality of any changes in the dynamical patterns of the sequence Coupled with ANN Strong non-linear fitting ability. WNN model was able to provide a good fit with the hydrological data. finally, the hybrid model(CE+WNN) have been applied to daily water level of Taihu Lake Basin, and compared with CE ANN, LCC WNN and LCC ANN. Results showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models.

  6. A novel neural network for the synthesis of antennas and microwave devices.

    PubMed

    Delgado, Heriberto Jose; Thursby, Michael H; Ham, Fredric M

    2005-11-01

    A novel artificial neural network (SYNTHESIS-ANN) is presented, which has been designed for computationally intensive problems and applied to the optimization of antennas and microwave devices. The antenna example presented is optimized with respect to voltage standing-wave ratio, bandwidth, and frequency of operation. A simple microstrip transmission line problem is used to further describe the ANN effectiveness, in which microstrip line width is optimized with respect to line impedance. The ANNs exploit a unique number representation of input and output data in conjunction with a more standard neural network architecture. An ANN consisting of a heteroassociative memory provided a very efficient method of computing necessary geometrical values for the antenna when used in conjunction with a new randomization process. The number representation used provides significant insight into this new method of fault-tolerant computing. Further work is needed to evaluate the potential of this new paradigm.

  7. Prediction and optimization of the laccase-mediated synthesis of the antimicrobial compound iodine (I2).

    PubMed

    Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S

    2015-01-10

    An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Artificial neural networks in evaluation and optimization of modified release solid dosage forms.

    PubMed

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-10-18

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.

  9. Artificial Neural Networks in Evaluation and Optimization of Modified Release Solid Dosage Forms

    PubMed Central

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-01-01

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms. PMID:24300369

  10. Introducing Artificial Neural Networks through a Spreadsheet Model

    ERIC Educational Resources Information Center

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  11. Artificial Neural Networks in Policy Research: A Current Assessment.

    ERIC Educational Resources Information Center

    Woelfel, Joseph

    1993-01-01

    Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…

  12. Estimating tree bole volume using artificial neural network models for four species in Turkey.

    PubMed

    Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V

    2010-01-01

    Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.

  13. Artificial neural network in breast lesions from fine-needle aspiration cytology smear.

    PubMed

    Subbaiah, R M; Dey, Pranab; Nijhawan, Raje

    2014-03-01

    Artificial neural networks (ANNs) are applied in engineering and certain medical fields. ANN has immense potential and is rarely been used in breast lesions. In this present study, we attempted to build up a complete robust back propagation ANN model based on cytomorphological data, morphometric data, nuclear densitometric data, and gray level co-occurrence matrix (GLCM) of ductal carcinoma and fibroadenomas of breast cases diagnosed on fine-needle aspiration cytology (FNAC). We selected 52 cases of fibroadenomas and 60 cases of infiltrating ductal carcinoma of breast diagnosed on FNAC by two cytologists. Essential cytological data was quantitated by two independent cytologists (SRM, PD). With the help of Image J software, nuclear morphomeric, densitometric, and GLCM features were measured in all the cases on hematoxylin and eosin-stained smears. With the available data, an ANN model was built up with the help of Neurointelligence software. The network was designed as 41-20-1 (41 input nodes, 20 hidden nodes, 1 output node). The network was trained by the online back propagation algorithm and 500 iterations were done. Learning was adjusted after every iteration. ANN model correctly identified all cases of fibroadenomas and infiltrating carcinomas in the test set. This is one of the first successful composite ANN models of breast carcinomas. This basic model can be used to diagnose the gray zone area of the breast lesions on FNAC. We assume that this model may have far-reaching implications in future. Copyright © 2013 Wiley Periodicals, Inc.

  14. The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W

    2012-07-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.

  15. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodhia, P.; Antonious, A.; Esat, I.

    There has been much recent interest in the application of artificial intelligence systems to real world problems. Substantial interest has been shown in their application to investment markets. Artificial Neural Networks are the most common technique here. This paper is concerned with the use of ANNs in forecasting exchange rates. Much research has been carried out in currency markets. However, many of the studies use end of day or average quotes for currencies as a basis for prediction. A growing school of thought propose that markets are non-random in the short-term and can be shown to follow patterns. This short-termmore » time span can be described as being a period when the markets are inefficient at price adjustments. The use of intraday data is an ideal testing ground for ANNs based research. This paper aims to study the intraday forecasting of the US Dollar/German Deutschmark and to address the question of whether ANNs can make acceptable predictions. The problems of forecasting in such a complex environment will be addressed.« less

  17. Calibration of an electronic nose for poultry farm

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Shukor, S. A.; Kamis, M. S.; Shakaff, A. Y. M.; Zakaria, A.; Rahim, N. A.; Mamduh, S. M.; Kamarudin, K.; Saad, F. S. A.; Masnan, M. J.; Mustafa, H.

    2017-03-01

    Malodour from the poultry farms could cause air pollution and therefore potentially dangerous to humans' and animals' health. This issue also poses sustainability risk to the poultry industries due to objections from local community. The aim of this paper is to develop and calibrate a cost effective and efficient electronic nose for poultry farm air monitoring. The instrument main components include sensor chamber, array of specific sensors, microcontroller, signal conditioning circuits and wireless sensor networks. The instrument was calibrated to allow classification of different concentrations of main volatile compounds in the poultry farm malodour. The outcome of the process will also confirm the device's reliability prior to being used for poultry farm malodour assessment. The Multivariate Analysis (HCA and KNN) and Artificial Neural Network (ANN) pattern recognition technique was used to process the acquired data. The results show that the instrument is able to calibrate the samples using ANN classification model with high accuracy. The finding verifies the instrument's performance to be used as an effective poultry farm malodour monitoring.

  18. A neural network for noise correlation classification

    NASA Astrophysics Data System (ADS)

    Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas

    2018-02-01

    We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.

  19. Application of Artificial Neural Network and Response Surface Methodology in Modeling of Surface Roughness in WS2 Solid Lubricant Assisted MQL Turning of Inconel 718

    NASA Astrophysics Data System (ADS)

    Maheshwera Reddy Paturi, Uma; Devarasetti, Harish; Abimbola Fadare, David; Reddy Narala, Suresh Kumar

    2018-04-01

    In the present paper, the artificial neural network (ANN) and response surface methodology (RSM) are used in modeling of surface roughness in WS2 (tungsten disulphide) solid lubricant assisted minimal quantity lubrication (MQL) machining. The real time MQL turning of Inconel 718 experimental data considered in this paper was available in the literature [1]. In ANN modeling, performance parameters such as mean square error (MSE), mean absolute percentage error (MAPE) and average error in prediction (AEP) for the experimental data were determined based on Levenberg–Marquardt (LM) feed forward back propagation training algorithm with tansig as transfer function. The MATLAB tool box has been utilized in training and testing of neural network model. Neural network model with three input neurons, one hidden layer with five neurons and one output neuron (3-5-1 architecture) is found to be most confidence and optimal. The coefficient of determination (R2) for both the ANN and RSM model were seen to be 0.998 and 0.982 respectively. The surface roughness predictions from ANN and RSM model were related with experimentally measured values and found to be in good agreement with each other. However, the prediction efficacy of ANN model is relatively high when compared with RSM model predictions.

  20. Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks.

    PubMed

    Kalegowda, Yogesh; Harmer, Sarah L

    2013-01-08

    Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Digital image classification with the help of artificial neural network by simple histogram.

    PubMed

    Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant

    2016-01-01

    Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations.

  2. Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakravartty, J. K.

    2013-10-01

    A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.

  3. Combining Neural Networks with Existing Methods to Estimate 1 in 100-Year Flood Event Magnitudes

    NASA Astrophysics Data System (ADS)

    Newson, A.; See, L.

    2005-12-01

    Over the last fifteen years artificial neural networks (ANN) have been shown to be advantageous for the solution of many hydrological modelling problems. The use of ANNs for flood magnitude estimation in ungauged catchments, however, is a relatively new and under researched area. In this paper ANNs are used to make estimates of the magnitude of the 100-year flood event (Q100) for a number of ungauged catchments. The data used in this study were provided by the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH), which contains information on catchments across the UK. Sixteen catchment descriptors for 719 catchments were used to train an ANN, which was split into a training, validation and test data set. The goodness-of-fit statistics on the test data set indicated good model performance, with an r-squared value of 0.8 and a coefficient of efficiency of 79 percent. Data for twelve ungauged catchments were then put through the trained ANN to produce estimates of Q100. Two other accepted methodologies were also employed: the FEH statistical method and the FSR (Flood Studies Report) design storm technique, both of which are used to produce flood frequency estimates. The advantage of developing an ANN model is that it provides a third figure to aid a hydrologist in making an accurate estimate. For six of the twelve catchments, there was a relatively low spread between estimates. In these instances, an estimate of Q100 could be made with a fair degree of certainty. Of the remaining six catchments, three had areas greater than 1000km2, which means the FSR design storm estimate cannot be used. Armed with the ANN model and the FEH statistical method the hydrologist still has two possible estimates to consider. For these three catchments, the estimates were also fairly similar, providing additional confidence to the estimation. In summary, the findings of this study have shown that an accurate estimation of Q100 can be made using the catchment descriptors of an ungauged catchment as inputs to an ANN. It also demonstrated how the ANN Q100 estimates can be used in conjunction with a number of other estimates in order to provide a more accurate and confident estimate of Q100 at an ungauged catchment. This clearly exploits the strengths of existing methods in combination with the latest soft computing tools.

  4. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior

    PubMed Central

    Isma’eel, Hussain A.; Sakr, George E.; Almedawar, Mohamad M.; Fathallah, Jihan; Garabedian, Torkom; Eddine, Savo Bou Zein

    2015-01-01

    Background High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method. Methods We collected knowledge, attitude and behavior data on 115 patients. A behavior score was calculated to classify patients’ behavior towards reducing salt intake. Accuracy comparison between ANN and regression analysis was calculated using the bootstrap technique with 200 iterations. Results Starting from a 69-item questionnaire, a reduced model was developed and included eight knowledge items found to result in the highest accuracy of 62% CI (58-67%). The best prediction accuracy in the full and reduced models was attained by ANN at 66% and 62%, respectively, compared to full and reduced LSM at 40% and 34%, respectively. The average relative increase in accuracy over all in the full and reduced models is 82% and 102%, respectively. Conclusions Using ANN modeling, we can predict salt reduction behaviors with 66% accuracy. The statistical model has been implemented in an online calculator and can be used in clinics to estimate the patient’s behavior. This will help implementation in future research to further prove clinical utility of this tool to guide therapeutic salt reduction interventions in high cardiovascular risk individuals. PMID:26090333

  5. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    PubMed Central

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714

  6. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    PubMed

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  7. Forecasting the prognosis of choroidal melanoma with an artificial neural network.

    PubMed

    Kaiserman, Igor; Rosner, Mordechai; Pe'er, Jacob

    2005-09-01

    To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Retrospective, comparative, observational cohort study. One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4+/-14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs' performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy.

  8. MIANN models in medicinal, physical and organic chemistry.

    PubMed

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  9. Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.

    PubMed

    Karri, Rama Rao; Sahu, J N

    2018-01-15

    Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    PubMed Central

    Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation. PMID:26681933

  11. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    PubMed

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  12. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The identification of helicopter noise using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Fuller, Chris R.; O'Brien, Walter F.

    1990-01-01

    Experiments were carried out to demonstrate the ability of an artificial neural network (ANN) system to distinguish between the noise of two helicopters. The ANN is taught to identify helicopters by using two types of features: one that is associated with the ratio of the main-rotor to tail-rotor blade passage frequency (BPF), and the ohter that describes the distribution of peaks in the main-rotor spectrum, which is independent of the tail-rotor. It is shown that the ability of the ANN to identify helicopters is comparable to that of a conventional recognition system using the ratio of the main-rotor BPF to the tail-rotor BPF (when both the main- and the tail-rotor noise are present), but the performoance of ANN exceeds the conventional-method performance when the tail-rotor noise is absent. In addition, the results of ANN can be obtained as a function of propagation distance.

  14. Short-term acoustic forecasting via artificial neural networks for neonatal intensive care units.

    PubMed

    Young, Jason; Macke, Christopher J; Tsoukalas, Lefteri H

    2012-11-01

    Noise levels in hospitals, especially neonatal intensive care units (NICUs), have become of great concern for hospital designers. This paper details an artificial neural network (ANN) approach to forecasting the sound loads in NICUs. The ANN is used to learn the relationship between past, present, and future noise levels. By training the ANN with data specific to the location and device used to measure the sound, the ANN is able to produce reasonable predictions of noise levels in the NICU. Best case results show average absolute errors of 5.06 ± 4.04% when used to predict the noise levels one hour ahead, which correspond to 2.53 dBA ± 2.02 dBA. The ANN has the tendency to overpredict during periods of stability and underpredict during large transients. This forecasting algorithm could be of use in any application where prediction and prevention of harmful noise levels are of the utmost concern.

  15. Computer vision system for egg volume prediction using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Siswantoro, J.; Hilman, M. Y.; Widiasri, M.

    2017-11-01

    Volume is one of considered aspects in egg sorting process. A rapid and accurate volume measurement method is needed to develop an egg sorting system. Computer vision system (CVS) provides a promising solution for volume measurement problem. Artificial neural network (ANN) has been used to predict the volume of egg in several CVSs. However, volume prediction from ANN could have less accuracy due to inappropriate input features or inappropriate ANN structure. This paper proposes a CVS for predicting the volume of egg using ANN. The CVS acquired an image of egg from top view and then processed the image to extract its 1D and 2 D size features. The features were used as input for ANN in predicting the volume of egg. The experiment results show that the proposed CSV can predict the volume of egg with a good accuracy and less computation time.

  16. Study of Aided Diagnosis of Hepatic Carcinoma Based on Artificial Neural Network Combined with Tumor Marker Group

    NASA Astrophysics Data System (ADS)

    Tan, Shanjuan; Feng, Feifei; Wu, Yongjun; Wu, Yiming

    To develop a computer-aided diagnostic scheme by using an artificial neural network (ANN) combined with tumor markers for diagnosis of hepatic carcinoma (HCC) as a clinical assistant method. 140 serum samples (50 malignant, 40 benign and 50 normal) were analyzed for α-fetoprotein (AFP), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), sialic acid (SA) and calcium (Ca). The five tumor marker values were then used as ANN inputs data. The result of ANN was compared with that of discriminant analysis by receiver operating characteristic (ROC) curve (AUC) analysis. The diagnostic accuracy of ANN and discriminant analysis among all samples of the test group was 95.5% and 79.3%, respectively. Analysis of multiple tumor markers based on ANN may be a better choice than the traditional statistical methods for differentiating HCC from benign or normal.

  17. Prediction of pelvic organ prolapse using an artificial neural network.

    PubMed

    Robinson, Christopher J; Swift, Steven; Johnson, Donna D; Almeida, Jonas S

    2008-08-01

    The objective of this investigation was to test the ability of a feedforward artificial neural network (ANN) to differentiate patients who have pelvic organ prolapse (POP) from those who retain good pelvic organ support. Following institutional review board approval, patients with POP (n = 87) and controls with good pelvic organ support (n = 368) were identified from the urogynecology research database. Historical and clinical information was extracted from the database. Data analysis included the training of a feedforward ANN, variable selection, and external validation of the model with an independent data set. Twenty variables were used. The median-performing ANN model used a median of 3 (quartile 1:3 to quartile 3:5) variables and achieved an area under the receiver operator curve of 0.90 (external, independent validation set). Ninety percent sensitivity and 83% specificity were obtained in the external validation by ANN classification. Feedforward ANN modeling is applicable to the identification and prediction of POP.

  18. [Artificial neural networks for decision making in urologic oncology].

    PubMed

    Remzi, M; Djavan, B

    2007-06-01

    This chapter presents a detailed introduction regarding Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. It includes a description of ANNs methodology and points out the differences between Artifical Intelligence and traditional statistic models in terms of usefulness for patients and clinicians, and its advantages over current statistical analysis.

  19. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    ERIC Educational Resources Information Center

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  20. The application of artificial neural networks in astronomy

    NASA Astrophysics Data System (ADS)

    Li, Li-Li; Zhang, Yan-Xia; Zhao, Yong-Heng; Yang, Da-Wei

    2006-12-01

    Artificial Neural Networks (ANNs) are computer algorithms inspired from simple models of human central nervous system activity. They can be roughly divided into two main kinds: supervised and unsupervised. The supervised approach lays the stress on "teaching" a machine to do the work of a mention human expert, usually by showing examples for which the true answer is supplied by the expert. The unsupervised one is aimed at learning new things from the data, and most useful when the data cannot easily be plotted in a two or three dimensional space. ANNs have been used widely and successfully in various fields, for instance, pattern recognition, financial analysis, biology, engineering and so on, because they have many merits such as self-learning, self-adapting, good robustness and dynamically rapid response as well as strong capability of dealing with non-linear problems. In the last few years there has been an increasing interest toward the astronomical applications of ANNs. In this paper, the authors firstly introduce the fundamental principle of ANNs together with the architecture of the network and outline various kinds of learning algorithms and network toplogies. The specific aspects of the applications of ANNs in astronomical problems are also listed, which contain the strong capabilities of approximating to arbitrary accuracy, any nonlinear functional mapping, parallel and distributed storage, tolerance of faulty and generalization of results. They summarize the advantages and disadvantages of main ANN models available to the astronomical community. Furthermore, the application cases of ANNs in astronomy are mainly described in detail. Here, the focus is on some of the most interesting fields of its application, for example: object detection, star/galaxy classification, spectral classification, galaxy morphology classification, the estimation of photometric redshifts of galaxies and time series analysis. In addition, other kinds of applications have been only touched upon. Finally, the development and application prospects of ANNs is discussed. With the increase of quantity and the distributing complexity of astronomical data, its scientific exploitation requires a variety of automated tools, which are capable to perform huge amount of work, such as data preprocessing, feature selection, data reduction, data mining amd data analysis. ANNs, one of intelligent tools, will show more and more superiorities.

