Sample records for network balancing performance

  1. DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.

    Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less

  2. DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia

    DOE PAGES

    Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.

    2017-01-16

    Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less

  3. Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity

    PubMed Central

    Abbott, L. F.; Sompolinsky, Haim

    2017-01-01

    Neurons and networks in the cerebral cortex must operate reliably despite multiple sources of noise. To evaluate the impact of both input and output noise, we determine the robustness of single-neuron stimulus selective responses, as well as the robustness of attractor states of networks of neurons performing memory tasks. We find that robustness to output noise requires synaptic connections to be in a balanced regime in which excitation and inhibition are strong and largely cancel each other. We evaluate the conditions required for this regime to exist and determine the properties of networks operating within it. A plausible synaptic plasticity rule for learning that balances weight configurations is presented. Our theory predicts an optimal ratio of the number of excitatory and inhibitory synapses for maximizing the encoding capacity of balanced networks for given statistics of afferent activations. Previous work has shown that balanced networks amplify spatiotemporal variability and account for observed asynchronous irregular states. Here we present a distinct type of balanced network that amplifies small changes in the impinging signals and emerges automatically from learning to perform neuronal and network functions robustly. PMID:29042519

  4. Achieving excellence in veterans healthcare--a balanced scorecard approach.

    PubMed

    Biro, Lawrence A; Moreland, Michael E; Cowgill, David E

    2003-01-01

    This article provides healthcare administrators and managers with a framework and model for developing a balanced scorecard and demonstrates the remarkable success of this process, which brings focus to leadership decisions about the allocation of resources. This scorecard was developed as a top management tool designed to structure multiple priorities of a large, complex, integrated healthcare system and to establish benchmarks to measure success in achieving targets for performance in identified areas. Significant benefits and positive results were derived from the implementation of the balanced scorecard, based upon benchmarks considered to be critical success factors. The network's chief executive officer and top leadership team set and articulated the network's primary operating principles: quality and efficiency in the provision of comprehensive healthcare and support services. Under the weighted benchmarks of the balanced scorecard, the facilities in the network were mandated to adhere to one non-negotiable tenet: providing care that is second to none. The balanced scorecard approach to leadership continuously ensures that this is the primary goal and focal point for all activity within the network. To that end, systems are always in place to ensure that the network is fully successful on all performance measures relating to quality.

  5. On Increasing Network Lifetime in Body Area Networks Using Global Routing with Energy Consumption Balancing

    PubMed Central

    Tsouri, Gill R.; Prieto, Alvaro; Argade, Nikhil

    2012-01-01

    Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity. PMID:23201987

  6. On increasing network lifetime in body area networks using global routing with energy consumption balancing.

    PubMed

    Tsouri, Gill R; Prieto, Alvaro; Argade, Nikhil

    2012-09-26

    Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity.

  7. Energy Balanced Strategies for Maximizing the Lifetime of Sparsely Deployed Underwater Acoustic Sensor Networks

    PubMed Central

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime. PMID:22399970

  8. A novel strategy for load balancing of distributed medical applications.

    PubMed

    Logeswaran, Rajasvaran; Chen, Li-Choo

    2012-04-01

    Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.

  9. Quantum load balancing in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Hasanpour, M.; Shariat, S.; Barnaghi, P.; Hoseinitabatabaei, S. A.; Vahid, S.; Tafazolli, R.

    2017-06-01

    This paper presents a novel approach in targeting load balancing in ad hoc networks utilizing the properties of quantum game theory. This approach benefits from the instantaneous and information-less capability of entangled particles to synchronize the load balancing strategies in ad hoc networks. The quantum load balancing (QLB) algorithm proposed by this work is implemented on top of OLSR as the baseline routing protocol; its performance is analyzed against the baseline OLSR, and considerable gain is reported regarding some of the main QoS metrics such as delay and jitter. Furthermore, it is shown that QLB algorithm supports a solid stability gain in terms of throughput which stands a proof of concept for the load balancing properties of the proposed theory.

  10. Heterogeneous Gossip

    NASA Astrophysics Data System (ADS)

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  11. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph

    NASA Astrophysics Data System (ADS)

    Feng, Lv; Chunlin, Gao; Kaiyang, Ma

    2017-05-01

    With rapid development of computer performance and distributed technology, P2P-based resource sharing mode plays important role in Internet. P2P network users continued to increase so the high dynamic characteristics of the system determine that it is difficult to obtain the load of other nodes. Therefore, a dynamic load balance strategy based on hypergraph is proposed in this article. The scheme develops from the idea of hypergraph theory in multilevel partitioning. It adopts optimized multilevel partitioning algorithms to partition P2P network into several small areas, and assigns each area a supernode for the management and load transferring of the nodes in this area. In the case of global scheduling is difficult to be achieved, the priority of a number of small range of load balancing can be ensured first. By the node load balance in each small area the whole network can achieve relative load balance. The experiments indicate that the load distribution of network nodes in our scheme is obviously compacter. It effectively solves the unbalanced problems in P2P network, which also improve the scalability and bandwidth utilization of system.

  12. Predicting Cost/Performance Trade-Offs for Whitney: A Commodity Computing Cluster

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey C.; Nitzberg, Bill; VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)

    1997-01-01

    Recent advances in low-end processor and network technology have made it possible to build a "supercomputer" out of commodity components. We develop simple models of the NAS Parallel Benchmarks version 2 (NPB 2) to explore the cost/performance trade-offs involved in building a balanced parallel computer supporting a scientific workload. We develop closed form expressions detailing the number and size of messages sent by each benchmark. Coupling these with measured single processor performance, network latency, and network bandwidth, our models predict benchmark performance to within 30%. A comparison based on total system cost reveals that current commodity technology (200 MHz Pentium Pros with 100baseT Ethernet) is well balanced for the NPBs up to a total system cost of around $1,000,000.

  13. Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.

  14. Implementation and Performance Evaluation Using the Fuzzy Network Balanced Scorecard

    ERIC Educational Resources Information Center

    Tseng, Ming-Lang

    2010-01-01

    The balanced scorecard (BSC) is a multi-criteria evaluation concept that highlights the importance of performance measurement. However, although there is an abundance of literature on the BSC framework, there is a scarcity of literature regarding how the framework with dependence and interactive relationships should be properly implemented in…

  15. Network-Friendly Gossiping

    NASA Astrophysics Data System (ADS)

    Serbu, Sabina; Rivière, Étienne; Felber, Pascal

    The emergence of large-scale distributed applications based on many-to-many communication models, e.g., broadcast and decentralized group communication, has an important impact on the underlying layers, notably the Internet routing infrastructure. To make an effective use of network resources, protocols should both limit the stress (amount of messages) on each infrastructure entity like routers and links, and balance as much as possible the load in the network. Most protocols use application-level metrics such as delays to improve efficiency of content dissemination or routing, but the extend to which such application-centric optimizations help reduce and balance the load imposed to the infrastructure is unclear. In this paper, we elaborate on the design of such network-friendly protocols and associated metrics. More specifically, we investigate random-based gossip dissemination. We propose and evaluate different ways of making this representative protocol network-friendly while keeping its desirable properties (robustness and low delays). Simulations of the proposed methods using synthetic and real network topologies convey and compare their abilities to reduce and balance the load while keeping good performance.

  16. GTRF: a game theory approach for regulating node behavior in real-time wireless sensor networks.

    PubMed

    Lin, Chi; Wu, Guowei; Pirozmand, Poria

    2015-06-04

    The selfish behaviors of nodes (or selfish nodes) cause packet loss, network congestion or even void regions in real-time wireless sensor networks, which greatly decrease the network performance. Previous methods have focused on detecting selfish nodes or avoiding selfish behavior, but little attention has been paid to regulating selfish behavior. In this paper, a Game Theory-based Real-time & Fault-tolerant (GTRF) routing protocol is proposed. GTRF is composed of two stages. In the first stage, a game theory model named VA is developed to regulate nodes' behaviors and meanwhile balance energy cost. In the second stage, a jumping transmission method is adopted, which ensures that real-time packets can be successfully delivered to the sink before a specific deadline. We prove that GTRF theoretically meets real-time requirements with low energy cost. Finally, extensive simulations are conducted to demonstrate the performance of our scheme. Simulation results show that GTRF not only balances the energy cost of the network, but also prolongs network lifetime.

  17. Evaluating the Fraser Health Balanced Scorecard--a formative evaluation.

    PubMed

    Barnardo, Catherine; Jivanni, Amin

    2009-01-01

    Fraser Health (FH), a large, Canadian, integrated health care network, adopted the Balanced Scorecard (BSC) approach to monitor organizational performance in 2006. This paper reports on the results of a formative evaluation, conducted in April, 2008, to assess the usefulness of the BSC as a performance-reporting system and a performance management tool. Results indicated that the BSC has proven to be useful for reporting performance but is not currently used for performance management in a substantial way.

  18. A small chance of paradise —Equivalence of balanced states

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Kaluzny, S.; Kulakowski, K.

    2017-06-01

    A social network is modeled by a complete graph of N nodes, with interpersonal relations represented by links. In the framework of the Heider balance theory, we prove numerically that the probability of each balanced state is the same. This means in particular, that the probability of the paradise state, where all relations are positive, is 21-N . The proof is performed within two models. In the first, relations are changing continuously in time, and the proof is performed only for N = 3 with the methods of nonlinear dynamics. The second model is the Constrained Triad Dynamics, as introduced by Antal, Krapivsky and Redner in 2005. In the latter case, the proof makes use of the symmetries of the network of system states and it is completed for 3≤ N≤ 7 .

  19. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    NASA Astrophysics Data System (ADS)

    Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad

    2013-12-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.

  20. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

    PubMed

    Ogundile, Olayinka O; Alfa, Attahiru S

    2017-05-10

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision variables defined in the routing algorithm. The strengths and weaknesses of the choice of the decision variables used in the design of these energy-efficient and energy-balanced routing protocols are emphasised. Finally, we suggest possible research directions in order to optimize the energy consumption in sensor networks.

  1. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Ogundile, Olayinka O.; Alfa, Attahiru S.

    2017-01-01

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision variables defined in the routing algorithm. The strengths and weaknesses of the choice of the decision variables used in the design of these energy-efficient and energy-balanced routing protocols are emphasised. Finally, we suggest possible research directions in order to optimize the energy consumption in sensor networks. PMID:28489054

  2. Design and implementation of streaming media server cluster based on FFMpeg.

    PubMed

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system.

  3. Design and Implementation of Streaming Media Server Cluster Based on FFMpeg

    PubMed Central

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system. PMID:25734187

  4. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-08-10

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

  5. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  6. Using hybrid method to evaluate the green performance in uncertainty.

    PubMed

    Tseng, Ming-Lang; Lan, Lawrence W; Wang, Ray; Chiu, Anthony; Cheng, Hui-Ping

    2011-04-01

    Green performance measure is vital for enterprises in making continuous improvements to maintain sustainable competitive advantages. Evaluation of green performance, however, is a challenging task due to the dependence complexity of the aspects, criteria, and the linguistic vagueness of some qualitative information and quantitative data together. To deal with this issue, this study proposes a novel approach to evaluate the dependence aspects and criteria of firm's green performance. The rationale of the proposed approach, namely green network balanced scorecard, is using balanced scorecard to combine fuzzy set theory with analytical network process (ANP) and importance-performance analysis (IPA) methods, wherein fuzzy set theory accounts for the linguistic vagueness of qualitative criteria and ANP converts the relations among the dependence aspects and criteria into an intelligible structural modeling used IPA. For the empirical case study, four dependence aspects and 34 green performance criteria for PCB firms in Taiwan were evaluated. The managerial implications are discussed.

  7. A novel load balanced energy conservation approach in WSN using biogeography based optimization

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajay; Indu, S.; Gupta, Daya

    2017-09-01

    Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN

  8. Scheduling: A guide for program managers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.

  9. Walk-based measure of balance in signed networks: Detecting lack of balance in social networks

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Benzi, Michele

    2014-10-01

    There is a longstanding belief that in social networks with simultaneous friendly and hostile interactions (signed networks) there is a general tendency to a global balance. Balance represents a state of the network with a lack of contentious situations. Here we introduce a method to quantify the degree of balance of any signed (social) network. It accounts for the contribution of all signed cycles in the network and gives, in agreement with empirical evidence, more weight to the shorter cycles than to the longer ones. We found that, contrary to what is generally believed, many signed social networks, in particular very large directed online social networks, are in general very poorly balanced. We also show that unbalanced states can be changed by tuning the weights of the social interactions among the agents in the network.

  10. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.

    PubMed

    Ferreira, João P; Crisóstomo, Manuel M; Coimbra, A Paulo

    2009-12-01

    The real-time balance control of an eight-link biped robot using a zero moment point (ZMP) dynamic model is difficult due to the processing time of the corresponding equations. To overcome this limitation, two alternative intelligent computing control techniques were compared: one based on support vector regression (SVR) and another based on a first-order Takagi-Sugeno-Kang (TSK)-type neural-fuzzy (NF) network. Both methods use the ZMP error and its variation as inputs and the output is the correction of the robot's torso necessary for its sagittal balance. The SVR and the NF were trained based on simulation data and their performance was verified with a real biped robot. Two performance indexes are proposed to evaluate and compare the online performance of the two control methods. The ZMP is calculated by reading four force sensors placed under each robot's foot. The gait implemented in this biped is similar to a human gait that was acquired and adapted to the robot's size. Some experiments are presented and the results show that the implemented gait combined either with the SVR controller or with the TSK NF network controller can be used to control this biped robot. The SVR and the NF controllers exhibit similar stability, but the SVR controller runs about 50 times faster.

  11. Node Self-Deployment Algorithm Based on an Uneven Cluster with Radius Adjusting for Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Xu, Yiming; Wu, Feng

    2016-01-01

    Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS) based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption. PMID:26784193

  12. On delay adjustment for dynamic load balancing in distributed virtual environments.

    PubMed

    Deng, Yunhua; Lau, Rynson W H

    2012-04-01

    Distributed virtual environments (DVEs) are becoming very popular in recent years, due to the rapid growing of applications, such as massive multiplayer online games (MMOGs). As the number of concurrent users increases, scalability becomes one of the major challenges in designing an interactive DVE system. One solution to address this scalability problem is to adopt a multi-server architecture. While some methods focus on the quality of partitioning the load among the servers, others focus on the efficiency of the partitioning process itself. However, all these methods neglect the effect of network delay among the servers on the accuracy of the load balancing solutions. As we show in this paper, the change in the load of the servers due to network delay would affect the performance of the load balancing algorithm. In this work, we conduct a formal analysis of this problem and discuss two efficient delay adjustment schemes to address the problem. Our experimental results show that our proposed schemes can significantly improve the performance of the load balancing algorithm with neglectable computation overhead.

  13. Model of load balancing using reliable algorithm with multi-agent system

    NASA Astrophysics Data System (ADS)

    Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.

    2017-04-01

    Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.

  14. Information Dynamics as Foundation for Network Management

    DTIC Science & Technology

    2014-12-04

    developed to adapt to channel dynamics in a mobile network environment. We devise a low- complexity online scheduling algorithm integrated with the...has been accepted for the Journal on Network and Systems Management in 2014. - RINC programmable platform for Infrastructure -as-a-Service public... backend servers. Rather than implementing load balancing in dedicated appliances, commodity SDN switches can perform this function. We design

  15. An Energy-Efficient Mobile Sink-Based Unequal Clustering Mechanism for WSNs.

    PubMed

    Gharaei, Niayesh; Abu Bakar, Kamalrulnizam; Mohd Hashim, Siti Zaiton; Hosseingholi Pourasl, Ali; Siraj, Mohammad; Darwish, Tasneem

    2017-08-11

    Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network's lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network's lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs.

  16. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  17. An economic model of friendship and enmity for measuring social balance in networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Shin, Euncheol; You, Seungil

    2017-12-01

    We propose a dynamic economic model of networks where agents can be friends or enemies with one another. This is a decentralized relationship model in that agents decide whether to change their relationships so as to minimize their imbalanced triads. In this model, there is a single parameter, which we call social temperature, that captures the degree to which agents care about social balance in their relationships. We show that the global structure of relationship configuration converges to a unique stationary distribution. Using this stationary distribution, we characterize the maximum likelihood estimator of the social temperature parameter. Since the estimator is computationally challenging to calculate from real social network datasets, we provide a simple simulation algorithm and verify its performance with real social network datasets.

  18. A load balancing bufferless deflection router for network-on-chip

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Zhou; Zhangming, Zhu; Duan, Zhou

    2016-07-01

    The bufferless router emerges as an interesting option for cost-efficient in network-on-chip (NoC) design. However, the bufferless router only works well under low network load because deflection more easily occurs as the injection rate increases. In this paper, we propose a load balancing bufferless deflection router (LBBDR) for NoC that relieves the effect of deflection in bufferless NoC. The proposed LBBDR employs a balance toggle identifier in the source router to control the initial routing direction of X or Y for a flit in the network. Based on this mechanism, the flit is routed according to XY or YX routing in the network afterward. When two or more flits contend the same one desired output port a priority policy called nearer-first is used to address output ports allocation contention. Simulation results show that the proposed LBBDR yields an improvement of routing performance over the reported bufferless routing in the flit deflection rate, average packet latency and throughput by up to 13%, 10% and 6% respectively. The layout area and power consumption compared with the reported schemes are 12% and 7% less respectively. Project supported by the National Natural Science Foundation of China (Nos. 61474087, 61322405, 61376039).

  19. Balancing energy consumption with hybrid clustering and routing strategy in wireless sensor networks.

    PubMed

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-10-20

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.

  20. A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.

    PubMed

    Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani

    2012-01-01

    Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

  1. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    PubMed

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  2. Considerations on communications network protocols in deep space

    NASA Technical Reports Server (NTRS)

    Clare, L. P.; Agre, J. R.; Yan, T.

    2001-01-01

    Communications supporting deep space missions impose numerous unique constraints that impact the architectural choices made for cost-effectiveness. We are entering the era where networks that exist in deep space are needed to support planetary exploration. Cost-effective performance will require a balanced integration of applicable widely used standard protocols with new and innovative designs.

  3. Hyperswitch Communication Network Computer

    NASA Technical Reports Server (NTRS)

    Peterson, John C.; Chow, Edward T.; Priel, Moshe; Upchurch, Edwin T.

    1993-01-01

    Hyperswitch Communications Network (HCN) computer is prototype multiple-processor computer being developed. Incorporates improved version of hyperswitch communication network described in "Hyperswitch Network For Hypercube Computer" (NPO-16905). Designed to support high-level software and expansion of itself. HCN computer is message-passing, multiple-instruction/multiple-data computer offering significant advantages over older single-processor and bus-based multiple-processor computers, with respect to price/performance ratio, reliability, availability, and manufacturing. Design of HCN operating-system software provides flexible computing environment accommodating both parallel and distributed processing. Also achieves balance among following competing factors; performance in processing and communications, ease of use, and tolerance of (and recovery from) faults.

  4. A Smart and Balanced Energy-Efficient Multihop Clustering Algorithm (Smart-BEEM) for MIMO IoT Systems in Future Networks.

    PubMed

    Xu, Lina; O'Hare, Gregory M P; Collier, Rem

    2017-07-05

    Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work-Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.

  5. A Smart and Balanced Energy-Efficient Multihop Clustering Algorithm (Smart-BEEM) for MIMO IoT Systems in Future Networks †

    PubMed Central

    O’Hare, Gregory M. P.; Collier, Rem

    2017-01-01

    Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity. PMID:28678164

  6. Deep Constrained Siamese Hash Coding Network and Load-Balanced Locality-Sensitive Hashing for Near Duplicate Image Detection.

    PubMed

    Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen

    2018-09-01

    We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.

  7. Genome-scale estimate of the metabolic turnover of E. Coli from the energy balance analysis

    NASA Astrophysics Data System (ADS)

    De Martino, D.

    2016-02-01

    In this article the notion of metabolic turnover is revisited in the light of recent results of out-of-equilibrium thermodynamics. By means of Monte Carlo methods we perform an exact sampling of the enzymatic fluxes in a genome scale metabolic network of E. Coli in stationary growth conditions from which we infer the metabolites turnover times. However the latter are inferred from net fluxes, and we argue that this approximation is not valid for enzymes working nearby thermodynamic equilibrium. We recalculate turnover times from total fluxes by performing an energy balance analysis of the network and recurring to the fluctuation theorem. We find in many cases values one of order of magnitude lower, implying a faster picture of intermediate metabolism.

  8. An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts.

    PubMed

    Barghash, Mahmoud

    2015-01-01

    Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN's performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.

  9. Analysis, calculation and utilization of the k-balance attribute in interdependent networks

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Li, Qing; Wang, Dan; Xu, Mingwei

    2018-05-01

    Interdependent networks, where two networks depend on each other, are becoming more and more significant in modern systems. From previous work, it can be concluded that interdependent networks are more vulnerable than a single network. The robustness in interdependent networks deserves special attention. In this paper, we propose a metric of robustness from a new perspective-the balance. First, we define the balance-coefficient of the interdependent system. Based on precise analysis and derivation, we prove some significant theories and provide an efficient algorithm to compute the balance-coefficient. Finally, we propose an optimal solution to reduce the balance-coefficient to enhance the robustness of the given system. Comprehensive experiments confirm the efficiency of our algorithms.

  10. Research on virtual network load balancing based on OpenFlow

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Ding, Lei

    2017-08-01

    The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.

  11. Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks

    NASA Astrophysics Data System (ADS)

    Henry, Kevin; Swanson, Colleen; Xie, Qi; Daudjee, Khuzaima

    Managing updates in a peer-to-peer (P2P) network can be a challenging task, especially in the unstructured setting. If one peer reads or updates a data item, then it is desirable to read the most recent version or to have the update visible to all other peers. In practice, this should be accomplished by coordinating and writing to only a small number of peers. We propose two approaches, inspired by hierarchical quorums, to solve this problem in unstructured P2P networks. Our first proposal provides uniform load balancing, while the second sacrifices full load balancing for larger average quorum intersection, and hence greater tolerance to network churn. We demonstrate that applying a random logical tree structure to peers on a per-data item basis allows us to achieve near optimal quorum size, thus minimizing the number of peers that must be coordinated to perform a read or write operation. Unlike previous approaches, our random hierarchical quorums are always guaranteed to overlap at at least one peer when all peers are reachable and, as demonstrated through performance studies, prove to be more resilient to changing network conditions to maximize quorum intersection than previous approaches with a similar quorum size. Furthermore, our two quorum approaches are interchangeable within the same network, providing adaptivity by allowing one to be swapped for the other as network conditions change.

  12. A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun

    2014-04-01

    Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.

  13. Latency Hiding in Dynamic Partitioning and Load Balancing of Grid Computing Applications

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak

    2001-01-01

    The Information Power Grid (IPG) concept developed by NASA is aimed to provide a metacomputing platform for large-scale distributed computations, by hiding the intricacies of highly heterogeneous environment and yet maintaining adequate security. In this paper, we propose a latency-tolerant partitioning scheme that dynamically balances processor workloads on the.IPG, and minimizes data movement and runtime communication. By simulating an unsteady adaptive mesh application on a wide area network, we study the performance of our load balancer under the Globus environment. The number of IPG nodes, the number of processors per node, and the interconnected speeds are parameterized to derive conditions under which the IPG would be suitable for parallel distributed processing of such applications. Experimental results demonstrate that effective solution are achieved when the IPG nodes are connected by a high-speed asynchronous interconnection network.

  14. Inferring Single Neuron Properties in Conductance Based Balanced Networks

    PubMed Central

    Pool, Román Rossi; Mato, Germán

    2011-01-01

    Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse correlation methods, by recording synaptic inputs and the spike trains of ongoing spontaneous activity without any additional input. By using this method, properties of the single neuron dynamics that are masked by the balanced state can be quantified. To show the feasibility of this approach we apply it to large networks of conductance based neurons. The networks are classified as Type I or Type II according to the bifurcations which neurons of the different populations undergo near the firing onset. We also analyze mixed networks, in which each population has a mixture of different neuronal types. We determine under which conditions the intrinsic noise generated by the network can be used to apply reverse correlation methods. We find that under realistic conditions we can ascertain with low error the types of neurons present in the network. We also find that data from neurons with similar firing rates can be combined to perform covariance analysis. We compare the results of these methods (that do not requite any external input) to the standard procedure (that requires the injection of Gaussian noise into a single neuron). We find a good agreement between the two procedures. PMID:22016730

  15. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  16. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    PubMed

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  18. Dynamics of social balance on networks

    NASA Astrophysics Data System (ADS)

    Antal, T.; Krapivsky, P. L.; Redner, S.

    2005-09-01

    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad—a triangular loop with one or three unfriendly links—is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to “paradise”—all links are friendly—as the propensity p for friendly links in an update event passes through 1/2 . A finite network always falls into a socially balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network not increase in an update is imposed, then the network quickly reaches a balanced final state.

  19. Degree-constrained multicast routing for multimedia communications

    NASA Astrophysics Data System (ADS)

    Wang, Yanlin; Sun, Yugeng; Li, Guidan

    2005-02-01

    Multicast services have been increasingly used by many multimedia applications. As one of the key techniques to support multimedia applications, the rational and effective multicast routing algorithms are very important to networks performance. When switch nodes in networks have different multicast capability, multicast routing problem is modeled as the degree-constrained Steiner problem. We presented two heuristic algorithms, named BMSTA and BSPTA, for the degree-constrained case in multimedia communications. Both algorithms are used to generate degree-constrained multicast trees with bandwidth and end to end delay bound. Simulations over random networks were carried out to compare the performance of the two proposed algorithms. Experimental results show that the proposed algorithms have advantages in traffic load balancing, which can avoid link blocking and enhance networks performance efficiently. BMSTA has better ability in finding unsaturated links and (or) unsaturated nodes to generate multicast trees than BSPTA. The performance of BMSTA is affected by the variation of degree constraints.

  20. A study of water balances over the Tigris-Euphrates watershed

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Chen, Z. Q.; Anderson, M. L.; Ohara, N.; Yoon, J. Y.; Xiang, Fu

    Tigris-Euphrates watershed was considered as one hydrologic unit, and a scientific assessment of its water resources was performed. Accordingly, (a) an inventory of land use/land cover, vegetation, soils, and existing hydraulic structures in the watershed was performed; (b) a regional hydroclimate model, RegHCM-TE, of the watershed was developed, and used to reconstruct historical precipitation data, to perform land hydrologic water balance computations for infiltration, soil water storage, actual evapotranspiration, direct runoff as input for streamflow computations, and to estimate irrigation water demands; and (c) a hydrologic model was developed to route streamflows within the river network of the watershed. Also, an algorithm for operating the reservoirs within the watershed was developed, and utilized to perform dynamic water balance studies under various water supply/demand scenarios to establish efficient utilization of the watershed’s water resources to meet the water demands of the riparian countries in the basin. Within this dynamic water balance framework, it is possible to assess and quantify the effect of sequential river flows on the chronologically sequential water balances over the watershed. The water balance study for the natural flow conditions prior to the development of large dams within TE basin, during the 1957-1969 critical period is presented.

  1. Well-balanced high-order solver for blood flow in networks of vessels with variable properties.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2013-12-01

    We present a well-balanced, high-order non-linear numerical scheme for solving a hyperbolic system that models one-dimensional flow in blood vessels with variable mechanical and geometrical properties along their length. Using a suitable set of test problems with exact solution, we rigorously assess the performance of the scheme. In particular, we assess the well-balanced property and the effective order of accuracy through an empirical convergence rate study. Schemes of up to fifth order of accuracy in both space and time are implemented and assessed. The numerical methodology is then extended to realistic networks of elastic vessels and is validated against published state-of-the-art numerical solutions and experimental measurements. It is envisaged that the present scheme will constitute the building block for a closed, global model for the human circulation system involving arteries, veins, capillaries and cerebrospinal fluid. Copyright © 2013 John Wiley & Sons, Ltd.

  2. IBE-Lite: a lightweight identity-based cryptography for body sensor networks.

    PubMed

    Tan, Chiu C; Wang, Haodong; Zhong, Sheng; Li, Qun

    2009-11-01

    A body sensor network (BSN) is a network of sensors deployed on a person's body for health care monitoring. Since the sensors collect personal medical data, security and privacy are important components in a BSN. In this paper, we developed IBE-Lite, a lightweight identity-based encryption suitable for sensors in a BSN. We present protocols based on IBE-Lite that balance security and privacy with accessibility and perform evaluation using experiments conducted on commercially available sensors.

  3. A Game Theoretic Approach for Balancing Energy Consumption in Clustered Wireless Sensor Networks.

    PubMed

    Yang, Liu; Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang

    2017-11-17

    Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the energy among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and energy conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for balancing energy consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The energy heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more energy will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good energy balancing performance and consequently the network lifetime is greatly enhanced.