  1. Battery Performance Modelling ad Simulation: a Neural Network Based Approach

    NASA Astrophysics Data System (ADS)

    Ottavianelli, Giuseppe; Donati, Alessandro

    2002-01-01

    This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg-Marquardt one. The ANN used is a three-layer one (2-4-1) with four inputs and one output. Having established all the ANN parameters and calculated all the input/target training data the ANN has been trained and validated. Afterwards, various simulations have been performed with BAPER to validate the performance of the software and test new alternative battery cycling strategies. Taking into account the small number of available training data for the ANN, and that the simulations have been carried out over a fairly extensive time frame (i.e. one year) the results obtained from the prototype tool must be considered more than satisfactory. It is found that the deliverable discharge capacity can be maintained circa 20% higher than the one obtained with the nominal cycling strategy if the batteries are left discharged for a longer period of time and the storage temperature is decreased. This ANN model has its limitations when asked to predict the discharge capacity deterioration that would be obtained with extraordinary cycling conditions (e.g. extremely low storage temperatures and continuous cycling). Hence, these results must be considered only approximate, as it is impossible to exactly state whether the ANN turn out to give extremely accurate realistic values or not, failing to extrapolate a correct pattern. One way to overcome the problem would be to do some parallel experiments in the laboratory, using the same battery and similar environment conditions (temperature, charge and discharge cycles) to the ones to be encounter in the spacecraft.

  2. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles.

    PubMed

    Singh, Kunwar P; Singh, Arun K; Gupta, Shikha; Rai, Premanjali

    2012-07-01

    The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium. Iron-silver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique. The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10 mg g(-1), respectively, as compared to the experimental value of 54.0 mg g(-1) with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set. Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water.

  3. Macrocell path loss prediction using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.

    2014-04-01

    The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.

  4. Artificial neural networks applied to forecasting time series.

    PubMed

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  5. Neural Networks for Nodal Staging of Non–Small Cell Lung Cancer with FDG PET and CT: Importance of Combining Uptake Values and Sizes of Nodes and Primary Tumor

    PubMed Central

    Vesselle, Hubert J.

    2014-01-01

    Purpose To evaluate the effect of adding lymph node size to three previously explored artificial neural network (ANN) input parameters (primary tumor maximum standardized uptake value or tumor uptake, tumor size, and nodal uptake at N1, N2, and N3 stations) in the structure of the ANN. The goal was to allow the resulting ANN structure to relate lymph node uptake for size to primary tumor uptake for size in the determination of the status of nodes as human readers do. Materials and Methods This prospective study was approved by the institutional review board, and informed consent was obtained from all participants. The authors developed a back-propagation ANN with one hidden layer and eight processing units. The data set used to train the network included node and tumor size and uptake from 133 patients with non–small cell lung cancer with surgically proved N status. Statistical analysis was performed with the paired t test. Results The ANN correctly predicted the N stage in 99.2% of cases, compared with 72.4% for the expert reader (P < .001). In categorization of N0 and N1 versus N2 and N3 disease, the ANN performed with 99.2% accuracy versus 92.2% for the expert reader (P < .001). Conclusion The ANN is 99.2% accurate in predicting surgical-pathologic nodal status with use of four fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)–derived parameters. Malignant and benign inflammatory lymph nodes have overlapping appearances at FDG PET/CT but can be differentiated by ANNs when the crucial input of node size is used. © RSNA, 2013 Online supplemental material is available for this article. PMID:24056403

  6. On damage diagnosis for a wind turbine blade using pattern recognition

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  7. An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Liu, G.; Aspinall, M. D.; Ma, X.; Joyce, M. J.

    2009-08-01

    The discrimination of neutron and γ-ray events in an organic scintillator has been investigated by using a method based on an artificial neural network (ANN). Voltage pulses arising from an EJ-301 organic liquid scintillation detector in a mixed radiation field have been recorded with a fast digital sampling oscilloscope. Piled-up events have been disentangled using a pile-up management unit based on a fitting method. Each individual pulse has subsequently been sent to a discrimination unit which discriminates neutron and γ-ray events with a method based on an artificial neural network. This discrimination technique has been verified by the corresponding mixed-field data assessed by time of flight (TOF). It is shown that the characterization of the neutrons and photons achieved by the discrimination method based on the ANN is consistent with that afforded by TOF. This approach enables events that are often as a result of scattering or pile-up to be identified and returned to the data set and affords digital discrimination of mixed radiation fields in a broad range of environments on the basis of training obtained with a single TOF dataset.

  8. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  9. Detection of neuron membranes in electron microscopy images using a serial neural network architecture.

    PubMed

    Jurrus, Elizabeth; Paiva, Antonio R C; Watanabe, Shigeki; Anderson, James R; Jones, Bryan W; Whitaker, Ross T; Jorgensen, Erik M; Marc, Robert E; Tasdizen, Tolga

    2010-12-01

    Study of nervous systems via the connectome, the map of connectivities of all neurons in that system, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large electron microscopy datasets. However, the shear volume of these datasets renders manual analysis infeasible. Hence, automated image analysis methods are required for reconstructing the connectome from these very large image collections. Segmentation of neurons in these images, an essential step of the reconstruction pipeline, is challenging because of noise, anisotropic shapes and brightness, and the presence of confounding structures. The method described in this paper uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context provided by the previous network to improve detection accuracy. We develop the method of serial ANNs and show that the learned context does improve detection over traditional ANNs. We also demonstrate advantages over previous membrane detection methods. The results are a significant step towards an automated system for the reconstruction of the connectome. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Comparison of three artificial intelligence techniques for discharge routing

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Ghorbani, Mohammad Ali; Kashani, Mahsa Hasanpour; Kisi, Ozgur

    2011-06-01

    SummaryThe inter-comparison of three artificial intelligence (AI) techniques are presented using the results of river flow/stage timeseries, that are otherwise handled by traditional discharge routing techniques. These models comprise Artificial Neural Network (ANN), Adaptive Nero-Fuzzy Inference System (ANFIS) and Genetic Programming (GP), which are for discharge routing of Kizilirmak River, Turkey. The daily mean river discharge data with a period between 1999 and 2003 were used for training and testing the models. The comparison includes both visual and parametric approaches using such statistic as Coefficient of Correlation (CC), Mean Absolute Error (MAE) and Mean Square Relative Error (MSRE), as well as a basic scoring system. Overall, the results indicate that ANN and ANFIS have mixed fortunes in discharge routing, and both have different abilities in capturing and reproducing some of the observed information. However, the performance of GP displays a better edge over the other two modelling approaches in most of the respects. Attention is given to the information contents of recorded timeseries in terms of their peak values and timings, where one performance measure may capture some of the information contents but be ineffective in others. Thus, this makes a case for compiling knowledge base for various modelling techniques.

  11. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran

    NASA Astrophysics Data System (ADS)

    Alizadeh, Bahram; Najjari, Saeid; Kadkhodaie-Ilkhchi, Ali

    2012-08-01

    Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data were used for this purpose. Initially GR, SGR, CGR, THOR, POTA, NPHI and DT logs were applied to model the relationship between wireline logs and Total Organic Carbon (TOC) content using Artificial Neural Networks (ANN). The correlation coefficient (R2) between the measured and ANN predicted TOC equals to 89%. The performance of the model is measured by the Mean Squared Error function, which does not exceed 0.0073. Using Cluster Analysis technique and creating a binary hierarchical cluster tree the constructed TOC column of each formation was clustered into 5 organic facies according to their geochemical similarity. Later a second model with the accuracy of 84% was created by ANN to determine the specified clusters (facies) directly from well logs for quick cluster recognition in other wells of the studied field. Each created facies was correlated to its appropriate burial history curve. Hence each and every facies of a formation could be scrutinized separately and directly from its well logs, demonstrating the time and depth of oil or gas generation. Therefore potential production zone of Kazhdomi probable source rock and Kangan- Dalan reservoir formation could be identified while well logging operations (especially in LWD cases) were in progress. This could reduce uncertainty and save plenty of time and cost for oil industries and aid in the successful implementation of exploration and exploitation plans.

  12. Residential Saudi load forecasting using analytical model and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Ahmad Abdulaziz

    In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.

  13. Next Day Building Load Predictions based on Limited Input Features Using an On-Line Laterally Primed Adaptive Resonance Theory Artificial Neural Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Christian Birk; Robinson, Matt; Yasaei, Yasser

    Optimal integration of thermal energy storage within commercial building applications requires accurate load predictions. Several methods exist that provide an estimate of a buildings future needs. Methods include component-based models and data-driven algorithms. This work implemented a previously untested algorithm for this application that is called a Laterally Primed Adaptive Resonance Theory (LAPART) artificial neural network (ANN). The LAPART algorithm provided accurate results over a two month period where minimal historical data and a small amount of input types were available. These results are significant, because common practice has often overlooked the implementation of an ANN. ANN have often beenmore » perceived to be too complex and require large amounts of data to provide accurate results. The LAPART neural network was implemented in an on-line learning manner. On-line learning refers to the continuous updating of training data as time occurs. For this experiment, training began with a singe day and grew to two months of data. This approach provides a platform for immediate implementation that requires minimal time and effort. The results from the LAPART algorithm were compared with statistical regression and a component-based model. The comparison was based on the predictions linear relationship with the measured data, mean squared error, mean bias error, and cost savings achieved by the respective prediction techniques. The results show that the LAPART algorithm provided a reliable and cost effective means to predict the building load for the next day.« less

  14. Digital image classification with the help of artificial neural network by simple histogram

    PubMed Central

    Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant

    2016-01-01

    Background: Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. Aims and Objectives: In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. Materials and Methods: A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. Result: A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. Conclusion: The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations. PMID:27279679

  15. Selection of molecular descriptors with artificial intelligence for the understanding of HIV-1 protease peptidomimetic inhibitors-activity.

    PubMed

    Sirois, S; Tsoukas, C M; Chou, Kuo-Chen; Wei, Dongqing; Boucher, C; Hatzakis, G E

    2005-03-01

    Quantitative Structure Activity Relationship (QSAR) techniques are used routinely by computational chemists in drug discovery and development to analyze datasets of compounds. Quantitative numerical methods like Partial Least Squares (PLS) and Artificial Neural Networks (ANN) have been used on QSAR to establish correlations between molecular properties and bioactivity. However, ANN may be advantageous over PLS because it considers the interrelations of the modeled variables. This study focused on the HIV-1 Protease (HIV-1 Pr) inhibitors belonging to the peptidomimetic class of compounds. The main objective was to select molecular descriptors with the best predictive value for antiviral potency (Ki). PLS and ANN were used to predict Ki activity of HIV-1 Pr inhibitors and the results were compared. To address the issue of dimensionality reduction, Genetic Algorithms (GA) were used for variable selection and their performance was compared against that of ANN. Finally, the structure of the optimum ANN achieving the highest Pearson's-R coefficient was determined. On the basis of Pearson's-R, PLS and ANN were compared to determine which exhibits maximum performance. Training and validation of models was performed on 15 random split sets of the master dataset consisted of 231 compounds. For each compound 192 molecular descriptors were considered. The molecular structure and constant of inhibition (Ki) were selected from the NIAID database. Study findings suggested that non-covalent interactions such as hydrophobicity, shape and hydrogen bonding describe well the antiviral activity of the HIV-1 Pr compounds. The significance of lipophilicity and relationship to HIV-1 associated hyperlipidemia and lipodystrophy syndrome warrant further investigation.

  16. Integration of QSAR and SAR methods for the mechanistic interpretation of predictive models for carcinogenicity

    PubMed Central

    Fjodorova, Natalja; Novič, Marjana

    2012-01-01

    The knowledge-based Toxtree expert system (SAR approach) was integrated with the statistically based counter propagation artificial neural network (CP ANN) model (QSAR approach) to contribute to a better mechanistic understanding of a carcinogenicity model for non-congeneric chemicals using Dragon descriptors and carcinogenic potency for rats as a response. The transparency of the CP ANN algorithm was demonstrated using intrinsic mapping technique specifically Kohonen maps. Chemical structures were represented by Dragon descriptors that express the structural and electronic features of molecules such as their shape and electronic surrounding related to reactivity of molecules. It was illustrated how the descriptors are correlated with particular structural alerts (SAs) for carcinogenicity with recognized mechanistic link to carcinogenic activity. Moreover, the Kohonen mapping technique enables one to examine the separation of carcinogens and non-carcinogens (for rats) within a family of chemicals with a particular SA for carcinogenicity. The mechanistic interpretation of models is important for the evaluation of safety of chemicals. PMID:24688639

  17. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations

    NASA Astrophysics Data System (ADS)

    Chen, Quansheng; Qi, Shuai; Li, Huanhuan; Han, Xiaoyan; Ouyang, Qin; Zhao, Jiewen

    2014-10-01

    To rapidly and efficiently detect the presence of adulterants in honey, three-dimensional fluorescence spectroscopy (3DFS) technique was employed with the help of multivariate calibration. The data of 3D fluorescence spectra were compressed using characteristic extraction and the principal component analysis (PCA). Then, partial least squares (PLS) and back propagation neural network (BP-ANN) algorithms were used for modeling. The model was optimized by cross validation, and its performance was evaluated according to root mean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. The results showed that BP-ANN model was superior to PLS models, and the optimum prediction results of the mixed group (sunflower ± longan ± buckwheat ± rape) model were achieved as follow: RMSEP = 0.0235 and R = 0.9787 in the prediction set. The study demonstrated that the 3D fluorescence spectroscopy technique combined with multivariate calibration has high potential in rapid, nondestructive, and accurate quantitative analysis of honey adulteration.

  18. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  19. Modelling for Prediction vs. Modelling for Understanding: Commentary on Musso et al. (2013)

    ERIC Educational Resources Information Center

    Edelsbrunner, Peter; Schneider, Michael

    2013-01-01

    Musso et al. (2013) predict students' academic achievement with high accuracy one year in advance from cognitive and demographic variables, using artificial neural networks (ANNs). They conclude that ANNs have high potential for theoretical and practical improvements in learning sciences. ANNs are powerful statistical modelling tools but they can…

  20. An ANN That Applies Pragmatic Decision on Texts.

    ERIC Educational Resources Information Center

    Aretoulaki, Maria; Tsujii, Jun-ichi

    A computer-based artificial neural network (ANN) that learns to classify sentences in a text as important or unimportant is described. The program is designed to select the sentences that are important enough to be included in composition of an abstract of the text. The ANN is embedded in a conventional symbolic environment consisting of…

  1. Material Data Representation of Hysteresis Loops for Hastelloy X Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo; Murthy, Pappu L. N.

    1993-01-01

    The artificial neural network (ANN) model proposed by Rumelhart, Hinton, and Williams is applied to develop a functional approximation of material data in the form of hysteresis loops from a nickel-base superalloy, Hastelloy X. Several different ANN configurations are used to model hysteresis loops at different cycles for this alloy. The ANN models were successful in reproducing the hysteresis loops used for its training. However, because of sharp bends at the two ends of hysteresis loops, a drift occurs at the corners of the loops where loading changes to unloading and vice versa (the sharp bends occurred when the stress-strain curves were reproduced by adding stress increments to the preceding values of the stresses). Therefore, it is possible only to reproduce half of the loading path. The generalization capability of the network was tested by using additional data for two other hysteresis loops at different cycles. The results were in good agreement. Also, the use of ANN led to a data compression ratio of approximately 22:1.

  2. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    PubMed

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  3. [Methodological approach to the use of artificial neural networks for predicting results in medicine].

    PubMed

    Trujillano, Javier; March, Jaume; Sorribas, Albert

    2004-01-01

    In clinical practice, there is an increasing interest in obtaining adequate models of prediction. Within the possible available alternatives, the artificial neural networks (ANN) are progressively more used. In this review we first introduce the ANN methodology, describing the most common type of ANN, the Multilayer Perceptron trained with backpropagation algorithm (MLP). Then we compare the MLP with the Logistic Regression (LR). Finally, we show a practical scheme to make an application based on ANN by means of an example with actual data. The main advantage of the RN is its capacity to incorporate nonlinear effects and interactions between the variables of the model without need to include them a priori. As greater disadvantages, they show a difficult interpretation of their parameters and large empiricism in their process of construction and training. ANN are useful for the computation of probabilities of a given outcome based on a set of predicting variables. Furthermore, in some cases, they obtain better results than LR. Both methodologies, ANN and LR, are complementary and they help us to obtain more valid models.