  4. Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks.

    PubMed

    Wadud, Zahid; Javaid, Nadeem; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-07-21

    In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime.

  5. Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks

    PubMed Central

    Wadud, Zahid; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-01-01

    In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime. PMID:28753990

  6. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission.

    PubMed

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-06-09

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami- m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs.

  7. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission

    PubMed Central

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-01-01

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami-m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs. PMID:28598395

  8. Coevolutionary dynamics of opinion propagation and social balance: The key role of small-worldness

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Chen, Lixue; Sun, Xian; Zhang, Kai; Zhang, Jie; Li, Ping

    2014-03-01

    The propagation of various opinions in social networks, which influences human inter-relationships and even social structure, and hence is a most important part of social life. We have incorporated social balance into opinion propagation in social networks are influenced by social balance. The edges in networks can represent both friendly or hostile relations, and change with the opinions of individual nodes. We introduce a model to characterize the coevolutionary dynamics of these two dynamical processes on Watts-Strogatz (WS) small-world network. We employ two distinct evolution rules (i) opinion renewal; and (ii) relation adjustment. By changing the rewiring probability, and thus the small-worldness of the WS network, we found that the time for the system to reach balanced states depends critically on both the average path length and clustering coefficient of the network, which is different than other networked process like epidemic spreading. In particular, the system equilibrates most quickly when the underlying network demonstrates strong small-worldness, i.e., small average path lengths and large clustering coefficient. We also find that opinion clusters emerge in the process of the network approaching the global equilibrium, and a measure of global contrariety is proposed to quantify the balanced state of a social network.

  9. Fault tolerant high-performance PACS network design and implementation

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Boehme, Johannes M.

    1998-07-01

    The Wake Forest University School of Medicine and the Wake Forest University/Baptist Medical Center (WFUBMC) are implementing a second generation PACS. The first generation PACS provided helpful information about the functional and temporal requirements of the system. It highlighted the importance of image retrieval speed, system availability, RIS/HIS integration, the ability to rapidly view images on any PACS workstation, network bandwidth, equipment redundancy, and the ability for the system to evolve using standards-based components. This paper deals with the network design and implementation of the PACS. The physical layout of the hospital areas served by the PACS, the choice of network equipment and installation issues encountered are addressed. Efforts to optimize fault tolerance are discussed. The PACS network is a gigabit, mixed-media network based on LAN emulation over ATM (LANE) with a rapid migration from LANE to Multiple Protocols Over ATM (MPOA) planned. Two fault-tolerant backbone ATM switches serve to distribute network accesses with two load-balancing 622 megabit per second (Mbps) OC-12 interconnections. The switch was sized to be upgradable to provide a 2.54 Gbps OC-48 interconnection with an OC-12 interconnection as a load-balancing backup. Modalities connect with legacy network interface cards to a switched-ethernet device. This device has two 155 Mbps OC-3 load-balancing uplinks to each of the backbone ATM switches of the PACS. This provides a fault-tolerant logical connection to the modality servers which pass verified DICOM images to the PACS servers and proper PACS diagnostic workstations. Where fiber pulls were prohibitively expensive, edge ATM switches were installed with an OC-12 uplink to a backbone ATM switches. The PACS and data base servers are fault-tolerant, hot-swappable Sun Enterprise Servers with an OC-12 connection to a backbone ATM switch and a fast-ethernet connection to a back-up network. The workstations come with 10/100 BASET autosense cards. A redundant switched-ethernet network will be installed to provide yet another degree of network fault-tolerance. The switched-ethernet devices are connected to each of the backbone ATM switches with two-load-balancing OC-3 connections to provide fault-tolerant connectivity in the event of a primary network failure.

  10. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    NASA Technical Reports Server (NTRS)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  11. [Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network].

    PubMed

    Noh, Wonjung; Seomun, Gyeongae

    2015-06-01

    This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

  12. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  13. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state

    PubMed Central

    Hermans, Erno J.; Fernández, Guillén

    2017-01-01

    Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480

  14. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.

    PubMed

    Kohn, Nils; Hermans, Erno J; Fernández, Guillén

    2017-07-01

    Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.

  15. Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer, C. D.; Krishnan, S.; Srinivasan, A.

    Diffusion Monte Carlo is the most accurate widely used Quantum Monte Carlo method for the electronic structure of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency and avoid accumulation of systematic errors on parallel machines. The load balancing step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receivingmore » at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL showing up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that requires load balancing.« less

  16. An efficient group multicast routing for multimedia communication

    NASA Astrophysics Data System (ADS)

    Wang, Yanlin; Sun, Yugen; Yan, Xinfang

    2004-04-01

    Group multicasting is a kind of communication mechanism whereby each member of a group sends messages to all the other members of the same group. Group multicast routing algorithms capable of satisfying quality of service (QoS) requirements of multimedia applications are essential for high-speed networks. We present a heuristic algorithm for group multicast routing with end to end delay constraint. Source-specific routing trees for each member are generated in our algorithm, which satisfy member"s bandwidth and end to end delay requirements. Simulations over random network were carried out to compare proposed algorithm performance with Low and Song"s. The experimental results show that our proposed algorithm performs better in terms of network cost and ability in constructing feasible multicast trees for group members. Moreover, our algorithm achieves good performance in balancing traffic, which can avoid link blocking and enhance the network behavior efficiently.

  17. Network issues for large mass storage requirements

    NASA Technical Reports Server (NTRS)

    Perdue, James

    1992-01-01

    File Servers and Supercomputing environments need high performance networks to balance the I/O requirements seen in today's demanding computing scenarios. UltraNet is one solution which permits both high aggregate transfer rates and high task-to-task transfer rates as demonstrated in actual tests. UltraNet provides this capability as both a Server-to-Server and Server-to-Client access network giving the supercomputing center the following advantages highest performance Transport Level connections (to 40 MBytes/sec effective rates); matches the throughput of the emerging high performance disk technologies, such as RAID, parallel head transfer devices and software striping; supports standard network and file system applications using SOCKET's based application program interface such as FTP, rcp, rdump, etc.; supports access to the Network File System (NFS) and LARGE aggregate bandwidth for large NFS usage; provides access to a distributed, hierarchical data server capability using DISCOS UniTree product; supports file server solutions available from multiple vendors, including Cray, Convex, Alliant, FPS, IBM, and others.

  18. Phylogenetically informed logic relationships improve detection of biological network organization

    PubMed Central

    2011-01-01

    Background A "phylogenetic profile" refers to the presence or absence of a gene across a set of organisms, and it has been proven valuable for understanding gene functional relationships and network organization. Despite this success, few studies have attempted to search beyond just pairwise relationships among genes. Here we search for logic relationships involving three genes, and explore its potential application in gene network analyses. Results Taking advantage of a phylogenetic matrix constructed from the large orthologs database Roundup, we invented a method to create balanced profiles for individual triplets of genes that guarantee equal weight on the different phylogenetic scenarios of coevolution between genes. When we applied this idea to LAPP, the method to search for logic triplets of genes, the balanced profiles resulted in significant performance improvement and the discovery of hundreds of thousands more putative triplets than unadjusted profiles. We found that logic triplets detected biological network organization and identified key proteins and their functions, ranging from neighbouring proteins in local pathways, to well separated proteins in the whole pathway, and to the interactions among different pathways at the system level. Finally, our case study suggested that the directionality in a logic relationship and the profile of a triplet could disclose the connectivity between the triplet and surrounding networks. Conclusion Balanced profiles are superior to the raw profiles employed by traditional methods of phylogenetic profiling in searching for high order gene sets. Gene triplets can provide valuable information in detection of biological network organization and identification of key genes at different levels of cellular interaction. PMID:22172058

  19. A network coding based routing protocol for underwater sensor networks.

    PubMed

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  20. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    PubMed Central

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045

  1. Modulation of working memory load distinguishes individuals with and without balance impairments following mild traumatic brain injury.

    PubMed

    Woytowicz, Elizabeth J; Sours, Chandler; Gullapalli, Rao P; Rosenberg, Joseph; Westlake, Kelly P

    2018-01-01

    Balance and gait deficits can persist after mild traumatic brain injury (TBI), yet an understanding of the underlying neural mechanism remains limited. The purpose of this study was to investigate differences in attention network modulation in patients with and without balance impairments 2-8 weeks following mild TBI. Using functional magnetic resonance imaging, we compared activity and functional connectivity of cognitive brain regions of the default mode, central-executive and salience networks during a 2-back working memory task in participants with mild TBI and balance impairments (n = 7, age 47 ± 15 years) or no balance impairments (n = 7, age 47 ± 15 years). We first identified greater activation in the lateral occipital cortex in the balance impaired group. Second, we observed stronger connectivity of left pre-supplementary motor cortex in the balance impaired group during the working memory task, which was related to decreased activation of regions within the salience and central executive networks and greater suppression of the default mode network. Results suggest a link between impaired balance and modulation of cognitive resources in patients in mTBI. Findings also highlight the potential importance of moving beyond traditional balance assessments towards an integrative assessment of cognition and balance in this population.

  2. A Game Theoretic Approach for Balancing Energy Consumption in Clustered Wireless Sensor Networks

    PubMed Central

    Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang

    2017-01-01

    Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the energy among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and energy conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for balancing energy consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The energy heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more energy will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good energy balancing performance and consequently the network lifetime is greatly enhanced. PMID:29149075

  3. Parallel Processing of Adaptive Meshes with Load Balancing

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Many scientific applications involve grids that lack a uniform underlying structure. These applications are often also dynamic in nature in that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of unstructured grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing interprocessor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view of system loads across processors. In this paper, we propose a novel and general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication topology, and compare its performance with a successful global load balancing environment, called PLUM, specifically created to handle adaptive unstructured applications. Our experimental results on an IBM SP2 demonstrate that the SBN-based load balancer achieves lower redistribution costs than that under PLUM by overlapping processing and data migration.

  4. Mass balances of dissolved gases at river network scales across biomes.

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.; Sheehan, K.

    2016-12-01

    Estimating aquatic metabolism and gas fluxes at broad spatial scales is needed to evaluate the role of aquatic ecosystems in continental carbon cycles. We applied a river network model, FrAMES, to quantify the mass balances of dissolved oxygen at river network scales across five river networks in different biomes. The model accounts for hydrology; spatially varying re-aeration rates due to flow, slope, and water temperature; gas inputs via terrestrial runoff; variation in light due to canopy cover and water depth; benthic gross primary production; and benthic respiration. The model was parameterized using existing groundwater information and empirical relationships of GPP, R, and re-aeration, and was tested using dissolved oxygen patterns measured throughout river networks. We found that during summers, internal aquatic production dominates the river network mass balance of Kings Cr., Konza Prairie, KS (16.3 km2), whereas terrestrial inputs and aeration dominate the network mass balance at Coweeta Cr., Coweeta Forest, NC (15.7 km2). At network scales, both river networks are net heterotrophic, with Coweeta more so than Kings Cr. (P:R 0.6 vs. 0.7, respectively). The river network of Kings Creek showed higher network-scale GPP and R compared to Coweeta, despite having a lower drainage density because streams are on average wider so cumulative benthic surface areas are similar. Our findings suggest that the role of aquatic systems in watershed carbon balances will depend on interactions of drainage density, channel hydraulics, terrestrial vegetation, and biological activity.

  5. Networking and AI systems: Requirements and benefits

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.

  6. An Automatic Networking and Routing Algorithm for Mesh Network in PLC System

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosheng; Liu, Hao; Liu, Jiasheng; Xu, Dianguo

    2017-05-01

    Power line communication (PLC) is considered to be one of the best communication technologies in smart grid. However, the topology of low voltage distribution network is complex, meanwhile power line channel has characteristics of time varying and attenuation, which lead to the unreliability of power line communication. In this paper, an automatic networking and routing algorithm is introduced which can be adapted to the "blind state" topology. The results of simulation and test show that the scheme is feasible, the routing overhead is small, and the load balance performance is good, which can achieve the establishment and maintenance of network quickly and effectively. The scheme is of great significance to improve the reliability of PLC.

  7. A Method of Data Aggregation for Wearable Sensor Systems

    PubMed Central

    Shen, Bo; Fu, Jun-Song

    2016-01-01

    Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources. PMID:27347953

  8. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis

    PubMed Central

    2018-01-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles. PMID:29518071

  9. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    PubMed

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles.

  10. Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration

    PubMed Central

    Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul

    2015-01-01

    This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392

  11. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly

    PubMed Central

    Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph

    2017-01-01

    Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430

  12. 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches

    PubMed

    Schmidt; Marx; de Graaf AA; Wiechert; Sahm; Nielsen; Villadsen

    1998-04-05

    Conventional metabolic flux analysis uses the information gained from determination of measurable fluxes and a steady-state assumption for intracellular metabolites to calculate the metabolic fluxes in a given metabolic network. The determination of intracellular fluxes depends heavily on the correctness of the assumed stoichiometry including the presence of all reactions with a noticeable impact on the model metabolite balances. Determination of fluxes in complex metabolic networks often requires the inclusion of NADH and NADPH balances, which are subject to controversial debate. Transhydrogenation reactions that transfer reduction equivalents from NADH to NADPH or vice versa can usually not be included in the stoichiometric model, because they result in singularities in the stoichiometric matrix. However, it is the NADPH balance that, to a large extent, determines the calculated flux through the pentose phosphate pathway. Hence, wrong assumptions on the presence or activity of transhydrogenation reactions will result in wrong estimations of the intracellular flux distribution. Using 13C tracer experiments and NMR analysis, flux analysis can be performed on the basis of only well established stoichiometric equations and measurements of the labeling state of intracellular metabolites. Neither NADH/NADPH balancing nor assumptions on energy yields need to be included to determine the intracellular fluxes. Because metabolite balancing methods and the use of 13C labeling measurements are two different approaches to the determination of intracellular fluxes, both methods can be used to verify each other or to discuss the origin and significance of deviations in the results. Flux analysis based entirely on metabolite balancing and flux analysis, including labeling information, have been performed independently for a wild-type strain of Aspergillus oryzae producing alpha-amylase. Two different nitrogen sources, NH4+ and NO3-, have been used to investigate the influence of the NADPH requirements on the intracellular flux distribution. The two different approaches to the calculation of fluxes are compared and deviations in the results are discussed. Copyright 1998 John Wiley & Sons, Inc.

  13. How much spare capacity is necessary for the security of resource networks?

    NASA Astrophysics Data System (ADS)

    Zhao, Qian-Chuan; Jia, Qing-Shan; Cao, Yang

    2007-01-01

    The balance between the supply and demand of some kind of resource is critical for the functionality and security of many complex networks. Local contingencies that break this balance can cause a global collapse. These contingencies are usually dealt with by spare capacity, which is costly especially when the network capacity (the total amount of the resource generated/consumed in the network) grows. This paper studies the relationship between the spare capacity and the collapse probability under separation contingencies when the network capacity grows. Our results are obtained based on the analysis of the existence probability of balanced partitions, which is a measure of network security when network splitting is unavoidable. We find that a network with growing capacity will inevitably collapse after a separation contingency if the spare capacity in each island increases slower than a linear function of the network capacity and there is no suitable global coordinator.

  14. Biological modelling of a computational spiking neural network with neuronal avalanches.

    PubMed

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-06-28

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

  15. Biological modelling of a computational spiking neural network with neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-05-01

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  16. Load balancing strategy and its lookup-table enhancement in deterministic space delay/disruption tolerant networks

    NASA Astrophysics Data System (ADS)

    Huang, Jinhui; Liu, Wenxiang; Su, Yingxue; Wang, Feixue

    2018-02-01

    Space networks, in which connectivity is deterministic and intermittent, can be modeled by delay/disruption tolerant networks. In space delay/disruption tolerant networks, a packet is usually transmitted from the source node to the destination node indirectly via a series of relay nodes. If anyone of the nodes in the path becomes congested, the packet will be dropped due to buffer overflow. One of the main reasons behind congestion is the unbalanced network traffic distribution. We propose a load balancing strategy which takes the congestion status of both the local node and relay nodes into account. The congestion status, together with the end-to-end delay, is used in the routing selection. A lookup-table enhancement is also proposed. The off-line computation and the on-line adjustment are combined together to make a more precise estimate of the end-to-end delay while at the same time reducing the onboard computation. Simulation results show that the proposed strategy helps to distribute network traffic more evenly and therefore reduces the packet drop ratio. In addition, the average delay is also decreased in most cases. The lookup-table enhancement provides a compromise between the need for better communication performance and the desire for less onboard computation.

  17. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.

    PubMed

    Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang

    2015-09-25

    Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  18. Dynamics of Opinion Forming in Structurally Balanced Social Networks

    PubMed Central

    Altafini, Claudio

    2012-01-01

    A structurally balanced social network is a social community that splits into two antagonistic factions (typical example being a two-party political system). The process of opinion forming on such a community is most often highly predictable, with polarized opinions reflecting the bipartition of the network. The aim of this paper is to suggest a class of dynamical systems, called monotone systems, as natural models for the dynamics of opinion forming on structurally balanced social networks. The high predictability of the outcome of a decision process is explained in terms of the order-preserving character of the solutions of this class of dynamical systems. If we represent a social network as a signed graph in which individuals are the nodes and the signs of the edges represent friendly or hostile relationships, then the property of structural balance corresponds to the social community being splittable into two antagonistic factions, each containing only friends. PMID:22761667

  19. A Generic Framework of Performance Measurement in Networked Enterprises

    NASA Astrophysics Data System (ADS)

    Kim, Duk-Hyun; Kim, Cheolhan

    Performance measurement (PM) is essential for managing networked enterprises (NEs) because it greatly affects the effectiveness of collaboration among members of NE.PM in NE requires somewhat different approaches from PM in a single enterprise because of heterogeneity, dynamism, and complexity of NE’s. This paper introduces a generic framework of PM in NE (we call it NEPM) based on the Balanced Scorecard (BSC) approach. In NEPM key performance indicators and cause-and-effect relationships among them are defined in a generic strategy map. NEPM could be applied to various types of NEs after specializing KPIs and relationships among them. Effectiveness of NEPM is shown through a case study of some Korean NEs.

  20. Multi-time scale control of demand flexibility in smart distribution networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  1. Multi-time scale control of demand flexibility in smart distribution networks

    DOE PAGES

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...

    2017-01-01

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  2. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex

    NASA Astrophysics Data System (ADS)

    Dehghani, Nima; Peyrache, Adrien; Telenczuk, Bartosz; Le van Quyen, Michel; Halgren, Eric; Cash, Sydney S.; Hatsopoulos, Nicholas G.; Destexhe, Alain

    2016-03-01

    Balance of excitation and inhibition is a fundamental feature of in vivo network activity and is important for its computations. However, its presence in the neocortex of higher mammals is not well established. We investigated the dynamics of excitation and inhibition using dense multielectrode recordings in humans and monkeys. We found that in all states of the wake-sleep cycle, excitatory and inhibitory ensembles are well balanced, and co-fluctuate with slight instantaneous deviations from perfect balance, mostly in slow-wave sleep. Remarkably, these correlated fluctuations are seen for many different temporal scales. The similarity of these computational features with a network model of self-generated balanced states suggests that such balanced activity is essentially generated by recurrent activity in the local network and is not due to external inputs. Finally, we find that this balance breaks down during seizures, where the temporal correlation of excitatory and inhibitory populations is disrupted. These results show that balanced activity is a feature of normal brain activity, and break down of the balance could be an important factor to define pathological states.

  3. Selective randomized load balancing and mesh networks with changing demands

    NASA Astrophysics Data System (ADS)

    Shepherd, F. B.; Winzer, P. J.

    2006-05-01

    We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.

  4. Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale

    DOE PAGES

    Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.; ...

    2017-01-26

    Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less

  5. Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.

    Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less

  6. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGES

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  7. A Seamless Handoff Scheme with Access Point Load Balance for Real-Time Services Support in 802.11 Wireless LANs

    NASA Astrophysics Data System (ADS)

    Manodham, Thavisak; Loyola, Luis; Miki, Tetsuya

    IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.

  8. Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks

    DTIC Science & Technology

    2013-12-01

    writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...thesis writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE TACTICAL NETWORK LOAD BALANCING IN MULTI-GATEWAY WIRELESS SENSOR NETWORKS 5

  9. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring.

    PubMed

    Tseng, Chinyang Henry

    2016-05-31

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.

  10. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring

    PubMed Central

    Tseng, Chinyang Henry

    2016-01-01

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee’s AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee’s routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node’s distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee’s AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV. PMID:27258297

  11. Social Balance on Networks: The Dynamics of Friendship and Hatred

    NASA Astrophysics Data System (ADS)

    Redner, Sidney

    2006-03-01

    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad---a triangular loop with 1 or 3 unfriendly links---is reversed to make the triad balanced. Thus an imbalanced triad is analogous to a frustrated plaquette in a random magnet, while a balanced triad fulfills the adage: ``a friend of my friend is my friend; an enemy of my friend is my enemy; a friend of my enemy is my enemy; an enemy of my enemy is my friend.'' With this frustration-reducing dynamics, an infinite network undergoes a dynamic phase transition from a steady state to ``paradise''---all links are friendly---as the propensity for friendly links to be created in an update event passes through 1/2. On the other hand, a finite network always falls into a socially-balanced absorbing state where no imbalanced triads remain. A prominent example of the achievement of social balance is the evolution of pacts and treaties between various European countries during the late 1800's and early 1900's. Here social balance gave rise to the two major alliances that comprised the protagonists of World War I.

  12. E-I balance emerges naturally from continuous Hebbian learning in autonomous neural networks.

    PubMed

    Trapp, Philip; Echeveste, Rodrigo; Gros, Claudius

    2018-06-12

    Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially larger than the overall input. We show that such a state arises naturally in fully adapting networks which are deterministic, autonomously active and not subject to stochastic external or internal drivings. Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity bursts that stabilize irregular dynamics. We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic adaption of the bias of each neuron's input-output non-linear function. Additionally, networks with and without short-term plasticity are considered. E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced, modulo the overall activity level. We show that synaptic weight balance, which has been considered hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting Hebbian synaptic plasticity rule is continuously active.

  13. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    PubMed

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  14. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    PubMed Central

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-01-01

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015

  15. An Efficient Framework Model for Optimizing Routing Performance in VANETs.

    PubMed

    Al-Kharasani, Nori M; Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala; Hanapi, Zurina Mohd

    2018-02-15

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  17. Unorganized machines for seasonal streamflow series forecasting.

    PubMed

    Siqueira, Hugo; Boccato, Levy; Attux, Romis; Lyra, Christiano

    2014-05-01

    Modern unorganized machines--extreme learning machines and echo state networks--provide an elegant balance between processing capability and mathematical simplicity, circumventing the difficulties associated with the conventional training approaches of feedforward/recurrent neural networks (FNNs/RNNs). This work performs a detailed investigation of the applicability of unorganized architectures to the problem of seasonal streamflow series forecasting, considering scenarios associated with four Brazilian hydroelectric plants and four distinct prediction horizons. Experimental results indicate the pertinence of these models to the focused task.

  18. Evolving neural networks for strategic decision-making problems.

    PubMed

    Kohl, Nate; Miikkulainen, Risto

    2009-04-01

    Evolution of neural networks, or neuroevolution, has been a successful approach to many low-level control problems such as pole balancing, vehicle control, and collision warning. However, certain types of problems-such as those involving strategic decision-making-have remained difficult for neuroevolution to solve. This paper evaluates the hypothesis that such problems are difficult because they are fractured: The correct action varies discontinuously as the agent moves from state to state. A method for measuring fracture using the concept of function variation is proposed and, based on this concept, two methods for dealing with fracture are examined: neurons with local receptive fields, and refinement based on a cascaded network architecture. Experiments in several benchmark domains are performed to evaluate how different levels of fracture affect the performance of neuroevolution methods, demonstrating that these two modifications improve performance significantly. These results form a promising starting point for expanding neuroevolution to strategic tasks.

  19. The Edge of Stability: Response Times and Delta Oscillations in Balanced Networks

    PubMed Central

    Gillary, Grant; Niebur, Ernst

    2016-01-01

    The standard architecture of neocortex is a network with excitation and inhibition in closely maintained balance. These networks respond fast and with high precision to their inputs and they allow selective amplification of patterned signals. The stability of such networks is known to depend on balancing the strengths of positive and negative feedback. We here show that a second condition is required for stability which depends on the relative strengths and time courses of fast (AMPA) and slow (NMDA) currents in the excitatory projections. This condition also determines the response time of the network. We show that networks which respond quickly to an input are necessarily close to an oscillatory instability which resonates in the delta range. This instability explains the existence of neocortical delta oscillations and the emergence of absence epilepsy. Although cortical delta oscillations are a network-level phenomenon, we show that in non-pathological networks, individual neurons receive sufficient information to keep the network in the fast-response regime without sliding into the instability. PMID:27689361

  20. Brain Network Changes and Memory Decline in Aging

    PubMed Central

    Beason-Held, Lori L.; Hohman, Timothy J.; Venkatraman, Vijay; An, Yang; Resnick, Susan M.

    2016-01-01

    One theory of age-related cognitive decline proposes that changes within the default mode network (DMN) of the brain impact the ability to successfully perform cognitive operations. To investigate this theory, we examined functional covariance within brain networks using regional cerebral blood flow data, measured by 15O-water PET, from 99 participants (mean baseline age 68.6 ±7.5) in the Baltimore Longitudinal Study of Aging collected over a 7.4 year period. The sample was divided in tertiles based on longitudinal performance on a verbal recognition memory task administered during scanning, and functional covariance was compared between the upper (improvers) and lower (decliners) tertile groups. The DMN and verbal memory networks (VMN) were then examined during the verbal memory scan condition. For each network, group differences in node-to-network coherence and individual node-to-node covariance relationships were assessed at baseline and in change over time. Compared with improvers, decliners showed differences in node-to-network coherence and in node-to-node relationships in the DMN but not the VMN during verbal memory. These DMN differences reflected greater covariance with better task performance at baseline and both increasing and declining covariance with declining task performance over time for decliners. When examined during the resting state alone, the direction of change in DMN covariance was similar to that seen during task performance, but node-to-node relationships differed from those observed during the task condition. These results suggest that disengagement of DMN components during task performance is not essential for successful cognitive performance as previously proposed. Instead, a proper balance in network processes may be needed to support optimal task performance. PMID:27319002

  1. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    DOE PAGES

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...

    2017-09-19

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  2. Resource allocation in neural networks for motor control

    NASA Astrophysics Data System (ADS)

    Milton, J.; Cummins, J.; Gunnoe, J.; Tollefson, M.; Cabrera, J. L.; Ohira, T.

    2006-03-01

    Multiplicative noise plays an important part of a non-predictive control mechanism for stick balancing at the fingertip. However, intentionally-directed movements are also used in stick balancing, particularly by beginners. The interplay between intentional and non-predictive control mechanisms for stick balancing was assessed using two dual task paradigms: the subject was asked to either move one of their legs rhythmically or to imagine moving their leg while balancing a stick (55.4 cm, 35 g) at their fingertip. Performance was measured by determining the stick survival function, i.e. the fraction of trials (total >=25) for which the stick remained balanced at time t as a function of t. Performance was increased by concurrent rhythmic leg movements (50% survival time shifted from 8-9s to 15s in a typical subject). Imagined movements resulted in a similar improvement (50% survival time of 20s for the above subject) suggesting that this enhancement is not simply related to mechanical vibrations of the fingertip induced by leg movement. These observations emphasize the importance of the development of mathematical models for neural control of skilled motor movements that take into resource allocation of limited resources, such as intention.

  3. Load Balancing in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yingwu

    In this chapter we start by addressing the importance and necessity of load balancing in structured P2P networks, due to three main reasons. First, structured P2P networks assume uniform peer capacities while peer capacities are heterogeneous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash function used to generate node IDs and data item keys leads to imbalanced overlay address space and item distribution. Lastly, placement of data items cannot be randomized in some applications (e.g., range searching). We then present an overview of load aggregation and dissemination techniques that are required by many load balancing algorithms. Two techniques are discussed including tree structure-based approach and gossip-based approach. They make different tradeoffs between estimate/aggregate accuracy and failure resilience. To address the issue of load imbalance, three main solutions are described: virtual server-based approach, power of two choices, and address-space and item balancing. While different in their designs, they all aim to improve balance on the address space and data item distribution. As a case study, the chapter discusses a virtual server-based load balancing algorithm that strives to ensure fair load distribution among nodes and minimize load balancing cost in bandwidth. Finally, the chapter concludes with future research and a summary.