  4. Hierarchical Bayesian Model Averaging for Non-Uniqueness and Uncertainty Analysis of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Fijani, E.; Chitsazan, N.; Nadiri, A.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    Artificial Neural Networks (ANNs) have been widely used to estimate concentration of chemicals in groundwater systems. However, estimation uncertainty is rarely discussed in the literature. Uncertainty in ANN output stems from three sources: ANN inputs, ANN parameters (weights and biases), and ANN structures. Uncertainty in ANN inputs may come from input data selection and/or input data error. ANN parameters are naturally uncertain because they are maximum-likelihood estimated. ANN structure is also uncertain because there is no unique ANN model given a specific case. Therefore, multiple plausible AI models are generally resulted for a study. One might ask why good models have to be ignored in favor of the best model in traditional estimation. What is the ANN estimation variance? How do the variances from different ANN models accumulate to the total estimation variance? To answer these questions we propose a Hierarchical Bayesian Model Averaging (HBMA) framework. Instead of choosing one ANN model (the best ANN model) for estimation, HBMA averages outputs of all plausible ANN models. The model weights are based on the evidence of data. Therefore, the HBMA avoids overconfidence on the single best ANN model. In addition, HBMA is able to analyze uncertainty propagation through aggregation of ANN models in a hierarchy framework. This method is applied for estimation of fluoride concentration in the Poldasht plain and the Bazargan plain in Iran. Unusually high fluoride concentration in the Poldasht and Bazargan plains has caused negative effects on the public health. Management of this anomaly requires estimation of fluoride concentration distribution in the area. The results show that the HBMA provides a knowledge-decision-based framework that facilitates analyzing and quantifying ANN estimation uncertainties from different sources. In addition HBMA allows comparative evaluation of the realizations for each source of uncertainty by segregating the uncertainty sources in a hierarchical framework. Fluoride concentration estimation using the HBMA method shows better agreement to the observation data in the test step because they are not based on a single model with a non-dominate weights.

  5. Comparison of two data mining techniques in labeling diagnosis to Iranian pharmacy claim dataset: artificial neural network (ANN) versus decision tree model.

    PubMed

    Rezaei-Darzi, Ehsan; Farzadfar, Farshad; Hashemi-Meshkini, Amir; Navidi, Iman; Mahmoudi, Mahmoud; Varmaghani, Mehdi; Mehdipour, Parinaz; Soudi Alamdari, Mahsa; Tayefi, Batool; Naderimagham, Shohreh; Soleymani, Fatemeh; Mesdaghinia, Alireza; Delavari, Alireza; Mohammad, Kazem

    2014-12-01

    This study aimed to evaluate and compare the prediction accuracy of two data mining techniques, including decision tree and neural network models in labeling diagnosis to gastrointestinal prescriptions in Iran. This study was conducted in three phases: data preparation, training phase, and testing phase. A sample from a database consisting of 23 million pharmacy insurance claim records, from 2004 to 2011 was used, in which a total of 330 prescriptions were assessed and used to train and test the models simultaneously. In the training phase, the selected prescriptions were assessed by both a physician and a pharmacist separately and assigned a diagnosis. To test the performance of each model, a k-fold stratified cross validation was conducted in addition to measuring their sensitivity and specificity. Generally, two methods had very similar accuracies. Considering the weighted average of true positive rate (sensitivity) and true negative rate (specificity), the decision tree had slightly higher accuracy in its ability for correct classification (83.3% and 96% versus 80.3% and 95.1%, respectively). However, when the weighted average of ROC area (AUC between each class and all other classes) was measured, the ANN displayed higher accuracies in predicting the diagnosis (93.8% compared with 90.6%). According to the result of this study, artificial neural network and decision tree model represent similar accuracy in labeling diagnosis to GI prescription.

  6. Detecting buried explosive hazards with handheld GPR and deep learning

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.

    2016-05-01

    Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.

  7. The artificial neural network modelling of the piezoelectric actuator vibrations using laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Paralı, Levent; Sarı, Ali; Kılıç, Ulaş; Şahin, Özge; Pěchoušek, Jiří

    2017-09-01

    We report an improvement of the artificial neural network (ANN) modelling of a piezoelectric actuator vibration based on the experimental data. The controlled vibrations of an actuator were obtained by utilizing the swept-sine signal excitation. The peak value in the displacement signal response was measured by a laser displacement sensor. The piezoelectric actuator was modelled in both linear and nonlinear operating range. A consistency from 90.3 up to 98.9% of ANN modelled output values and experimental ones was reached. The obtained results clearly demonstrate exact linear relationship between the ANN model and experimental values.

  8. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.

    PubMed

    Oparaji, Uchenna; Sheu, Rong-Jiun; Bankhead, Mark; Austin, Jonathan; Patelli, Edoardo

    2017-12-01

    Artificial Neural Networks (ANNs) are commonly used in place of expensive models to reduce the computational burden required for uncertainty quantification, reliability and sensitivity analyses. ANN with selected architecture is trained with the back-propagation algorithm from few data representatives of the input/output relationship of the underlying model of interest. However, different performing ANNs might be obtained with the same training data as a result of the random initialization of the weight parameters in each of the network, leading to an uncertainty in selecting the best performing ANN. On the other hand, using cross-validation to select the best performing ANN based on the ANN with the highest R 2 value can lead to biassing in the prediction. This is as a result of the fact that the use of R 2 cannot determine if the prediction made by ANN is biased. Additionally, R 2 does not indicate if a model is adequate, as it is possible to have a low R 2 for a good model and a high R 2 for a bad model. Hence, in this paper, we propose an approach to improve the robustness of a prediction made by ANN. The approach is based on a systematic combination of identical trained ANNs, by coupling the Bayesian framework and model averaging. Additionally, the uncertainties of the robust prediction derived from the approach are quantified in terms of confidence intervals. To demonstrate the applicability of the proposed approach, two synthetic numerical examples are presented. Finally, the proposed approach is used to perform a reliability and sensitivity analyses on a process simulation model of a UK nuclear effluent treatment plant developed by National Nuclear Laboratory (NNL) and treated in this study as a black-box employing a set of training data as a test case. This model has been extensively validated against plant and experimental data and used to support the UK effluent discharge strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Science of the science, drug discovery and artificial neural networks.

    PubMed

    Patel, Jigneshkumar

    2013-03-01

    Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.

  10. How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!

    NASA Astrophysics Data System (ADS)

    Hassan Saddagh, Mohammad; Javad Abedini, Mohammad

    2010-05-01

    Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.

  11. Autonomous self-configuration of artificial neural networks for data classification or system control

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang

    2009-05-01

    Artificial neural networks (ANNs) are powerful methods for the classification of multi-dimensional data as well as for the control of dynamic systems. In general terms, ANNs consist of neurons that are, e.g., arranged in layers and interconnected by real-valued or binary neural couplings or weights. ANNs try mimicking the processing taking place in biological brains. The classification and generalization capabilities of ANNs are given by the interconnection architecture and the coupling strengths. To perform a certain classification or control task with a particular ANN architecture (i.e., number of neurons, number of layers, etc.), the inter-neuron couplings and their accordant coupling strengths must be determined (1) either by a priori design (i.e., manually) or (2) using training algorithms such as error back-propagation. The more complex the classification or control task, the less obvious it is how to determine an a priori design of an ANN, and, as a consequence, the architecture choice becomes somewhat arbitrary. Furthermore, rather than being able to determine for a given architecture directly the corresponding coupling strengths necessary to perform the classification or control task, these have to be obtained/learned through training of the ANN on test data. We report on the use of a Stochastic Optimization Framework (SOF; Fink, SPIE 2008) for the autonomous self-configuration of Artificial Neural Networks (i.e., the determination of number of hidden layers, number of neurons per hidden layer, interconnections between neurons, and respective coupling strengths) for performing classification or control tasks. This may provide an approach towards cognizant and self-adapting computing architectures and systems.

  12. Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction

    PubMed Central

    Aguilera, Teodoro; Lozano, Jesús; Paredes, José A.; Álvarez, Fernando J.; Suárez, José I.

    2012-01-01

    The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Neural Networks (ANNs) for classification purpose. A total of 26 wines from different regions, varieties and elaboration processes have been analyzed with an e-nose and tasted by a sensory panel. Successful results have been obtained in most cases for prediction and classification. PMID:22969387

  13. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study.

    PubMed

    Antanasijević, Davor; Pocajt, Viktor; Povrenović, Dragan; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2013-12-01

    The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters.

  14. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting.

    PubMed

    Alomar, Miquel L; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting.

  15. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting

    PubMed Central

    Alomar, Miquel L.; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L.

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting. PMID:26880876

  16. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control.

    PubMed

    Romani, Santina; Cevoli, Chiara; Fabbri, Angelo; Alessandrini, Laura; Dalla Rosa, Marco

    2012-09-01

    An electronic nose (EN) based on an array of 10 metal oxide semiconductor sensors was used, jointly with an artificial neural network (ANN), to predict coffee roasting degree. The flavor release evolution and the main physicochemical modifications (weight loss, density, moisture content, and surface color: L*, a*), during the roasting process of coffee, were monitored at different cooking times (0, 6, 8, 10, 14, 19 min). Principal component analysis (PCA) was used to reduce the dimensionality of sensors data set (600 values per sensor). The selected PCs were used as ANN input variables. Two types of ANN methods (multilayer perceptron [MLP] and general regression neural network [GRNN]) were used in order to estimate the EN signals. For both neural networks the input values were represented by scores of sensors data set PCs, while the output values were the quality parameter at different roasting times. Both the ANNs were able to well predict coffee roasting degree, giving good prediction results for both roasting time and coffee quality parameters. In particular, GRNN showed the highest prediction reliability. Actually the evaluation of coffee roasting degree is mainly a manned operation, substantially based on the empirical final color observation. For this reason it requires well-trained operators with a long professional skill. The coupling of e-nose and artificial neural networks (ANNs) may represent an effective possibility to roasting process automation and to set up a more reproducible procedure for final coffee bean quality characterization. © 2012 Institute of Food Technologists®

  17. Machine Learning-based Virtual Screening and Its Applications to Alzheimer's Drug Discovery: A Review.

    PubMed

    Carpenter, Kristy A; Huang, Xudong

    2018-06-07

    Virtual Screening (VS) has emerged as an important tool in the drug development process, as it conducts efficient in silico searches over millions of compounds, ultimately increasing yields of potential drug leads. As a subset of Artificial Intelligence (AI), Machine Learning (ML) is a powerful way of conducting VS for drug leads. ML for VS generally involves assembling a filtered training set of compounds, comprised of known actives and inactives. After training the model, it is validated and, if sufficiently accurate, used on previously unseen databases to screen for novel compounds with desired drug target binding activity. The study aims to review ML-based methods used for VS and applications to Alzheimer's disease (AD) drug discovery. To update the current knowledge on ML for VS, we review thorough backgrounds, explanations, and VS applications of the following ML techniques: Naïve Bayes (NB), k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN). All techniques have found success in VS, but the future of VS is likely to lean more heavily toward the use of neural networks - and more specifically, Convolutional Neural Networks (CNN), which are a subset of ANN that utilize convolution. We additionally conceptualize a work flow for conducting ML-based VS for potential therapeutics of for AD, a complex neurodegenerative disease with no known cure and prevention. This both serves as an example of how to apply the concepts introduced earlier in the review and as a potential workflow for future implementation. Different ML techniques are powerful tools for VS, and they have advantages and disadvantages albeit. ML-based VS can be applied to AD drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Bandwidth variable transceivers with artificial neural network-aided provisioning and capacity improvement capabilities in meshed optical networks with cascaded ROADM filtering

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Zhuge, Qunbi; Qiu, Meng; Xiang, Meng; Zhang, Fangyuan; Wu, Baojian; Qiu, Kun; Plant, David V.

    2018-02-01

    We investigate the capacity improvement achieved by bandwidth variable transceivers (BVT) in meshed optical networks with cascaded ROADM filtering at fixed channel spacing, and then propose an artificial neural network (ANN)-aided provisioning scheme to select optimal symbol rate and modulation format for the BVTs in this scenario. Compared with a fixed symbol rate transceiver with standard QAMs, it is shown by both experiments and simulations that BVTs can increase the average capacity by more than 17%. The ANN-aided BVT provisioning method uses parameters monitored from a coherent receiver and then employs a trained ANN to transform these parameters into the desired configuration. It is verified by simulation that the BVT with the proposed provisioning method can approach the upper limit of the system capacity obtained by brute-force search under various degrees of flexibilities.

  19. Artificial neural networks can be effectively used to model changes of intracranial pressure (ICP) during spinal surgery using different non invasive ICP surrogate estimators.

    PubMed

    Watad, Abdulla; Bragazzi, Nicola L; Bacigaluppi, Susanna; Amital, Howard; Watad, Samaa; Sharif, Kassem; Bisharat, Bishara; Siri, Anna; Mahamid, Ala; Abu Ras, Hakim; Nasr, Ahmed; Bilotta, Federico; Robba, Chiara; Adawi, Mohammad

    2018-02-23

    Artificial Intelligence (AI) techniques play a major role in anesthesiology, even though their importance is often overlooked. In the extant literature, AI approaches, such as Artificial Neural Networks (ANNs), have been underutilized, mainly being used to model patient's consciousness state, to predict the precise amount of anesthetic gases, the level of analgesia, or the need of anesthesiological blocks, among others. In the field of neurosurgery, ANNs have been effectively applied to the diagnosis and prognosis of cerebral tumors, seizures, low back pain, and also to the monitoring of intracranial pressure (ICP). A MultiLayer Perceptron (MLP), which is a feedforward ANN, with hyperbolic tangent as activation function in the input/hidden layers, softmax as activation function in the output layer, and cross-entropy as error function, was used to model the impact of prone versus supine position and the use of positive end expiratory pressure (PEEP) on ICP in a sample of 30 patients undergoing spinal surgery. Different non invasive surrogate estimations of ICP have been used and compared: namely, mean optic nerve sheath diameter (ONSD), non invasive estimated cerebral perfusion pressure (NCPP), pulsatility index (PI), ICP derived from PI (ICP-PI), and flow velocity diastolic formula (FVDICP). ONSD proved to be a more robust surrogate estimation of ICP, with a predictive power of 75%, whilst the power of NCPP, ICP-PI, PI, and FVDICP were 60.5%, 54.8%, 53.1%, and 47.7%, respectively. Our MLP analysis confirmed our findings previously obtained with regression, correlation, multivariate Receiving Operator Curve (multi-ROC) analyses. ANNs can be successfully used to predict the effects of prone versus supine position and PEEP on ICP in patients undergoing spinal surgery using different non invasive surrogate estimators of ICP.

  20. Surrogate modeling of deformable joint contact using artificial neural networks.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2015-09-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks

    PubMed Central

    Eskinazi, Ilan; Fregly, Benjamin J.

    2016-01-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  2. Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings.

    PubMed

    Eken, Cenker; Bilge, Ugur; Kartal, Mutlu; Eray, Oktay

    2009-06-03

    Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. The purpose of this study was to perform artificial intelligence models on a medical data sheet and compare to logistic regression. ANN, GA, and logistic regression analysis were carried out on a data sheet of a previously published article regarding patients presenting to an emergency department with flank pain suspicious for renal colic. The study population was composed of 227 patients: 176 patients had a diagnosis of urinary stone, while 51 ultimately had no calculus. The GA found two decision rules in predicting urinary stones. Rule 1 consisted of being male, pain not spreading to back, and no fever. In rule 2, pelvicaliceal dilatation on bedside ultrasonography replaced no fever. ANN, GA rule 1, GA rule 2, and logistic regression had a sensitivity of 94.9, 67.6, 56.8, and 95.5%, a specificity of 78.4, 76.47, 86.3, and 47.1%, a positive likelihood ratio of 4.4, 2.9, 4.1, and 1.8, and a negative likelihood ratio of 0.06, 0.42, 0.5, and 0.09, respectively. The area under the curve was found to be 0.867, 0.720, 0.715, and 0.713 for all applications, respectively. Data mining techniques such as ANN and GA can be used for predicting renal colic in emergency settings and to constitute clinical decision rules. They may be an alternative to conventional multivariate analysis applications used in biostatistics.

  3. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang

    2015-01-01

    Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.

  4. Artificial neural network aided non-invasive grading evaluation of hepatic fibrosis by duplex ultrasonography

    PubMed Central

    2012-01-01

    Background Artificial neural networks (ANNs) are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy. Methods 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC) analysis. Results 5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform, hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80. Conclusions The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice. PMID:22716936

  5. Automatic Keyword Identification by Artificial Neural Networks Compared to Manual Identification by Users of Filtering Systems.

    ERIC Educational Resources Information Center

    Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha

    2001-01-01

    Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)

  6. Neural Network Classification of Receiver Functions as a Step Towards Automatic Crustal Parameter Determination

    NASA Astrophysics Data System (ADS)

    Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.

    2006-12-01

    Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk stacking on the receiver functions which we ourselves classified as the best set and found that the crustal thickness and Vp/Vs ratio are 31±2 km and 1.75±0.02, respectively.

  7. The Use of UV-Visible Reflectance Spectroscopy as an Objective Tool to Evaluate Pearl Quality

    PubMed Central

    Agatonovic-Kustrin, Snezana; Morton, David W.

    2012-01-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl’s quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry. PMID:22851919

  8. Evaluation of Porosity and Permeability for an Oil Prospect, Offshore Vietnam by using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Bui, H. T.; Ho, L. T.; Ushijima, K.; Nur, A.

    2006-12-01

    Determination of porosity and permeability plays a key role either in characterization of a reservoir or in development of an oil field. Their distribution helps to predict the major faults or fractured zones that are related to high porosity area in order to reduce drilling hazards. Porosity and permeability of the rock can be determined directly from the core sample or obtained from well log data such as: sonic, density, neutron or resistivity. These input parameters depend not only on porosity (?) but also on the rock matrix, fluids contained in the rocks, clay mineral component, or geometry of pore structures. Therefore, it is not easy to estimate exactly porosity and permeability since having corrected those values by conventional well log interpretation method. In this study, the Artificial Neural Networks (ANNs) have been used to derive porosity and permeability directly from well log data for Vung Dong oil prospect, southern offshore Vietnam. Firstly, we designed a training patterns for ANNs from neutron porosity, bulk density, P-sonic, deep resistivity, shallow resistivity and MSFL log curves. Then, ANNs were trained by core samples data for porosity and permeability. Several ANNs paradigms have been tried on a basis of trial and error. The batch back- propagation algorithm was found more proficient in training porosity network meanwhile the quick propagation algorithm is more effective in the permeability network. Secondly, trained ANNs was tested and applied for real data set of some wells to calculate and reveal the distribution maps of porosity or permeability. Distributions of porosity and permeability have been correlated with seismic data interpretation to map the faults and fractured zones in the study. The ANNs showed good results of porosity and permeability distribution with high reliability, fast, accurate and low cost features. Therefore, the ANNs should be widely applied in oil and gas industry.

  9. Numerical solution of differential equations by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1995-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  10. Optical scatterometry of quarter-micron patterns using neural regression

    NASA Astrophysics Data System (ADS)

    Bischoff, Joerg; Bauer, Joachim J.; Haak, Ulrich; Hutschenreuther, Lutz; Truckenbrodt, Horst

    1998-06-01

    With shrinking dimensions and increasing chip areas, a rapid and non-destructive full wafer characterization after every patterning cycle is an inevitable necessity. In former publications it was shown that Optical Scatterometry (OS) has the potential to push the attainable feature limits of optical techniques from 0.8 . . . 0.5 microns for imaging methods down to 0.1 micron and below. Thus the demands of future metrology can be met. Basically being a nonimaging method, OS combines light scatter (or diffraction) measurements with modern data analysis schemes to solve the inverse scatter issue. For very fine patterns with lambda-to-pitch ratios grater than one, the specular reflected light versus the incidence angle is recorded. Usually, the data analysis comprises two steps -- a training cycle connected the a rigorous forward modeling and the prediction itself. Until now, two data analysis schemes are usually applied -- the multivariate regression based Partial Least Squares method (PLS) and a look-up-table technique which is also referred to as Minimum Mean Square Error approach (MMSE). Both methods are afflicted with serious drawbacks. On the one hand, the prediction accuracy of multivariate regression schemes degrades with larger parameter ranges due to the linearization properties of the method. On the other hand, look-up-table methods are rather time consuming during prediction thus prolonging the processing time and reducing the throughput. An alternate method is an Artificial Neural Network (ANN) based regression which combines the advantages of multivariate regression and MMSE. Due to the versatility of a neural network, not only can its structure be adapted more properly to the scatter problem, but also the nonlinearity of the neuronal transfer functions mimic the nonlinear behavior of optical diffraction processes more adequately. In spite of these pleasant properties, the prediction speed of ANN regression is comparable with that of the PLS-method. In this paper, the viability and performance of ANN-regression will be demonstrated with the example of sub-quarter-micron resist metrology. To this end, 0.25 micrometer line/space patterns have been printed in positive photoresist by means of DUV projection lithography. In order to evaluate the total metrology chain from light scatter measurement through data analysis, a thorough modeling has been performed. Assuming a trapezoidal shape of the developed resist profile, a training data set was generated by means of the Rigorous Coupled Wave Approach (RCWA). After training the model, a second data set was computed and deteriorated by Gaussian noise to imitate real measuring conditions. Then, these data have been fed into the models established before resulting in a Standard Error of Prediction (SEP) which corresponds to the measuring accuracy. Even with putting only little effort in the design of a back-propagation network, the ANN is clearly superior to the PLS-method. Depending on whether a network with one or two hidden layers was used, accuracy gains between 2 and 5 can be achieved compared with PLS regression. Furthermore, the ANN is less noise sensitive, for there is only a doubling of the SEP at 5% noise for ANN whereas for PLS the accuracy degrades rapidly with increasing noise. The accuracy gain also depends on the light polarization and on the measured parameters. Finally, these results have been proven experimentally, where the OS-results are in good accordance with the profiles obtained from cross- sectioning micrographs.

  11. A New Data Mining Scheme Using Artificial Neural Networks

    PubMed Central

    Kamruzzaman, S. M.; Jehad Sarkar, A. M.

    2011-01-01

    Classification is one of the data mining problems receiving enormous attention in the database community. Although artificial neural networks (ANNs) have been successfully applied in a wide range of machine learning applications, they are however often regarded as black boxes, i.e., their predictions cannot be explained. To enhance the explanation of ANNs, a novel algorithm to extract symbolic rules from ANNs has been proposed in this paper. ANN methods have not been effectively utilized for data mining tasks because how the classifications were made is not explicitly stated as symbolic rules that are suitable for verification or interpretation by human experts. With the proposed approach, concise symbolic rules with high accuracy, that are easily explainable, can be extracted from the trained ANNs. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and the accuracy. The effectiveness of the proposed approach is clearly demonstrated by the experimental results on a set of benchmark data mining classification problems. PMID:22163866

  12. Time-dependent fermentation control strategies for enhancing synthesis of marine bacteriocin 1701 using artificial neural network and genetic algorithm.

    PubMed

    Peng, Jiansheng; Meng, Fanmei; Ai, Yuncan

    2013-06-01

    The artificial neural network (ANN) and genetic algorithm (GA) were combined to optimize the fermentation process for enhancing production of marine bacteriocin 1701 in a 5-L-stirred-tank. Fermentation time, pH value, dissolved oxygen level, temperature and turbidity were used to construct a "5-10-1" ANN topology to identify the nonlinear relationship between fermentation parameters and the antibiotic effects (shown as in inhibition diameters) of bacteriocin 1701. The predicted values by the trained ANN model were coincided with the observed ones (the coefficient of R(2) was greater than 0.95). As the fermentation time was brought in as one of the ANN input nodes, fermentation parameters could be optimized by stages through GA, and an optimal fermentation process control trajectory was created. The production of marine bacteriocin 1701 was significantly improved by 26% under the guidance of fermentation control trajectory that was optimized by using of combined ANN-GA method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    PubMed

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  14. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  15. Markov chain-incorporated and synthetic data-supported conditional artificial neural network models for forecasting monthly precipitation in arid regions

    NASA Astrophysics Data System (ADS)

    Aksoy, Hafzullah; Dahamsheh, Ahmad

    2018-07-01

    For forecasting monthly precipitation in an arid region, the feed forward back-propagation, radial basis function and generalized regression artificial neural networks (ANNs) are used in this study. The ANN models are improved after incorporation of a Markov chain-based algorithm (MC-ANNs) with which the percentage of dry months is forecasted perfectly, thus generation of any non-physical negative precipitation is eliminated. Due to the fact that recorded precipitation time series are usually shorter than the length needed for a proper calibration of ANN models, synthetic monthly precipitation data are generated by Thomas-Fiering model to further improve the performance of forecasting. For case studies from Jordan, it is seen that only a slightly better performance is achieved with the use of MC and synthetic data. A conditional statement is, therefore, established and imbedded into the ANN models after the incorporation of MC and support of synthetic data, to substantially improve the ability of the models for forecasting monthly precipitation in arid regions.

  16. Estimating wheat and maize daily evapotranspiration using artificial neural network

    NASA Astrophysics Data System (ADS)

    Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein

    2018-02-01

    In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.

  17. Quantification of phenylpropanoids in commercial Echinacea products using TLC with video densitometry as detection technique and ANN for data modelling.

    PubMed

    Agatonovic-Kustrin, S; Loescher, Christine M; Singh, Ragini

    2013-01-01

    Echinacea preparations are among the most popular herbal remedies worldwide. Although it is generally assigned immune enhancement activities, the effectiveness of Echinacea is highly dependent on the Echinacea species, part of the plant used, the age of the plant, its location and the method of extraction. The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin-layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of three phenylpropanoid markers (chicoric acid, chlorogenic acid and echinacoside) in commercial Echinacea products. By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. One hundred and one signal intensities in each of the TLC chromatograms were correlated to the amounts of applied echinacoside, chlorogenic acid and chicoric acid using an ANN. The developed ANN correlation was used to quantify the amounts of three marker compounds in Echinacea commercial formulations. The minimum quantifiable level of 63, 154 and 98 ng and the limit of detection of 19, 46 and 29 ng were established for echinacoside, chlorogenic acid and chicoric acid respectively. A novel method for quality control of herbal products, based on TLC separation, high-resolution digital plate imaging and ANN data analysis has been developed. The method proposed can be adopted for routine evaluation of the phytochemical variability in Echinacea formulations available in the market. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Application of neural networks for the prediction of rock fragmentation in Chadormalu iron mine / Zastosowanie sieci neuronowych do prognozowania stopnia rozdrobnienia skał w kopalni rud żelaza w Chadormalu

    NASA Astrophysics Data System (ADS)

    Monjezi, Masoud; Ahmadi, Zabiholla; Khandelwal, Manoj

    2012-12-01

    Most open-pit mining operations employ blasting for primary breakage of the in-situ rock mass. Inappropriate blasting techniques can result in excessive damage to the wall rock, decreasing stability and increasing water influx. In addition, it will result in either over and/or under breakage of rocks. The presence of over broken rocks can result in decreased wall stability and require additional excavation. In contrast, the presence of under broken rocks may require secondary blasting and additional crushing. Since blasting is a major cost factor, both cases (under and over breakage) create additional costs reflected in the increase of the operation and maintenance of the machinery. Quick and accurate measurements of fragment size distribution are essential for managing fragmented rock and other materials. Various fragmentation measurement techniques are available and are being used by industry/researchers but most of the methods are time consuming and not precise. An ideally performed blasting operation enormously influences the overall mining cost. This aim can be achieved by proper prediction and attenuation of fragmentation. Prediction of fragmentation is essential for optimizing blasting operation. Poor performance of the empirical models for predicting fragmentation has urged the application of new approaches. In this paper, artificial neural network (ANN) method is implemented to develop a model to predict rock fragmentation size distribution due to blasting in Chadormalu iron mine, Iran. In the development of the proposed ANN model, ten parameters such as UCS, drilling rate, water content, burden, spacing, stemming, hole diameter, bench height, powder factor and charge per delay were incorporated. Training and testing of the model was performed by the back-propagation algorithm using 97 datasets. A four-layer ANN was found to be optimum with architecture of 10-7-5-1. A comparison has made between measured results of fragmentation with predicted results of fragmentation by ANN and multiple regression model. Sensitivity analysis was also performed to understand the effect of each influencing parameters on rock fragmentation.

  19. Sentiment analysis: a comparison of deep learning neural network algorithm with SVM and naϊve Bayes for Indonesian text

    NASA Astrophysics Data System (ADS)

    Calvin Frans Mariel, Wahyu; Mariyah, Siti; Pramana, Setia

    2018-03-01

    Deep learning is a new era of machine learning techniques that essentially imitate the structure and function of the human brain. It is a development of deeper Artificial Neural Network (ANN) that uses more than one hidden layer. Deep Learning Neural Network has a great ability on recognizing patterns from various data types such as picture, audio, text, and many more. In this paper, the authors tries to measure that algorithm’s ability by applying it into the text classification. The classification task herein is done by considering the content of sentiment in a text which is also called as sentiment analysis. By using several combinations of text preprocessing and feature extraction techniques, we aim to compare the precise modelling results of Deep Learning Neural Network with the other two commonly used algorithms, the Naϊve Bayes and Support Vector Machine (SVM). This algorithm comparison uses Indonesian text data with balanced and unbalanced sentiment composition. Based on the experimental simulation, Deep Learning Neural Network clearly outperforms the Naϊve Bayes and SVM and offers a better F-1 Score while for the best feature extraction technique which improves that modelling result is Bigram.

  20. Water demand forecasting: review of soft computing methods.

    PubMed

    Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R

    2017-07-01

    Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.

  1. Reconstructing historical habitat data with predictive models Read More: http://www.esajournals.org/doi/abs/10.1890/13-0327.1

    USGS Publications Warehouse

    Zweig, Christa L.; Kitchens, Wiley M.

    2014-01-01

    Historical vegetation data are important to ecological studies, as many structuring processes operate at long time scales, from decades to centuries. Capturing the pattern of variability within a system (enough to declare a significant change from past to present) relies on correct assumptions about the temporal scale of the processes involved. Sufficient long-term data are often lacking, and current techniques have their weaknesses. To address this concern, we constructed multistate and artificial neural network models (ANN) to provide fore- and hindcast vegetation communities considered critical foraging habitat for an endangered bird, the Florida Snail Kite (Rostrhamus sociabilis). Multistate models were not able to hindcast due to our data not satisfying a detailed balance requirement for time reversibility in Markovian dynamics. Multistate models were useful for forecasting and providing environmental variables for the ANN. Results from our ANN hindcast closely mirrored the population collapse of the Snail Kite population using only environmental data to inform the model. The parallel between the two gives us confidence in the hindcasting results and their use in future demographic models.

  2. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.

    PubMed

    Wen, Xiaohu; Fang, Jing; Diao, Meina; Zhang, Chuanqi

    2013-05-01

    Identification and quantification of dissolved oxygen (DO) profiles of river is one of the primary concerns for water resources managers. In this research, an artificial neural network (ANN) was developed to simulate the DO concentrations in the Heihe River, Northwestern China. A three-layer back-propagation ANN was used with the Bayesian regularization training algorithm. The input variables of the neural network were pH, electrical conductivity, chloride (Cl(-)), calcium (Ca(2+)), total alkalinity, total hardness, nitrate nitrogen (NO3-N), and ammonical nitrogen (NH4-N). The ANN structure with 14 hidden neurons obtained the best selection. By making comparison between the results of the ANN model and the measured data on the basis of correlation coefficient (r) and root mean square error (RMSE), a good model-fitting DO values indicated the effectiveness of neural network model. It is found that the coefficient of correlation (r) values for the training, validation, and test sets were 0.9654, 0.9841, and 0.9680, respectively, and the respective values of RMSE for the training, validation, and test sets were 0.4272, 0.3667, and 0.4570, respectively. Sensitivity analysis was used to determine the influence of input variables on the dependent variable. The most effective inputs were determined as pH, NO3-N, NH4-N, and Ca(2+). Cl(-) was found to be least effective variables on the proposed model. The identified ANN model can be used to simulate the water quality parameters.

  3. Recognition of an obstacle in a flow using artificial neural networks.

    PubMed

    Carrillo, Mauricio; Que, Ulices; González, José A; López, Carlos

    2017-08-01

    In this work a series of artificial neural networks (ANNs) has been developed with the capacity to estimate the size and location of an obstacle obstructing the flow in a pipe. The ANNs learn the size and location of the obstacle by reading the profiles of the dynamic pressure q or the x component of the velocity v_{x} of the fluid at a certain distance from the obstacle. Data to train the ANN were generated using numerical simulations with a two-dimensional lattice Boltzmann code. We analyzed various cases varying both the diameter and the position of the obstacle on the y axis, obtaining good estimations using the R^{2} coefficient for the cases under study. Although the ANN showed problems with the classification of very small obstacles, the general results show a very good capacity for prediction.

  4. Neural network processing of microbial fuel cell signals for the identification of chemicals present in water.

    PubMed

    Feng, Yinghua; Barr, William; Harper, W F

    2013-05-15

    Biosensing is emerging as an important element of water quality monitoring. This research demonstrated that microbial fuel cell (MFC)-based biosensing can be integrated with artificial neural networks (ANNs) to identify specific chemicals present in water samples. The non-fermentable substrates, acetate and butyrate, induced peak areas (PA) and peak heights (PH) that were generally larger than those caused by the injection of fermentable substrates, glucose and corn starch. The ANN successfully identified peaks associated with these four chemicals under a variety of experimental conditions and for two MFCs that had different levels of sensitivity. ANNs that employ the hyperbolic tangent sigmoid transfer function performed better than those using non-continuous transfer functions. ANNs should be integrated into water quality monitoring efforts for smart biosensing. Published by Elsevier Ltd.

  5. A neural network - based algorithm for predicting stone -free status after ESWL therapy

    PubMed Central

    Seckiner, Ilker; Seckiner, Serap; Sen, Haluk; Bayrak, Omer; Dogan, Kazım; Erturhan, Sakip

    2017-01-01

    ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. PMID:28727384

  6. Incorporating geographical factors with artificial neural networks to predict reference values of erythrocyte sedimentation rate

    PubMed Central

    2013-01-01

    Background The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Methods and findings Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China. The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Conclusions Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships. PMID:23497145

  7. An alternative respiratory sounds classification system utilizing artificial neural networks.

    PubMed

    Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen

    2015-01-01

    Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  8. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm.