  4. Active influence in dynamical models of structural balance in social networks

    NASA Astrophysics Data System (ADS)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  5. Deep convolutional neural network based antenna selection in multiple-input multiple-output system

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxin; Li, Yan; Hu, Ying

    2018-03-01

    Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.

  6. Routing optimization in networks based on traffic gravitational field model

    NASA Astrophysics Data System (ADS)

    Liu, Longgeng; Luo, Guangchun

    2017-04-01

    For research on the gravitational field routing mechanism on complex networks, we further analyze the gravitational effect of paths. In this study, we introduce the concept of path confidence degree to evaluate the unblocked reliability of paths that it takes the traffic state of all nodes on the path into account from the overall. On the basis of this, we propose an improved gravitational field routing protocol considering all the nodes’ gravities on the path and the path confidence degree. In order to evaluate the transmission performance of the routing strategy, an order parameter is introduced to measure the network throughput by the critical value of phase transition from a free-flow phase to a jammed phase, and the betweenness centrality is used to evaluate the transmission performance and traffic congestion of the network. Simulation results show that compared with the shortest-path routing strategy and the previous gravitational field routing strategy, the proposed algorithm improves the network throughput considerably and effectively balances the traffic load within the network, and all nodes in the network are utilized high efficiently. As long as γ ≥ α, the transmission performance can reach the maximum and remains unchanged for different α and γ, which ensures that the proposed routing protocol is high efficient and stable.

  7. Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.

  8. A novel communication mechanism based on node potential multi-path routing

    NASA Astrophysics Data System (ADS)

    Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen

    2016-10-01

    With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.

  9. Amorphous silicon balanced photodiode for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Caputo, Domenico; de Cesare, Giampiero; Nascetti, Augusto; Scipinotti, Riccardo

    2013-05-01

    In this paper, we present the first integration of an amorphous silicon balanced photosensor with a microfluidic network to perform on-chip detection for biomedical applications, where rejection of large background light intensity is needed. This solution allows to achieve high resolution readout without the need of high dynamic range electronics. The balanced photodiode is constituted by two series-connected a-Si:H/a-SiC:H n-i-p stacked junctions, deposited on a glass substrate. The structure is a three terminal device where two electrodes bias the two diodes in reverse conditions while the third electrode (i.e. the connection point of the two diodes) provides the output signal given by the differential current. The microfluidic network is composed of two channels made in PolyDimetilSiloxane (PDMS) positioned over the glass substrate on the photodiode-side aligning each channel with a diode. This configuration guarantees an optimal optical coupling between luminescence events occurring in the channels and the photosensors. The experiments have been carried out measuring the differential current in identical and different conditions for the two channels. We have found that: the measurement dynamic range can be increased by at least an order of magnitude with respect to conventional photodiodes; the balanced photodiode is able to detect the presence or absence of water in the channel; the presence of fluorescent molecules in the channel can be successful detected by our device without any need of optical filter for the excitation light. These preliminary results demonstrate the successful integration of a microfluidic network with a-Si:H photosensor for on-chip detection in biomedical applications.

  10. Resource Tracking Model Updates and Trade Studies

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Moore, Michael

    2016-01-01

    The Resource Tracking Model has been updated to capture system manager and project manager inputs. Both the Trick/General Use Nodal Network Solver Resource Tracking Model (RTM) simulator and the RTM mass balance spreadsheet have been revised to address inputs from system managers and to refine the way mass balance is illustrated. The revisions to the RTM included the addition of a Plasma Pyrolysis Assembly (PPA) to recover hydrogen from Sabatier Reactor methane, which was vented in the prior version of the RTM. The effect of the PPA on the overall balance of resources in an exploration vehicle is illustrated in the increased recycle of vehicle oxygen. Case studies have been run to show the relative effect of performance changes on vehicle resources.

  11. Short-term memory capacity in networks via the restricted isometry property.

    PubMed

    Charles, Adam S; Yap, Han Lun; Rozell, Christopher J

    2014-06-01

    Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

  12. Pheromone routing protocol on a scale-free network.

    PubMed

    Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song

    2009-12-01

    This paper proposes a routing strategy for network systems based on the local information of "pheromone." The overall traffic capacity of a network system can be evaluated by the critical packet generating rate R(c). Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.

  13. Pheromone routing protocol on a scale-free network

    NASA Astrophysics Data System (ADS)

    Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song

    2009-12-01

    This paper proposes a routing strategy for network systems based on the local information of “pheromone.” The overall traffic capacity of a network system can be evaluated by the critical packet generating rate Rc . Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.

  14. Traffic routing for multicomputer networks with virtual cut-through capability

    NASA Technical Reports Server (NTRS)

    Kandlur, Dilip D.; Shin, Kang G.

    1992-01-01

    Consideration is given to the problem of selecting routes for interprocess communication in a network with virtual cut-through capability, while balancing the network load and minimizing the number of times that a message gets buffered. An approach is proposed that formulates the route selection problem as a minimization problem with a link cost function that depends upon the traffic through the link. The form of this cost function is derived using the probability of establishing a virtual cut-through route. The route selection problem is shown to be NP-hard, and an algorithm is developed to incrementally reduce the cost by rerouting the traffic. The performance of this algorithm is exemplified by two network topologies: the hypercube and the C-wrapped hexagonal mesh.

  15. An Efficient Framework Model for Optimizing Routing Performance in VANETs

    PubMed Central

    Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala

    2018-01-01

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED). PMID:29462884

  16. Convolutional neural networks with balanced batches for facial expressions recognition

    NASA Astrophysics Data System (ADS)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  17. An energy-aware routing protocol for query-based applications in wireless sensor networks.

    PubMed

    Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.

  18. An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks

    PubMed Central

    Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption. PMID:24696640

  19. Valiant load-balanced robust routing under hose model for WDM mesh networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoning; Li, Lemin; Wang, Sheng

    2006-09-01

    In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.

  20. Beyond Music Sharing: An Evaluation of Peer-to-Peer Data Dissemination Techniques in Large Scientific Collaborations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripeanu, Matei; Al-Kiswany, Samer; Iamnitchi, Adriana

    2009-03-01

    The avalanche of data from scientific instruments and the ensuing interest from geographically distributed users to analyze and interpret it accentuates the need for efficient data dissemination. A suitable data distribution scheme will find the delicate balance between conflicting requirements of minimizing transfer times, minimizing the impact on the network, and uniformly distributing load among participants. We identify several data distribution techniques, some successfully employed by today's peer-to-peer networks: staging, data partitioning, orthogonal bandwidth exploitation, and combinations of the above. We use simulations to explore the performance of these techniques in contexts similar to those used by today's data-centric scientificmore » collaborations and derive several recommendations for efficient data dissemination. Our experimental results show that the peer-to-peer solutions that offer load balancing and good fault tolerance properties and have embedded participation incentives lead to unjustified costs in today's scientific data collaborations deployed on over-provisioned network cores. However, as user communities grow and these deployments scale, peer-to-peer data delivery mechanisms will likely outperform other techniques.« less

  1. The balanced mind: the variability of task-unrelated thoughts predicts error monitoring

    PubMed Central

    Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine

    2013-01-01

    Self-generated thoughts unrelated to ongoing activities, also known as “mind-wandering,” make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance. PMID:24223545

  2. The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production

    PubMed Central

    McLellan, Eileen L; Cassman, Kenneth G; Eagle, Alison J; Woodbury, Peter B; Sela, Shai; Tonitto, Christina; Marjerison, Rebecca D; van Es, Harold M

    2018-01-01

    Abstract Farmers, food supply-chain entities, and policymakers need a simple but robust indicator to demonstrate progress toward reducing nitrogen pollution associated with food production. We show that nitrogen balance—the difference between nitrogen inputs and nitrogen outputs in an agricultural production system—is a robust measure of nitrogen losses that is simple to calculate, easily understood, and based on readily available farm data. Nitrogen balance provides farmers with a means of demonstrating to an increasingly concerned public that they are succeeding in reducing nitrogen losses while also improving the overall sustainability of their farming operation. Likewise, supply-chain companies and policymakers can use nitrogen balance to track progress toward sustainability goals. We describe the value of nitrogen balance in translating environmental targets into actionable goals for farmers and illustrate the potential roles of science, policy, and agricultural support networks in helping farmers achieve them. PMID:29662247

  3. An Analysis of the Liberal/Negative Bias in Network News Coverage of the 1989-1990 Panama Invasion (Operation Just Cause)

    DTIC Science & Technology

    1992-05-01

    maternal promise to make my body a less stressful place to live for the second half of your in-womb life . Finally, to my husband Ray all my love, respect...been much discussion on how to improve the military-media working relationship, there has been little analysis of media performance in a post-Vietnam...the policy balanced by the opposite view? The findings of the study did not find support for the idea of a liberal/negative bias in network news

  4. EDDA: An Efficient Distributed Data Replication Algorithm in VANETs.

    PubMed

    Zhu, Junyu; Huang, Chuanhe; Fan, Xiying; Guo, Sipei; Fu, Bin

    2018-02-10

    Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead.

  5. EDDA: An Efficient Distributed Data Replication Algorithm in VANETs

    PubMed Central

    Zhu, Junyu; Huang, Chuanhe; Fan, Xiying; Guo, Sipei; Fu, Bin

    2018-01-01

    Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead. PMID:29439443

  6. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells.

    PubMed

    Nadadhur, Aishwarya G; Emperador Melero, Javier; Meijer, Marieke; Schut, Desiree; Jacobs, Gerbren; Li, Ka Wan; Hjorth, J J Johannes; Meredith, Rhiannon M; Toonen, Ruud F; Van Kesteren, Ronald E; Smit, August B; Verhage, Matthijs; Heine, Vivi M

    2017-01-01

    Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.

  7. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  8. Model Multi Criteria Decision Making with Fuzzy ANP Method for Performance Measurement Small Medium Enterprise (SME)

    NASA Astrophysics Data System (ADS)

    Rahmanita, E.; Widyaningrum, V. T.; Kustiyahningsih, Y.; Purnama, J.

    2018-04-01

    SMEs have a very important role in the development of the economy in Indonesia. SMEs assist the government in terms of creating new jobs and can support household income. The number of SMEs in Madura and the number of measurement indicators in the SME mapping so that it requires a method.This research uses Fuzzy Analytic Network Process (FANP) method for performance measurement SME. The FANP method can handle data that contains uncertainty. There is consistency index in determining decisions. Performance measurement in this study is based on a perspective of the Balanced Scorecard. This research approach integrated internal business perspective, learning, and growth perspective and fuzzy Analytic Network Process (FANP). The results of this research areframework a priority weighting of assessment indicators SME.

  9. Information Systems at Enterprise. Design of Secure Network of Enterprise

    NASA Astrophysics Data System (ADS)

    Saigushev, N. Y.; Mikhailova, U. V.; Vedeneeva, O. A.; Tsaran, A. A.

    2018-05-01

    No enterprise and company can do without designing its own corporate network in today's information society. It accelerates and facilitates the work of employees at any level, but contains a big threat to confidential information of the company. In addition to the data theft attackers, there are plenty of information threats posed by modern malware effects. In this regard, the computational security of corporate networks is an important component of modern information technologies of computer security for any enterprise. This article says about the design of the protected corporate network of the enterprise that provides the computers on the network access to the Internet, as well interoperability with the branch. The access speed to the Internet at a high level is provided through the use of high-speed access channels and load balancing between devices. The security of the designed network is performed through the use of VLAN technology as well as access lists and AAA server.

  10. Intelligence after Intellipedia: Improving the Push Pull Balance with a Social Networking Utility

    DTIC Science & Technology

    2010-02-08

    School of Information and Library Science Approved for public release; distribution is...PERFORMING ORGANIZATION REPORT NUMBER School of Information and Library Science 9. SPONSORING...892‐4706 
 School
Affiliation:
 
 Pratt
Institute School
of
Information
&
 Library 
 Science 144
West
Fourteenth
Street New
York,
NY
10013

  11. Adaptive control of structural balance for complex dynamical networks based on dynamic coupling of nodes

    NASA Astrophysics Data System (ADS)

    Gao, Zilin; Wang, Yinhe; Zhang, Lili

    2018-02-01

    In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.

  12. Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy.

    PubMed

    Hanson, Jesse E; Madison, Daniel V

    2010-08-13

    Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity). To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties. Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.

  13. High Performance Data Transfer for Distributed Data Intensive Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Chin; Cottrell, R 'Les' A.; Hanushevsky, Andrew B.

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp andmore » GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.« less

  14. An efficient coordination protocol for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Paruchuri, Vamsi; Durresi, Arjan; Durresi, Mimoza; Barolli, Leonard

    2005-10-01

    Backbones infrastructures in wireless sensor networks reduce the communication overhead and energy consumption. In this paper, we present BackBone Routing (BBR), a fully distributed protocol for construction and rotation of backbone networks. BBR reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Another key feature of BBR is its energy balancing nature by distributing the role of being Backbone Node among all the nodes. BBR builds on the observation that when a region of a shared-channel wireless network has a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections. Improvement in system lifetime due to BBR increases as the ratio of idle-to-sleep energy consumption increases, and increases as the density of the network increases. Our experiments show that BBR is more efficient in saving energy and extending network life without deteriorating network performance when compared with geographical shortest path routing.

  15. Dynamics of influence and social balance in spatially-embedded regular and random networks

    NASA Astrophysics Data System (ADS)

    Singh, P.; Sreenivasan, S.; Szymanski, B.; Korniss, G.

    2015-03-01

    Structural balance - the tendency of social relationship triads to prefer specific states of polarity - can be a fundamental driver of beliefs, behavior, and attitudes on social networks. Here we study how structural balance affects deradicalization in an otherwise polarized population of leftists and rightists constituting the nodes of a low-dimensional social network. Specifically, assuming an externally moderating influence that converts leftists or rightists to centrists with probability p, we study the critical value p =pc , below which the presence of metastable mixed population states exponentially delay the achievement of centrist consensus. Above the critical value, centrist consensus is the only fixed point. Complementing our previously shown results for complete graphs, we present results for the process on low-dimensional networks, and show that the low-dimensional embedding of the underlying network significantly affects the critical value of probability p. Intriguingly, on low-dimensional networks, the critical value pc can show non-monotonicity as the dimensionality of the network is varied. We conclude by analyzing the scaling behavior of temporal variation of unbalanced triad density in the network for different low-dimensional network topologies. Supported in part by ARL NS-CTA, ONR, and ARO.

  16. Small Radioisotope Power System at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.

    2012-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.

  17. An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks

    DOE PAGES

    Ji, Haoran; Wang, Chengshan; Li, Peng; ...

    2017-09-20

    The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less

  18. An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Haoran; Wang, Chengshan; Li, Peng

    The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less

  19. Dual-balanced detection scheme with optical hard-limiters in an optical code division multiple access system

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Hsu, Yi-Kai

    2017-03-01

    Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.

  20. Environmental performance evaluation and strategy management using balanced scorecard.

    PubMed

    Hsu, Yu-Lung; Liu, Chun-Chu

    2010-11-01

    Recently, environmental protection and regulations such as WEEE, ELV, and RoHS are rapidly emerging as an important issue for business to consider. The trend of swinging from end-of-pipe control to product design, green innovation, and even the establishment of image or brand has affected corporations in almost every corner in the world, and enlarged to the all modern global production network. Corporations must take proactive environmental strategies to response the challenges. This study adopts balanced scorecard structure and aim at automobile industries to understand the relationships of internal and external, financial and non-financial, and outcome and driving factors. Further relying on these relationships to draw the "map of environment strategy" to probe and understand the feasibility of environmental performance evaluation and environmental strategy control.

  1. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  2. Prediction of wastewater treatment plants performance based on artificial fish school neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Li, Chong

    2011-10-01

    A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.

  3. A performance study of live VM migration technologies: VMotion vs XenMotion

    NASA Astrophysics Data System (ADS)

    Feng, Xiujie; Tang, Jianxiong; Luo, Xuan; Jin, Yaohui

    2011-12-01

    Due to the growing demand of flexible resource management for cloud computing services, researches on live virtual machine migration have attained more and more attention. Live migration of virtual machine across different hosts has been a powerful tool to facilitate system maintenance, load balancing, fault tolerance and so on. In this paper, we use a measurement-based approach to compare the performance of two major live migration technologies under certain network conditions, i.e., VMotion and XenMotion. The results show that VMotion generates much less data transferred than XenMotion when migrating identical VMs. However, in network with moderate packet loss and delay, which are typical in a VPN (virtual private network) scenario used to connect the data centers, XenMotion outperforms VMotion in total migration time. We hope that this study can be helpful in choosing suitable virtualization environments for data center administrators and optimizing existing live migration mechanisms.

  4. Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas

    NASA Astrophysics Data System (ADS)

    Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok

    Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.

  5. Ecosystem services provided by agroecosystems: a qualitative and quantitative assessment of this relationship in the Pampa region, Argentina.

    PubMed

    Rositano, Florencia; Ferraro, Diego Omar

    2014-03-01

    The development of an analytical framework relating agricultural conditions and ecosystem services (ES) provision could be very useful for developing land-use systems which sustain natural resources for future use. According to this, a conceptual network was developed, based on literature review and expert knowledge, about the functional relationships between agricultural management and ES provision in the Pampa region (Argentina). We selected eight ES to develop this conceptual network: (1) carbon (C) balance, (2) nitrogen (N) balance, (3) groundwater contamination control, (4) soil water balance, (5) soil structural maintenance, (6) N2O emission control, (7) regulation of biotic adversities, and (8) biodiversity maintenance. This conceptual network revealed a high degree of interdependence among ES provided by Pampean agroecosystems, finding two trade-offs, and two synergies among them. Then, we analyzed the conceptual network structure, and found that both environmental and management variables influenced ES provision. Finally, we selected four ES to parameterize and quantify along 10 growing seasons (2000/2001-2009/2010) through a probabilistic methodology called Bayesian Networks. Only N balance was negatively impacted by agricultural management; while C balance, groundwater contamination control, and N2O emission control were not. Outcomes of our work emphasize the idea that qualitative and quantitative methodologies should be implemented together to assess ES provision in Pampean agroecosystems, as well as in other agricultural systems.

  6. Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons.

    PubMed

    Yger, Pierre; El Boustani, Sami; Destexhe, Alain; Frégnac, Yves

    2011-10-01

    The relationship between the dynamics of neural networks and their patterns of connectivity is far from clear, despite its importance for understanding functional properties. Here, we have studied sparsely-connected networks of conductance-based integrate-and-fire (IF) neurons with balanced excitatory and inhibitory connections and with finite axonal propagation speed. We focused on the genesis of states with highly irregular spiking activity and synchronous firing patterns at low rates, called slow Synchronous Irregular (SI) states. In such balanced networks, we examined the "macroscopic" properties of the spiking activity, such as ensemble correlations and mean firing rates, for different intracortical connectivity profiles ranging from randomly connected networks to networks with Gaussian-distributed local connectivity. We systematically computed the distance-dependent correlations at the extracellular (spiking) and intracellular (membrane potential) levels between randomly assigned pairs of neurons. The main finding is that such properties, when they are averaged at a macroscopic scale, are invariant with respect to the different connectivity patterns, provided the excitatory-inhibitory balance is the same. In particular, the same correlation structure holds for different connectivity profiles. In addition, we examined the response of such networks to external input, and found that the correlation landscape can be modulated by the mean level of synchrony imposed by the external drive. This modulation was found again to be independent of the external connectivity profile. We conclude that first and second-order "mean-field" statistics of such networks do not depend on the details of the connectivity at a microscopic scale. This study is an encouraging step toward a mean-field description of topological neuronal networks.

  7. Constructing Robust Cooperative Networks using a Multi-Objective Evolutionary Algorithm

    PubMed Central

    Wang, Shuai; Liu, Jing

    2017-01-01

    The design and construction of network structures oriented towards different applications has attracted much attention recently. The existing studies indicated that structural heterogeneity plays different roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in this paper, we study a method for constructing robust cooperative networks where the only constraint is that the number of nodes and links is predefined. We model this network construction problem as a multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further investigation of the robustness of the constructed networks revealed the impact on other aspects of robustness during the construction process. PMID:28134314

  8. Hyperswitch communication network

    NASA Technical Reports Server (NTRS)

    Peterson, J.; Pniel, M.; Upchurch, E.

    1991-01-01

    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed.

  9. Continuous-time quantum search on balanced trees

    NASA Astrophysics Data System (ADS)

    Philipp, Pascal; Tarrataca, Luís; Boettcher, Stefan

    2016-03-01

    We examine the effect of network heterogeneity on the performance of quantum search algorithms. To this end, we study quantum search on a tree for the oracle Hamiltonian formulation employed by continuous-time quantum walks. We use analytical and numerical arguments to show that the exponent of the asymptotic running time ˜Nβ changes uniformly from β =0.5 to β =1 as the searched-for site is moved from the root of the tree towards the leaves. These results imply that the time complexity of the quantum search algorithm on a balanced tree is closely correlated with certain path-based centrality measures of the searched-for site.

  10. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    PubMed

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks including irregular, Poisson-like spike times, and a tight balance between excitation and inhibition. These results significantly increase the biological plausibility of the spike-based approach to network computation, and uncover how several components of biological networks may work together to efficiently carry out computation. Copyright © 2015 the authors 0270-6474/15/3510112-23$15.00/0.

  11. Experiences with the AEROnet/PSCN ATM Prototype

    NASA Technical Reports Server (NTRS)

    Kurak, Richard S.; Lisotta, Anthony J.; McCabe, James D.; Nothaft, Alfred E.; Russell, Kelly R.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    This paper discusses the experience gained by the AEROnet/PSCN networking team in deploying a prototype Asynchronous Transfer Mode (ATM) based network as part of the wide-area network for the Numerical Aerodynamic Simulation (NAS) Program at NASA Ames Research Center. The objectives of this prototype were to test concepts in using ATM over wide-area Internet Protocol (IP) networks and measure end-to-end system performance. This testbed showed that end-to-end ATM over a DS3 reaches approximately 80% of the throughput achieved from a FDDI to DS3 network. The 20% reduction in through-put can be attributed to the overhead associated with running ATM. As a result, we conclude that if the loss in capacity due to ATM overhead is balanced by the reduction in cost of ATM services, as compared to dedicated circuits, then ATM can be a viable alternative.

  12. Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping.

    PubMed

    Sriram, Ganesh; Shanks, Jacqueline V

    2004-04-01

    The biosynthetically directed fractional (13)C labeling method for metabolic flux evaluation relies on performing a 2-D [(13)C, (1)H] NMR experiment on extracts from organisms cultured on a uniformly labeled carbon substrate. This article focuses on improvements in the interpretation of data obtained from such an experiment by employing the concept of bondomers. Bondomers take into account the natural abundance of (13)C; therefore many bondomers in a real network are zero, and can be precluded a priori--thus resulting in fewer balances. Using this method, we obtained a set of linear equations which can be solved to obtain analytical formulas for NMR-measurable quantities in terms of fluxes in glycolysis and the pentose phosphate pathways. For a specific case of this network with four degrees of freedom, a priori identifiability of the fluxes was shown possible for any set of fluxes. For a more general case with five degrees of freedom, the fluxes were shown identifiable for a representative set of fluxes. Minimal sets of measurements which best identify the fluxes are listed. Furthermore, we have delineated Boolean function mapping, a new method to iteratively simulate bondomer abundances or efficiently convert carbon skeleton rearrangement information to mapping matrices. The efficiency of this method is expected to be valuable while analyzing metabolic networks which are not completely known (such as in plant metabolism) or while implementing iterative bondomer balancing methods.

  13. Topological relationships between brain and social networks.

    PubMed

    Sakata, Shuzo; Yamamori, Tetsuo

    2007-01-01

    Brains are complex networks. Previously, we revealed that specific connected structures are either significantly abundant or rare in cortical networks. However, it remains unknown whether systems from other disciplines have similar architectures to brains. By applying network-theoretical methods, here we show topological similarities between brain and social networks. We found that the statistical relevance of specific tied structures differs between social "friendship" and "disliking" networks, suggesting relation-type-specific topology of social networks. Surprisingly, overrepresented connected structures in brain networks are more similar to those in the friendship networks than to those in other networks. We found that balanced and imbalanced reciprocal connections between nodes are significantly abundant and rare, respectively, whereas these results are unpredictable by simply counting mutual connections. We interpret these results as evidence of positive selection of balanced mutuality between nodes. These results also imply the existence of underlying common principles behind the organization of brain and social networks.

  14. The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  15. The Effects of Spaceflight and Head Down Tilt Bed Rest on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. specific Aims: Aim 1-Identify changes in brain structure, function, and network integrity as a function of head down tilt bed rest and spaceflight, and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  16. Reducing fall risk by improving balance control: development, evaluation and knowledge-translation of new approaches.

    PubMed

    Maki, Brian E; Sibley, Katherine M; Jaglal, Susan B; Bayley, Mark; Brooks, Dina; Fernie, Geoff R; Flint, Alastair J; Gage, William; Liu, Barbara A; McIlroy, William E; Mihailidis, Alex; Perry, Stephen D; Popovic, Milos R; Pratt, Jay; Zettel, John L

    2011-12-01

    Falling is a leading cause of serious injury, loss of independence, and nursing-home admission in older adults. Impaired balance control is a major contributing factor. Results from our balance-control studies have been applied in the development of new and improved interventions and assessment tools. Initiatives to facilitate knowledge-translation of this work include setting up a new network of balance clinics, a research-user network and a research-user advisory board. Our findings support the efficacy of the developed balance-training methods, balance-enhancing footwear, neuro-prosthesis, walker design, handrail-cueing system, and handrail-design recommendations in improving specific aspects of balance control. IMPACT ON KNOWLEDGE USERS: A new balance-assessment tool has been implemented in the first new balance clinic, a new balance-enhancing insole is available through pharmacies and other commercial outlets, and handrail design recommendations have been incorporated into 10 Canadian and American building codes. Work in progress is expected to have further impact. Copyright © 2011 National Safety Council and Elsevier Ltd. All rights reserved.

  17. Coordinated and uncoordinated optimization of networks

    NASA Astrophysics Data System (ADS)

    Brede, Markus

    2010-06-01

    In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.

  18. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    NASA Astrophysics Data System (ADS)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  19. Traffic off-balancing algorithm for energy efficient networks

    NASA Astrophysics Data System (ADS)

    Kim, Junhyuk; Lee, Chankyun; Rhee, June-Koo Kevin

    2011-12-01

    Physical layer of high-end network system uses multiple interface arrays. Under the load-balancing perspective, light load can be distributed to multiple interfaces. However, it can cause energy inefficiency in terms of the number of poor utilization interfaces. To tackle this energy inefficiency, traffic off-balancing algorithm for traffic adaptive interface sleep/awake is investigated. As a reference model, 40G/100G Ethernet is investigated. We report that suggested algorithm can achieve energy efficiency while satisfying traffic transmission requirement.

  20. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    PubMed

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  1. A Survey on Data Storage and Information Discovery in the WSANs-Based Edge Computing Systems

    PubMed Central

    Liang, Junbin; Liu, Renping; Ni, Wei; Li, Yin; Li, Ran; Ma, Wenpeng; Qi, Chuanda

    2018-01-01

    In the post-Cloud era, the proliferation of Internet of Things (IoT) has pushed the horizon of Edge computing, which is a new computing paradigm with data processed at the edge of the network. As the important systems of Edge computing, wireless sensor and actuator networks (WSANs) play an important role in collecting and processing the sensing data from the surrounding environment as well as taking actions on the events happening in the environment. In WSANs, in-network data storage and information discovery schemes with high energy efficiency, high load balance and low latency are needed because of the limited resources of the sensor nodes and the real-time requirement of some specific applications, such as putting out a big fire in a forest. In this article, the existing schemes of WSANs on data storage and information discovery are surveyed with detailed analysis on their advancements and shortcomings, and possible solutions are proposed on how to achieve high efficiency, good load balance, and perfect real-time performances at the same time, hoping that it can provide a good reference for the future research of the WSANs-based Edge computing systems. PMID:29439442

  2. A Survey on Data Storage and Information Discovery in the WSANs-Based Edge Computing Systems.

    PubMed

    Ma, Xingpo; Liang, Junbin; Liu, Renping; Ni, Wei; Li, Yin; Li, Ran; Ma, Wenpeng; Qi, Chuanda

    2018-02-10

    In the post-Cloud era, the proliferation of Internet of Things (IoT) has pushed the horizon of Edge computing, which is a new computing paradigm with data are processed at the edge of the network. As the important systems of Edge computing, wireless sensor and actuator networks (WSANs) play an important role in collecting and processing the sensing data from the surrounding environment as well as taking actions on the events happening in the environment. In WSANs, in-network data storage and information discovery schemes with high energy efficiency, high load balance and low latency are needed because of the limited resources of the sensor nodes and the real-time requirement of some specific applications, such as putting out a big fire in a forest. In this article, the existing schemes of WSANs on data storage and information discovery are surveyed with detailed analysis on their advancements and shortcomings, and possible solutions are proposed on how to achieve high efficiency, good load balance, and perfect real-time performances at the same time, hoping that it can provide a good reference for the future research of the WSANs-based Edge computing systems.