    PubMed

    Jacob, Samuel; Banerjee, Rintu

    2016-08-01

    A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Incorporating geographical factors with artificial neural networks to predict reference values of erythrocyte sedimentation rate.

    PubMed

    Yang, Qingsheng; Mwenda, Kevin M; Ge, Miao

    2013-03-12

    The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China.The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships.

  10. Modeling of frequency agile devices: development of PKI neuromodeling library based on hierarchical network structure

    NASA Astrophysics Data System (ADS)

    Sanchez, P.; Hinojosa, J.; Ruiz, R.

    2005-06-01

    Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.

  11. Reliability based impact localization in composite panels using Bayesian updating and the Kalman filter

    NASA Astrophysics Data System (ADS)

    Morse, Llewellyn; Sharif Khodaei, Zahra; Aliabadi, M. H.

    2018-01-01

    In this work, a reliability based impact detection strategy for a sensorized composite structure is proposed. Impacts are localized using Artificial Neural Networks (ANNs) with recorded guided waves due to impacts used as inputs. To account for variability in the recorded data under operational conditions, Bayesian updating and Kalman filter techniques are applied to improve the reliability of the detection algorithm. The possibility of having one or more faulty sensors is considered, and a decision fusion algorithm based on sub-networks of sensors is proposed to improve the application of the methodology to real structures. A strategy for reliably categorizing impacts into high energy impacts, which are probable to cause damage in the structure (true impacts), and low energy non-damaging impacts (false impacts), has also been proposed to reduce the false alarm rate. The proposed strategy involves employing classification ANNs with different features extracted from captured signals used as inputs. The proposed methodologies are validated by experimental results on a quasi-isotropic composite coupon impacted with a range of impact energies.

  12. Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks

    PubMed Central

    Hramov, Alexander E.; Maksimenko, Vladimir A.; Pchelintseva, Svetlana V.; Runnova, Anastasiya E.; Grubov, Vadim V.; Musatov, Vyacheslav Yu.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2017-01-01

    In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. PMID:29255403

  13. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    PubMed Central

    Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models. PMID:26759830

  14. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS.

    PubMed

    Djurovic, Nevenka; Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

  15. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks | Center for Cancer Research

    Cancer.gov

    The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in

  16. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  17. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  18. Identification of drought in Dhalai river watershed using MCDM and ANN models

    NASA Astrophysics Data System (ADS)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  19. Optimization of Melatonin Dissolution from Extended Release Matrices Using Artificial Neural Networking.

    PubMed

    Martarelli, D; Casettari, L; Shalaby, K S; Soliman, M E; Cespi, M; Bonacucina, G; Fagioli, L; Perinelli, D R; Lam, J K W; Palmieri, G F

    2016-01-01

    Efficacy of melatonin in treating sleep disorders has been demonstrated in numerous studies. Being with short half-life, melatonin needs to be formulated in extended-release tablets to prevent the fast drop of its plasma concentration. However, an attempt to mimic melatonin natural plasma levels during night time is challenging. In this work, Artificial Neural Networks (ANNs) were used to optimize melatonin release from hydrophilic polymer matrices. Twenty-seven different tablet formulations with different amounts of hydroxypropyl methylcellulose, xanthan gum and Carbopol®974P NF were prepared and subjected to drug release studies. Using dissolution test data as inputs for ANN designed by Visual Basic programming language, the ideal number of neurons in the hidden layer was determined trial and error methodology to guarantee the best performance of constructed ANN. Results showed that the ANN with nine neurons in the hidden layer had the best results. ANN was examined to check its predictability and then used to determine the best formula that can mimic the release of melatonin from a marketed brand using similarity fit factor. This work shows the possibility of using ANN to optimize the composition of prolonged-release melatonin tablets having dissolution profile desired.

  20. Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models

    PubMed Central

    Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin

    2017-01-01

    In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve. PMID:28469384

  1. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes

    NASA Astrophysics Data System (ADS)

    Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.

    2013-10-01

    In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.

  2. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T.

    PubMed

    Bertleff, Marco; Domsch, Sebastian; Weingärtner, Sebastian; Zapp, Jascha; O'Brien, Kieran; Barth, Markus; Schad, Lothar R

    2017-12-01

    Artificial neural networks (ANNs) were used for voxel-wise parameter estimation with the combined intravoxel incoherent motion (IVIM) and kurtosis model facilitating robust diffusion parameter mapping in the human brain. The proposed ANN approach was compared with conventional least-squares regression (LSR) and state-of-the-art multi-step fitting (LSR-MS) in Monte-Carlo simulations and in vivo in terms of estimation accuracy and precision, number of outliers and sensitivity in the distinction between grey (GM) and white (WM) matter. Both the proposed ANN approach and LSR-MS yielded visually increased parameter map quality. Estimations of all parameters (perfusion fraction f, diffusion coefficient D, pseudo-diffusion coefficient D*, kurtosis K) were in good agreement with the literature using ANN, whereas LSR-MS resulted in D* overestimation and LSR yielded increased values for f and D*, as well as decreased values for K. Using ANN, outliers were reduced for the parameters f (ANN, 1%; LSR-MS, 19%; LSR, 8%), D* (ANN, 21%; LSR-MS, 25%; LSR, 23%) and K (ANN, 0%; LSR-MS, 0%; LSR, 15%). Moreover, ANN enabled significant distinction between GM and WM based on all parameters, whereas LSR facilitated this distinction only based on D and LSR-MS on f, D and K. Overall, the proposed ANN approach was found to be superior to conventional LSR, posing a powerful alternative to the state-of-the-art method LSR-MS with several advantages in the estimation of IVIM-kurtosis parameters, which might facilitate increased applicability of enhanced diffusion models at clinical scan times. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Analysis Resilient Algorithm on Artificial Neural Network Backpropagation

    NASA Astrophysics Data System (ADS)

    Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy

    2017-12-01

    Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.

  4. Implementing Signature Neural Networks with Spiking Neurons

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks. PMID:28066221

  5. Implementing Signature Neural Networks with Spiking Neurons.

    PubMed

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks.

  6. Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys.

    PubMed

    Song, Hao; Ruan, Dan; Liu, Wenyang; Stenger, V Andrew; Pohmann, Rolf; Fernández-Seara, Maria A; Nair, Tejas; Jung, Sungkyu; Luo, Jingqin; Motai, Yuichi; Ma, Jingfei; Hazle, John D; Gach, H Michael

    2017-03-01

    Respiratory motion prediction using an artificial neural network (ANN) was integrated with pseudocontinuous arterial spin labeling (pCASL) MRI to allow free-breathing perfusion measurements in the kidney. In this study, we evaluated the performance of the ANN to accurately predict the location of the kidneys during image acquisition. A pencil-beam navigator was integrated with a pCASL sequence to measure lung/diaphragm motion during ANN training and the pCASL transit delay. The ANN algorithm ran concurrently in the background to predict organ location during the 0.7-s 15-slice acquisition based on the navigator data. The predictions were supplied to the pulse sequence to prospectively adjust the axial slice acquisition to match the predicted organ location. Additional navigators were acquired immediately after the multislice acquisition to assess the performance and accuracy of the ANN. The technique was tested in eight healthy volunteers. The root-mean-square error (RMSE) and mean absolute error (MAE) for the eight volunteers were 1.91 ± 0.17 mm and 1.43 ± 0.17 mm, respectively, for the ANN. The RMSE increased with transit delay. The MAE typically increased from the first to last prediction in the image acquisition. The overshoot was 23.58% ± 3.05% using the target prediction accuracy of ± 1 mm. Respiratory motion prediction with prospective motion correction was successfully demonstrated for free-breathing perfusion MRI of the kidney. The method serves as an alternative to multiple breathholds and requires minimal effort from the patient. © 2017 American Association of Physicists in Medicine.

  7. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models.

    PubMed

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N

    2016-11-01

    This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Implementation of a General Real-Time Visual Anomaly Detection System Via Soft Computing

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve; Ferrell, Bob; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The intelligent visual system detects anomalies or defects in real time under normal lighting operating conditions. The application is basically a learning machine that integrates fuzzy logic (FL), artificial neural network (ANN), and generic algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via ANN and GA techniques. FL provides a powerful framework for knowledge representation and overcomes uncertainty and vagueness typically found in image analysis. ANN provides learning capabilities, and GA leads to robust learning results. An application prototype currently runs on a regular PC under Windows NT, and preliminary work has been performed to build an embedded version with multiple image processors. The application prototype is being tested at the Kennedy Space Center (KSC), Florida, to visually detect anomalies along slide basket cables utilized by the astronauts to evacuate the NASA Shuttle launch pad in an emergency. The potential applications of this anomaly detection system in an open environment are quite wide. Another current, potentially viable application at NASA is in detecting anomalies of the NASA Space Shuttle Orbiter's radiator panels.

  9. Application of receptor models on water quality data in source apportionment in Kuantan River Basin

    PubMed Central

    2012-01-01

    Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management. PMID:23369363

  10. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network

    PubMed Central

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-01-01

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO2, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO2 and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO2; smoke and temperature; smoke, CO2 and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%–92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition. PMID:27527175

  11. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    PubMed

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  12. Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    Sehad, Mounir; Lazri, Mourad; Ameur, Soltane

    2017-03-01

    In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.

  13. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks.

    PubMed

    Kaveh, Mohammad; Chayjan, Reza Amiri

    2014-01-01

    Drying of terebinth fruit was conducted to provide microbiological stability, reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because terebinth fruit is susceptible to heat, the selection of a suitable drying technology is a challenging task. Artificial neural networks (ANNs) are used as a nonlinear mapping structures for modelling and prediction of some physical and drying properties of terebinth fruit. Drying characteristics of terebinth fruit with an initial moisture content of 1.16 (d.b.) was studied in an infrared fluidized bed dryer. Different levels of air temperatures (40, 55 and 70°C), air velocities (0.93, 1.76 and 2.6 m/s) and infrared (IR) radiation powers (500, 1000 and 1500 W) were applied. In the present study, the application of Artificial Neural Network (ANN) for predicting the drying moisture diffusivity, energy consumption, shrinkage, drying rate and moisture ratio (output parameter for ANN modelling) was investigated. Air temperature, air velocity, IR radiation and drying time were considered as input parameters. The results revealed that to predict drying rate and moisture ratio a network with the TANSIG-LOGSIG-TANSIG transfer function and Levenberg-Marquardt (LM) training algorithm made the most accurate predictions for the terebinth fruit drying. The best results for ANN at predications were R2 = 0.9678 for drying rate, R2 = 0.9945 for moisture ratio, R2 = 0.9857 for moisture diffusivity and R2 = 0.9893 for energy consumption. Results indicated that artificial neural network can be used as an alternative approach for modelling and predicting of terebinth fruit drying parameters with high correlation. Also ANN can be used in optimization of the process.

  14. On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components

    NASA Astrophysics Data System (ADS)

    Zhao, Yudi; Wei, Ruyi; Liu, Xuebin

    2017-10-01

    Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.

  15. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy.

    PubMed

    Kawata, Yasuo; Arimura, Hidetaka; Ikushima, Koujirou; Jin, Ze; Morita, Kento; Tokunaga, Chiaki; Yabu-Uchi, Hidetake; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki

    2017-10-01

    The aim of this study was to investigate the impact of pixel-based machine learning (ML) techniques, i.e., fuzzy-c-means clustering method (FCM), and the artificial neural network (ANN) and support vector machine (SVM), on an automated framework for delineation of gross tumor volume (GTV) regions of lung cancer for stereotactic body radiation therapy. The morphological and metabolic features for GTV regions, which were determined based on the knowledge of radiation oncologists, were fed on a pixel-by-pixel basis into the respective FCM, ANN, and SVM ML techniques. Then, the ML techniques were incorporated into the automated delineation framework of GTVs followed by an optimum contour selection (OCS) method, which we proposed in a previous study. The three-ML-based frameworks were evaluated for 16 lung cancer cases (six solid, four ground glass opacity (GGO), six part-solid GGO) with the datasets of planning computed tomography (CT) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images using the three-dimensional Dice similarity coefficient (DSC). DSC denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those estimated using the automated framework. The FCM-based framework achieved the highest DSCs of 0.79±0.06, whereas DSCs of the ANN-based and SVM-based frameworks were 0.76±0.14 and 0.73±0.14, respectively. The FCM-based framework provided the highest segmentation accuracy and precision without a learning process (lowest calculation cost). Therefore, the FCM-based framework can be useful for delineation of tumor regions in practical treatment planning. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Prototype-Incorporated Emotional Neural Network.

    PubMed

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  17. A New Artificial Neural Network Enhanced by the Shuffled Complex Evolution Optimization with Principal Component Analysis (SP-UCI) for Water Resources Management

    NASA Astrophysics Data System (ADS)

    Hayatbini, N.; Faridzad, M.; Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    The Artificial Neural Networks (ANNs) are useful in many fields, including water resources engineering and management. However, due to the non-linear and chaotic characteristics associated with natural processes and human decision making, the use of ANNs in real-world applications is still limited, and its performance needs to be further improved for a broader practical use. The commonly used Back-Propagation (BP) scheme and gradient-based optimization in training the ANNs have already found to be problematic in some cases. The BP scheme and gradient-based optimization methods are associated with the risk of premature convergence, stuck in local optimums, and the searching is highly dependent on initial conditions. Therefore, as an alternative to BP and gradient-based searching scheme, we propose an effective and efficient global searching method, termed the Shuffled Complex Evolutionary Global optimization algorithm with Principal Component Analysis (SP-UCI), to train the ANN connectivity weights. Large number of real-world datasets are tested with the SP-UCI-based ANN, as well as various popular Evolutionary Algorithms (EAs)-enhanced ANNs, i.e., Particle Swarm Optimization (PSO)-, Genetic Algorithm (GA)-, Simulated Annealing (SA)-, and Differential Evolution (DE)-enhanced ANNs. Results show that SP-UCI-enhanced ANN is generally superior over other EA-enhanced ANNs with regard to the convergence and computational performance. In addition, we carried out a case study for hydropower scheduling in the Trinity Lake in the western U.S. In this case study, multiple climate indices are used as predictors for the SP-UCI-enhanced ANN. The reservoir inflows and hydropower releases are predicted up to sub-seasonal to seasonal scale. Results show that SP-UCI-enhanced ANN is able to achieve better statistics than other EAs-based ANN, which implies the usefulness and powerfulness of proposed SP-UCI-enhanced ANN for reservoir operation, water resources engineering and management. The SP-UCI-enhanced ANN is universally applicable to many other regression and prediction problems, and it has a good potential to be an alternative to the classical BP scheme and gradient-based optimization methods.

  18. Application of artificial neural network to predict clay sensitivity in a high landslide prone area using CPTu data- A case study in Southwest of Sweden

    NASA Astrophysics Data System (ADS)

    Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria

    2015-04-01

    Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network

  19. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study.

    PubMed

    Maghsoudi, M; Ghaedi, M; Zinali, A; Ghaedi, A M; Habibi, M H

    2015-01-05

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R(2)) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    NASA Astrophysics Data System (ADS)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  1. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    PubMed Central

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870

  2. A red-light running prevention system based on artificial neural network and vehicle trajectory data.

    PubMed

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  3. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  4. Evaluation of axial pile bearing capacity based on pile driving analyzer (PDA) test using Neural Network

    NASA Astrophysics Data System (ADS)

    Maizir, H.; Suryanita, R.

    2018-01-01

    A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.

  5. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region.

    PubMed

    Albaradeyia, Issa; Hani, Azzedine; Shahrour, Isam

    2011-09-01

    This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.

  6. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network

    PubMed Central

    López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449

  7. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network.

    PubMed

    López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.

  8. Moisture Damage Modeling in Lime and Chemically Modified Asphalt at Nanolevel Using Ensemble Computational Intelligence

    PubMed Central

    2018-01-01

    This paper measures the adhesion/cohesion force among asphalt molecules at nanoscale level using an Atomic Force Microscopy (AFM) and models the moisture damage by applying state-of-the-art Computational Intelligence (CI) techniques (e.g., artificial neural network (ANN), support vector regression (SVR), and an Adaptive Neuro Fuzzy Inference System (ANFIS)). Various combinations of lime and chemicals as well as dry and wet environments are used to produce different asphalt samples. The parameters that were varied to generate different asphalt samples and measure the corresponding adhesion/cohesion forces are percentage of antistripping agents (e.g., Lime and Unichem), AFM tips K values, and AFM tip types. The CI methods are trained to model the adhesion/cohesion forces given the variation in values of the above parameters. To achieve enhanced performance, the statistical methods such as average, weighted average, and regression of the outputs generated by the CI techniques are used. The experimental results show that, of the three individual CI methods, ANN can model moisture damage to lime- and chemically modified asphalt better than the other two CI techniques for both wet and dry conditions. Moreover, the ensemble of CI along with statistical measurement provides better accuracy than any of the individual CI techniques. PMID:29849551

  9. HOS network-based classification of power quality events via regression algorithms

    NASA Astrophysics Data System (ADS)

    Palomares Salas, José Carlos; González de la Rosa, Juan José; Sierra Fernández, José María; Pérez, Agustín Agüera

    2015-12-01

    This work compares seven regression algorithms implemented in artificial neural networks (ANNs) supported by 14 power-quality features, which are based in higher-order statistics. Combining time and frequency domain estimators to deal with non-stationary measurement sequences, the final goal of the system is the implementation in the future smart grid to guarantee compatibility between all equipment connected. The principal results are based in spectral kurtosis measurements, which easily adapt to the impulsive nature of the power quality events. These results verify that the proposed technique is capable of offering interesting results for power quality (PQ) disturbance classification. The best results are obtained using radial basis networks, generalized regression, and multilayer perceptron, mainly due to the non-linear nature of data.