  3. Enhanced method of fast re-routing with load balancing in software-defined networks

    NASA Astrophysics Data System (ADS)

    Lemeshko, Oleksandr; Yeremenko, Oleksandra

    2017-11-01

    A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.

  4. A Markov model for the temporal dynamics of balanced random networks of finite size

    PubMed Central

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644

  5. I/O load balancing for big data HPC applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Arnab K.; Goyal, Arpit; Wang, Feiyi

    High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutionsmore » typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.« less

  6. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    PubMed

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  7. L2-LBMT: A Layered Load Balance Routing Protocol for underwater multimedia data transmission

    NASA Astrophysics Data System (ADS)

    Lv, Ze; Tang, Ruichun; Tao, Ye; Sun, Xin; Xu, Xiaowei

    2017-12-01

    Providing highly efficient underwater transmission of mass multimedia data is challenging due to the particularities of the underwater environment. Although there are many schemes proposed to optimize the underwater acoustic network communication protocols, from physical layer, data link layer, network layer to transport layer, the existing routing protocols for underwater wireless sensor network (UWSN) still cannot well deal with the problems in transmitting multimedia data because of the difficulties involved in high energy consumption, low transmission reliability or high transmission delay. It prevents us from applying underwater multimedia data to real-time monitoring of marine environment in practical application, especially in emergency search, rescue operation and military field. Therefore, the inefficient transmission of marine multimedia data has become a serious problem that needs to be solved urgently. In this paper, A Layered Load Balance Routing Protocol (L2-LBMT) is proposed for underwater multimedia data transmission. In L2-LBMT, we use layered and load-balance Ad Hoc Network to transmit data, and adopt segmented data reliable transfer (SDRT) protocol to improve the data transport reliability. And a 3-node variant of tornado (3-VT) code is also combined with the Ad Hoc Network to transmit little emergency data more quickly. The simulation results show that the proposed protocol can balance energy consumption of each node, effectively prolong the network lifetime and reduce transmission delay of marine multimedia data.

  8. Global phenomena from local rules: Peer-to-peer networks and crystal steps

    NASA Astrophysics Data System (ADS)

    Finkbiner, Amy

    Even simple, deterministic rules can generate interesting behavior in dynamical systems. This dissertation examines some real world systems for which fairly simple, locally defined rules yield useful or interesting properties in the system as a whole. In particular, we study routing in peer-to-peer networks and the motion of crystal steps. Peers can vary by three orders of magnitude in their capacities to process network traffic. This heterogeneity inspires our use of "proportionate load balancing," where each peer provides resources in proportion to its individual capacity. We provide an implementation that employs small, local adjustments to bring the entire network into a global balance. Analytically and through simulations, we demonstrate the effectiveness of proportionate load balancing on two routing methods for de Bruijn graphs, introducing a new "reversed" routing method which performs better than standard forward routing in some cases. The prevalence of peer-to-peer applications prompts companies to locate the hosts participating in these networks. We explore the use of supervised machine learning to identify peer-to-peer hosts, without using application-specific information. We introduce a model for "triples," which exploits information about nearly contemporaneous flows to give a statistical picture of a host's activities. We find that triples, together with measurements of inbound vs. outbound traffic, can capture most of the behavior of peer-to-peer hosts. An understanding of crystal surface evolution is important for the development of modern nanoscale electronic devices. The most commonly studied surface features are steps, which form at low temperatures when the crystal is cut close to a plane of symmetry. Step bunching, when steps arrange into widely separated clusters of tightly packed steps, is one important step phenomenon. We analyze a discrete model for crystal steps, in which the motion of each step depends on the two steps on either side of it. We find an time-dependence term for the motion that does not appear in continuum models, and we determine an explicit dependence on step number.

  9. Investigating cellular network heterogeneity and modularity in cancer: a network entropy and unbalanced motif approach.

    PubMed

    Cheng, Feixiong; Liu, Chuang; Shen, Bairong; Zhao, Zhongming

    2016-08-26

    Cancer is increasingly recognized as a cellular system phenomenon that is attributed to the accumulation of genetic or epigenetic alterations leading to the perturbation of the molecular network architecture. Elucidation of network properties that can characterize tumor initiation and progression, or pinpoint the molecular targets related to the drug sensitivity or resistance, is therefore of critical importance for providing systems-level insights into tumorigenesis and clinical outcome in the molecularly targeted cancer therapy. In this study, we developed a network-based framework to quantitatively examine cellular network heterogeneity and modularity in cancer. Specifically, we constructed gene co-expressed protein interaction networks derived from large-scale RNA-Seq data across 8 cancer types generated in The Cancer Genome Atlas (TCGA) project. We performed gene network entropy and balanced versus unbalanced motif analysis to investigate cellular network heterogeneity and modularity in tumor versus normal tissues, different stages of progression, and drug resistant versus sensitive cancer cell lines. We found that tumorigenesis could be characterized by a significant increase of gene network entropy in all of the 8 cancer types. The ratio of the balanced motifs in normal tissues is higher than that of tumors, while the ratio of unbalanced motifs in tumors is higher than that of normal tissues in all of the 8 cancer types. Furthermore, we showed that network entropy could be used to characterize tumor progression and anticancer drug responses. For example, we found that kinase inhibitor resistant cancer cell lines had higher entropy compared to that of sensitive cell lines using the integrative analysis of microarray gene expression and drug pharmacological data collected from the Genomics of Drug Sensitivity in Cancer database. In addition, we provided potential network-level evidence that smoking might increase cancer cellular network heterogeneity and further contribute to tyrosine kinase inhibitor (e.g., gefitinib) resistance. In summary, we demonstrated that network properties such as network entropy and unbalanced motifs associated with tumor initiation, progression, and anticancer drug responses, suggesting new potential network-based prognostic and predictive measure in cancer.

  10. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization.

    PubMed

    Jiang, Ailian; Zheng, Lihong

    2018-03-29

    Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  11. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    PubMed Central

    2018-01-01

    Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336

  12. Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals

    PubMed Central

    Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2013-01-01

    Abstract Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network. PMID:23216162

  13. Research of converter transformer fault diagnosis based on improved PSO-BP algorithm

    NASA Astrophysics Data System (ADS)

    Long, Qi; Guo, Shuyong; Li, Qing; Sun, Yong; Li, Yi; Fan, Youping

    2017-09-01

    To overcome those disadvantages that BP (Back Propagation) neural network and conventional Particle Swarm Optimization (PSO) converge at the global best particle repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy when being applied in converter transformer fault diagnosis, we come up with the improved PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia weight Equation by using the attenuation strategy based on concave function to avoid the premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) strategy was adopted to balance the local search and global search ability. At last the simulation results prove that the proposed approach has a better ability in optimizing BP neural network in terms of network output error, global searching performance and diagnosis accuracy.

  14. DIZZYNET--a European network initiative for vertigo and balance research: visions and aims.

    PubMed

    Zwergal, Andreas; Brandt, Thomas; Magnusson, Mans; Kennard, Christopher

    2016-04-01

    Vertigo is one of the most common complaints in medicine. Despite its high prevalence, patients with vertigo often receive either inappropriate or inadequate treatment. The most important reasons for this deplorable situation are insufficient interdisciplinary cooperation, nonexistent standards in diagnostics and therapy, the relatively rare translations of basic science findings to clinical applications, and the scarcity of prospective controlled multicenter clinical trials. To overcome these problems, the German Center for Vertigo and Balance Disorders (DSGZ) started an initiative to establish a European Network for Vertigo and Balance Research called DIZZYNET. The central aim is to create a platform for collaboration and exchange among scientists, physicians, technicians, and physiotherapists in the fields of basic and translational research, clinical management, clinical trials, rehabilitation, and epidemiology. The network will also promote public awareness and help establish educational standards in the field. The DIZZYNET has the following objectives as regards structure and content: to focus on multidisciplinary translational research in vertigo and balance disorders, to develop interdisciplinary longitudinal and transversal networks for patient care by standardizing and personalizing the management of patients, to increase methodological competence by implementing common standards of practice and quality management, to internationalize the infrastructure for prospective multicenter clinical trials, to increase recruitment capacity for clinical trials, to create a common data base for patients with vertigo and balance disorders, to offer and promote attractive educational and career paths in a network of cooperating institutions. In the long term, the DIZZYNET should serve as an internationally visible network for interdisciplinary and multiprofessional research on vertigo and balance disorders. It ideally should equally attract the afflicted patients and those managing their disorders. DIZZYNET will not compete with the traditional national or international societies active in the field, but will function as an additional structure that addresses some of the above problems.

  15. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  16. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  17. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less

  18. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  19. Three-phase Power Flow Calculation of Low Voltage Distribution Network Considering Characteristics of Residents Load

    NASA Astrophysics Data System (ADS)

    Wang, Yaping; Lin, Shunjiang; Yang, Zhibin

    2017-05-01

    In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.

  20. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-04-20

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

  1. Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors.

    PubMed

    Hines, Michael L; Eichner, Hubert; Schürmann, Felix

    2008-08-01

    Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Splitting cells is useful in attaining load balance in neural network simulations, especially when there is a wide range of cell sizes and the number of cells is about the same as the number of processors. For compute-bound simulations load balance results in almost ideal runtime scaling. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.

  2. Cognitive Control Signals in Posterior Cingulate Cortex

    PubMed Central

    Hayden, Benjamin Y.; Smith, David V.; Platt, Michael L.

    2010-01-01

    Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain. PMID:21160560

  3. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  4. Method for redesign of microbial production systems

    DOEpatents

    Maranas, Costas D.; Burgard, Anthony P.; Pharkya, Priti

    2010-11-02

    A computer-assisted method for identifying functionalities to add to an organism-specific metabolic network to enable a desired biotransformation in a host includes accessing reactions from a universal database to provide stoichiometric balance, identifying at least one stoichiometrically balanced pathway at least partially based on the reactions and a substrate to minimize a number of non-native functionalities in the production host, and incorporating the at least one stoichiometrically balanced pathway into the host to provide the desired biotransformation. A representation of the metabolic network as modified can be stored.

  5. Method for redesign of microbial production systems

    DOEpatents

    Maranas, Costas D [State College, PA; Burgard, Anthony P [San Diego, CA; Pharkya, Priti [San Diego, CA

    2012-01-31

    A computer-assisted method for identifying functionalities to add to an organism-specific metabolic network to enable a desired biotransformation in a host includes accessing reactions from a universal database to provide stoichiometric balance, identifying at least one stoichiometrically balanced pathway at least partially based on the reactions and a substrate to minimize a number of non-native functionalities in the production host, and incorporating the at least one stoichiometrically balanced pathway into the host to provide the desired biotransformation. A representation of the metabolic network as modified can be stored.

  6. A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Q. P.; Xu, X. N.; Liu, Y. T.; Xu, M.; Deng, S. H.; Chen, Y.; Yuan, H.; Yu, F.; Huang, Y.; Zhao, K.; Xu, S.; Xiong, G.

    2017-04-01

    Practical, efficient synthesis of metal oxide nanocrystals with good crystallinity and high specific surface area by a modified polymer-network gel method is demonstrated, taking ZnO nanocrystals as an example. A novel stepwise heat treatment yields significant improvement in crystal quality. Such nanophase materials can effectively degrade common organic dyes under solar radiation and can perform very well in photo-assisted detection of NO2 gas. Other typical metal oxide nanocrystals with good crystallinity and high specific surface area were also synthesized successfully under similar conditions. This work provides a general strategy for the synthesis of metal oxide nanocrystals, balancing the crystallinity and specific surface area.

  7. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training.

    PubMed

    Burzynska, Agnieszka Z; Finc, Karolina; Taylor, Brittany K; Knecht, Anya M; Kramer, Arthur F

    2017-01-01

    Dance - as a ritual, therapy, and leisure activity - has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson's disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations.

  8. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training

    PubMed Central

    Burzynska, Agnieszka Z.; Finc, Karolina; Taylor, Brittany K.; Knecht, Anya M.; Kramer, Arthur F.

    2017-01-01

    Dance – as a ritual, therapy, and leisure activity – has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson’s disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations. PMID:29230170

  9. On the Control of Consensus Networks: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Hudoba de Badyn, Mathias

    Signed networks allow the study of positive and negative interactions between agents. In this thesis, three papers are presented that address controllability of networked dynamics. First, controllability of signed consensus networks is approached from a symmetry perspective, for both linear and nonlinear consensus protocols. It is shown that the graph-theoretic property of signed networks known as structural balance renders the consensus protocol uncontrollable when coupled with a certain type of symmetry. Stabilizability and output controllability of signed linear consensus is also examined, as well as a data-driven approach to finding bipartite consensus stemming from structural balance for signed nonlinear consensus. Second, an algorithm is constructed that allows one to grow a network while preserving controllability, and some generalizations of this algorithm are presented. Submodular optimization is used to analyze a second algorithm that adds nodes to a network to maximize the network connectivity.

  10. Portable Parallel Programming for the Dynamic Load Balancing of Unstructured Grid Applications

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Das, Sajal K.; Harvey, Daniel; Oliker, Leonid

    1999-01-01

    The ability to dynamically adapt an unstructured -rid (or mesh) is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult, particularly from the view point of portability on various multiprocessor platforms We address this problem by developing PLUM, tin automatic anti architecture-independent framework for adaptive numerical computations in a message-passing environment. Portability is demonstrated by comparing performance on an SP2, an Origin2000, and a T3E, without any code modifications. We also present a general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication pattern, with a goal to providing a global view of system loads across processors. Experiments on, an SP2 and an Origin2000 demonstrate the portability of our approach which achieves superb load balance at the cost of minimal extra overhead.

  11. Human performance under two different command and control paradigms.

    PubMed

    Walker, Guy H; Stanton, Neville A; Salmon, Paul M; Jenkins, Daniel P

    2014-05-01

    The paradoxical behaviour of a new command and control concept called Network Enabled Capability (NEC) provides the motivation for this paper. In it, a traditional hierarchical command and control organisation was pitted against a network centric alternative on a common task, played thirty times, by two teams. Multiple regression was used to undertake a simple form of time series analysis. It revealed that whilst the NEC condition ended up being slightly slower than its hierarchical counterpart, it was able to balance and optimise all three of the performance variables measured (task time, enemies neutralised and attrition). From this it is argued that a useful conceptual response is not to consider NEC as an end product comprised of networked computers and standard operating procedures, nor to regard the human system interaction as inherently stable, but rather to view it as a set of initial conditions from which the most adaptable component of all can be harnessed: the human. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Thermodynamically Feasible Kinetic Models of Reaction Networks

    PubMed Central

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations. PMID:17208985

  13. An Energy Balanced and Lifetime Extended Routing Protocol for Underwater Sensor Networks.

    PubMed

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Lu, Luxi

    2018-05-17

    Energy limitation is an adverse problem in designing routing protocols for underwater sensor networks (UWSNs). To prolong the network lifetime with limited battery power, an energy balanced and efficient routing protocol, called energy balanced and lifetime extended routing protocol (EBLE), is proposed in this paper. The proposed EBLE not only balances traffic loads according to the residual energy, but also optimizes data transmissions by selecting low-cost paths. Two phases are operated in the EBLE data transmission process: (1) candidate forwarding set selection phase and (2) data transmission phase. In candidate forwarding set selection phase, nodes update candidate forwarding nodes by broadcasting the position and residual energy level information. The cost value of available nodes is calculated and stored in each sensor node. Then in data transmission phase, high residual energy and relatively low-cost paths are selected based on the cost function and residual energy level information. We also introduce detailed analysis of optimal energy consumption in UWSNs. Numerical simulation results on a variety of node distributions and data load distributions prove that EBLE outperforms other routing protocols (BTM, BEAR and direct transmission) in terms of network lifetime and energy efficiency.

  14. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  15. Improving deep convolutional neural networks with mixed maxout units.

    PubMed

    Zhao, Hui-Zhen; Liu, Fu-Xian; Li, Long-Yue

    2017-01-01

    Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

  16. Evolving science of marine reserves: New developments and emerging research frontiers

    PubMed Central

    Gaines, Steven D.; Lester, Sarah E.; Grorud-Colvert, Kirsten; Costello, Christopher; Pollnac, Richard

    2010-01-01

    The field of marine reserve science has matured greatly over the last decade, moving beyond studies of single reserves and beyond perspectives from single disciplines. This Special Feature exemplifies recent advances in marine reserve research, showing insights gained from synthetic studies of reserve networks, long-term changes within reserves, integration of social and ecological science research, and balance between reserve design for conservation as well as fishery and other commercial objectives. This rich body of research helps to inform conservation planning for marine ecosystems but also poses new challenges for further study, including how to best design integrated fisheries management and conservation systems, how to effectively evaluate the performance of entire reserve networks, and how to examine the complex coupling between ecological and socioeconomic responses to reserve networks. PMID:20978212

  17. Optimised cross-layer synchronisation schemes for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Nasri, Nejah; Ben Fradj, Awatef; Kachouri, Abdennaceur

    2017-07-01

    This paper aims at synchronisation between the sensor nodes. Indeed, in the context of wireless sensor networks, it is necessary to take into consideration the energy cost induced by the synchronisation, which can represent the majority of the energy consumed. On communication, an already identified hard point consists in imagining a fine synchronisation protocol which must be sufficiently robust to the intermittent energy in the sensors. Hence, this paper worked on aspects of performance and energy saving, in particular on the optimisation of the synchronisation protocol using cross-layer design method such as synchronisation between layers. Our approach consists in balancing the energy consumption between the sensors and choosing the cluster head with the highest residual energy in order to guarantee the reliability, integrity and continuity of communication (i.e. maximising the network lifetime).

  18. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.

    PubMed

    Roy, Arnab; Bernier, Rachel A; Wang, Jianli; Benson, Monica; French, Jerry J; Good, David C; Hillary, Frank G

    2017-01-01

    A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs.

  19. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury

    PubMed Central

    Roy, Arnab; Bernier, Rachel A.; Wang, Jianli; Benson, Monica; French, Jerry J.; Good, David C.; Hillary, Frank G.

    2017-01-01

    A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs. PMID:28422992

  20. Striatal functional connectivity changes following specific balance training in elderly people: MRI results of a randomized controlled pilot study.

    PubMed

    Magon, Stefano; Donath, Lars; Gaetano, Laura; Thoeni, Alain; Radue, Ernst-Wilhelm; Faude, Oliver; Sprenger, Till

    2016-09-01

    Practice-induced effects of specific balance training on brain structure and activity in elderly people are largely unknown. In the present study, we investigated morphological and functional brain changes following slacking training (balancing over nylon ribbons) in a group of elderly people. Twenty-eight healthy volunteers were recruited and randomly assigned to the intervention (mean age: 62.3±5.4years) or control group (mean age: 61.8±5.3years). The intervention group completed six-weeks of slackline training. Brain morphological changes were investigated using voxel-based morphometry and functional connectivity changes were computed via independent component analysis and seed-based analyses. All analyses were applied to the whole sample and to a subgroup of participants who improved in slackline performance. The repeated measures analysis of variance showed a significant interaction effect between groups and sessions. Specifically, the Tukey post-hoc analysis revealed a significantly improved slackline standing performance after training for the left leg stance time (pre: 4.5±3.6s vs. 26.0±30.0s, p<0.038) as well as for tandem stance time (pre: 1.4±0.6s vs. post: 4.5±4.0s, p=0.003) in the intervention group. No significant changes in balance performance were observed in the control group. The MRI analysis did not reveal morphological or functional connectivity differences before or after the training between the intervention and control groups (whole sample). However, subsequent analysis in subjects with improved slackline performance showed a decrease of connectivity between the striatum and other brain areas during the training period. These preliminary results suggest that improved balance performance with slackline training goes along with an increased efficiency of the striatal network. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance

    PubMed Central

    Heavner, Benjamin D.; Smallbone, Kieran; Price, Nathan D.; Walker, Larry P.

    2013-01-01

    Updates to maintain a state-of-the art reconstruction of the yeast metabolic network are essential to reflect our understanding of yeast metabolism and functional organization, to eliminate any inaccuracies identified in earlier iterations, to improve predictive accuracy and to continue to expand into novel subsystems to extend the comprehensiveness of the model. Here, we present version 6 of the consensus yeast metabolic network (Yeast 6) as an update to the community effort to computationally reconstruct the genome-scale metabolic network of Saccharomyces cerevisiae S288c. Yeast 6 comprises 1458 metabolites participating in 1888 reactions, which are annotated with 900 yeast genes encoding the catalyzing enzymes. Compared with Yeast 5, Yeast 6 demonstrates improved sensitivity, specificity and positive and negative predictive values for predicting gene essentiality in glucose-limited aerobic conditions when analyzed with flux balance analysis. Additionally, Yeast 6 improves the accuracy of predicting the likelihood that a mutation will cause auxotrophy. The network reconstruction is available as a Systems Biology Markup Language (SBML) file enriched with Minimium Information Requested in the Annotation of Biochemical Models (MIRIAM)-compliant annotations. Small- and macromolecules in the network are referenced to authoritative databases such as Uniprot or ChEBI. Molecules and reactions are also annotated with appropriate publications that contain supporting evidence. Yeast 6 is freely available at http://yeast.sf.net/ as three separate SBML files: a model using the SBML level 3 Flux Balance Constraint package, a model compatible with the MATLAB® COBRA Toolbox for backward compatibility and a reconstruction containing only reactions for which there is experimental evidence (without the non-biological reactions necessary for simulating growth). Database URL: http://yeast.sf.net/ PMID:23935056

  2. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome*.

    PubMed

    Grissom, Colin K; Hirshberg, Eliotte L; Dickerson, Justin B; Brown, Samuel M; Lanspa, Michael J; Liu, Kathleen D; Schoenfeld, David; Tidswell, Mark; Hite, R Duncan; Rock, Peter; Miller, Russell R; Morris, Alan H

    2015-02-01

    In the Fluid and Catheter Treatment Trial (FACTT) of the National Institutes of Health Acute Respiratory Distress Syndrome Network, a conservative fluid protocol (FACTT Conservative) resulted in a lower cumulative fluid balance and better outcomes than a liberal fluid protocol (FACTT Liberal). Subsequent Acute Respiratory Distress Syndrome Network studies used a simplified conservative fluid protocol (FACTT Lite). The objective of this study was to compare the performance of FACTT Lite, FACTT Conservative, and FACTT Liberal protocols. Retrospective comparison of FACTT Lite, FACTT Conservative, and FACTT Liberal. Primary outcome was cumulative fluid balance over 7 days. Secondary outcomes were 60-day adjusted mortality and ventilator-free days through day 28. Safety outcomes were prevalence of acute kidney injury and new shock. ICUs of Acute Respiratory Distress Syndrome Network participating hospitals. Five hundred three subjects managed with FACTT Conservative, 497 subjects managed with FACTT Liberal, and 1,124 subjects managed with FACTT Lite. Fluid management by protocol. Cumulative fluid balance was 1,918 ± 323 mL in FACTT Lite, -136 ± 491 mL in FACTT Conservative, and 6,992 ± 502 mL in FACTT Liberal (p < 0.001). Mortality was not different between groups (24% in FACTT Lite, 25% in FACTT Conservative and Liberal, p = 0.84). Ventilator-free days in FACTT Lite (14.9 ± 0.3) were equivalent to FACTT Conservative (14.6 ± 0.5) (p = 0.61) and greater than in FACTT Liberal (12.1 ± 0.5, p < 0.001 vs Lite). Acute kidney injury prevalence was 58% in FACTT Lite and 57% in FACTT Conservative (p = 0.72). Prevalence of new shock in FACTT Lite (9%) was lower than in FACTT Conservative (13%) (p = 0.007 vs Lite) and similar to FACTT Liberal (11%) (p = 0.18 vs Lite). FACTT Lite had a greater cumulative fluid balance than FACTT Conservative but had equivalent clinical and safety outcomes. FACTT Lite is an alternative to FACTT Conservative for fluid management in Acute Respiratory Distress Syndrome.

  3. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.

    2018-04-01

    Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  4. Distributed Multihop Clustering Approach for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Israr, Nauman; Awan, Irfan

    Prolonging the life time of Wireless Sensor Networks (WSNs) has been the focus of current research. One of the issues that needs to be addressed along with prolonging the network life time is to ensure uniform energy consumption across the network in WSNs especially in case of random network deployment. Cluster based routing algorithms are believed to be the best choice for WSNs because they work on the principle of divide and conquer and also improve the network life time considerably compared to flat based routing schemes. In this paper we propose a new routing strategy based on two layers clustering which exploits the redundancy property of the network in order to minimise duplicate data transmission and also make the intercluster and intracluster communication multihop. The proposed algorithm makes use of the nodes in a network whose area coverage is covered by the neighbouring nodes. These nodes are marked as temporary cluster heads and later use these temporary cluster heads randomly for multihop intercluster communication. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing across the network and is more energy efficient compared to the enhanced version of widely used Leach algorithm.

  5. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    PubMed

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  6. A new mutually reinforcing network node and link ranking algorithm

    PubMed Central

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

    2015-01-01

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958

  7. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.

    PubMed

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-08-18

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.

  8. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  9. Fault tolerant hypercube computer system architecture

    NASA Technical Reports Server (NTRS)

    Madan, Herb S. (Inventor); Chow, Edward (Inventor)

    1989-01-01

    A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node operably connected to the first multiplexer whereby the second watch dog node can selectively communicate with individual ones of the computing nodes through the second and fourth networks. The branch is completed by a first load balancing node; and a second multiplexer connected between the first load balancing node and the first and second watch dog nodes, allowing the first load balancing node to selectively communicate with the first and second watch dog nodes.

  10. Estimating network parameters from combined dynamics of firing rate and irregularity of single neurons.

    PubMed

    Hamaguchi, Kosuke; Riehle, Alexa; Brunel, Nicolas

    2011-01-01

    High firing irregularity is a hallmark of cortical neurons in vivo, and modeling studies suggest a balance of excitation and inhibition is necessary to explain this high irregularity. Such a balance must be generated, at least partly, from local interconnected networks of excitatory and inhibitory neurons, but the details of the local network structure are largely unknown. The dynamics of the neural activity depends on the local network structure; this in turn suggests the possibility of estimating network structure from the dynamics of the firing statistics. Here we report a new method to estimate properties of the local cortical network from the instantaneous firing rate and irregularity (CV(2)) under the assumption that recorded neurons are a part of a randomly connected sparse network. The firing irregularity, measured in monkey motor cortex, exhibits two features; many neurons show relatively stable firing irregularity in time and across different task conditions; the time-averaged CV(2) is widely distributed from quasi-regular to irregular (CV(2) = 0.3-1.0). For each recorded neuron, we estimate the three parameters of a local network [balance of local excitation-inhibition, number of recurrent connections per neuron, and excitatory postsynaptic potential (EPSP) size] that best describe the dynamics of the measured firing rates and irregularities. Our analysis shows that optimal parameter sets form a two-dimensional manifold in the three-dimensional parameter space that is confined for most of the neurons to the inhibition-dominated region. High irregularity neurons tend to be more strongly connected to the local network, either in terms of larger EPSP and inhibitory PSP size or larger number of recurrent connections, compared with the low irregularity neurons, for a given excitatory/inhibitory balance. Incorporating either synaptic short-term depression or conductance-based synapses leads many low CV(2) neurons to move to the excitation-dominated region as well as to an increase of EPSP size.

  11. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks

    PubMed Central

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-01-01

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971

  12. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.

    PubMed

    Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing

    2018-02-28

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  13. Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI.

    PubMed

    Kim, Ki Hwan; Park, Sung-Hong

    2017-04-01

    The balanced steady-state free precession (bSSFP) MR sequence is frequently used in clinics, but is sensitive to off-resonance effects, which can cause banding artifacts. Often multiple bSSFP datasets are acquired at different phase cycling (PC) angles and then combined in a special way for banding artifact suppression. Many strategies of combining the datasets have been suggested for banding artifact suppression, but there are still limitations in their performance, especially when the number of phase-cycled bSSFP datasets is small. The purpose of this study is to develop a learning-based model to combine the multiple phase-cycled bSSFP datasets for better banding artifact suppression. Multilayer perceptron (MLP) is a feedforward artificial neural network consisting of three layers of input, hidden, and output layers. MLP models were trained by input bSSFP datasets acquired from human brain and knee at 3T, which were separately performed for two and four PC angles. Banding-free bSSFP images were generated by maximum-intensity projection (MIP) of 8 or 12 phase-cycled datasets and were used as targets for training the output layer. The trained MLP models were applied to another brain and knee datasets acquired with different scan parameters and also to multiple phase-cycled bSSFP functional MRI datasets acquired on rat brain at 9.4T, in comparison with the conventional MIP method. Simulations were also performed to validate the MLP approach. Both the simulations and human experiments demonstrated that MLP suppressed banding artifacts significantly, superior to MIP in both banding artifact suppression and SNR efficiency. MLP demonstrated superior performance over MIP for the 9.4T fMRI data as well, which was not used for training the models, while visually preserving the fMRI maps very well. Artificial neural network is a promising technique for combining multiple phase-cycled bSSFP datasets for banding artifact suppression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Building managed primary care practice networks to deliver better clinical care: a qualitative semi-structured interview study.

    PubMed

    Pawa, Jasmine; Robson, John; Hull, Sally

    2017-11-01

    Primary care practices are increasingly working in larger groups. In 2009, all 36 primary care practices in the London borough of Tower Hamlets were grouped geographically into eight managed practice networks to improve the quality of care they delivered. Quantitative evaluation has shown improved clinical outcomes. To provide insight into the process of network implementation, including the aims, facilitating factors, and barriers, from both the clinical and managerial perspectives. A qualitative study of network implementation in the London borough of Tower Hamlets, which serves a socially disadvantaged and ethnically diverse population. Nineteen semi-structured interviews were carried out with doctors, nurses, and managers, and were informed by existing literature on integrated care and GP networks. Interviews were recorded and transcribed, and thematic analysis used to analyse emerging themes. Interviewees agreed that networks improved clinical care and reduced variation in practice performance. Network implementation was facilitated by the balance struck between 'a given structure' and network autonomy to adopt local solutions. Improved use of data, including patient recall and peer performance indicators, were viewed as critical key factors. Targeted investment provided the necessary resources to achieve this. Barriers to implementing networks included differences in practice culture, a reluctance to share data, and increased workload. Commissioners and providers were positive about the implementation of GP networks as a way to improve the quality of clinical care in Tower Hamlets. The issues that arose may be of relevance to other areas implementing similar quality improvement programmes at scale. © British Journal of General Practice 2017.

  15. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  16. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    PubMed

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  17. The Dynamical Balance of the Brain at Rest

    PubMed Central

    Deco, Gustavo; Corbetta, Maurizio

    2014-01-01

    We review evidence that spontaneous, i.e. not stimulus- or task-driven, activity in the brain is not noise, but orderly organized at the level of large scale systems in a series of functional networks that maintain at all times a high level of coherence. These networks of spontaneous activity correlation or resting state networks (RSN) are closely related to the underlying anatomical connectivity, but their topography is also gated by the history of prior task activation. Network coherence does not depend on covert cognitive activity, but its strength and integrity relates to behavioral performance. Some RSN are functionally organized as dynamically competing systems both at rest and during tasks. Computational studies show that one of such dynamics, the anti-correlation between networks, depends on noise driven transitions between different multi-stable cluster synchronization states. These multi-stable states emerge because of transmission delays between regions that are modeled as coupled oscillators systems. Large-scale systems dynamics are useful for keeping different functional sub-networks in a state of heightened competition, which can be stabilized and fired by even small modulations of either sensory or internal signals. PMID:21196530

  18. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Treesearch

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  19. White blood cells identification system based on convolutional deep neural learning networks.

    PubMed

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  20. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    NASA Astrophysics Data System (ADS)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  1. Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization

    PubMed Central

    Küffner, Robert; Petri, Tobias; Windhager, Lukas; Zimmer, Ralf

    2010-01-01

    Background The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters. PMID:20862218

  2. Trade-off Analysis of Underwater Acoustic Sensor Networks

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Das, R.

    2017-09-01

    In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Song; Wang, Yihong; Luo, Wei

    In virtualized data centers, virtual disk images (VDIs) serve as the containers in virtual environment, so their access performance is critical for the overall system performance. Some distributed VDI chunk storage systems have been proposed in order to alleviate the I/O bottleneck for VM management. As the system scales up to a large number of running VMs, however, the overall network traffic would become unbalanced with hot spots on some VMs inevitably, leading to I/O performance degradation when accessing the VMs. Here, we propose an adaptive and collaborative VDI storage system (ACStor) to resolve the above performance issue. In comparisonmore » with the existing research, our solution is able to dynamically balance the traffic workloads in accessing VDI chunks, based on the run-time network state. Specifically, compute nodes with lightly loaded traffic will be adaptively assigned more chunk access requests from remote VMs and vice versa, which can effectively eliminate the above problem and thus improves the I/O performance of VMs. We also implement a prototype based on our ACStor design, and evaluate it by various benchmarks on a real cluster with 32 nodes and a simulated platform with 256 nodes. Experiments show that under different network traffic patterns of data centers, our solution achieves up to 2-8 performance gain on VM booting time and VM’s I/O throughput, in comparison with the other state-of-the-art approaches.« less

  4. Quantifying individual performance in Cricket — A network analysis of batsmen and bowlers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Satyam

    2014-01-01

    Quantifying individual performance in the game of Cricket is critical for team selection in International matches. The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket it is always important the manner in which one scores the runs or claims a wicket. Scoring runs against a strong bowling line-up or delivering a brilliant performance against a team with a strong batting line-up deserves more credit. A player’s average is not able to capture this aspect of the game. In this paper we present a refined method to quantify the ‘quality’ of runs scored by a batsman or wickets taken by a bowler. We explore the application of Social Network Analysis (SNA) to rate the players in a team performance. We generate a directed and weighted network of batsmen-bowlers using the player-vs-player information available for Test cricket and ODI cricket. Additionally we generate a network of batsmen and bowlers based on the dismissal record of batsmen in the history of cricket-Test (1877-2011) and ODI (1971-2011). Our results show that M. Muralitharan is the most successful bowler in the history of Cricket. Our approach could potentially be applied in domestic matches to judge a player’s performance which in turn paves the way for a balanced team selection for International matches.

  5. Encoding Time in Feedforward Trajectories of a Recurrent Neural Network Model.

    PubMed

    Hardy, N F; Buonomano, Dean V

    2018-02-01

    Brain activity evolves through time, creating trajectories of activity that underlie sensorimotor processing, behavior, and learning and memory. Therefore, understanding the temporal nature of neural dynamics is essential to understanding brain function and behavior. In vivo studies have demonstrated that sequential transient activation of neurons can encode time. However, it remains unclear whether these patterns emerge from feedforward network architectures or from recurrent networks and, furthermore, what role network structure plays in timing. We address these issues using a recurrent neural network (RNN) model with distinct populations of excitatory and inhibitory units. Consistent with experimental data, a single RNN could autonomously produce multiple functionally feedforward trajectories, thus potentially encoding multiple timed motor patterns lasting up to several seconds. Importantly, the model accounted for Weber's law, a hallmark of timing behavior. Analysis of network connectivity revealed that efficiency-a measure of network interconnectedness-decreased as the number of stored trajectories increased. Additionally, the balance of excitation (E) and inhibition (I) shifted toward excitation during each unit's activation time, generating the prediction that observed sequential activity relies on dynamic control of the E/I balance. Our results establish for the first time that the same RNN can generate multiple functionally feedforward patterns of activity as a result of dynamic shifts in the E/I balance imposed by the connectome of the RNN. We conclude that recurrent network architectures account for sequential neural activity, as well as for a fundamental signature of timing behavior: Weber's law.

  6. A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads

    NASA Astrophysics Data System (ADS)

    Kumar, R. Hari; Ushakumari, S.

    2018-05-01

    Maintenance of power balance between generation and demand is one of the most critical requirements for the stable operation of a power system network. To mitigate the power imbalance during the occurrence of any disturbance in the system, fast acting algorithms are inevitable. This paper proposes a novel algorithm for load shedding and network reconfiguration in an isolated microgrid with prioritized loads and multiple islands, which will help to quickly restore the system in the event of a fault. The performance of the proposed algorithm is enhanced using genetic algorithm and its effectiveness is illustrated with simulation results on modified Consortium for Electric Reliability Technology Solutions (CERTS) microgrid.

  7. Epidemic spreading on evolving signed networks

    NASA Astrophysics Data System (ADS)

    Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  8. A Distance-based Energy Aware Routing algorithm for wireless sensor networks.

    PubMed

    Wang, Jin; Kim, Jeong-Uk; Shu, Lei; Niu, Yu; Lee, Sungyoung

    2010-01-01

    Energy efficiency and balancing is one of the primary challenges for wireless sensor networks (WSNs) since the tiny sensor nodes cannot be easily recharged once they are deployed. Up to now, many energy efficient routing algorithms or protocols have been proposed with techniques like clustering, data aggregation and location tracking etc. However, many of them aim to minimize parameters like total energy consumption, latency etc., which cause hotspot nodes and partitioned network due to the overuse of certain nodes. In this paper, a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to ensure energy efficiency and energy balancing based on theoretical analysis of different energy and traffic models. During the routing process, we consider individual distance as the primary parameter in order to adjust and equalize the energy consumption among involved sensors. The residual energy is also considered as a secondary factor. In this way, all the intermediate nodes will consume their energy at similar rate, which maximizes network lifetime. Simulation results show that the DEAR algorithm can reduce and balance the energy consumption for all sensor nodes so network lifetime is greatly prolonged compared to other routing algorithms.

  9. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy

    PubMed Central

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.

    2014-01-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089

  10. Policies for implementing network firewalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.D.

    1994-05-01

    Corporate networks are frequently protected by {open_quotes}firewalls{close_quotes} or gateway systems that control access to/from other networks, e.g., the Internet, in order to reduce the network`s vulnerability to hackers and other unauthorized access. Firewalls typically limit access to particular network nodes and application protocols, and they often perform special authentication and authorization functions. One of the difficult issues associated with network firewalls is determining which applications should be permitted through the firewall. For example, many networks permit the exchange of electronic mail with the outside but do not permit file access to be initiated by outside users, as this might allowmore » outside users to access sensitive data or to surreptitiously modify data or programs (e.g., to intall Trojan Horse software). However, if access through firewalls is severely restricted, legitimate network users may find it difficult or impossible to collaborate with outside users and to share data. Some of the most serious issues regarding firewalls involve setting policies for firewalls with the goal of achieving an acceptable balance between the need for greater functionality and the associated risks. Two common firewall implementation techniques, screening routers and application gateways, are discussed below, followed by some common policies implemented by network firewalls.« less

  11. Heider balance in human networks

    NASA Astrophysics Data System (ADS)

    Gawroński, P.; Kułakowski, K.

    2005-07-01

    Recently, a continuous dynamics was proposed to simulate dynamics of interpersonal relations in a society represented by a fully connected graph. The final state of such a society was found to be identical with the so-called Heider balance (HB), where the society is divided into two mutually hostile groups. In the continuous model, a polarization of opinions was found in HB. Here we demonstrate that the polarization occurs also in Barabási-Albert networks, where the Heider balance is not necessarily present. In the second part of this work we demonstrate the results of our formalism, when applied to reference examples: the Southern women and the Zachary club.

  12. A survey on investigating the need for intelligent power-aware load balanced routing protocols for handling critical links in MANETs.

    PubMed

    Sivakumar, B; Bhalaji, N; Sivakumar, D

    2014-01-01

    In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing.

  13. A Survey on Investigating the Need for Intelligent Power-Aware Load Balanced Routing Protocols for Handling Critical Links in MANETs

    PubMed Central

    Sivakumar, B.; Bhalaji, N.; Sivakumar, D.

    2014-01-01

    In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing. PMID:24790546

  14. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink.

    PubMed

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.

  15. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    PubMed Central

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  16. A routing protocol based on energy and link quality for Internet of Things applications.

    PubMed

    Machado, Kássio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A F; Neto, Augusto; Souza, José Neuman de

    2013-02-04

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

  17. A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications

    PubMed Central

    Machado, Kassio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A. F.; Neto, Augusto; de Souza, José Neuman

    2013-01-01

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare,environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols. PMID:23385410

  18. Evaluating the balanced scorecard at the University Health Network: an impact assessment.

    PubMed

    Young, Justin; Bell, Robert; Khalfan, Adil; Lindquist, Evert

    2008-01-01

    The balanced scorecard (BSC) has become increasing popular in healthcare organizations. A recent study conducted at the University Health Network in Toronto explored the extent to which the BSC has focused and aligned various organizational units and departments around shared goals and objectives. The evaluation also assessed the BSC's impact on front-line staff and how the development and rollout of the BSC should be modified in the next planning iteration.

  19. Suppression of optical beat interference-noise in orthogonal frequency division multiple access-passive optical network link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook

    2014-08-01

    A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.

  20. Balancing the popularity bias of object similarities for personalised recommendation

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Pan, Xue; Liu, Kecheng

    2018-03-01

    Network-based similarity measures have found wide applications in recommendation algorithms and made significant contributions for uncovering users' potential interests. However, existing measures are generally biased in terms of popularity, that the popular objects tend to have more common neighbours with others and thus are considered more similar to others. Such popularity bias of similarity quantification will result in the biased recommendations, with either poor accuracy or poor diversity. Based on the bipartite network modelling of the user-object interactions, this paper firstly calculates the expected number of common neighbours of two objects with given popularities in random networks. A Balanced Common Neighbour similarity index is accordingly developed by removing the random-driven common neighbours, estimated as the expected number, from the total number. Recommendation experiments in three data sets show that balancing the popularity bias in a certain degree can significantly improve the recommendations' accuracy and diversity simultaneously.

  1. Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks

    NASA Astrophysics Data System (ADS)

    Huibin, Liu; Jun, Zhang

    2016-04-01

    Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.

  2. Nuclear traffic and peloton formation in fungal networks

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Hickey, Patrick; Lewkiewicz, Stephanie; Dressaire, Emilie; Read, Nick

    2013-11-01

    Hyphae, the network of microfluidic pipes that make up a growing fungal cell, must balance their function as conduits for the transport of nuclei with other cellular functions including secretion and growth. Constant flow of nuclei may interfere with the protein traffic that enables other functions to be performed. Live-cell imaging reveals that nuclear flows are anti-congestive; that groups of nuclei flow faster than single nuclei, and that nuclei sweep through the colony in dense clumps. We call these clumps pelotons, after the term used to describe groups of cycle racers slip-streaming off each other. Because of the pelotons, individual hyphae transport nuclei only intermittently, producing long intervals in which hyphae can perform their other functions. Modeling reveals how pelotons are created by interactions between nuclei and the hyphal cytoskeleton, and reveal the control that the fungus enjoys over peloton assembly and timing.

  3. Precoding based channel prediction for underwater acoustic OFDM

    NASA Astrophysics Data System (ADS)

    Cheng, En; Lin, Na; Sun, Hai-xin; Yan, Jia-quan; Qi, Jie

    2017-04-01

    The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure energy efficiency of some special nodes and obtain a longer lifetime of the underwater cooperative network, this paper focuses on adopting precoding strategy to preprocess the signal at the transmitter and simplify the receiver structure. Meanwhile, it takes into account the presence of Doppler shifts and long feedback transmission delay in an underwater acoustic communication system. Precoding technique is applied based on channel prediction to realize energy saving and improve system performance. Different precoding methods are compared. Simulated results and experimental results show that the proposed scheme has a better performance, and it can provide a simple receiver and realize energy saving for some special nodes in a cooperative communication.

  4. Non-equilibrium physics of neural networks for leaning, memory and decision making: landscape and flux perspectives

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, can be described by attractor dynamics. We developed a theoretical framework for global dynamics by quantifying the landscape associated with the steady state probability distributions and steady state curl flux, measuring the degree of non-equilibrium through detailed balance breaking. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. Both landscape and flux determine the kinetic paths and speed of decision making. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. The theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results show an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key elements in neural networks.

  5. SACFIR: SDN-Based Application-Aware Centralized Adaptive Flow Iterative Reconfiguring Routing Protocol for WSNs.

    PubMed

    Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan

    2017-12-13

    Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.

  6. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    PubMed

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. SACFIR: SDN-Based Application-Aware Centralized Adaptive Flow Iterative Reconfiguring Routing Protocol for WSNs

    PubMed Central

    Hu, Xiaopeng; Wang, Fan

    2017-01-01

    Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031

  8. A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks.

    PubMed

    Jiang, Peng; Xu, Yiming; Liu, Jun

    2017-01-19

    For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes' being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network's best service quality and lifetime.

  9. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  10. Examining the nomological network of satisfaction with work-life balance.

    PubMed

    Grawitch, Matthew J; Maloney, Patrick W; Barber, Larissa K; Mooshegian, Stephanie E

    2013-07-01

    This study expands on past work-life research by examining the nomological network of satisfaction with work-life balance-the overall appraisal or global assessment of how one manages time and energy across work and nonwork domains. Analyses using 456 employees at a midsized organization indicated expected relationships with bidirectional conflict, bidirectional facilitation, and satisfaction with work and nonwork life. Structural equation modeling supported the utility of satisfaction with balance as a unique component of work-life interface perceptions. Results also indicated that satisfaction with balance mediated the relationship between some conflict/facilitation and life satisfaction outcomes, though conflict and facilitation maintained unique predictive validity on domain specific outcomes (i.e., work-to-life conflict and facilitation with work life satisfaction; life-to-work conflict and facilitation with nonwork life satisfaction). PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. A novel hybrid MCDM model for performance evaluation of research and technology organizations based on BSC approach.

    PubMed

    Varmazyar, Mohsen; Dehghanbaghi, Maryam; Afkhami, Mehdi

    2016-10-01

    Balanced Scorecard (BSC) is a strategic evaluation tool using both financial and non-financial indicators to determine the business performance of organizations or companies. In this paper, a new integrated approach based on the Balanced Scorecard (BSC) and multi-criteria decision making (MCDM) methods are proposed to evaluate the performance of research centers of research and technology organization (RTO) in Iran. Decision-Making Trial and Evaluation Laboratory (DEMATEL) are employed to reflect the interdependencies among BSC perspectives. Then, Analytic Network Process (ANP) is utilized to weight the indices influencing the considered problem. In the next step, we apply four MCDM methods including Additive Ratio Assessment (ARAS), Complex Proportional Assessment (COPRAS), Multi-Objective Optimization by Ratio Analysis (MOORA), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for ranking of alternatives. Finally, the utility interval technique is applied to combine the ranking results of MCDM methods. Weighted utility intervals are computed by constructing a correlation matrix between the ranking methods. A real case is presented to show the efficacy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Load Balancing in Stochastic Networks: Algorithms, Analysis, and Game Theory

    DTIC Science & Technology

    2014-04-16

    SECURITY CLASSIFICATION OF: The classic randomized load balancing model is the so-called supermarket model, which describes a system in which...P.O. Box 12211 Research Triangle Park, NC 27709-2211 mean-field limits, supermarket model, thresholds, game, randomized load balancing REPORT...balancing model is the so-called supermarket model, which describes a system in which customers arrive to a service center with n parallel servers according

  14. Improving deep convolutional neural networks with mixed maxout units

    PubMed Central

    Liu, Fu-xian; Li, Long-yue

    2017-01-01

    Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that “non-maximal features are unable to deliver” and “feature mapping subspace pooling is insufficient,” we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance. PMID:28727737

  15. A network of autonomous surface ozone monitors in Antarctica: technical description and first results

    NASA Astrophysics Data System (ADS)

    Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.

    2009-12-01

    Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.

  16. Neuroplastic Sensorimotor Resting State Network Reorganization in Children With Hemiplegic Cerebral Palsy Treated With Constraint-Induced Movement Therapy.

    PubMed

    Manning, Kathryn Y; Menon, Ravi S; Gorter, Jan Willem; Mesterman, Ronit; Campbell, Craig; Switzer, Lauren; Fehlings, Darcy

    2016-02-01

    Using resting state functional magnetic resonance imaging (MRI), we aim to understand the neurologic basis of improved function in children with hemiplegic cerebral palsy treated with constraint-induced movement therapy. Eleven children including 4 untreated comparison subjects diagnosed with hemiplegic cerebral palsy were recruited from 3 clinical centers. MRI and clinical data were gathered at baseline and 1 month for both groups, and 6 months later for the case group only. After constraint therapy, the sensorimotor resting state network became more bilateral, with balanced contributions from each hemisphere, which was sustained 6 months later. Sensorimotor resting state network reorganization after therapy was correlated with a change in the Quality of Upper Extremity Skills Test score at 1 month (r = 0.79, P = .06), and Canadian Occupational Performance Measure scores at 6 months (r = 0.82, P = .05). This clinically correlated resting state network reorganization provides further evidence of the neuroplastic mechanisms underlying constraint-induced movement therapy. © The Author(s) 2015.

  17. Load-adaptive practical multi-channel communications in wireless sensor networks.

    PubMed

    Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.

  18. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks

    PubMed Central

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-01-01

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238

  19. ACStor: Optimizing Access Performance of Virtual Disk Images in Clouds

    DOE PAGES

    Wu, Song; Wang, Yihong; Luo, Wei; ...

    2017-03-02

    In virtualized data centers, virtual disk images (VDIs) serve as the containers in virtual environment, so their access performance is critical for the overall system performance. Some distributed VDI chunk storage systems have been proposed in order to alleviate the I/O bottleneck for VM management. As the system scales up to a large number of running VMs, however, the overall network traffic would become unbalanced with hot spots on some VMs inevitably, leading to I/O performance degradation when accessing the VMs. Here, we propose an adaptive and collaborative VDI storage system (ACStor) to resolve the above performance issue. In comparisonmore » with the existing research, our solution is able to dynamically balance the traffic workloads in accessing VDI chunks, based on the run-time network state. Specifically, compute nodes with lightly loaded traffic will be adaptively assigned more chunk access requests from remote VMs and vice versa, which can effectively eliminate the above problem and thus improves the I/O performance of VMs. We also implement a prototype based on our ACStor design, and evaluate it by various benchmarks on a real cluster with 32 nodes and a simulated platform with 256 nodes. Experiments show that under different network traffic patterns of data centers, our solution achieves up to 2-8 performance gain on VM booting time and VM’s I/O throughput, in comparison with the other state-of-the-art approaches.« less

  20. Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    DTIC Science & Technology

    2009-03-01

    incorporating autonomous actions, but none appear to incorporate a cognitive aspect used to balance multiple objectives as is the focus of this work. There...routing algorithm) and/or mission type decision (orbit path change). In this component, the pseudo- cognitive aspect is implemented within the...orbit change behavior doesn’t know which orbit to choose. This is where the cognitive aspect takes over. Since the orbit change behavior doesn’t

  1. Predictive Coding of Dynamical Variables in Balanced Spiking Networks

    PubMed Central

    Boerlin, Martin; Machens, Christian K.; Denève, Sophie

    2013-01-01

    Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated. PMID:24244113

  2. Assuring SS7 dependability: A robustness characterization of signaling network elements

    NASA Astrophysics Data System (ADS)

    Karmarkar, Vikram V.

    1994-04-01

    Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.

  3. Parallelized reliability estimation of reconfigurable computer networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Das, Subhendu; Palumbo, Dan

    1990-01-01

    A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance.

  4. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure and increase the robustness of the proposed algorithm. The proposed algorithm is validated with a publicly available 10-class object detection dataset.

  5. Emergence of system roles in normative neurodevelopment

    PubMed Central

    Gu, Shi; Satterthwaite, Theodore D.; Medaglia, John D.; Yang, Muzhi; Gur, Raquel E.; Gur, Ruben C.; Bassett, Danielle S.

    2015-01-01

    Adult human cognition is supported by systems of brain regions, or modules, that are functionally coherent at rest and collectively activated by distinct task requirements. However, an understanding of how the formation of these modules supports evolving cognitive capabilities has not been delineated. Here, we quantify the formation of network modules in a sample of 780 youth (aged 8–22 y) who were studied as part of the Philadelphia Neurodevelopmental Cohort. We demonstrate that the brain’s functional network organization changes in youth through a process of modular evolution that is governed by the specific cognitive roles of each system, as defined by the balance of within- vs. between-module connectivity. Moreover, individual variability in these roles is correlated with cognitive performance. Collectively, these results suggest that dynamic maturation of network modules in youth may be a critical driver for the development of cognition. PMID:26483477

  6. Urban economies and occupation space: can they get "there" from "here"?

    PubMed

    Muneepeerakul, Rachata; Lobo, José; Shutters, Shade T; Goméz-Liévano, Andrés; Qubbaj, Murad R

    2013-01-01

    Much of the socioeconomic life in the United States occurs in its urban areas. While an urban economy is defined to a large extent by its network of occupational specializations, an examination of this important network is absent from the considerable body of work on the determinants of urban economic performance. Here we develop a structure-based analysis addressing how the network of interdependencies among occupational specializations affects the ease with which urban economies can transform themselves. While most occupational specializations exhibit positive relationships between one another, many exhibit negative ones, and the balance between the two partially explains the productivity of an urban economy. The current set of occupational specializations of an urban economy and its location in the occupation space constrain its future development paths. Important tradeoffs exist between different alternatives for altering an occupational specialization pattern, both at a single occupation and an entire occupational portfolio levels.

  7. Urban Economies and Occupation Space: Can They Get “There” from “Here”?

    PubMed Central

    Muneepeerakul, Rachata; Lobo, José; Shutters, Shade T.; Goméz-Liévano, Andrés; Qubbaj, Murad R.

    2013-01-01

    Much of the socioeconomic life in the United States occurs in its urban areas. While an urban economy is defined to a large extent by its network of occupational specializations, an examination of this important network is absent from the considerable body of work on the determinants of urban economic performance. Here we develop a structure-based analysis addressing how the network of interdependencies among occupational specializations affects the ease with which urban economies can transform themselves. While most occupational specializations exhibit positive relationships between one another, many exhibit negative ones, and the balance between the two partially explains the productivity of an urban economy. The current set of occupational specializations of an urban economy and its location in the occupation space constrain its future development paths. Important tradeoffs exist between different alternatives for altering an occupational specialization pattern, both at a single occupation and an entire occupational portfolio levels. PMID:24040021

  8. ISIS and META projects

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth; Cooper, Robert; Marzullo, Keith

    1990-01-01

    The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported.

  9. The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord?

    PubMed

    Sun, Qian-Quan

    2007-01-01

    We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?

  10. Learning a Markov Logic network for supervised gene regulatory network inference

    PubMed Central

    2013-01-01

    Background Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. Results We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate “regulates”, starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. Conclusions The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge. PMID:24028533

  11. Learning a Markov Logic network for supervised gene regulatory network inference.

    PubMed

    Brouard, Céline; Vrain, Christel; Dubois, Julie; Castel, David; Debily, Marie-Anne; d'Alché-Buc, Florence

    2013-09-12

    Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate "regulates", starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge.

  12. Impact of reduced scale free network on wireless sensor network

    NASA Astrophysics Data System (ADS)

    Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar

    2016-12-01

    In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.

  13. A dynamic routing strategy with limited buffer on scale-free network

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Liu, Feng

    2016-04-01

    In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.

  14. The National Ambient Air Monitoring Stategy: Rethinking the Role of National Networks

    EPA Science Inventory

    A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated ...

  15. A parallel algorithm for multi-level logic synthesis using the transduction method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lim, Chieng-Fai

    1991-01-01

    The Transduction Method has been shown to be a powerful tool in the optimization of multilevel networks. Many tools such as the SYLON synthesis system (X90), (CM89), (LM90) have been developed based on this method. A parallel implementation is presented of SYLON-XTRANS (XM89) on an eight processor Encore Multimax shared memory multiprocessor. It minimizes multilevel networks consisting of simple gates through parallel pruning, gate substitution, gate merging, generalized gate substitution, and gate input reduction. This implementation, called Parallel TRANSduction (PTRANS), also uses partitioning to break large circuits up and performs inter- and intra-partition dynamic load balancing. With this, good speedups and high processor efficiencies are achievable without sacrificing the resulting circuit quality.

  16. A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1978-01-01

    Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.

  17. Characterization and Early Detection of Balance Deficits in Fragile X Premutation Carriers With and Without Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS).