  10. First Trimester Noninvasive Prenatal Diagnosis: A Computational Intelligence Approach.

    PubMed

    Neocleous, Andreas C; Nicolaides, Kypros H; Schizas, Christos N

    2016-09-01

    The objective of this study is to examine the potential value of using machine learning techniques such as artificial neural network (ANN) schemes for the noninvasive estimation, at 11-13 weeks of gestation, the risk for euploidy, trisomy 21 (T21), and other chromosomal aneuploidies (O.C.A.), from suitable sonographic, biochemical markers, and other relevant data. A database(1) (1)The dataset can become available for academic purposes by communicating directly with the authors.

  11. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    PubMed

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  12. A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network

    PubMed Central

    Marto, Aminaton; Jahed Armaghani, Danial; Tonnizam Mohamad, Edy; Makhtar, Ahmad Mahir

    2014-01-01

    Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856

  13. Classification of breast abnormalities using artificial neural network

    NASA Astrophysics Data System (ADS)

    Zaman, Nur Atiqah Kamarul; Rahman, Wan Eny Zarina Wan Abdul; Jumaat, Abdul Kadir; Yasiran, Siti Salmah

    2015-05-01

    Classification is the process of recognition, differentiation and categorizing objects into groups. Breast abnormalities are calcifications which are tumor markers that indicate the presence of cancer in the breast. The aims of this research are to classify the types of breast abnormalities using artificial neural network (ANN) classifier and to evaluate the accuracy performance using receiver operating characteristics (ROC) curve. The methods used in this research are ANN for breast abnormalities classifications and Canny edge detector as a feature extraction method. Previously the ANN classifier provides only the number of benign and malignant cases without providing information for specific cases. However in this research, the type of abnormality for each image can be obtained. The existing MIAS MiniMammographic database classified the mammogram images into three features only namely characteristic of background tissues, class of abnormality and radius of abnormality. However, in this research three other features are added-in. These three features are number of spots, area and shape of abnormalities. Lastly the performance of the ANN classifier is evaluated using ROC curve. It is found that ANN has an accuracy of 97.9% which is considered acceptable.

  14. Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents.

    PubMed

    Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia

    2014-01-01

    Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.

  15. Comparison of response surface methodology and artificial neural network to enhance the release of reducing sugars from non-edible seed cake by autoclave assisted HCl hydrolysis.

    PubMed

    Shet, Vinayaka B; Palan, Anusha M; Rao, Shama U; Varun, C; Aishwarya, Uday; Raja, Selvaraj; Goveas, Louella Concepta; Vaman Rao, C; Ujwal, P

    2018-02-01

    In the current investigation, statistical approaches were adopted to hydrolyse non-edible seed cake (NESC) of Pongamia and optimize the hydrolysis process by response surface methodology (RSM). Through the RSM approach, the optimized conditions were found to be 1.17%v/v of HCl concentration at 54.12 min for hydrolysis. Under optimized conditions, the release of reducing sugars was found to be 53.03 g/L. The RSM data were used to train the artificial neural network (ANN) and the predictive ability of both models was compared by calculating various statistical parameters. A three-layered ANN model consisting of 2:12:1 topology was developed; the response of the ANN model indicates that it is precise when compared with the RSM model. The fit of the models was expressed with the regression coefficient R 2 , which was found to be 0.975 and 0.888, respectively, for the ANN and RSM models. This further demonstrated that the performance of ANN was better than that of RSM.

  16. A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network.

    PubMed

    Marto, Aminaton; Hajihassani, Mohsen; Armaghani, Danial Jahed; Mohamad, Edy Tonnizam; Makhtar, Ahmad Mahir

    2014-01-01

    Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches.

  17. ANN modeling of DNA sequences: new strategies using DNA shape code.

    PubMed

    Parbhane, R V; Tambe, S S; Kulkarni, B D

    2000-09-01

    Two new encoding strategies, namely, wedge and twist codes, which are based on the DNA helical parameters, are introduced to represent DNA sequences in artificial neural network (ANN)-based modeling of biological systems. The performance of the new coding strategies has been evaluated by conducting three case studies involving mapping (modeling) and classification applications of ANNs. The proposed coding schemes have been compared rigorously and shown to outperform the existing coding strategies especially in situations wherein limited data are available for building the ANN models.

  18. [Methods of artificial intelligence: a new trend in pharmacy].

    PubMed

    Dohnal, V; Kuca, K; Jun, D

    2005-07-01

    Artificial neural networks (ANN) and genetic algorithms are one group of methods called artificial intelligence. The application of ANN on pharmaceutical data can lead to an understanding of the inner structure of data and a possibility to build a model (adaptation). In addition, for certain cases it is possible to extract rules from data. The adapted ANN is prepared for the prediction of properties of compounds which were not used in the adaptation phase. The applications of ANN have great potential in pharmaceutical industry and in the interpretation of analytical, pharmacokinetic or toxicological data.

  19. Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography.

    PubMed

    Vomweg, T W; Buscema, M; Kauczor, H U; Teifke, A; Intraligi, M; Terzi, S; Heussel, C P; Achenbach, T; Rieker, O; Mayer, D; Thelen, M

    2003-09-01

    The aim of this study was to evaluate the capability of improved artificial neural networks (ANN) and additional novel training methods in distinguishing between benign and malignant breast lesions in contrast-enhanced magnetic resonance-mammography (MRM). A total of 604 histologically proven cases of contrast-enhanced lesions of the female breast at MRI were analyzed. Morphological, dynamic and clinical parameters were collected and stored in a database. The data set was divided into several groups using random or experimental methods [Training & Testing (T&T) algorithm] to train and test different ANNs. An additional novel computer program for input variable selection was applied. Sensitivity and specificity were calculated and compared with a statistical method and an expert radiologist. After optimization of the distribution of cases among the training and testing sets by the T & T algorithm and the reduction of input variables by the Input Selection procedure a highly sophisticated ANN achieved a sensitivity of 93.6% and a specificity of 91.9% in predicting malignancy of lesions within an independent prediction sample set. The best statistical method reached a sensitivity of 90.5% and a specificity of 68.9%. An expert radiologist performed better than the statistical method but worse than the ANN (sensitivity 92.1%, specificity 85.6%). Features extracted out of dynamic contrast-enhanced MRM and additional clinical data can be successfully analyzed by advanced ANNs. The quality of the resulting network strongly depends on the training methods, which are improved by the use of novel training tools. The best results of an improved ANN outperform expert radiologists.

  20. Parameter estimates in binary black hole collisions using neural networks

    NASA Astrophysics Data System (ADS)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    2016-10-01

    We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

  1. Introduction to Neural Networks.

    DTIC Science & Technology

    1992-03-01

    parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.

  2. Estimation of umbilical cord blood leptin and insulin based on anthropometric data by means of artificial neural network approach: identifying key maternal and neonatal factors.

    PubMed

    Guzmán-Bárcenas, José; Hernández, José Alfredo; Arias-Martínez, Joel; Baptista-González, Héctor; Ceballos-Reyes, Guillermo; Irles, Claudine

    2016-07-21

    Leptin and insulin levels are key factors regulating fetal and neonatal energy homeostasis, development and growth. Both biomarkers are used as predictors of weight gain and obesity during infancy. There are currently no prediction algorithms for cord blood (UCB) hormone levels using Artificial Neural Networks (ANN) that have been directly trained with anthropometric maternal and neonatal data, from neonates exposed to distinct metabolic environments during pregnancy (obese with or without gestational diabetes mellitus or lean women). The aims were: 1) to develop ANN models that simulate leptin and insulin concentrations in UCB based on maternal and neonatal data (ANN perinatal model) or from only maternal data during early gestation (ANN prenatal model); 2) To evaluate the biological relevance of each parameter (maternal and neonatal anthropometric variables). We collected maternal and neonatal anthropometric data (n = 49) in normoglycemic healthy lean, obese or obese with gestational diabetes mellitus women, as well as determined UCB leptin and insulin concentrations by ELISA. The ANN perinatal model consisted of an input layer of 12 variables (maternal and neonatal anthropometric and biochemical data from early gestation and at term) while the ANN prenatal model used only 6 variables (maternal anthropometric from early gestation) in the input layer. For both networks, the output layer contained 1 variable to UCB leptin or to UCB insulin concentration. The best architectures for the ANN perinatal models estimating leptin and insulin were 12-5-1 while for the ANN prenatal models, 6-5-1 and 6-4-1 were found for leptin and insulin, respectively. ANN models presented an excellent agreement between experimental and simulated values. Interestingly, the use of only prenatal maternal anthropometric data was sufficient to estimate UCB leptin and insulin values. Maternal BMI, weight and age as well as neonatal birth were the most influential parameters for leptin while maternal morbidity was the most significant factor for insulin prediction. Low error percentage and short computing time makes these ANN models interesting in a translational research setting, to be applied for the prediction of neonatal leptin and insulin values from maternal anthropometric data, and possibly the on-line estimation during pregnancy.

  3. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study.

    PubMed

    Nakajima, Kenichi; Kudo, Takashi; Nakata, Tomoaki; Kiso, Keisuke; Kasai, Tokuo; Taniguchi, Yasuyo; Matsuo, Shinro; Momose, Mitsuru; Nakagawa, Masayasu; Sarai, Masayoshi; Hida, Satoshi; Tanaka, Hirokazu; Yokoyama, Kunihiko; Okuda, Koichi; Edenbrandt, Lars

    2017-12-01

    Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest 99m Tc-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were >0.80. The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease.

  4. Confidence intervals in Flow Forecasting by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Panagoulia, Dionysia; Tsekouras, George

    2014-05-01

    One of the major inadequacies in implementation of Artificial Neural Networks (ANNs) for flow forecasting is the development of confidence intervals, because the relevant estimation cannot be implemented directly, contrasted to the classical forecasting methods. The variation in the ANN output is a measure of uncertainty in the model predictions based on the training data set. Different methods for uncertainty analysis, such as bootstrap, Bayesian, Monte Carlo, have already proposed for hydrologic and geophysical models, while methods for confidence intervals, such as error output, re-sampling, multi-linear regression adapted to ANN have been used for power load forecasting [1-2]. The aim of this paper is to present the re-sampling method for ANN prediction models and to develop this for flow forecasting of the next day. The re-sampling method is based on the ascending sorting of the errors between real and predicted values for all input vectors. The cumulative sample distribution function of the prediction errors is calculated and the confidence intervals are estimated by keeping the intermediate value, rejecting the extreme values according to the desired confidence levels, and holding the intervals symmetrical in probability. For application of the confidence intervals issue, input vectors are used from the Mesochora catchment in western-central Greece. The ANN's training algorithm is the stochastic training back-propagation process with decreasing functions of learning rate and momentum term, for which an optimization process is conducted regarding the crucial parameters values, such as the number of neurons, the kind of activation functions, the initial values and time parameters of learning rate and momentum term etc. Input variables are historical data of previous days, such as flows, nonlinearly weather related temperatures and nonlinearly weather related rainfalls based on correlation analysis between the under prediction flow and each implicit input variable of different ANN structures [3]. The performance of each ANN structure is evaluated by the voting analysis based on eleven criteria, which are the root mean square error (RMSE), the correlation index (R), the mean absolute percentage error (MAPE), the mean percentage error (MPE), the mean percentage error (ME), the percentage volume in errors (VE), the percentage error in peak (MF), the normalized mean bias error (NMBE), the normalized root mean bias error (NRMSE), the Nash-Sutcliffe model efficiency coefficient (E) and the modified Nash-Sutcliffe model efficiency coefficient (E1). The next day flow for the test set is calculated using the best ANN structure's model. Consequently, the confidence intervals of various confidence levels for training, evaluation and test sets are compared in order to explore the generalisation dynamics of confidence intervals from training and evaluation sets. [1] H.S. Hippert, C.E. Pedreira, R.C. Souza, "Neural networks for short-term load forecasting: A review and evaluation," IEEE Trans. on Power Systems, vol. 16, no. 1, 2001, pp. 44-55. [2] G. J. Tsekouras, N.E. Mastorakis, F.D. Kanellos, V.T. Kontargyri, C.D. Tsirekis, I.S. Karanasiou, Ch.N. Elias, A.D. Salis, P.A. Kontaxis, A.A. Gialketsi: "Short term load forecasting in Greek interconnected power system using ANN: Confidence Interval using a novel re-sampling technique with corrective Factor", WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, (CSECS '10), Vouliagmeni, Athens, Greece, December 29-31, 2010. [3] D. Panagoulia, I. Trichakis, G. J. Tsekouras: "Flow Forecasting via Artificial Neural Networks - A Study for Input Variables conditioned on atmospheric circulation", European Geosciences Union, General Assembly 2012 (NH1.1 / AS1.16 - Extreme meteorological and hydrological events induced by severe weather and climate change), Vienna, Austria, 22-27 April 2012.

  5. A rapid analytical method for predicting the oxygen demand of wastewater.

    PubMed

    Fogelman, Shoshana; Zhao, Huijun; Blumenstein, Michael

    2006-11-01

    In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV-Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190-350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.

  6. Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification

    NASA Technical Reports Server (NTRS)

    Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin

    1990-01-01

    Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.

  7. Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Aashranth, B.; Davinci, M. Arvinth; Samantaray, Dipti; Borah, Utpal; Bhaduri, A. K.

    2018-02-01

    The utility of different constitutive models describing high-temperature flow behavior has been evaluated from the perspective of alloy development. Strain compensated Arrhenius model, modified Johnson-Cook (MJC) model, model D8A and artificial neural network (ANN) have been used to describe flow behavior of different model alloys. These alloys are four grades of SS 316LN with different nitrogen contents ranging from 0.07 to 0.22%. Grades with 0.07%N and 0.22%N have been used to determine suitable material constants of the constitutive equations and also to train the ANN model. While the ANN model has been developed with chemical composition as a direct input, the MJC and D8A models have been amended to incorporate the effect of nitrogen content on flow behavior. The prediction capabilities of all models have been validated using the experimental data obtained from grades containing 0.11%N and 0.14%N. The comparative analysis demonstrates that `N-amended D8A' and `N-amended MJC' are preferable to the ANN model for predicting flow behavior of different grades of 316LN. The work provides detailed insights into the usual statistical error analysis technique and frames five additional criteria which must be considered when a model is analyzed from the perspective of alloy development.

  8. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.

    PubMed

    Pradhan, Cauchy; Wuehr, Max; Akrami, Farhoud; Neuhaeusser, Maximilian; Huth, Sabrina; Brandt, Thomas; Jahn, Klaus; Schniepp, Roman

    2015-04-01

    Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Clinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Data-Driven Modeling of Complex Systems by means of a Dynamical ANN

    NASA Astrophysics Data System (ADS)

    Seleznev, A.; Mukhin, D.; Gavrilov, A.; Loskutov, E.; Feigin, A.

    2017-12-01

    The data-driven methods for modeling and prognosis of complex dynamical systems become more and more popular in various fields due to growth of high-resolution data. We distinguish the two basic steps in such an approach: (i) determining the phase subspace of the system, or embedding, from available time series and (ii) constructing an evolution operator acting in this reduced subspace. In this work we suggest a novel approach combining these two steps by means of construction of an artificial neural network (ANN) with special topology. The proposed ANN-based model, on the one hand, projects the data onto a low-dimensional manifold, and, on the other hand, models a dynamical system on this manifold. Actually, this is a recurrent multilayer ANN which has internal dynamics and capable of generating time series. Very important point of the proposed methodology is the optimization of the model allowing us to avoid overfitting: we use Bayesian criterion to optimize the ANN structure and estimate both the degree of evolution operator nonlinearity and the complexity of nonlinear manifold which the data are projected on. The proposed modeling technique will be applied to the analysis of high-dimensional dynamical systems: Lorenz'96 model of atmospheric turbulence, producing high-dimensional space-time chaos, and quasi-geostrophic three-layer model of the Earth's atmosphere with the natural orography, describing the dynamics of synoptical vortexes as well as mesoscale blocking systems. The possibility of application of the proposed methodology to analyze real measured data is also discussed. The study was supported by the Russian Science Foundation (grant #16-12-10198).

  10. Estimation of Reynolds number for flows around cylinders with lattice Boltzmann methods and artificial neural networks.

    PubMed

    Carrillo, Mauricio; Que, Ulices; González, José A

    2016-12-01

    The present work investigates the application of artificial neural networks (ANNs) to estimate the Reynolds (Re) number for flows around a cylinder. The data required to train the ANN was generated with our own implementation of a lattice Boltzmann method (LBM) code performing simulations of a two-dimensional flow around a cylinder. As results of the simulations, we obtain the velocity field (v[over ⃗]) and the vorticity (∇[over ⃗]×v[over ⃗]) of the fluid for 120 different values of Re measured at different distances from the obstacle and use them to teach the ANN to predict the Re. The results predicted by the networks show good accuracy with errors of less than 4% in all the studied cases. One of the possible applications of this method is the development of an efficient tool to characterize a blocked flowing pipe.