    PubMed

    O'Keefe, Joan A; Robertson-Dick, Erin; Dunn, Emily J; Li, Yan; Deng, Youping; Fiutko, Amber N; Berry-Kravis, Elizabeth; Hall, Deborah A

    2015-12-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) results from a "premutation" size 55-200 CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Core motor features include cerebellar gait ataxia and kinetic tremor, resulting in progressive mobility disability. There are no published studies characterizing balance deficits in FMR1 premutation carriers with and without FXTAS using a battery of quantitative measures to test the sensory integration underlying postural control, automatic postural reflexes, and dynamic postural stability limits. Computerized dynamic posturography (CDP) and two performance-based balance measures were administered in 44 premutation carriers, 21 with FXTAS and 23 without FXTAS, and 42 healthy controls to compare balance and functional mobility between these groups. Relationships between FMR1 molecular variables, age, and sex and CDP scores were explored. FXTAS subjects demonstrated significantly lower scores on the sensory organization test (with greatest reductions in the vestibular control of balance), longer response latencies to balance perturbations, and reduced stability limits compared to controls. Premutation carriers without FXTAS also demonstrated significantly delayed response latencies and disrupted sensory weighting for balance control. Advancing age, male sex, increased CGG repeat size, and reduced X activation of the normal allele in premutation carrier women predicted balance dysfunction. These postural control deficits in carriers with and without FXTAS implicate dysfunctional cerebellar neural networks and may provide valuable outcome markers for tailored rehabilitative interventions. Our findings suggest that CDP may provide sensitive measures for early detection of postural control impairments in at-risk carriers and better characterize balance dysfunction and progression in FXTAS.

  18. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.

    PubMed

    Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal

    2015-11-17

    Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.

  19. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal

    2015-01-01

    Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics. PMID:26593924

  20. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task

    PubMed Central

    2017-01-01

    Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. PMID:28961245

  1. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks.

    PubMed

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek; You, Ilsun

    2017-11-29

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.

  2. Improvement of calculation method for electrical parameters of short network of ore-thermal furnaces

    NASA Astrophysics Data System (ADS)

    Aliferov, A. I.; Bikeev, R. A.; Goreva, L. P.

    2017-10-01

    The paper describes a new calculation method for active and inductive resistance of split interleaved current leads packages in ore-thermal electric furnaces. The method is developed on basis of regression analysis of dependencies of active and inductive resistances of the packages on their geometrical parameters, mutual disposition and interleaving pattern. These multi-parametric calculations have been performed with ANSYS software. The proposed method allows solving split current lead electrical parameters minimization and balancing problems for ore-thermal furnaces.

  3. DRUM: A New Framework for Metabolic Modeling under Non-Balanced Growth. Application to the Carbon Metabolism of Unicellular Microalgae

    PubMed Central

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2014-01-01

    Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates. PMID:25105494

  4. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy.

    PubMed

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J

    2014-08-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.

  5. A balanced memory network.

    PubMed

    Roudi, Yasser; Latham, Peter E

    2007-09-01

    A fundamental problem in neuroscience is understanding how working memory--the ability to store information at intermediate timescales, like tens of seconds--is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons.

  6. High-Speed Optical Wide-Area Data-Communication Network

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  7. Performance evaluation of extension education centers in universities based on the balanced scorecard.

    PubMed

    Wu, Hung-Yi; Lin, Yi-Kuei; Chang, Chi-Hsiang

    2011-02-01

    This study aims at developing a set of appropriate performance evaluation indices mainly based on balanced scorecard (BSC) for extension education centers in universities by utilizing multiple criteria decision making (MCDM). Through literature reviews and experts who have real practical experiences in extension education, adequate performance evaluation indices have been selected and then utilizing the decision making trial and evaluation laboratory (DEMATEL) and analytic network process (ANP), respectively, further establishes the causality between the four BSC perspectives as well as the relative weights between evaluation indices. According to this previous result, an empirical analysis of the performance evaluation of extension education centers of three universities at Taoyuan County in Taiwan is illustrated by applying VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). From the analysis results, it indicates that "Learning and growth" is the significant influential factor and it would affect the other three perspectives. In addition, it is discovered that "Internal process" perspective as well as "Financial" perspective play important roles in the performance evaluation of extension education centers. The top three key performance indices are "After-sales service", "Turnover volume", and "Net income". The proposed evaluation model could be considered as a reference for extension education centers in universities to prioritize their improvements on the key performance indices after performing VIKOR analyses. 2010 Elsevier Ltd. All rights reserved.

  8. Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD).

    PubMed

    Cao, Yuan; Zhao, Yongli; Colman-Meixner, Carlos; Yu, Xiaosong; Zhang, Jie

    2017-10-30

    Software-defined optical networking (SDON) will become the next generation optical network architecture. However, the optical layer and control layer of SDON are vulnerable to cyberattacks. While, data encryption is an effective method to minimize the negative effects of cyberattacks, secure key interchange is its major challenge which can be addressed by the quantum key distribution (QKD) technique. Hence, in this paper we discuss the integration of QKD with WDM optical networks to secure the SDON architecture by introducing a novel key on demand (KoD) scheme which is enabled by a novel routing, wavelength and key assignment (RWKA) algorithm. The QKD over SDON with KoD model follows two steps to provide security: i) quantum key pools (QKPs) construction for securing the control channels (CChs) and data channels (DChs); ii) the KoD scheme uses RWKA algorithm to allocate and update secret keys for different security requirements. To test our model, we define a security probability index which measures the security gain in CChs and DChs. Simulation results indicate that the security performance of CChs and DChs can be enhanced by provisioning sufficient secret keys in QKPs and performing key-updating considering potential cyberattacks. Also, KoD is beneficial to achieve a positive balance between security requirements and key resource usage.

  9. Capturing the essence of a metabolic network: a flux balance analysis approach.

    PubMed

    Murabito, Ettore; Simeonidis, Evangelos; Smallbone, Kieran; Swinton, Jonathan

    2009-10-07

    As genome-scale metabolic reconstructions emerge, tools to manage their size and complexity will be increasingly important. Flux balance analysis (FBA) is a constraint-based approach widely used to study the metabolic capabilities of cellular or subcellular systems. FBA problems are highly underdetermined and many different phenotypes can satisfy any set of constraints through which the metabolic system is represented. Two of the main concerns in FBA are exploring the space of solutions for a given metabolic network and finding a specific phenotype which is representative for a given task such as maximal growth rate. Here, we introduce a recursive algorithm suitable for overcoming both of these concerns. The method proposed is able to find the alternate optimal patterns of active reactions of an FBA problem and identify the minimal subnetwork able to perform a specific task as optimally as the whole. Our method represents an alternative to and an extension of other approaches conceived for exploring the space of solutions of an FBA problem. It may also be particularly helpful in defining a scaffold of reactions upon which to build up a dynamic model, when the important pathways of the system have not yet been well-defined.

  10. An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks.

    PubMed

    Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing

    2017-03-20

    In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods.

  11. An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks

    PubMed Central

    Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing

    2017-01-01

    In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods. PMID:28335537

  12. The unrested resting brain: sleep deprivation alters activity within the default-mode network.

    PubMed

    Gujar, Ninad; Yoo, Seung-Schik; Hu, Peter; Walker, Matthew P

    2010-08-01

    The sleep-deprived brain has principally been characterized by examining dysfunction during cognitive task performance. However, far less attention has been afforded the possibility that sleep deprivation may be as, if not more, accurately characterized on the basis of abnormal resting-state brain activity. Here we report that one night of sleep deprivation significantly disrupts the canonical signature of task-related deactivation, resulting in a double dissociation within anterior as well as posterior midline regions of the default network. Indeed, deactivation within these regions alone discriminated sleep-deprived from sleep-control subjects with a 93% degree of sensitivity and 92% specificity. In addition, the relative balance of deactivation within these default nodes significantly correlated with the amount of prior sleep in the control group (and not extended time awake in the deprivation group). Therefore, the stability and the balance of task-related deactivation in key default-mode regions may be dependent on prior sleep, such that a lack thereof disrupts this signature pattern of brain activity, findings that may offer explanatory insights into conditions associated with sleep loss at both a clinical as well as societal level.

  13. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  14. A uniform energy consumption algorithm for wireless sensor and actuator networks based on dynamic polling point selection.

    PubMed

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2013-12-19

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation.

  15. Balancing building and maintenance costs in growing transport networks

    NASA Astrophysics Data System (ADS)

    Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco

    2017-09-01

    The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.

  16. Stress Response of Granular Systems

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-10-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  17. A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks

    PubMed Central

    Sotiropoulos, Stamatios N.; Brookes, Matthew J.; Woolrich, Mark W.

    2018-01-01

    Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP. PMID:29474352

  18. A tensegrity model for hydrogen bond networks in proteins.

    PubMed

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  19. A novel community detection method in bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan

    2018-02-01

    Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.

  20. Balancing Your Database Network Licenses against Your Budget.

    ERIC Educational Resources Information Center

    Bauer, Benjamin F.

    1995-01-01

    Discussion of choosing database access to satisfy users and budgetary constraints highlights a method to make educated estimates of simultaneous usage levels. Topics include pricing; advances in networks and CD-ROM technology; and two networking scenarios, one in an academic library and one in a corporate research facility. (LRW)

  1. Cross-layer cluster-based energy-efficient protocol for wireless sensor networks.

    PubMed

    Mammu, Aboobeker Sidhik Koyamparambil; Hernandez-Jayo, Unai; Sainz, Nekane; de la Iglesia, Idoia

    2015-04-09

    Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs). One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE) can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs) and a cluster head (CH). The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED).

  2. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  3. Downsizing a long-term precipitation network: Using a quantitative approach to inform difficult decisions

    Treesearch

    Mark B. Green; John L. Campbell; Ruth D. Yanai; Scott W. Bailey; Amey S. Bailey; Nicholas Grant; Ian Halm; Eric P. Kelsey; Lindsey E. Rustad

    2018-01-01

    The design of a precipitation monitoring network must balance the demand for accurate estimates with the resources needed to build and maintain the network. If there are changes in the objectives of the monitoring or the availability of resources, network designs should be adjusted. At the Hubbard Brook Experimental Forest in New Hampshire, USA, precipitation has been...

  4. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    PubMed

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  5. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  6. Challenges of work-life balance for women physicians/mothers working in leadership positions.

    PubMed

    Schueller-Weidekamm, Claudia; Kautzky-Willer, Alexandra

    2012-08-01

    Female leadership in medicine is still disproportionately small, which might be due to the barriers of combining work and family. The aim of this study was, first, to perform a strengths, weakness, opportunities, and threats (SWOT) analysis and, second, to create a strategic concept for career development. In this study, all women in leadership positions in the health care system in Vienna, Austria, with at least 1 child (n = 8), were interviewed about the advantages and disadvantages of gender with regard to career development, the strengths and weaknesses of female leadership, and their work-life balance. Different factors that influenced the work-life balance were specified, and career strategies to realize adequate solutions were developed. The sporadic focus on career advancement, time-consuming child care, responsibility for family life, and a woman's tendency toward understatement were barriers to career development. Work-family enrichment has a positive spillover effect that spreads positive energy and helps to balance the work-life relationship. For each individual, the allocation and interaction of different resources such as time, money, scope of decision making, and physical, emotional, and social resources, were essential to maintain the individual work-life balance. In addition to the existing "glass ceiling," the predominant responsibility for child care is still borne by the woman. However, mentoring programs, coaching, networking, and support of the partner or of other people help to strengthen female "soft" skills and achieve a work-life balance. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  7. Smarter Balanced Preliminary Performance Levels: Estimated MAP Scores Corresponding to the Preliminary Performance Levels of the Smarter Balanced Assessment Consortium (Smarter Balanced)

    ERIC Educational Resources Information Center

    Northwest Evaluation Association, 2015

    2015-01-01

    Recently, the Smarter Balanced Assessment Consortium (Smarter Balanced) released a document that established initial performance levels and the associated threshold scale scores for the Smarter Balanced assessment. The report included estimated percentages of students expected to perform at each of the four performance levels, reported by grade…

  8. Changes in balance coordination and transfer to an unlearned balance task after slackline training: a self-organizing map analysis.

    PubMed

    Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula

    2017-11-01

    How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline training intervention. Thirteen subjects performed a flamingo and slackline balance task before and after the training while full body kinematics were measured. Range of motion, velocity and frequency of the center of mass and joint angles from the pelvis, trunk and lower leg (45 variables) were calculated and subsequently analyzed with an SOM. Subjects increased their standing time significantly on the flamingo (average +2.93 s, Cohen's d = 1.04) and slackline (+9.55 s, d = 3.28) tasks, but the effect size was more than three times larger in the slackline. The SOM analysis, followed by a k-means clustering and marginal homogeneity test, showed that the balance coordination pattern was significantly different between pre- and post-test for the slackline task only (χ 2  = 82.247; p < 0.001). The shift in balance coordination on the slackline could be characterized by an increase in range of motion and a decrease in velocity and frequency in nearly all degrees of freedom simultaneously. The observation of low transfer of coordination strategies to the flamingo task adds further evidence for the task-specificity principle of balance training, meaning that slackline training alone will be insufficient to increase postural control in other challenging situations.

  9. Statistical Inference for Cultural Consensus Theory

    DTIC Science & Technology

    2014-02-24

    Social Network Conference XXXII , Redondo Beach, California, March 2012. Agrawal, K. (Presenter), and Batchelder, W. H. Cultural Consensus Theory...Aggregating Complete Signed Graphs Under a Balance Constraint -- Part 2. International Sunbelt Social Network Conference XXXII , Redondo Beach

  10. Dynamic Performance of a Back-to-Back HVDC Station Based on Voltage Source Converters

    NASA Astrophysics Data System (ADS)

    Khatir, Mohamed; Zidi, Sid-Ahmed; Hadjeri, Samir; Fellah, Mohammed-Karim

    2010-01-01

    The recent developments in semiconductors and control equipment have made the voltage source converter based high voltage direct current (VSC-HVDC) feasible. This new DC transmission is known as "HVDC Light or "HVDC Plus by leading vendors. Due to the use of VSC technology and pulse width modulation (PWM) the VSC-HVDC has a number of potential advantages as compared with classic HVDC. In this paper, the scenario of back-to-back VSC-HVDC link connecting two adjacent asynchronous AC networks is studied. Control strategy is implemented and its dynamic performances during disturbances are investigated in MATLAB/Simulink program. The simulation results have shown good performance of the proposed system under balanced and unbalanced fault conditions.

  11. Energy landscape of social balance.

    PubMed

    Marvel, Seth A; Strogatz, Steven H; Kleinberg, Jon M

    2009-11-06

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social "balance" allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  12. Population-based learning of load balancing policies for a distributed computer system

    NASA Technical Reports Server (NTRS)

    Mehra, Pankaj; Wah, Benjamin W.

    1993-01-01

    Effective load-balancing policies use dynamic resource information to schedule tasks in a distributed computer system. We present a novel method for automatically learning such policies. At each site in our system, we use a comparator neural network to predict the relative speedup of an incoming task using only the resource-utilization patterns obtained prior to the task's arrival. Outputs of these comparator networks are broadcast periodically over the distributed system, and the resource schedulers at each site use these values to determine the best site for executing an incoming task. The delays incurred in propagating workload information and tasks from one site to another, as well as the dynamic and unpredictable nature of workloads in multiprogrammed multiprocessors, may cause the workload pattern at the time of execution to differ from patterns prevailing at the times of load-index computation and decision making. Our load-balancing policy accommodates this uncertainty by using certain tunable parameters. We present a population-based machine-learning algorithm that adjusts these parameters in order to achieve high average speedups with respect to local execution. Our results show that our load-balancing policy, when combined with the comparator neural network for workload characterization, is effective in exploiting idle resources in a distributed computer system.

  13. Towards a definition of life.

    PubMed

    Macklem, Peter T; Seely, Andrew

    2010-01-01

    This article offers a new definition of life as a "self-contained, self-regulating, self-organizing, self-reproducing, interconnected, open thermodynamic network of component parts which performs work, existing in a complex regime which combines stability and adaptability in the phase transition between order and chaos, as a plant, animal, fungus, or microbe." Open thermodynamic networks, which create and maintain order and are used by all organisms to perform work, import energy from and export entropy into the environment. Intra- and extracellular interconnected networks also confer order. Although life obeys the laws of physics and chemistry, the design of living organisms is not determined by these laws, but by Darwinian selection of the fittest designs. Over a short range of normalized energy consumption, open thermodynamic systems change from deeply ordered to chaotic, and life is found in this phase transition, where a dynamic balance between stability and adaptability allows for homeokinesis. Organisms and cells move within the phase transition with changes in metabolic rate. Seeds, spores and cryo-preserved tissue are well within the ordered regime, while health probably cannot be maintained with displacements into the chaotic regime. Understanding life in these terms may provide new insights into what constitutes health and lead to new theories of disease.

  14. Social Network Theory in Engineering Education

    NASA Astrophysics Data System (ADS)

    Simon, Peter A.

    Collaborative groups are important both in the learning environment of engineering education and, in the real world, the business of engineering design. Selecting appropriate individuals to form an effective group and monitoring a group's progress are important aspects of successful task performance. This exploratory study looked at using the concepts of cognitive social structures, structural balance, and centrality from social network analysis as well as the measures of emotional intelligence. The concepts were used to analyze potential team members to examine if an individual's ability to perceive emotion in others and the self and to use, understand, and manage those emotions are a factor in a group's performance. The students from a capstone design course in computer engineering were used as volunteer subjects. They were formed into groups and assigned a design exercise to determine whether and which of the above-mentioned tools would be effective in both selecting teams and predicting the quality of the resultant design. The results were inconclusive with the exception of an individual's ability to accurately perceive emotions. The instruments that were successful were the Self-Monitoring scale and the accuracy scores derived from cognitive social structures and Level IV of network levels of analysis.

  15. The Benefits of Peer-to-Peer Mentoring: Lessons from The Earth Science Women's Network (ESWN)

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Steiner, A.; Fiore, A.; Hastings, M.; McKinley, G.; Staudt, A.; Wiedinmyer, C.

    2007-12-01

    The Earth Science Women's Network (ESWN) is a grassroots organization that began with the meeting of six women graduate students and recent Ph.D.s at the Spring 2002 AGU meeting in Washington, DC. Since then, the group has grown to over 400 members, completely by word of mouth. We provide an informal, peer-to-peer network developed to promote and support careers of women in the Earth sciences. Through the network, women have found jobs, established research collaborations, shared strategies on work/life balance, and built a community stretching around the world. We maintain an email list for members to develop an expanded peer network outside of their own institution, and we have recently launched a co-ed jobs list to benefit the wider geoscience community. We will present a summary of strategies that have been discussed by group members on how to transition to a new faculty position, build a research group, develop new research collaborations, and balance career and family.

  16. Inference and Prediction of Metabolic Network Fluxes

    PubMed Central

    Nikoloski, Zoran; Perez-Storey, Richard; Sweetlove, Lee J.

    2015-01-01

    In this Update, we cover the basic principles of the estimation and prediction of the rates of the many interconnected biochemical reactions that constitute plant metabolic networks. This includes metabolic flux analysis approaches that utilize the rates or patterns of redistribution of stable isotopes of carbon and other atoms to estimate fluxes, as well as constraints-based optimization approaches such as flux balance analysis. Some of the major insights that have been gained from analysis of fluxes in plants are discussed, including the functioning of metabolic pathways in a network context, the robustness of the metabolic phenotype, the importance of cell maintenance costs, and the mechanisms that enable energy and redox balancing at steady state. We also discuss methodologies to exploit 'omic data sets for the construction of tissue-specific metabolic network models and to constrain the range of permissible fluxes in such models. Finally, we consider the future directions and challenges faced by the field of metabolic network flux phenotyping. PMID:26392262

  17. Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events

    PubMed Central

    Cressman, John R.; Schiff, Steven J.

    2013-01-01

    Precisely timed and dynamically balanced excitatory (E) and inhibitory (I) conductances underlie the basis of neural network activity. Normal E/I balance is often shifted in epilepsy, resulting in neuronal network hyperexcitability and recurrent seizures. However, dynamics of the actual excitatory and inhibitory synaptic conductances (ge and gi, respectively) during seizures remain unknown. To study the dynamics of E and I network balance, we calculated ge and gi during the initiation, body, and termination of seizure-like events (SLEs) in the rat hippocampus in vitro. Repetitive emergent SLEs in 4-aminopyridine (100 μM) and reduced extracellular magnesium (0.6 mM) were recorded in the identified CA1 pyramidal cells (PC) and oriens-lacunosum moleculare (O-LM) interneurons. Calculated ge/gi ratio dynamics showed that the initiation stage of the SLEs was dominated by inhibition in the PCs and was more balanced in the O-LM cells. During the body of the SLEs, the balance shifted toward excitation, with ge and gi peaking in both cell types at nearly the same time. In the termination phase, PCs were again dominated by inhibition, whereas O-LM cells experienced persistent excitatory synaptic barrage. In this way, increased excitability of interneurons may play roles in both seizure initiation (Žiburkus J, Cressman JR, Barreto E, Schiff SJ. J Neurophysiol 95: 3948–3954, 2006) and in their termination. Overall, SLE stages can be characterized in PC and O-LM cells by dynamically distinct changes in the balance of ge and gi, where a temporal sequence of imbalance shifts with the changing firing patterns of the cellular subtypes comprising the hyperexcitable microcircuits. PMID:23221405

  18. A mobile network-based multimedia teleconference system for homecare services.

    PubMed

    Zhang, Zhaomin; He, Aiguo; Wei, Daming

    2008-03-01

    Because most research and development for homecare services have focused on providing connections between home and service centers, the goal of the present work is to develop techniques and create realtime communications to connect service centers and homecare workers in mobile environments. A key technical issue for this research is how to overcome the limitation of bandwidth in mobile media and networks. An effort has been made to balance performance of communication and basic demands in telehealth through optimized system design and technical implementation. Implementations using third generation (3G) Freedom Of Mobile multimedia Access (FOMA) and Personal Handyphone System (PHS) were developed and evaluated. We conclude that the system we developed based on 3G FOMA provides sufficient and satisfactory functions for use in homecare services.

  19. A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Xu, Yiming; Liu, Jun

    2017-01-01

    For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes’ being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network’s best service quality and lifetime. PMID:28106837

  20. A Balanced Memory Network

    PubMed Central

    Roudi, Yasser; Latham, Peter E

    2007-01-01

    A fundamental problem in neuroscience is understanding how working memory—the ability to store information at intermediate timescales, like tens of seconds—is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons. PMID:17845070

  1. Network Leadership's Balancing Act: Contrivance or Emergence?

    ERIC Educational Resources Information Center

    Kubiak, Chris; Bertram, Joan

    2005-01-01

    It is well understood that one learns much of what one knows through one's network of relationships and through shared discussion and activity. A logical extension of this idea is the growing prominence in the UK where formal school-to-school networking such as Education Action Zones and Excellence in Cities has been established. This article…

  2. A Network Analysis of Social Balance in Conflict in the Maghreb

    DTIC Science & Technology

    2013-03-01

    relationships from Table 6 shown in graph form. Graph by author using Pajek ( Batagelj & Mrvar , 1996 ...author using Pajek ( Batagelj & Mrvar , 1996 )................................................................................................ 4-17 Figure...negative and black is positive. By author using Pajek ( Batagelj & Mrvar , 1996 ). ..... 4-21 Figure 23: Network Graph of 10 Actor Network (Post-French

  3. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, Michael; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields. ?? 2007 by MDPI.

  4. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields.

  5. Boosting compound-protein interaction prediction by deep learning.

    PubMed

    Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng

    2016-11-01

    The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Gr-GDHP: A New Architecture for Globalized Dual Heuristic Dynamic Programming.

    PubMed

    Zhong, Xiangnan; Ni, Zhen; He, Haibo

    2017-10-01

    Goal representation globalized dual heuristic dynamic programming (Gr-GDHP) method is proposed in this paper. A goal neural network is integrated into the traditional GDHP method providing an internal reinforcement signal and its derivatives to help the control and learning process. From the proposed architecture, it is shown that the obtained internal reinforcement signal and its derivatives can be able to adjust themselves online over time rather than a fixed or predefined function in literature. Furthermore, the obtained derivatives can directly contribute to the objective function of the critic network, whose learning process is thus simplified. Numerical simulation studies are applied to show the performance of the proposed Gr-GDHP method and compare the results with other existing adaptive dynamic programming designs. We also investigate this method on a ball-and-beam balancing system. The statistical simulation results are presented for both the Gr-GDHP and the GDHP methods to demonstrate the improved learning and controlling performance.

  7. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Li, Xiaojing; Ma, Hao; Han, Jiufeng; Zhang, Hao; Yu, Chang; Xiao, Nan; Qiu, Jieshan

    2017-02-01

    3D interconnected graphene nanocapsules (GNCs) were prepared from diverse aromatic hydrocarbons by a nano-ZnO-template strategy coupled with in-situ KOH activation technique. The as-made graphene networks feature thin carbonaceous shells with well-balanced micropores and mesopores. Such 3D porous networks provide freeways for good electron conduction, short pores for ion fast transport, and abundant micropores for ion adsorption. As the electrodes in supercapacitors, the unique 3D GNCs show a high capacitance of 277 F g-1 at 0.05 A g-1, a good rate performance of 194 F g-1 at 20 A g-1, and an excellent cycle stability with over 97.4% capacitance retention after 15000 cycles in 6 M KOH electrolyte. This synthesis strategy paves a universal way for mass production of 3D graphene materials from diverse aromatic hydrocarbon sources including coal tar pitch and petroleum pitch for high performance supercapacitors as well as support and sorbent.

  8. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  9. An artificial neural networks approach for assessment treatment response in oncological patients using PET/CT images.

    PubMed

    Nogueira, Mariana A; Abreu, Pedro H; Martins, Pedro; Machado, Penousal; Duarte, Hugo; Santos, João

    2017-02-13

    Positron Emission Tomography - Computed Tomography (PET/CT) imaging is the basis for the evaluation of response-to-treatment of several oncological diseases. In practice, such evaluation is manually performed by specialists, which is rather complex and time-consuming. Evaluation measures have been proposed, but with questionable reliability. The usage of before and after-treatment image descriptors of the lesions for treatment response evaluation is still a territory to be explored. In this project, Artificial Neural Network approaches were implemented to automatically assess treatment response of patients suffering from neuroendocrine tumors and Hodgkyn lymphoma, based on image features extracted from PET/CT. The results show that the considered set of features allows for the achievement of very high classification performances, especially when data is properly balanced. After synthetic data generation and PCA-based dimensionality reduction to only two components, LVQNN assured classification accuracies of 100%, 100%, 96.3% and 100% regarding the 4 response-to-treatment classes.

  10. Prediction of Contact Fatigue Life of Alloy Cast Steel Rolls Using Back-Propagation Neural Network

    NASA Astrophysics Data System (ADS)

    Jin, Huijin; Wu, Sujun; Peng, Yuncheng

    2013-12-01

    In this study, an artificial neural network (ANN) was employed to predict the contact fatigue life of alloy cast steel rolls (ACSRs) as a function of alloy composition, heat treatment parameters, and contact stress by utilizing the back-propagation algorithm. The ANN was trained and tested using experimental data and a very good performance of the neural network was achieved. The well-trained neural network was then adopted to predict the contact fatigue life of chromium alloyed cast steel rolls with different alloy compositions and heat treatment processes. The prediction results showed that the maximum value of contact fatigue life was obtained with quenching at 960 °C, tempering at 520 °C, and under the contact stress of 2355 MPa. The optimal alloy composition was C-0.54, Si-0.66, Mn-0.67, Cr-4.74, Mo-0.46, V-0.13, Ni-0.34, and Fe-balance (wt.%). Some explanations of the predicted results from the metallurgical viewpoints are given. A convenient and powerful method of optimizing alloy composition and heat treatment parameters of ACSRs has been developed.

  11. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability.

    PubMed

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Mbeleck, Rene; Liu, Yuqing; Chang, Qiang; Jiang, Junzi; Cai, Jun; Wang, Quan; Luo, Gaoxing; Xing, Malcolm

    2017-08-01

    The advent of conductive self-healing (CSH) hydrogels, a class of novel materials mimicking human skin, may change the trajectory of the industrial process because of their potential applications in soft robots, biomimetic prostheses, and health-monitoring systems. Here, the development of a mechanically and electrically self-healing hydrogel based on physically and chemically cross-linked networks is reported. The autonomous intrinsic self-healing of the hydrogel is attained through dynamic ionic interactions between carboxylic groups of poly(acrylic acid) and ferric ions. A covalent cross-linking is used to support the mechanical structure of the hydrogel. Establishing a fair balance between the chemical and physical cross-linking networks together with the conductive nanostructure of polypyrrole networks leads to a double network hydrogel with bulk conductivity, mechanical and electrical self-healing properties (100% mechanical recovery in 2 min), ultrastretchability (1500%), and pressure sensitivity. The practical potential of CSH hydrogels is further revealed by their application in human motion detection and their 3D-printing performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multi-target Detection, Tracking, and Data Association on Road Networks Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Barkley, Brett E.

    A cooperative detection and tracking algorithm for multiple targets constrained to a road network is presented for fixed-wing Unmanned Air Vehicles (UAVs) with a finite field of view. Road networks of interest are formed into graphs with nodes that indicate the target likelihood ratio (before detection) and position probability (after detection). A Bayesian likelihood ratio tracker recursively assimilates target observations until the cumulative observations at a particular location pass a detection criterion. At this point, a target is considered detected and a position probability is generated for the target on the graph. Data association is subsequently used to route future measurements to update the likelihood ratio tracker (for undetected target) or to update a position probability (a previously detected target). Three strategies for motion planning of UAVs are proposed to balance searching for new targets with tracking known targets for a variety of scenarios. Performance was tested in Monte Carlo simulations for a variety of mission parameters, including tracking on road networks with varying complexity and using UAVs at various altitudes.

  13. An Overview on Wireless Sensor Networks Technology and Evolution

    PubMed Central

    Buratti, Chiara; Conti, Andrea; Dardari, Davide; Verdone, Roberto

    2009-01-01

    Wireless sensor networks (WSNs) enable new applications and require non-conventional paradigms for protocol design due to several constraints. Owing to the requirement for low device complexity together with low energy consumption (i.e., long network lifetime), a proper balance between communication and signal/data processing capabilities must be found. This motivates a huge effort in research activities, standardization process, and industrial investments on this field since the last decade. This survey paper aims at reporting an overview of WSNs technologies, main applications and standards, features in WSNs design, and evolutions. In particular, some peculiar applications, such as those based on environmental monitoring, are discussed and design strategies highlighted; a case study based on a real implementation is also reported. Trends and possible evolutions are traced. Emphasis is given to the IEEE 802.15.4 technology, which enables many applications of WSNs. Some example of performance characteristics of 802.15.4-based networks are shown and discussed as a function of the size of the WSN and the data type to be exchanged among nodes. PMID:22423202

  14. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.

    PubMed

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis.

  15. Memory replay in balanced recurrent networks

    PubMed Central

    Chenkov, Nikolay; Sprekeler, Henning; Kempter, Richard

    2017-01-01

    Complex patterns of neural activity appear during up-states in the neocortex and sharp waves in the hippocampus, including sequences that resemble those during prior behavioral experience. The mechanisms underlying this replay are not well understood. How can small synaptic footprints engraved by experience control large-scale network activity during memory retrieval and consolidation? We hypothesize that sparse and weak synaptic connectivity between Hebbian assemblies are boosted by pre-existing recurrent connectivity within them. To investigate this idea, we connect sequences of assemblies in randomly connected spiking neuronal networks with a balance of excitation and inhibition. Simulations and analytical calculations show that recurrent connections within assemblies allow for a fast amplification of signals that indeed reduces the required number of inter-assembly connections. Replay can be evoked by small sensory-like cues or emerge spontaneously by activity fluctuations. Global—potentially neuromodulatory—alterations of neuronal excitability can switch between network states that favor retrieval and consolidation. PMID:28135266

  16. Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity

    PubMed Central

    Effenberger, Felix; Jost, Jürgen; Levina, Anna

    2015-01-01

    Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425

  17. Study on Performance of Intersection Around The Underpass Using Micro Simulation Program

    NASA Astrophysics Data System (ADS)

    Arliansyah, J.; Bawono, R. T.

    2018-03-01

    In order to overcome the problems of congestion at the major intersections in Palembang City, there have been grade separation constructions in the form of flyover or underpass. One of them is the intersection of Patal Pusri Underpass. The smooth traffic due to the underpass construction needs to be balanced by the arrangement management at the intersections located close to the underpass to get the best network performance since both affect each other performance. The Taman Kenten and Seduduk Putih junctions which are just 569 and 226 meters from the underpass of Patal Pusri has to be analyzed for its needs of management and traffic arrangements to reduce its impact on the performance of the intersection of Patal Pusri or vice versa. Some alternatives of management and traffic arrangements were developed to get the best solutions and the Vissim 8.00 microsimulation program was used to evaluate the performance of intersections in the network where the compared parameters are the value of the queue length and average delay. The results of the analysis and the conducted modeling show that the best solution to optimize the performance of the two junctions are to make geometric changes and diversion of traffic flow at Seduduk Putih Junction and making geometric changes at Taman Kenten Junction.

  18. Closing the water balance with cosmic-ray soil moisture measurements and assessing their spatial variability within two semiarid watersheds

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A. P.; Vivoni, E. R.; Mascaro, G.; Franz, T. E.

    2015-06-01

    Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate scale soil moisture estimates from the cosmic-ray sensing (CRS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of the CRS method are performed for small watersheds instrumented with a distributed sensor network consisting of soil moisture sensor profiles, an eddy covariance tower and runoff flumes used to close the water balance. We found an excellent agreement between the CRS method and the distributed sensor network (RMSE of 0.009 and 0.013 m3 m-3 at SRER and JER) at the hourly time scale over the 19-month study period, primarily due to the inclusion of 5 cm observations of shallow soil moisture. Good agreement was obtained in soil moisture changes estimated from the CRS and watershed water balance methods (RMSE = 0.001 and 0.038 m3 m-3 at SRER and JER), with deviations due to bypassing of the CRS measurement depth during large rainfall events. This limitation, however, was used to show that drier-than-average conditions at SRER promoted plant water uptake from deeper layers, while the wetter-than-average period at JER resulted in leakage towards deeper soils. Using the distributed sensor network, we quantified the spatial variability of soil moisture in the CRS footprint and the relation between evapotranspiration and soil moisture, in both cases finding similar predictive relations at both sites that are applicable to other semiarid ecosystems in the southwestern US. Furthermore, soil moisture spatial variability was related to evapotranspiration in a manner consistent with analytical relations derived using the CRS method, opening up new possibilities for understanding land-atmosphere interactions.

  19. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    PubMed Central

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network. PMID:27754405

  20. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks.

    PubMed

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-10-14

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  1. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    PubMed Central

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  2. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    PubMed

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-14

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  3. A Network Topology Control and Identity Authentication Protocol with Support for Movable Sensor Nodes

    PubMed Central

    Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming

    2015-01-01

    It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes’ mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network. PMID:26633405

  4. A Network Topology Control and Identity Authentication Protocol with Support for Movable Sensor Nodes.

    PubMed

    Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming

    2015-12-01

    It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes' mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network.

  5. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks

    PubMed Central

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek

    2017-01-01

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks’ survivability, in terms of anti-interference, network energy saving, etc. PMID:29186072

  6. Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures

    NASA Astrophysics Data System (ADS)

    Guo, Wenzhang; Wang, Hao; Wu, Zhengping

    2018-03-01

    Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.

  7. A Hybrid Secure Scheme for Wireless Sensor Networks against Timing Attacks Using Continuous-Time Markov Chain and Queueing Model.

    PubMed

    Meng, Tianhui; Li, Xiaofan; Zhang, Sha; Zhao, Yubin

    2016-09-28

    Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained.

  8. A Hybrid Secure Scheme for Wireless Sensor Networks against Timing Attacks Using Continuous-Time Markov Chain and Queueing Model

    PubMed Central

    Meng, Tianhui; Li, Xiaofan; Zhang, Sha; Zhao, Yubin

    2016-01-01

    Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained. PMID:27690042

  9. Flux balance analysis of ammonia assimilation network in E. coli predicts preferred regulation point.

    PubMed

    Wang, Lu; Lai, Luhua; Ouyang, Qi; Tang, Chao

    2011-01-25

    Nitrogen assimilation is a critical biological process for the synthesis of biomolecules in Escherichia coli. The central ammonium assimilation network in E. coli converts carbon skeleton α-ketoglutarate and ammonium into glutamate and glutamine, which further serve as nitrogen donors for nitrogen metabolism in the cell. This reaction network involves three enzymes: glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT). In minimal media, E. coli tries to maintain an optimal growth rate by regulating the activity of the enzymes to match the availability of the external ammonia. The molecular mechanism and the strategy of the regulation in this network have been the research topics for many investigators. In this paper, we develop a flux balance model for the nitrogen metabolism, taking into account of the cellular composition and biosynthetic requirements for nitrogen. The model agrees well with known experimental results. Specifically, it reproduces all the (15)N isotope labeling experiments in the wild type and the two mutant (ΔGDH and ΔGOGAT) strains of E. coli. Furthermore, the predicted catalytic activities of GDH, GS and GOGAT in different ammonium concentrations and growth rates for the wild type, ΔGDH and ΔGOGAT strains agree well with the enzyme concentrations obtained from western blots. Based on this flux balance model, we show that GS is the preferred regulation point among the three enzymes in the nitrogen assimilation network. Our analysis reveals the pattern of regulation in this central and highly regulated network, thus providing insights into the regulation strategy adopted by the bacteria. Our model and methods may also be useful in future investigations in this and other networks.

  10. Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks

    PubMed Central

    Mahjoub, Reem K.; Elleithy, Khaled

    2017-01-01

    The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation. PMID:28420102

  11. Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks.

    PubMed

    Mahjoub, Reem K; Elleithy, Khaled

    2017-04-14

    The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation.

  12. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.

    PubMed

    Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim

    2016-12-07

    Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. A Uniform Energy Consumption Algorithm for Wireless Sensor and Actuator Networks Based on Dynamic Polling Point Selection

    PubMed Central

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2014-01-01

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455

  14. Opportunities and Challenges in Enhancing Value of Annual Glacier Mass Balance Monitoring Examples from Western North America

    NASA Astrophysics Data System (ADS)

    Pelto, M. S.

    2017-12-01

    Alpine glacier mass balance is the most accurate indicator of glacier response to climate and with retreat of alpine glaciers is one of the clearest signals of global climate change. Completion of long term, representative and homogenous mass balance field measurement of mass balance, compiled by WGMS, is a key climate data record. To ensure a monitoring program remains vital and funded local collaboration and connecting the research to local societal impacts is crucial. Working with local partners in collecting and providing the right data is critical whether their interest is in hydropower, irrigation, municipal supply, hazard reduction and/or aquatic ecosystems. The expansion of remote sensing and modeling capability provides both a challenge to continued relevance and an opportunity for field mass balance programs to expand relevance. In modelling studies of both glacier mass balance and glacier runoff transient balance data has equivalent value with annual balance data, for both calibration runs and as an input variable. This increases the utility of mid-season field observations. Remote sensing provides repeat imagery that often identifies the AAR and transient snowline of a glacier. For runoff assessment understanding the specific percent of glacier surface area that is glacier ice, older firn, and retained snowpack from the previous winter at frequent intervals during the melt season is vital since each region has a different melt factor. A denser field observation network combined with this imagery can provide additional point balance values of ablation that complement the mass balance record. Periodic measurement of mass balance at a denser network using GPR, LIDAR, TLS or probing is required to better understand long term point balance locations and is important at end of the melt season not just beginning, and has value mid-season for modelling. Applications of each of utility of field mass balance observations will be illustrated.

  15. Patients' success in negotiating out-of-network bills.

    PubMed

    Kyanko, Kelly A; Busch, Susan H

    2016-10-01

    Out-of-network (OON) care is one area where patients might be more likely to challenge their healthcare bills due to the high out-of-pocket costs and unexpected charges related to emergency care or hospital-affiliated providers. We aimed to determine whether, and under what circumstances, patients negotiate with either insurers or providers when services are billed OON and how often patients that do engage in negotiation are successful. Internet-based survey. We conducted a 2011 Internet survey on OON care on a nationally representative sample of privately insured adults (n = 721). We considered whether patients would be more likely to negotiate OON charges by demographic characteristics and under several scenarios: emergency visits, bills from hospital-affiliated OON providers at in-network hospitals, and balance bills. We found patients negotiated 19% of OON bills, were successful in lowering their costs 56% of the time, and were more likely to be successful negotiating with providers compared with insurers (63% vs 37%; P <.01). Men were more likely than women to be successful in lowering their costs (76% vs 50%; P <.05). OON bills for emergencies, providers at in-network hospitals, and with a balance bill were more likely to be negotiated, although bills from providers at in-network hospitals and with balance bills were less likely to be successfully negotiated. Patients had low rates of success in negotiating OON bills for emergency care and for OON providers at in-network hospitals. Policy makers aiming to protect patients under these scenarios should consider policies that allow for an easily accessible, formal, and unbiased mediation process.

  16. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    PubMed

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  17. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks

    PubMed Central

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-01-01

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062

  18. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    PubMed

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  19. Time Series Forecasting of Daily Reference Evapotranspiration by Neural Network Ensemble Learning for Irrigation System

    NASA Astrophysics Data System (ADS)

    Manikumari, N.; Murugappan, A.; Vinodhini, G.

    2017-07-01

    Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 - 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.

  20. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids

    PubMed Central

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951

  1. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    PubMed

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  2. A network flow model for load balancing in circuit-switched multicomputers

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1990-01-01

    In multicomputers that utilize circuit switching or wormhole routing, communication overhead depends largely on link contention - the variation due to distance between nodes is negligible. This has a major impact on the load balancing problem. In this case, there are some nodes with excess load (sources) and others with deficit load (sinks) and it is required to find a matching of sources to sinks that avoids contention. The problem is made complex by the hardwired routing on currently available machines: the user can control only which nodes communicate but not how the messages are routed. Network flow models of message flow in the mesh and the hypercube were developed to solve this problem. The crucial property of these models is the correspondence between minimum cost flows and correctly routed messages. To solve a given load balancing problem, a minimum cost flow algorithm is applied to the network. This permits one to determine efficiently a maximum contention free matching of sources to sinks which, in turn, tells one how much of the given imbalance can be eliminated without contention.

  3. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOEpatents

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  4. Decentralization or centralization: striking a balance.

    PubMed

    Dirschel, K M

    1994-09-01

    An Executive Vice President for Nursing can provide the necessary link to meet diverse clinical demands when encountering centralization--decentralization decisions. Centralized communication links hospital departments giving nurses a unified voice. Decentralization acknowledges the need for diversity and achieves the right balance of uniformity through a responsive communications network.

  5. Development of an Efficient Identifier for Nuclear Power Plant Transients Based on Latest Advances of Error Back-Propagation Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.

    2014-02-01

    This study aims to improve the performance of nuclear power plants (NPPs) transients training and identification using the latest advances of error back-propagation (EBP) learning algorithm. To this end, elements of EBP, including input data, initial weights, learning rate, cost function, activation function, and weights updating procedure are investigated and an efficient neural network is developed. Usefulness of modular networks is also examined and appropriate identifiers, one for each transient, are employed. Furthermore, the effect of transient type on transient identifier performance is illustrated. Subsequently, the developed transient identifier is applied to Bushehr nuclear power plant (BNPP). Seven types of the plant events are probed to analyze the ability of the proposed identifier. The results reveal that identification occurs very early with only five plant variables, whilst in the previous studies a larger number of variables (typically 15 to 20) were required. Modular networks facilitated identification due to its sole dependency on the sign of each network output signal. Fast training of input patterns, extendibility for identification of more transients and reduction of false identification are other advantageous of the proposed identifier. Finally, the balance between the correct answer to the trained transients (memorization) and reasonable response to the test transients (generalization) is improved, meeting one of the primary design criteria of identifiers.

  6. ELUCIDATING BRAIN CONNECTIVITY NETWORKS IN MAJOR DEPRESSIVE DISORDER USING CLASSIFICATION-BASED SCORING.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2014-04-01

    Graph theory is increasingly used in the field of neuroscience to understand the large-scale network structure of the human brain. There is also considerable interest in applying machine learning techniques in clinical settings, for example, to make diagnoses or predict treatment outcomes. Here we used support-vector machines (SVMs), in conjunction with whole-brain tractography, to identify graph metrics that best differentiate individuals with Major Depressive Disorder (MDD) from nondepressed controls. To do this, we applied a novel feature-scoring procedure that incorporates iterative classifier performance to assess feature robustness. We found that small-worldness , a measure of the balance between global integration and local specialization, most reliably differentiated MDD from nondepressed individuals. Post-hoc regional analyses suggested that heightened connectivity of the subcallosal cingulate gyrus (SCG) in MDDs contributes to these differences. The current study provides a novel way to assess the robustness of classification features and reveals anomalies in large-scale neural networks in MDD.

  7. Influence maximization in social networks under an independent cascade-based model

    NASA Astrophysics Data System (ADS)

    Wang, Qiyao; Jin, Yuehui; Lin, Zhen; Cheng, Shiduan; Yang, Tan

    2016-02-01

    The rapid growth of online social networks is important for viral marketing. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. An independent cascade-based model for influence maximization, called IMIC-OC, was proposed to calculate positive influence. We assumed that influential users spread positive opinions. At the beginning, users held positive or negative opinions as their initial opinions. When more users became involved in the discussions, users balanced their own opinions and those of their neighbors. The number of users who did not change positive opinions was used to determine positive influence. Corresponding influential users who had maximum positive influence were then obtained. Experiments were conducted on three real networks, namely, Facebook, HEP-PH and Epinions, to calculate maximum positive influence based on the IMIC-OC model and two other baseline methods. The proposed model resulted in larger positive influence, thus indicating better performance compared with the baseline methods.

  8. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    PubMed

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  9. A Key Pre-Distribution Scheme Based on µ-PBIBD for Enhancing Resilience in Wireless Sensor Networks.

    PubMed

    Yuan, Qi; Ma, Chunguang; Yu, Haitao; Bian, Xuefen

    2018-05-12

    Many key pre-distribution (KPD) schemes based on combinatorial design were proposed for secure communication of wireless sensor networks (WSNs). Due to complexity of constructing the combinatorial design, it is infeasible to generate key rings using the corresponding combinatorial design in large scale deployment of WSNs. In this paper, we present a definition of new combinatorial design, termed “µ-partially balanced incomplete block design (µ-PBIBD)”, which is a refinement of partially balanced incomplete block design (PBIBD), and then describe a 2-D construction of µ-PBIBD which is mapped to KPD in WSNs. Our approach is of simple construction which provides a strong key connectivity and a poor network resilience. To improve the network resilience of KPD based on 2-D µ-PBIBD, we propose a KPD scheme based on 3-D Ex-µ-PBIBD which is a construction of µ-PBIBD from 2-D space to 3-D space. Ex-µ-PBIBD KPD scheme improves network scalability and resilience while has better key connectivity. Theoretical analysis and comparison with the related schemes show that key pre-distribution scheme based on Ex-µ-PBIBD provides high network resilience and better key scalability, while it achieves a trade-off between network resilience and network connectivity.

  10. A Key Pre-Distribution Scheme Based on µ-PBIBD for Enhancing Resilience in Wireless Sensor Networks

    PubMed Central

    Yuan, Qi; Ma, Chunguang; Yu, Haitao; Bian, Xuefen

    2018-01-01

    Many key pre-distribution (KPD) schemes based on combinatorial design were proposed for secure communication of wireless sensor networks (WSNs). Due to complexity of constructing the combinatorial design, it is infeasible to generate key rings using the corresponding combinatorial design in large scale deployment of WSNs. In this paper, we present a definition of new combinatorial design, termed “µ-partially balanced incomplete block design (µ-PBIBD)”, which is a refinement of partially balanced incomplete block design (PBIBD), and then describe a 2-D construction of µ-PBIBD which is mapped to KPD in WSNs. Our approach is of simple construction which provides a strong key connectivity and a poor network resilience. To improve the network resilience of KPD based on 2-D µ-PBIBD, we propose a KPD scheme based on 3-D Ex-µ-PBIBD which is a construction of µ-PBIBD from 2-D space to 3-D space. Ex-µ-PBIBD KPD scheme improves network scalability and resilience while has better key connectivity. Theoretical analysis and comparison with the related schemes show that key pre-distribution scheme based on Ex-µ-PBIBD provides high network resilience and better key scalability, while it achieves a trade-off between network resilience and network connectivity. PMID:29757244

  11. Synopsis of Evaluating Security Controls Based on Key Performance Indicators and Stakeholder Mission Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T; Mili, Ali

    2008-01-01

    Information security continues to evolve in response to disruptive changes with a persistent focus on information-centric controls and a healthy debate about balancing endpoint and network protection, with the goal of improved enterprise and business risk management. Economic uncertainty, intensively collaborative work styles, virtualization, increased outsourcing and ongoing compliance pressures require careful consideration and adaptation of a balanced approach. The Cyberspace Security Econometrics System (CSES) provides a measure of reliability, security and safety of a system that accounts for the criticality of each requirement as a function of one or more stakeholders interests in that requirement. For a given stakeholder,more » CSES reflects the variance that may exist among the stakes one attaches to meeting each requirement. This paper summarizes the basis, objectives and capabilities for the CSES including inputs/outputs as well as the structural underpinnings.« less

  12. Learning and tuning fuzzy logic controllers through reinforcements.

    PubMed

    Berenji, H R; Khedkar, P

    1992-01-01

    A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  13. Does the regulation of local excitation-inhibition balance aid in recovery of functional connectivity? A computational account.

    PubMed

    Vattikonda, Anirudh; Surampudi, Bapi Raju; Banerjee, Arpan; Deco, Gustavo; Roy, Dipanjan

    2016-08-01

    Computational modeling of the spontaneous dynamics over the whole brain provides critical insight into the spatiotemporal organization of brain dynamics at multiple resolutions and their alteration to changes in brain structure (e.g. in diseased states, aging, across individuals). Recent experimental evidence further suggests that the adverse effect of lesions is visible on spontaneous dynamics characterized by changes in resting state functional connectivity and its graph theoretical properties (e.g. modularity). These changes originate from altered neural dynamics in individual brain areas that are otherwise poised towards a homeostatic equilibrium to maintain a stable excitatory and inhibitory activity. In this work, we employ a homeostatic inhibitory mechanism, balancing excitation and inhibition in the local brain areas of the entire cortex under neurological impairments like lesions to understand global functional recovery (across brain networks and individuals). Previous computational and empirical studies have demonstrated that the resting state functional connectivity varies primarily due to the location and specific topological characteristics of the lesion. We show that local homeostatic balance provides a functional recovery by re-establishing excitation-inhibition balance in all areas that are affected by lesion. We systematically compare the extent of recovery in the primary hub areas (e.g. default mode network (DMN), medial temporal lobe, medial prefrontal cortex) as well as other sensory areas like primary motor area, supplementary motor area, fronto-parietal and temporo-parietal networks. Our findings suggest that stability and richness similar to the normal brain dynamics at rest are achievable by re-establishment of balance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. DISCRETE VOLUME-ELEMENT METHOD FOR NETWORK WATER- QUALITY MODELS

    EPA Science Inventory

    An explicit dynamic water-quality modeling algorithm is developed for tracking dissolved substances in water-distribution networks. The algorithm is based on a mass-balance relation within pipes that considers both advective transport and reaction kinetics. Complete mixing of m...

  15. Autonomic and Coevolutionary Sensor Networking

    NASA Astrophysics Data System (ADS)

    Boonma, Pruet; Suzuki, Junichi

    (WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

  16. Homeostatic Scaling of Excitability in Recurrent Neural Networks

    PubMed Central

    Remme, Michiel W. H.; Wadman, Wytse J.

    2012-01-01

    Neurons adjust their intrinsic excitability when experiencing a persistent change in synaptic drive. This process can prevent neural activity from moving into either a quiescent state or a saturated state in the face of ongoing plasticity, and is thought to promote stability of the network in which neurons reside. However, most neurons are embedded in recurrent networks, which require a delicate balance between excitation and inhibition to maintain network stability. This balance could be disrupted when neurons independently adjust their intrinsic excitability. Here, we study the functioning of activity-dependent homeostatic scaling of intrinsic excitability (HSE) in a recurrent neural network. Using both simulations of a recurrent network consisting of excitatory and inhibitory neurons that implement HSE, and a mean-field description of adapting excitatory and inhibitory populations, we show that the stability of such adapting networks critically depends on the relationship between the adaptation time scales of both neuron populations. In a stable adapting network, HSE can keep all neurons functioning within their dynamic range, while the network is undergoing several (patho)physiologically relevant types of plasticity, such as persistent changes in external drive, changes in connection strengths, or the loss of inhibitory cells from the network. However, HSE cannot prevent the unstable network dynamics that result when, due to such plasticity, recurrent excitation in the network becomes too strong compared to feedback inhibition. This suggests that keeping a neural network in a stable and functional state requires the coordination of distinct homeostatic mechanisms that operate not only by adjusting neural excitability, but also by controlling network connectivity. PMID:22570604

  17. Bridge Building for the Future of the Finnish Polytechnics

    ERIC Educational Resources Information Center

    Kettunen, Juha

    2004-01-01

    This study presents the strategy process of Finnish polytechnics using the balanced scorecard approach. The study extends the balanced scorecard from the communication and implementation of this strategy to the planning of the strategy. Stakeholders formulated a strategic managerial plan for the network of all polytechnics in Finland by applying…

  18. CityWaterBalance: Track Flows of Water Through an Urban System

    EPA Science Inventory

    CityWaterBalance provides a reproducible workflow for studying an urban water system. The network of urban water flows and storages can be modeled and visualized. Any city may be modeled with preassembled data, but data for US cities can be gathered via web services using this p...

  19. A Rationale for Music Training to Enhance Executive Functions in Parkinson's Disease: An Overview of the Problem.

    PubMed

    Lesiuk, Teresa; Bugos, Jennifer A; Murakami, Brea

    2018-04-22

    Music listening interventions such as Rhythmic Auditory Stimulation can improve mobility, balance, and gait in Parkinson’s Disease (PD). Yet, the impact of music training on executive functions is not yet known. Deficits in executive functions (e.g., attention, processing speed) in patients with PD result in gait interference, deficits in emotional processing, loss of functional capacity (e.g., intellectual activity, social participation), and reduced quality of life. The model of temporal prediction and timing suggests two networks collectively contribute to movement generation and execution: the basal ganglia-thalamocortical network (BGTC) and the cerebellar-thalamocortical network (CTC). Due to decreases in dopamine responsible for the disruption of the BGTC network in adults with PD, it is hypothesized that rhythmic auditory cues assist patients through recruiting an alternate network, the CTC, which extends to the supplementary motor areas (SMA) and the frontal cortices. In piano training, fine motor finger movements activate the cerebellum and SMA, thereby exercising the CTC network. We hypothesize that exercising the CTC network through music training will contribute to enhanced executive functions. Previous research suggested that music training enhances cognitive performance (i.e., working memory and processing speed) in healthy adults and adults with cognitive impairments. This review and rationale provides support for the use of music training to enhance cognitive outcomes in patients with Parkinson’s Disease (PD).

  20. Comparative efficacy and safety of six antidepressants and anticonvulsants in painful diabetic neuropathy: a network meta-analysis.

    PubMed

    Rudroju, Neelima; Bansal, Dipika; Talakokkula, Shiva Teja; Gudala, Kapil; Hota, Debasish; Bhansali, Anil; Ghai, Babita

    2013-01-01

    Anticonvulsants and antidepressants are mostly used in management of painful diabetic neuropathy (PDN). However there are few direct comparisons between drugs of these classes, making evidence-based decision-making in the treatment of painful diabetic neuropathy difficult. This study aimed to perform a network meta-analysis and benefit-risk analysis to evaluate the comparative efficacy and safety of these drugs in PDN treatment. Comparative effectiveness study. Medical Education and Research facility in India. A comprehensive data search was done in PubMed, Cochrane, and Embase up to August 2012. We then systematically reviewed the studies which compared any of 6 drugs for the management of PDN: amitriptyline, duloxetine, gabapentin, pregabalin, valproate, and venlafaxine or any of their combinations. We performed a random-effects network meta-analysis to rank treatments in terms of efficacy and safety. We chose the number of patients experiencing = 50% reduction in pain and number of patient withdrawals due to adverse events (AE) as primary outcomes for efficacy and safety, respectively. We also performed benefit-risk analysis, taking efficacy outcome as benefit and safety outcome as risk. Analysis was intention-to-treat. We included 21 published trials in the analysis. Duloxetine, gabapentin, pregabalin, and venlafaxine were shown to be significantly efficacious compared to placebo with odds ratios (OR) of 2.12, 3.98, 2.78, and 4.43, respectively. Amitriptyline (OR: 7.03, 95% confidence interval [CI]: 1.87, 29.05) and duloxetine (OR: 3.26, 95% CI: 1.04, 9.97) caused more withdrawals than gabapentin. The ranking order of efficacy was gabapentin, venlafaxine, pregabalin, duloxetine/gabapentin, duloxetine, amitriptyline, and placebo and the ranking order of safety was placebo, gabapentin, pregabalin, venlafaxine, duloxetine/gabapentin combination, duloxetine, and amitriptyline. Benefit-risk balance favored the order: gabapentin, venlafaxine, pregabalin, duloxetine/gabapentin combination, duloxetine, placebo, and amitriptyline. We could not include valproate in our analysis owing to the lack of studies reporting the dichotomous efficacy and safety outcomes. Gabapentin was found to be most efficacious and amitriptyline to be least safe among the treatments included in the study. Gabapentin showed most favorable balance between efficacy and safety.