  11. Enabling large-scale viscoelastic calculations via neural network acceleration

    NASA Astrophysics Data System (ADS)

    Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.

    2017-12-01

    One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.

  12. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks

    NASA Astrophysics Data System (ADS)

    Vafaei, Masoud; Afrand, Masoud; Sina, Nima; Kalbasi, Rasool; Sourani, Forough; Teimouri, Hamid

    2017-01-01

    In this paper, the thermal conductivity ratio of MgO-MWCNTs/EG hybrid nanofluids has been predicted by an optimal artificial neural network at solid volume fractions of 0.05%, 0.1%, 0.15%, 0.2%, 0.4% and 0.6% in the temperature range of 25-50 °C. In this way, at the first, thirty six experimental data was presented to determine the thermal conductivity ratio of the hybrid nanofluid. Then, four optimal artificial neural networks with 6, 8, 10 and 12 neurons in hidden layer were designed to predict the thermal conductivity ratio of the nanofluid. The comparison between four optimal ANN results and experimental showed that the ANN with 12 neurons in hidden layer was the best model. Moreover, the results obtained from the best ANN indicated the maximum deviation margin of 0.8%.

  13. Constitutive flow behaviour of austenitic stainless steels under hot deformation: artificial neural network modelling to understand, evaluate and predict

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra; Sivaprasad, P. V.; Venugopal, S.; Murthy, K. P. N.

    2006-09-01

    An artificial neural network (ANN) model is developed to predict the constitutive flow behaviour of austenitic stainless steels during hot deformation. The input parameters are alloy composition and process variables whereas flow stress is the output. The model is based on a three-layer feed-forward ANN with a back-propagation learning algorithm. The neural network is trained with an in-house database obtained from hot compression tests on various grades of austenitic stainless steels. The performance of the model is evaluated using a wide variety of statistical indices. Good agreement between experimental and predicted data is obtained. The correlation between individual alloying elements and high temperature flow behaviour is investigated by employing the ANN model. The results are found to be consistent with the physical phenomena. The model can be used as a guideline for new alloy development.

  14. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    PubMed Central

    Elçiçek, H.; Akdoğan, E.; Karagöz, S.

    2014-01-01

    Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674

  15. From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming

    PubMed Central

    Mendyk, Aleksander; Güres, Sinan; Szlęk, Jakub; Wiśniowska, Barbara; Kleinebudde, Peter

    2015-01-01

    The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies. PMID:26101544

  16. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    PubMed Central

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  17. From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming.

    PubMed

    Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter

    2015-01-01

    The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.

  18. Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting

    PubMed Central

    Aydin, Alev Dilek; Caliskan Cavdar, Seyma

    2015-01-01

    The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method. PMID:26550010

  19. Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models

    NASA Astrophysics Data System (ADS)

    Snauffer, Andrew M.; Hsieh, William W.; Cannon, Alex J.; Schnorbus, Markus A.

    2018-03-01

    Estimates of surface snow water equivalent (SWE) in mixed alpine environments with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief, and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC. Relevant spatiotemporal covariates were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and interannual correlations for April surveys were found using cross-validation. The ANN using the three best-performing SWE products (ANN3) had the lowest mean station MAE across the province. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all of BC's five physiographic regions except for the BC Plains. Subsequent comparisons with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to better estimate SWE over the VIC domain and within most regions. The superior performance of ANN3 over the individual products, product means, MLR, and VIC was found to be statistically significant across the province.

  20. Neural network models - a novel tool for predicting the efficacy of growth hormone (GH) therapy in children with short stature.

    PubMed

    Smyczynska, Joanna; Hilczer, Maciej; Smyczynska, Urszula; Stawerska, Renata; Tadeusiewicz, Ryszard; Lewinski, Andrzej

    2015-01-01

    The leading method for prediction of growth hormone (GH) therapy effectiveness are multiple linear regression (MLR) models. Best of our knowledge, we are the first to apply artificial neural networks (ANN) to solve this problem. For ANN there is no necessity to assume the functions linking independent and dependent variables. The aim of study is to compare ANN and MLR models of GH therapy effectiveness. Analysis comprised the data of 245 GH-deficient children (170 boys) treated with GH up to final height (FH). Independent variables included: patients' height, pre-treatment height velocity, chronological age, bone age, gender, pubertal status, parental heights, GH peak in 2 stimulation tests, IGF-I concentration. The output variable was FH. For testing dataset, MLR model predicted FH SDS with average error (RMSE) 0.64 SD, explaining 34.3% of its variability; ANN model derived on the same pre-processed data predicted FH SDS with RMSE 0.60 SD, explaining 42.0% of its variability; ANN model derived on raw data predicted FH with RMSE 3.9 cm (0.63 SD), explaining 78.7% of its variability. ANN seem to be valuable tool in prediction of GH treatment effectiveness, especially since they can be applied to raw clinical data.

  1. Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting.

    PubMed

    Aydin, Alev Dilek; Caliskan Cavdar, Seyma

    2015-01-01

    The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method.

  2. Bayesian model selection applied to artificial neural networks used for water resources modeling

    NASA Astrophysics Data System (ADS)

    Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.

    2008-04-01

    Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.

  3. Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging.

    PubMed

    Nakajima, Kenichi; Matsuo, Shinro; Wakabayashi, Hiroshi; Yokoyama, Kunihiko; Bunko, Hisashi; Okuda, Koichi; Kinuya, Seigo; Nyström, Karin; Edenbrandt, Lars

    2015-01-01

    The purpose of this study was to apply an artificial neural network (ANN) in patients with coronary artery disease (CAD) and to characterize its diagnostic ability compared with conventional visual and quantitative methods in myocardial perfusion imaging (MPI). A total of 106 patients with CAD were studied with MPI, including multiple vessel disease (49%), history of myocardial infarction (27%) and coronary intervention (30%). The ANN detected abnormal areas with a probability of stress defect and ischemia. The consensus diagnosis based on expert interpretation and coronary stenosis was used as the gold standard. The left ventricular ANN value was higher in the stress-defect group than in the no-defect group (0.92±0.11 vs. 0.25±0.32, P<0.0001) and higher in the ischemia group than in the no-ischemia group (0.70±0.40 vs. 0.004±0.032, P<0.0001). Receiver-operating characteristics curve analysis showed comparable diagnostic accuracy between ANN and the scoring methods (0.971 vs. 0.980 for stress defect, and 0.882 vs. 0.937 for ischemia, both P=NS). The relationship between the ANN and defect scores was non-linear, with the ANN rapidly increased in ranges of summed stress score of 2-7 and summed defect score of 2-4. Although the diagnostic ability of ANN was similar to that of conventional scoring methods, the ANN could provide a different viewpoint for judging abnormality, and thus is a promising method for evaluating abnormality in MPI.

  4. Boosting Learning Algorithm for Stock Price Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhang; Bai, Xiaoming

    2018-03-01

    To tackle complexity and uncertainty of stock market behavior, more studies have introduced machine learning algorithms to forecast stock price. ANN (artificial neural network) is one of the most successful and promising applications. We propose a boosting-ANN model in this paper to predict the stock close price. On the basis of boosting theory, multiple weak predicting machines, i.e. ANNs, are assembled to build a stronger predictor, i.e. boosting-ANN model. New error criteria of the weak studying machine and rules of weights updating are adopted in this study. We select technical factors from financial markets as forecasting input variables. Final results demonstrate the boosting-ANN model works better than other ones for stock price forecasting.

  5. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.

    PubMed

    Dietzel, Matthias; Baltzer, Pascal A T; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P; Bogdan, Martin; Kaiser, Werner A

    2012-07-01

    Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of "Training Epochs" (TE), "Hidden Layers" (HL), "Learning Rate" (LR) and "Neurons" (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885-0.892; range: 0.880-0.898). The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Differential diagnosis of pleural mesothelioma using Logic Learning Machine.

    PubMed

    Parodi, Stefano; Filiberti, Rosa; Marroni, Paola; Libener, Roberta; Ivaldi, Giovanni Paolo; Mussap, Michele; Ferrari, Enrico; Manneschi, Chiara; Montani, Erika; Muselli, Marco

    2015-01-01

    Tumour markers are standard tools for the differential diagnosis of cancer. However, the occurrence of nonspecific symptoms and different malignancies involving the same cancer site may lead to a high proportion of misclassifications. Classification accuracy can be improved by combining information from different markers using standard data mining techniques, like Decision Tree (DT), Artificial Neural Network (ANN), and k-Nearest Neighbour (KNN) classifier. Unfortunately, each method suffers from some unavoidable limitations. DT, in general, tends to show a low classification performance, whereas ANN and KNN produce a "black-box" classification that does not provide biological information useful for clinical purposes. Logic Learning Machine (LLM) is an innovative method of supervised data analysis capable of building classifiers described by a set of intelligible rules including simple conditions in their antecedent part. It is essentially an efficient implementation of the Switching Neural Network model and reaches excellent classification accuracy while keeping low the computational demand. LLM was applied to data from a consecutive cohort of 169 patients admitted for diagnosis to two pulmonary departments in Northern Italy from 2009 to 2011. Patients included 52 malignant pleural mesotheliomas (MPM), 62 pleural metastases (MTX) from other tumours and 55 benign diseases (BD) associated with pleurisies. Concentration of three tumour markers (CEA, CYFRA 21-1 and SMRP) was measured in the pleural fluid of each patient and a cytological examination was also carried out. The performance of LLM and that of three competing methods (DT, KNN and ANN) was assessed by leave-one-out cross-validation. LLM outperformed all other considered methods. Global accuracy was 77.5% for LLM, 72.8% for DT, 54.4% for KNN, and 63.9% for ANN, respectively. In more details, LLM correctly classified 79% of MPM, 66% of MTX and 89% of BD. The corresponding figures for DT were: MPM = 83%, MTX = 55% and BD = 84%; for KNN: MPM = 58%, MTX = 45%, BD = 62%; for ANN: MPM = 71%, MTX = 47%, BD = 76%. Finally, LLM provided classification rules in a very good agreement with a priori knowledge about the biological role of the considered tumour markers. LLM is a new flexible tool potentially useful for the differential diagnosis of pleural mesothelioma.

  7. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  8. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  9. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    PubMed

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US.

    PubMed

    Biagiotti, R; Desii, C; Vanzi, E; Gacci, G

    1999-02-01

    To compare the performance of artificial neural networks (ANNs) with that of multiple logistic regression (MLR) models for predicting ovarian malignancy in patients with adnexal masses by using transvaginal B-mode and color Doppler flow ultrasonography (US). A total of 226 adnexal masses were examined before surgery: Fifty-one were malignant and 175 were benign. The data were divided into training and testing subsets by using a "leave n out method." The training subsets were used to compute the optimum MLR equations and to train the ANNs. The cross-validation subsets were used to estimate the performance of each of the two models in predicting ovarian malignancy. At testing, three-layer back-propagation networks, based on the same input variables selected by using MLR (i.e., women's ages, papillary projections, random echogenicity, peak systolic velocity, and resistance index), had a significantly higher sensitivity than did MLR (96% vs 84%; McNemar test, p = .04). The Brier scores for ANNs were significantly lower than those calculated for MLR (Student t test for paired samples, P = .004). ANNs might have potential for categorizing adnexal masses as either malignant or benign on the basis of multiple variables related to demographic and US features.

  11. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    NASA Astrophysics Data System (ADS)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  12. Neural network approach to quantum-chemistry data: accurate prediction of density functional theory energies.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2009-08-21

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6+/-0.2 kcal mol(-1). In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  13. An ANN-based HRV classifier for cardiac health prognosis.

    PubMed

    Sunkaria, Ramesh Kumar; Kumar, Vinod; Saxena, Suresh Chandra; Singhal, Achala M

    2014-01-01

    A multi-layer artificial neural network (ANN)-based heart rate variability (HRV) classifier has been proposed, which gives the cardiac health status as the output based on HRV of the patients independently of the cardiologists' view. The electrocardiogram (ECG) data of 46 patients were recorded in the out-patient department (OPD) of a hospital and HRV was evaluated using self-designed autoregressive-model-based technique. These patients suspected to be suffering from cardiac abnormalities were thoroughly examined by experienced cardiologists. On the basis of symptoms and other investigations, the attending cardiologists advised them to be classified into four categories as per the severity of cardiac health. Out of 46, the HRV data of 28 patients were used for training and data of 18 patients were used for testing of the proposed classifier. The cardiac health classification of each tested patient with the proposed classifier matches with the medical opinion of the cardiologists.

  14. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  15. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  16. A review of techniques to determine alternative selection in design for remanufacturing

    NASA Astrophysics Data System (ADS)

    Noor, A. Z. Mohamed; Fauadi, M. H. F. Md; Jafar, F. A.; Mohamad, N. R.; Yunos, A. S. Mohd

    2017-10-01

    This paper discusses the techniques used for optimization in manufacturing system. Although problem domain is focused on sustainable manufacturing, techniques used to optimize general manufacturing system were also discussed. Important aspects of Design for Remanufacturing (DFReM) considered include indexes, weighted average, grey decision making and Fuzzy TOPSIS. The limitation of existing techniques are most of them is highly based on decision maker’s perspective. Different experts may have different understanding and eventually scale it differently. Therefore, the objective of this paper is to determine available techniques and identify the lacking feature in it. Once all the techniques have been reviewed, a decision will be made by create another technique which should counter the lacking of discussed techniques. In this paper, shows that the hybrid computation of Fuzzy Analytic Hierarchy Process (AHP) and Artificial Neural Network (ANN) is suitable and fill the gap of all discussed technique.

  17. Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid.

    PubMed

    Savala, Rajiv; Dey, Pranab; Gupta, Nalini

    2018-03-01

    To distinguish follicular adenoma (FA) and follicular carcinoma (FC) of thyroid in fine needle aspiration cytology (FNAC) is a challenging problem. In this article, we attempted to build an artificial neural network (ANN) model from the cytological and morphometric features of the FNAC smears of thyroid to distinguish FA from FC. The cytological features and morphometric analysis were done on the FNAC smears of histology proven cases of FA (26) and FC (31). The cytological features were analysed semi-quantitatively by two independent observers (RS and PD). These data were used to make an ANN model to differentiate FA versus FC on FNAC material. The performance of this ANN model was assessed by analysing the confusion matrix and receiving operator curve. There were 39 cases in training set, 9 cases each in validation and test sets. In the test group, ANN model successfully distinguished all cases (9/9) of FA and FC. The area under receiver operating curve was 1. The present ANN model is efficient to diagnose follicular adenoma and carcinoma cases on cytology smears without any error. In future, this ANN model will be able to diagnose follicular adenoma and carcinoma cases on thyroid aspirate. This study has immense potential in future. This is an open ended ANN model and more parameters and more cases can be included to make the model much stronger. © 2017 Wiley Periodicals, Inc.

  18. Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data.

    PubMed

    Chatterjee, Sankhadeep; Dey, Nilanjan; Shi, Fuqian; Ashour, Amira S; Fong, Simon James; Sen, Soumya

    2018-04-01

    Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model.

  19. Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages.

    PubMed

    Okumura, Eiichiro; Kawashita, Ikuo; Ishida, Takayuki

    2017-08-01

    It is difficult for radiologists to classify pneumoconiosis from category 0 to category 3 on chest radiographs. Therefore, we have developed a computer-aided diagnosis (CAD) system based on a three-stage artificial neural network (ANN) method for classification based on four texture features. The image database consists of 36 chest radiographs classified as category 0 to category 3. Regions of interest (ROIs) with a matrix size of 32 × 32 were selected from chest radiographs. We obtained a gray-level histogram, histogram of gray-level difference, gray-level run-length matrix (GLRLM) feature image, and gray-level co-occurrence matrix (GLCOM) feature image in each ROI. For ROI-based classification, the first ANN was trained with each texture feature. Next, the second ANN was trained with output patterns obtained from the first ANN. Finally, we obtained a case-based classification for distinguishing among four categories with the third ANN method. We determined the performance of the third ANN by receiver operating characteristic (ROC) analysis. The areas under the ROC curve (AUC) of the highest category (severe pneumoconiosis) case and the lowest category (early pneumoconiosis) case were 0.89 ± 0.09 and 0.84 ± 0.12, respectively. The three-stage ANN with four texture features showed the highest performance for classification among the four categories. Our CAD system would be useful for assisting radiologists in classification of pneumoconiosis from category 0 to category 3.

  20. Day and Night Dust Retrievals from MODIS IR Band Measurements using Artificial Neural Network (ANN) model

    NASA Astrophysics Data System (ADS)

    Lee, S.; Sohn, B.

    2008-12-01

    Artificial Neural Network (ANN) on the East Asia domain (20°N-55°N, 90°E-145°E) during the springs of 2006 and 2007 was investigated for retrieving aerosol optical thickness (AOT) of dust aerosol at both daytime and nighttime. The input data for ANN include brightness temperature, BTD (11 μm - 12 μm), spectral emissivity, surface temperature (Land: Price [1984] Equation, Ocean: The IMAPP MODIS Algorithm), relative airmass of satellite, and topography (SRTM30). The D*-parameter is adopted as dust detection algorithm which was developed by Hansell et al [2007]. The target data of the ANN is corresponding AOT at 550nm obtained from MODIS aerosol product (MYD04). After optimization and training, ANN AOT is retrieved. Among the many dust episodes during the spring of 2006, only the 8 April 2006 case was selected for the detailed analysis. Because it is one of the strongest episodes and shows a well-developed root penetrating the Korean peninsula and reaching the Japanese area. It is shown that ANN AOT coincide well with MODIS AOT having correlation coefficient of 0.8502 when the training and applying periods are the same (spring of 2006). Even a different period with training ANN AOT has a good relationship with MODIS AOT with the correlation coefficient of 0.7766 (spring 2007). This yearly difference is resulted from vegetation change and fixed IGBP land cover map. Also notable is that ANN AOT is underestimated in most IGBP types having low slope and negative mean bias. This study showed that ANN model has a good potential to retrieve AOT. More examinations and trials are needed, however, to improve this ANN algorithm using IR bands. Also this model should be extended to specify the dust aerosol property from other aerosols and clouds to assure that it has a capability during both daytime and nighttime.

  1. Dynamic Network Selection for Multicast Services in Wireless Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Jin, Le; He, Feng; Cheng, Hanwen; Wu, Lenan

    In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.

  2. Artificial Neural Network with Regular Graph for Maximum Air Temperature Forecasting:. the Effect of Decrease in Nodes Degree on Learning

    NASA Astrophysics Data System (ADS)

    Ghaderi, A. H.; Darooneh, A. H.

    The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.

  3. Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach

    NASA Astrophysics Data System (ADS)

    Kavimani, V.; Prakash, K. Soorya

    2017-11-01

    This paper deals with the fabrication of reduced graphene oxide (r-GO) reinforced Magnesium Metal Matrix Composite (MMC) through a novel solvent based powder metallurgy route. Investigations over basic and functional properties of developed MMC reveals that addition of r-GO improvises the microhardness upto 64 HV but however decrement in specific wear rate is also notified. Visualization of worn out surfaces through SEM images clearly explains for the occurrence of plastic deformation and the presence of wear debris because of ploughing out action. Taguchi coupled Artificial Neural Network (ANN) technique is adopted to arrive at optimal values of the input parameters such as load, reinforcement weight percentage, sliding distance and sliding velocity and thereby achieve minimal target output value viz. specific wear rate. Influence of any of the input parameter over specific wear rate studied through ANOVA reveals that load acting on pin has a major influence with 38.85% followed by r-GO wt. % of 25.82%. ANN model developed to predict specific wear rate value based on the variation of input parameter facilitates better predictability with R-value of 98.4% when compared with the outcomes of regression model.

  4. Automatic analysis and classification of surface electromyography.

    PubMed

    Abou-Chadi, F E; Nashar, A; Saad, M

    2001-01-01

    In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.

  5. Prediction of breakdown strength of cellulosic insulating materials using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Singh, Sakshi; Mohsin, M. M.; Masood, Aejaz

    In this research work, a few sets of experiments have been performed in high voltage laboratory on various cellulosic insulating materials like diamond-dotted paper, paper phenolic sheets, cotton phenolic sheets, leatheroid, and presspaper, to measure different electrical parameters like breakdown strength, relative permittivity, loss tangent, etc. Considering the dependency of breakdown strength on other physical parameters, different Artificial Neural Network (ANN) models are proposed for the prediction of breakdown strength. The ANN model results are compared with those obtained experimentally and also with the values already predicted from an empirical relation suggested by Swanson and Dall. The reported results indicated that the breakdown strength predicted from the ANN model is in good agreement with the experimental values.

  6. The prediction of nonlinear dynamic loads on helicopters from flight variables using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Cook, A. B.; Fuller, C. R.; O'Brien, W. F.; Cabell, R. H.

    1992-01-01

    A method of indirectly monitoring component loads through common flight variables is proposed which requires an accurate model of the underlying nonlinear relationships. An artificial neural network (ANN) model learns relationships through exposure to a database of flight variable records and corresponding load histories from an instrumented military helicopter undergoing standard maneuvers. The ANN model, utilizing eight standard flight variables as inputs, is trained to predict normalized time-varying mean and oscillatory loads on two critical components over a range of seven maneuvers. Both interpolative and extrapolative capabilities are demonstrated with agreement between predicted and measured loads on the order of 90 percent to 95 percent. This work justifies pursuing the ANN method of predicting loads from flight variables.

  7. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    NASA Astrophysics Data System (ADS)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  8. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    NASA Astrophysics Data System (ADS)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2017-04-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  9. Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network

    NASA Astrophysics Data System (ADS)

    Yakubu, A.; Oluremi, O. I. A.; Ekpo, E. I.

    2018-03-01

    There is an increasing use of robust analytical algorithms in the prediction of heat stress. The present investigation therefore, was carried out to forecast heat stress index (HSI) in Sasso laying hens. One hundred and sixty seven records on the thermo-physiological parameters of the birds were utilized. They were reared on deep litter and battery cage systems. Data were collected when the birds were 42- and 52-week of age. The independent variables fitted were housing system, age of birds, rectal temperature (RT), pulse rate (PR), and respiratory rate (RR). The response variable was HSI. Data were analyzed using automatic linear modeling (ALM) and artificial neural network (ANN) procedures. The ALM model building method involved Forward Stepwise using the F Statistic criterion. As regards ANN, multilayer perceptron (MLP) with back-propagation network was used. The ANN network was trained with 90% of the data set while 10% were dedicated to testing for model validation. RR and PR were the two parameters of utmost importance in the prediction of HSI. However, the fractional importance of RR was higher than that of PR in both ALM (0.947 versus 0.053) and ANN (0.677 versus 0.274) models. The two models also predicted HSI effectively with high degree of accuracy [r = 0.980, R 2 = 0.961, adjusted R 2 = 0.961, and RMSE = 0.05168 (ALM); r = 0.983, R 2 = 0.966; adjusted R 2 = 0.966, and RMSE = 0.04806 (ANN)]. The present information may be exploited in the development of a heat stress chart based largely on RR. This may aid detection of thermal discomfort in a poultry house under tropical and subtropical conditions.

  10. Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network.

    PubMed

    Habibi, Zohreh; Ertiaei, Abolhasan; Nikdad, Mohammad Sadegh; Mirmohseni, Atefeh Sadat; Afarideh, Mohsen; Heidari, Vahid; Saberi, Hooshang; Rezaei, Abdolreza Sheikh; Nejat, Farideh

    2016-11-01

    The relationships between shunt infection and predictive factors have not been previously investigated using Artificial Neural Network (ANN) model. The aim of this study was to develop an ANN model to predict shunt infection in a group of children with shunted hydrocephalus. Among more than 800 ventriculoperitoneal shunt procedures which had been performed between April 2000 and April 2011, 68 patients with shunt infection and 80 controls that fulfilled a set of meticulous inclusion/exclusion criteria were consecutively enrolled. Univariate analysis was performed for a long list of risk factors, and those with p value < 0.2 were used to create ANN and logistic regression (LR) models. Five variables including birth weight, age at the first shunting, shunt revision, prematurity, and myelomeningocele were significantly associated with shunt infection via univariate analysis, and two other variables (intraventricular hemorrhage and coincided infections) had a p value of less than 0.2. Using these seven input variables, ANN and LR models predicted shunt infection with an accuracy of 83.1 % (AUC; 91.98 %, 95 % CI) and 55.7 % (AUC; 76.5, 95 % CI), respectively. The contribution of the factors in the predictive performance of ANN in descending order was history of shunt revision, low birth weight (under 2000 g), history of prematurity, the age at the first shunt procedure, history of intraventricular hemorrhage, history of myelomeningocele, and coinfection. The findings show that artificial neural networks can predict shunt infection with a high level of accuracy in children with shunted hydrocephalus. Also, the contribution of different risk factors in the prediction of shunt infection can be determined using the trained network.

  11. Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network.

    PubMed

    Yakubu, A; Oluremi, O I A; Ekpo, E I

    2018-03-17

    There is an increasing use of robust analytical algorithms in the prediction of heat stress. The present investigation therefore, was carried out to forecast heat stress index (HSI) in Sasso laying hens. One hundred and sixty seven records on the thermo-physiological parameters of the birds were utilized. They were reared on deep litter and battery cage systems. Data were collected when the birds were 42- and 52-week of age. The independent variables fitted were housing system, age of birds, rectal temperature (RT), pulse rate (PR), and respiratory rate (RR). The response variable was HSI. Data were analyzed using automatic linear modeling (ALM) and artificial neural network (ANN) procedures. The ALM model building method involved Forward Stepwise using the F Statistic criterion. As regards ANN, multilayer perceptron (MLP) with back-propagation network was used. The ANN network was trained with 90% of the data set while 10% were dedicated to testing for model validation. RR and PR were the two parameters of utmost importance in the prediction of HSI. However, the fractional importance of RR was higher than that of PR in both ALM (0.947 versus 0.053) and ANN (0.677 versus 0.274) models. The two models also predicted HSI effectively with high degree of accuracy [r = 0.980, R 2  = 0.961, adjusted R 2  = 0.961, and RMSE = 0.05168 (ALM); r = 0.983, R 2  = 0.966; adjusted R 2  = 0.966, and RMSE = 0.04806 (ANN)]. The present information may be exploited in the development of a heat stress chart based largely on RR. This may aid detection of thermal discomfort in a poultry house under tropical and subtropical conditions.

  12. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Luna, A. S.; Paredes, M. L. L.; de Oliveira, G. C. G.; Corrêa, S. M.

    2014-12-01

    It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), scalar wind speed (SWS), global solar radiation (GSR), temperature (TEM), moisture content in the air (HUM), collected by a mobile automatic monitoring station at Rio de Janeiro City in two places of the metropolitan area during 2011 and 2012. The aims of this study were: (1) to analyze the behavior of the variables, using the method of PCA for exploratory data analysis; (2) to propose forecasts of O3 levels from primary pollutants and meteorological factors, using nonlinear regression methods like ANN and SVM, from primary pollutants and meteorological factors. The PCA technique showed that for first dataset, variables NO, NOx and SWS have a greater impact on the concentration of O3 and the other data set had the TEM and GSR as the most influential variables. The obtained results from the nonlinear regression techniques ANN and SVM were remarkably closely and acceptable to one dataset presenting coefficient of determination for validation respectively 0.9122 and 0.9152, and root mean square error of 7.66 and 7.85, respectively. For these datasets, the PCA, SVM and ANN had demonstrated their robustness as useful tools for evaluation, and forecast scenarios for air quality.

  13. Examining the articulation of innovativeness in co-creative firms: a neural network approach

    NASA Astrophysics Data System (ADS)

    di Tollo, Giacomo; Tanev, Stoyan

    2010-10-01

    Value co-creation is an emerging marketing and innovation paradigm describing a broader opening of the firm to its customers by providing them with the opportunity to become active participants in the design and development of personalized products, services and experiences. The aim of the present contribution is to provide preliminary results from a research project focusing on the relationship between value co-creation and the perception of innovation in technology-driven firms. The data was collected in a previous study using web search techniques and factor analysis to identify the key co-creation components and the frequency of firms' online comments about their new products, processes and services. The present work focuses on using an Artificial Neural Network (ANN) approach to understand if the extent of value co-creation activities can be thought of as an indicator of the perception of innovation. The preliminary simulation results indicate the existence of such relationship. The ANN approach does not suggest a specific model but the relationship that was found out between the forecasted values of the perception of innovation and its actual values clearly points in this direction.

  14. Examining the articulation of innovativeness in co-creative firms: a neural network approach

    NASA Astrophysics Data System (ADS)

    di Tollo, Giacomo; Tanev, Stoyan

    2011-03-01

    Value co-creation is an emerging marketing and innovation paradigm describing a broader opening of the firm to its customers by providing them with the opportunity to become active participants in the design and development of personalized products, services and experiences. The aim of the present contribution is to provide preliminary results from a research project focusing on the relationship between value co-creation and the perception of innovation in technology-driven firms. The data was collected in a previous study using web search techniques and factor analysis to identify the key co-creation components and the frequency of firms' online comments about their new products, processes and services. The present work focuses on using an Artificial Neural Network (ANN) approach to understand if the extent of value co-creation activities can be thought of as an indicator of the perception of innovation. The preliminary simulation results indicate the existence of such relationship. The ANN approach does not suggest a specific model but the relationship that was found out between the forecasted values of the perception of innovation and its actual values clearly points in this direction.

  15. Intelligent image processing for vegetation classification using multispectral LANDSAT data

    NASA Astrophysics Data System (ADS)

    Santos, Stewart R.; Flores, Jorge L.; Garcia-Torales, G.

    2015-09-01

    We propose an intelligent computational technique for analysis of vegetation imaging, which are acquired with multispectral scanner (MSS) sensor. This work focuses on intelligent and adaptive artificial neural network (ANN) methodologies that allow segmentation and classification of spectral remote sensing (RS) signatures, in order to obtain a high resolution map, in which we can delimit the wooded areas and quantify the amount of combustible materials present into these areas. This could provide important information to prevent fires and deforestation of wooded areas. The spectral RS input data, acquired by the MSS sensor, are considered in a random propagation remotely sensed scene with unknown statistics for each Thematic Mapper (TM) band. Performing high-resolution reconstruction and adding these spectral values with neighbor pixels information from each TM band, we can include contextual information into an ANN. The biggest challenge in conventional classifiers is how to reduce the number of components in the feature vector, while preserving the major information contained in the data, especially when the dimensionality of the feature space is high. Preliminary results show that the Adaptive Modified Neural Network method is a promising and effective spectral method for segmentation and classification in RS images acquired with MSS sensor.

  16. Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS

    NASA Astrophysics Data System (ADS)

    Vafaeenezhad, H.; Ghanei, S.; Seyedein, S. H.; Beygi, H.; Mazinani, M.

    2014-11-01

    In this research, a comprehensive soft computational approach is presented for the analysis of the influencing parameters on manufacturing of dual-phase steels. A set of experimental data have been gathered to obtain the initial database used for the training and testing of both artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The parameters used in the strategy were intercritical annealing temperature, carbon content, and holding time which gives off martensite percentage as an output. A fraction of the data set was chosen to train both ANN and ANFIS, and the rest was put into practice to authenticate the act of the trained networks while seeing unseen data. To compare the obtained results, coefficient of determination and root mean squared error indexes were chosen. Using artificial intelligence methods, it is not necessary to consider and establish a preliminary mathematical model and formulate its affecting parameters on its definition. In conclusion, the martensite percentages corresponding to the manufacturing parameters can be determined prior to a production using these controlling algorithms. Although the results acquired from both ANN and ANFIS are very encouraging, the proposed ANFIS has enhanced performance over the ANN and takes better effect on cost-reduction profit.

  17. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.

  18. Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation.

    PubMed

    Shafizadeh-Moghadam, Hossein; Tayyebi, Amin; Helbich, Marco

    2017-06-01

    Transition index maps (TIMs) are key products in urban growth simulation models. However, their operationalization is still conflicting. Our aim was to compare the prediction accuracy of three TIM-based spatially explicit land cover change (LCC) models in the mega city of Mumbai, India. These LCC models include two data-driven approaches, namely artificial neural networks (ANNs) and weight of evidence (WOE), and one knowledge-based approach which integrates an analytical hierarchical process with fuzzy membership functions (FAHP). Using the relative operating characteristics (ROC), the performance of these three LCC models were evaluated. The results showed 85%, 75%, and 73% accuracy for the ANN, FAHP, and WOE. The ANN was clearly superior compared to the other LCC models when simulating urban growth for the year 2010; hence, ANN was used to predict urban growth for 2020 and 2030. Projected urban growth maps were assessed using statistical measures, including figure of merit, average spatial distance deviation, producer accuracy, and overall accuracy. Based on our findings, we recomend ANNs as an and accurate method for simulating future patterns of urban growth.

  19. Mortality Predicted Accuracy for Hepatocellular Carcinoma Patients with Hepatic Resection Using Artificial Neural Network

    PubMed Central

    Chiu, Herng-Chia; Ho, Te-Wei; Lee, King-Teh; Chen, Hong-Yaw; Ho, Wen-Hsien

    2013-01-01

    The aim of this present study is firstly to compare significant predictors of mortality for hepatocellular carcinoma (HCC) patients undergoing resection between artificial neural network (ANN) and logistic regression (LR) models and secondly to evaluate the predictive accuracy of ANN and LR in different survival year estimation models. We constructed a prognostic model for 434 patients with 21 potential input variables by Cox regression model. Model performance was measured by numbers of significant predictors and predictive accuracy. The results indicated that ANN had double to triple numbers of significant predictors at 1-, 3-, and 5-year survival models as compared with LR models. Scores of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of 1-, 3-, and 5-year survival estimation models using ANN were superior to those of LR in all the training sets and most of the validation sets. The study demonstrated that ANN not only had a great number of predictors of mortality variables but also provided accurate prediction, as compared with conventional methods. It is suggested that physicians consider using data mining methods as supplemental tools for clinical decision-making and prognostic evaluation. PMID:23737707

  20. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms

    PubMed Central

    Vázquez, Roberto A.

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

Top