  1. A smarter way to network.

    PubMed

    Cross, Rob; Thomas, Robert

    2011-01-01

    The adage "It's not what you know, it's who you know" is true. The right social network can have a huge impact on your success. But many people have misguided ideas about what makes a network strong: They believe the key is having a large circle filled with high-powered contacts. That's not the right approach, say Cross, of UVA's McIntire School of Commerce, and Thomas, of the Accenture Institute for High Performance. The authors, who have spent years researching how organizations can capitalize on employees' social networks, have seen that the happiest, highest-performing executives have a different kind of network: select but diverse, made up of high-quality relationships with people who come from varying spheres and from up and down the corporate ladder. Effective networks typically range in size from 12 to 18 people. They help managers learn, make decisions with less bias, and grow personally. Cross and Thomas have found that they include six critical kinds of connections: people who provide information, ideas, or expertise; formally and informally powerful people, who offer mentoring and political support; people who give developmental feedback; people who lend personal support; people who increase your sense of purpose or worth; and people who promote work/life balance. Moreover, the best kind of connections are "energizers"--positive, trustworthy individuals who enjoy other people and always see opportunities, even in challenging situations. If your network doesn't look like this, you can follow a four-step process to improve it. You'll need to identify who your connections are and what they offer you, back away from redundant and energy-draining connections, fill holes in your network with the right kind of people, and work to make the most of your contacts. Do this, and in due course, you'll have a network that steers the best opportunities, ideas, and talent your way.

  2. Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.

    PubMed

    Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L

    2017-03-01

    Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Tracking the Reorganization of Module Structure in Time-Varying Weighted Brain Functional Connectivity Networks.

    PubMed

    Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert

    2018-05-01

    Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.

  4. Closing the water balance with cosmic-ray soil moisture measurements and assessing their relation to evapotranspiration in two semiarid watersheds

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A. P.; Vivoni, E. R.; Mascaro, G.; Franz, T. E.

    2016-01-01

    Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of the CRNS method are performed for small watersheds instrumented with a distributed sensor network consisting of soil moisture sensor profiles, an eddy covariance tower, and runoff flumes used to close the water balance. We found a very good agreement between the CRNS method and the distributed sensor network (root mean square error (RMSE) of 0.009 and 0.013 m3 m-3 at SRER and JER, respectively) at the hourly timescale over the 19-month study period, primarily due to the inclusion of 5 cm observations of shallow soil moisture. Good agreement was also obtained in soil moisture changes estimated from the CRNS and watershed water balance methods (RMSE of 0.001 and 0.082 m3 m-3 at SRER and JER, respectively), with deviations due to bypassing of the CRNS measurement depth during large rainfall events. Once validated, the CRNS soil moisture estimates were used to investigate hydrological processes at the footprint scale at each site. Through the computation of the water balance, we showed that drier-than-average conditions at SRER promoted plant water uptake from deeper soil layers, while the wetter-than-average period at JER resulted in percolation towards deeper soils. The CRNS measurements were then used to quantify the link between evapotranspiration and soil moisture at a commensurate scale, finding similar predictive relations at both sites that are applicable to other semiarid ecosystems in the southwestern US.

  5. An eleven-year validation of a physically-based distributed dynamic ecohydorological model tRIBS+VEGGIE: Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.

    2008-12-01

    A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.

  6. Fear of Falling in Women with Fibromyalgia and Its Relation with Number of Falls and Balance Performance.

    PubMed

    Collado-Mateo, D; Gallego-Diaz, J M; Adsuar, J C; Domínguez-Muñoz, F J; Olivares, P R; Gusi, N

    2015-01-01

    To evaluate fear of falling, number of falls, and balance performance in women with FM and to examine the relationship between these variables and others, such as balance performance, quality of life, age, pain, and impact of fibromyalgia. A total of 240 women participated in this cross-sectional study. Of these, 125 had fibromyalgia. Several variables were assessed: age, fear of falling from 0 to 100, number of falls, body composition, balance performance, lower limb strength, health-related quality of life, and impact of fibromyalgia. Women with fibromyalgia reported more falls and more fear of falling. Fear of falling was associated with number of falls in the last year, stiffness, perceived balance problems, impact of FM, and HRQoL whereas the number of falls was related to fear of falling, balance performance with eyes closed, pain, tenderness to touch level, anxiety, self-reported balance problems, impact of FM, and HRQoL. FM has an impact on fear of falling, balance performance, and number of falls. Perceived balance problems seem to be more closely associated with fear of falling than objective balance performance.

  7. CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes.

    PubMed

    White, Clarence; Ismail, Hamid D; Saigo, Hiroto; Kc, Dukka B

    2017-12-28

    The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification.

  8. Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya

    2003-01-01

    The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic analysis, engine cycle analysis, propulsion data interpolation, mission performance, airfield length for landing and takeoff, noise footprint, and others.

  9. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  10. A design automation framework for computational bioenergetics in biological networks.

    PubMed

    Angione, Claudio; Costanza, Jole; Carapezza, Giovanni; Lió, Pietro; Nicosia, Giuseppe

    2013-10-01

    The bioenergetic activity of mitochondria can be thoroughly investigated by using computational methods. In particular, in our work we focus on ATP and NADH, namely the metabolites representing the production of energy in the cell. We develop a computational framework to perform an exhaustive investigation at the level of species, reactions, genes and metabolic pathways. The framework integrates several methods implementing the state-of-the-art algorithms for many-objective optimization, sensitivity, and identifiability analysis applied to biological systems. We use this computational framework to analyze three case studies related to the human mitochondria and the algal metabolism of Chlamydomonas reinhardtii, formally described with algebraic differential equations or flux balance analysis. Integrating the results of our framework applied to interacting organelles would provide a general-purpose method for assessing the production of energy in a biological network.

  11. Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach

    PubMed Central

    Xu, Haitao; Guo, Chao; Zhang, Long

    2017-01-01

    In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945

  12. Synchronization unveils the organization of ecological networks with positive and negative interactions

    NASA Astrophysics Data System (ADS)

    Girón, Andrea; Saiz, Hugo; Bacelar, Flora S.; Andrade, Roberto F. S.; Gómez-Gardeñes, Jesús

    2016-06-01

    Network science has helped to understand the organization principles of the interactions among the constituents of large complex systems. However, recently, the high resolution of the data sets collected has allowed to capture the different types of interactions coexisting within the same system. A particularly important example is that of systems with positive and negative interactions, a usual feature appearing in social, neural, and ecological systems. The interplay of links of opposite sign presents natural difficulties for generalizing typical concepts and tools applied to unsigned networks and, moreover, poses some questions intrinsic to the signed nature of the network, such as how are negative interactions balanced by positive ones so to allow the coexistence and survival of competitors/foes within the same system? Here, we show that synchronization phenomenon is an ideal benchmark for uncovering such balance and, as a byproduct, to assess which nodes play a critical role in the overall organization of the system. We illustrate our findings with the analysis of synthetic and real ecological networks in which facilitation and competitive interactions coexist.

  13. Convergence analysis of directed signed networks via an M-matrix approach

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan

    2018-04-01

    This paper aims at solving convergence problems on directed signed networks with multiple nodes, where interactions among nodes are described by signed digraphs. The convergence analysis is achieved by matrix-theoretic and graph-theoretic tools, in which M-matrices play a central role. The fundamental digon sign-symmetry assumption upon signed digraphs can be removed with the proposed analysis approach. Furthermore, necessary and sufficient conditions are established for semi-positive and positive stabilities of Laplacian matrices of signed digraphs, respectively. A benefit of this result is that given strong connectivity, a directed signed network can achieve bipartite consensus (or state stability) if and only if the signed digraph associated with it is structurally balanced (or unbalanced). If the interactions between nodes are described by a signed digraph only with spanning trees, a directed signed network can achieve interval bipartite consensus (or state stability) if and only if the signed digraph contains a structurally balanced (or unbalanced) rooted subgraph. Simulations are given to illustrate the developed results by considering signed networks associated with digon sign-unsymmetric signed digraphs.

  14. Influences of 12-Week Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity Motor Performance in Older Adults—A Feasibility Study

    PubMed Central

    McGregor, Keith M.; Crosson, Bruce; Mammino, Kevin; Omar, Javier; García, Paul S.; Nocera, Joe R.

    2018-01-01

    Objective: Data from previous cross-sectional studies have shown that an increased level of physical fitness is associated with improved motor dexterity across the lifespan. In addition, physical fitness is positively associated with increased laterality of cortical function during unimanual tasks; indicating that sedentary aging is associated with a loss of interhemispheric inhibition affecting motor performance. The present study employed exercise interventions in previously sedentary older adults to compare motor dexterity and measure of interhemispheric inhibition using transcranial magnetic stimulation (TMS) after the interventions. Methods: Twenty-one community-dwelling, reportedly sedentary older adults were recruited, randomized and enrolled to a 12-week aerobic exercise group or a 12-week non-aerobic exercise balance condition. The aerobic condition was comprised of an interval-based cycling “spin” activity, while the non-aerobic “balance” exercise condition involved balance and stretching activities. Participants completed upper extremity dexterity batteries and estimates of VO2max in addition to undergoing single (ipsilateral silent period—iSP) and paired-pulse interhemispheric inhibition (ppIHI) in separate assessment sessions before and after study interventions. After each intervention during which heart rate was continuously recorded to measure exertion level (load), participants crossed over into the alternate arm of the study for an additional 12-week intervention period in an AB/BA design with no washout period. Results: After the interventions, regardless of intervention order, participants in the aerobic spin condition showed higher estimated VO2max levels after the 12-week intervention as compared to estimated VO2max in the non-aerobic balance intervention. After controlling for carryover effects due to the study design, participants in the spin condition showed longer iSP duration than the balance condition. Heart rate load was more strongly correlated with silent period duration after the Spin condition than estimated VO2. Conclusions: Aging-related changes in cortical inhibition may be influenced by 12-week physical activity interventions when assessed with the iSP. Although inhibitory signaling is mediates both ppIHI and iSP measures each TMS modality likely employs distinct inhibitory networks, potentially differentially affected by aging. Changes in inhibitory function after physical activity interventions may be associated with improved dexterity and motor control at least as evidence from this feasibility study show. PMID:29354049

  15. R package CityWaterBalance | Science Inventory | US EPA

    EPA Pesticide Factsheets

    CityWaterBalance provides a reproducible workflow for studying an urban water system. The network of urban water flows and storages can be modeled and visualized. Any city may be modeled with preassembled data, but data for US cities can be gathered via web services using this package and dependencies, geoknife and dataRetrieval. Urban water flows are difficult to comprehensively quantify. Although many important data sources are openly available, they are published by a variety of agencies in different formats, units, spatial and temporal resolutions. Increasingly, open data are made available via web services, which allow for automated, current retrievals. Integrating data streams and estimating the values of unmeasured urban water flows, however, remains needlessly time-consuming. In order to streamline a reproducible analysis, we have developed the CityWaterBalance package for the open source R language. The CityWaterBalance package for R is based on a simple model of the network of urban water flows and storages. The model may be run with data that has been pre-assembled by the user, or data can be retrieved by functions in CityWaterBalance and dependencies. CityWaterBalance can be used to quickly assemble a quantitative portrait of any urban water system. The systemic effects of water management decisions can be readily explored. Much of the data acquisition process for US cities can already be automated, while the package serves as a place-hold

  16. A network dynamics approach to chemical reaction networks

    NASA Astrophysics Data System (ADS)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  17. Incorporation of perception-based information in robot learning using fuzzy reinforcement learning agents

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiu; Meng, Qingchun; Guo, Zhongwen; Qu, Wiefen; Yin, Bo

    2002-04-01

    Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.

  18. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13 C metabolic flux analysis.

    PubMed

    Hendry, John I; Prasannan, Charulata; Ma, Fangfang; Möllers, K Benedikt; Jaiswal, Damini; Digmurti, Madhuri; Allen, Doug K; Frigaard, Niels-Ulrik; Dasgupta, Santanu; Wangikar, Pramod P

    2017-10-01

    Cyanobacteria, which constitute a quantitatively dominant phylum, have attracted attention in biofuel applications due to favorable physiological characteristics, high photosynthetic efficiency and amenability to genetic manipulations. However, quantitative aspects of cyanobacterial metabolism have received limited attention. In the present study, we have performed isotopically non-stationary 13 C metabolic flux analysis (INST- 13 C-MFA) to analyze rerouting of carbon in a glycogen synthase deficient mutant strain (glgA-I glgA-II) of the model cyanobacterium Synechococcus sp. PCC 7002. During balanced photoautotrophic growth, 10-20% of the fixed carbon is stored in the form of glycogen via a pathway that is conserved across the cyanobacterial phylum. Our results show that deletion of glycogen synthase gene orchestrates cascading effects on carbon distribution in various parts of the metabolic network. Carbon that was originally destined to be incorporated into glycogen gets partially diverted toward alternate storage molecules such as glucosylglycerol and sucrose. The rest is partitioned within the metabolic network, primarily via glycolysis and tricarboxylic acid cycle. A lowered flux toward carbohydrate synthesis and an altered distribution at the glucose-1-phosphate node indicate flexibility in the network. Further, reversibility of glycogen biosynthesis reactions points toward the presence of futile cycles. Similar redistribution of carbon was also predicted by Flux Balance Analysis. The results are significant to metabolic engineering efforts with cyanobacteria where fixed carbon needs to be re-routed to products of interest. Biotechnol. Bioeng. 2017;114: 2298-2308. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Transnational Research Networks in Chinese Scientific Production. An Investigation on Health-Industry Related Sectors.

    PubMed

    Rubini, Lauretta; Pollio, Chiara; Di Tommaso, Marco R

    2017-08-29

    Transnational research networks (TRN) are becoming increasingly complex. Such complexity may have both positive and negative effects on the quality of research. Our work studies the evolution over time of Chinese TRN and the role of complexity on the quality of Chinese research, given the leading role this country has recently acquired in international science. We focus on the fields of geriatrics and gerontology. We build an original dataset of all scientific publications of China in these areas in 2009, 2012 and 2015, starting from the ISI Web of Knowledge (ISI WoK) database. Using Social Network Analysis (SNA), we analyze the change in scientific network structure across time. Second, we design indices to control for the different aspects of networks complexity (number of authors, country heterogeneity and institutional heterogeneity) and we perform negative binomial regressions to identify the main determinants of research quality. Our analysis shows that research networks in the field of geriatrics and gerontology have gradually become wider in terms of countries and have become more balanced. Furthermore, our results identify that different forms of complexity have different impacts on quality, including a reciprocal moderating effect. In particular, according to our analysis, research quality benefits from complex research networks both in terms of countries and of types of institutions involved, but that such networks should be "compact" in terms of number of authors. Eventually, we suggest that complexity should be carefully taken into account when designing policies aimed at enhancing the quality of research.

  20. A distributed database view of network tracking systems

    NASA Astrophysics Data System (ADS)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  1. Combined effect of CVR and penetration of DG in the voltage profile and losses of lowvoltage secondary distribution networks

    NASA Astrophysics Data System (ADS)

    Bokhari, Abdullah

    Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.

  2. Stress Transmission in Granular Packings: Localization and Cooperative Response

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir

    We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

  3. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Joel J. P. C.

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327

  4. Second Law of Thermodynamics Applied to Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Nigam, R.; Liang, S.

    2003-01-01

    We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.

  5. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    PubMed

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  6. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    NASA Astrophysics Data System (ADS)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  7. Evaporation loss and evaporation/transpiration partitioning from isotope-based monitoring of Canada's provincial and national river networks

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Birks, S. J.; Stadnyk, T.; Delavau, C. J.

    2017-12-01

    Stable isotopes of water have been measured since the 1990's as part of hydrometric monitoring programs within Canada's Water Survey of Canada gauging network and Alberta's Long-Term River Network. These datasets are being applied for hydrograph separation of streamflow sources, including rain, snow, groundwater, and surface water, as well as for estimation of watershed evaporation losses and evaporation/transpiration partitioning. Here we describe an innovative isotope mass balance approach, discuss benefits and limitations of the method, and present selected results that illustrate important regional trends in the contemporary hydrology of Canada. Overall, isotopes are shown to be useful for constraining water balance variations across regions with low monitoring density. Recommendations for future activities are identified, including regional comparisons with outputs from isotope-capable distributed hydrologic models.

  8. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Schmidt, Christoph F.; Gladrow, Jannes; Fakhri, Nikta; Mackintosh, Fred C.; Broedersz, Chase

    Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single- walled carbon nanotubes can be used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in biopolymer networks. We analytically calculated shape fluctuations of semi- flexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under non-equilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  9. Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines.

    PubMed

    Mazur, Katarzyna; Wydra, Michal; Ksiezopolski, Bogdan

    2017-07-11

    Existing transmission power grids suffer from high maintenance costs and scalability issues along with a lack of effective and secure system monitoring. To address these problems, we propose to use Wireless Sensor Networks (WSNs) as a technology to achieve energy efficient, reliable, and low-cost remote monitoring of transmission grids. With WSNs, smart grid enables both utilities and customers to monitor, predict and manage energy usage effectively and react to possible power grid disturbances in a timely manner. However, the increased application of WSNs also introduces new security challenges, especially related to privacy, connectivity, and security management, repeatedly causing unpredicted expenditures. Monitoring the status of the power system, a large amount of sensors generates massive amount of sensitive data. In order to build an effective Wireless Sensor Network (WSN) for a smart grid, we focus on designing a methodology of efficient and secure delivery of the data measured on transmission lines. We perform a set of simulations, in which we examine different routing algorithms, security mechanisms and WSN deployments in order to select the parameters that will not affect the delivery time but fulfill their role and ensure security at the same time. Furthermore, we analyze the optimal placement of direct wireless links, aiming at minimizing time delays, balancing network performance and decreasing deployment costs.

  10. Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines

    PubMed Central

    Mazur, Katarzyna; Wydra, Michal; Ksiezopolski, Bogdan

    2017-01-01

    Existing transmission power grids suffer from high maintenance costs and scalability issues along with a lack of effective and secure system monitoring. To address these problems, we propose to use Wireless Sensor Networks (WSNs)as a technology to achieve energy efficient, reliable, and low-cost remote monitoring of transmission grids. With WSNs, smart grid enables both utilities and customers to monitor, predict and manage energy usage effectively and react to possible power grid disturbances in a timely manner. However, the increased application of WSNs also introduces new security challenges, especially related to privacy, connectivity, and security management, repeatedly causing unpredicted expenditures. Monitoring the status of the power system, a large amount of sensors generates massive amount of sensitive data. In order to build an effective Wireless Sensor Networks (WSNs) for a smart grid, we focus on designing a methodology of efficient and secure delivery of the data measured on transmission lines. We perform a set of simulations, in which we examine different routing algorithms, security mechanisms and WSN deployments in order to select the parameters that will not affect the delivery time but fulfill their role and ensure security at the same time. Furthermore, we analyze the optimal placement of direct wireless links, aiming at minimizing time delays, balancing network performance and decreasing deployment costs. PMID:28696390

  11. Fear of Falling in Women with Fibromyalgia and Its Relation with Number of Falls and Balance Performance

    PubMed Central

    Collado-Mateo, D.; Gallego-Diaz, J. M.; Adsuar, J. C.; Domínguez-Muñoz, F. J.; Olivares, P. R.; Gusi, N.

    2015-01-01

    Objective. To evaluate fear of falling, number of falls, and balance performance in women with FM and to examine the relationship between these variables and others, such as balance performance, quality of life, age, pain, and impact of fibromyalgia. Methods. A total of 240 women participated in this cross-sectional study. Of these, 125 had fibromyalgia. Several variables were assessed: age, fear of falling from 0 to 100, number of falls, body composition, balance performance, lower limb strength, health-related quality of life, and impact of fibromyalgia. Results. Women with fibromyalgia reported more falls and more fear of falling. Fear of falling was associated with number of falls in the last year, stiffness, perceived balance problems, impact of FM, and HRQoL whereas the number of falls was related to fear of falling, balance performance with eyes closed, pain, tenderness to touch level, anxiety, self-reported balance problems, impact of FM, and HRQoL. Conclusion. FM has an impact on fear of falling, balance performance, and number of falls. Perceived balance problems seem to be more closely associated with fear of falling than objective balance performance. PMID:26618173

  12. Efficient Extraction of High Centrality Vertices in Distributed Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbhare, Alok; Frincu, Marc; Raghavendra, Cauligi S.

    2014-09-09

    Betweenness centrality (BC) is an important measure for identifying high value or critical vertices in graphs, in variety of domains such as communication networks, road networks, and social graphs. However, calculating betweenness values is prohibitively expensive and, more often, domain experts are interested only in the vertices with the highest centrality values. In this paper, we first propose a partition-centric algorithm (MS-BC) to calculate BC for a large distributed graph that optimizes resource utilization and improves overall performance. Further, we extend the notion of approximate BC by pruning the graph and removing a subset of edges and vertices that contributemore » the least to the betweenness values of other vertices (MSL-BC), which further improves the runtime performance. We evaluate the proposed algorithms using a mix of real-world and synthetic graphs on an HPC cluster and analyze its strengths and weaknesses. The experimental results show an improvement in performance of upto 12x for large sparse graphs as compared to the state-of-the-art, and at the same time highlights the need for better partitioning methods to enable a balanced workload across partitions for unbalanced graphs such as small-world or power-law graphs.« less

  13. An Energy Scaled and Expanded Vector-Based Forwarding Scheme for Industrial Underwater Acoustic Sensor Networks with Sink Mobility.

    PubMed

    Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-09-30

    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.

  14. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans

    PubMed Central

    Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo episodes. This suggests that these patients have a neural signature or trait that makes them prone to developing chronic balance problems. PMID:27089185

  15. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans.

    PubMed

    Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo episodes. This suggests that these patients have a neural signature or trait that makes them prone to developing chronic balance problems.

  16. The Normalized-Rate Iterative Algorithm: A Practical Dynamic Spectrum Management Method for DSL

    NASA Astrophysics Data System (ADS)

    Statovci, Driton; Nordström, Tomas; Nilsson, Rickard

    2006-12-01

    We present a practical solution for dynamic spectrum management (DSM) in digital subscriber line systems: the normalized-rate iterative algorithm (NRIA). Supported by a novel optimization problem formulation, the NRIA is the only DSM algorithm that jointly addresses spectrum balancing for frequency division duplexing systems and power allocation for the users sharing a common cable bundle. With a focus on being implementable rather than obtaining the highest possible theoretical performance, the NRIA is designed to efficiently solve the DSM optimization problem with the operators' business models in mind. This is achieved with the help of two types of parameters: the desired network asymmetry and the desired user priorities. The NRIA is a centralized DSM algorithm based on the iterative water-filling algorithm (IWFA) for finding efficient power allocations, but extends the IWFA by finding the achievable bitrates and by optimizing the bandplan. It is compared with three other DSM proposals: the IWFA, the optimal spectrum balancing algorithm (OSBA), and the bidirectional IWFA (bi-IWFA). We show that the NRIA achieves better bitrate performance than the IWFA and the bi-IWFA. It can even achieve performance almost as good as the OSBA, but with dramatically lower requirements on complexity. Additionally, the NRIA can achieve bitrate combinations that cannot be supported by any other DSM algorithm.

  17. Deficits in vision and visual attention associated with motor performance of very preterm/very low birth weight children.

    PubMed

    Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G

    2016-01-01

    To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Retrieval Property of Attractor Network with Synaptic Depression

    NASA Astrophysics Data System (ADS)

    Matsumoto, Narihisa; Ide, Daisuke; Watanabe, Masataka; Okada, Masato

    2007-08-01

    Synaptic connections are known to change dynamically. High-frequency presynaptic inputs induce decrease of synaptic weights. This process is known as short-term synaptic depression. The synaptic depression controls a gain for presynaptic inputs. However, it remains a controversial issue what are functional roles of this gain control. We propose a new hypothesis that one of the functional roles is to enlarge basins of attraction. To verify this hypothesis, we employ a binary discrete-time associative memory model which consists of excitatory and inhibitory neurons. It is known that the excitatory-inhibitory balance controls an overall activity of the network. The synaptic depression might incorporate an activity control mechanism. Using a mean-field theory and computer simulations, we find that the synaptic depression enlarges the basins at a small loading rate while the excitatory-inhibitory balance enlarges them at a large loading rate. Furthermore the synaptic depression does not affect the steady state of the network if a threshold is set at an appropriate value. These results suggest that the synaptic depression works in addition to the effect of the excitatory-inhibitory balance, and it might improve an error-correcting ability in cortical circuits.

  19. Coverage Extension and Balancing the Transmitted Power of the Moving Relay Node at LTE-A Cellular Network

    PubMed Central

    Aldhaibani, Jaafar A.; Yahya, Abid; Ahmad, R. Badlishah

    2014-01-01

    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain. PMID:24672378

  20. Coverage extension and balancing the transmitted power of the moving relay node at LTE-A cellular network.

    PubMed

    Aldhaibani, Jaafar A; Yahya, Abid; Ahmad, R Badlishah

    2014-01-01

    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.

  1. Population activity structure of excitatory and inhibitory neurons

    PubMed Central

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  2. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  3. Implementing a balanced scorecard as a strategic management tool in a long-term care organization.

    PubMed

    Schalm, Corinne

    2008-01-01

    The Capital Care Group, the largest public sector continuing care organization in Canada, had no ready access to information on its own performance and therefore was limited in its pursuit of evidence-informed decision-making. To remedy this, it was decided to introduce a balanced scorecard. A literature review was conducted together with interviews with 10 other health care organizations which had implemented balanced scorecards. With this information, a workshop was held that resulted in a framework and about 120 potential indicators. Subsequently the number of indicators was reduced to 29, using pre-determined criteria. Development of a corporate balanced scorecard facilitated executive strategic thinking and clarified the organization's strategic direction. In parallel, scorecards were developed at the level of care centres. These had a common core of indicators, plus some site-specific ones. Development of the corporate scorecard took three years and an additional six months for the care centre scorecards. A formal implementation plan has been accepted by the executive team. Key to this is communicating to staff the role of scorecards for strategic management and not just performance measurement. Traditional thinking needs to change from a short-term operational focus to long-term strategy. In addition, champions need to be identified in each care centre and they need to be networked together. Finally, the scorecard is being integrated into existing operational management as a routine component together with resources to support its use. The balanced scorecard has focused on its role as a strategic management tool. The indicators and dimensions need to be customized to the organization. Senior management must be seen to be driving its introduction. It is worth spending sufficient time developing and implementing a scorecard rather than trying to rush its introduction. The scorecard needs to be integrated with existing management processes and sufficient resources must be assigned. However, success will ultimately depend on the culture of the organization being appropriate and receptive.

  4. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.

    PubMed

    Yang, Qinmin; Jagannathan, Sarangapani

    2012-04-01

    In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.

  5. A game theory-based obstacle avoidance routing protocol for wireless sensor networks.

    PubMed

    Guan, Xin; Wu, Huayang; Bi, Shujun

    2011-01-01

    The obstacle avoidance problem in geographic forwarding is an important issue for location-based routing in wireless sensor networks. The presence of an obstacle leads to several geographic routing problems such as excessive energy consumption and data congestion. Obstacles are hard to avoid in realistic environments. To bypass obstacles, most routing protocols tend to forward packets along the obstacle boundaries. This leads to a situation where the nodes at the boundaries exhaust their energy rapidly and the obstacle area is diffused. In this paper, we introduce a novel routing algorithm to solve the obstacle problem in wireless sensor networks based on a game-theory model. Our algorithm forms a concave region that cannot forward packets to achieve the aim of improving the transmission success rate and decreasing packet transmission delays. We consider the residual energy, out-degree and forwarding angle to determine the forwarding probability and payoff function of forwarding candidates. This achieves the aim of load balance and reduces network energy consumption. Simulation results show that based on the average delivery delay, energy consumption and packet delivery ratio performances our protocol is superior to other traditional schemes.

  6. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism.

    PubMed

    Karlstädt, Anja; Fliegner, Daniela; Kararigas, Georgios; Ruderisch, Hugo Sanchez; Regitz-Zagrosek, Vera; Holzhütter, Hermann-Georg

    2012-08-29

    Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  7. Efficient detection of contagious outbreaks in massive metropolitan encounter networks

    PubMed Central

    Sun, Lijun; Axhausen, Kay W.; Lee, Der-Horng; Cebrian, Manuel

    2014-01-01

    Physical contact remains difficult to trace in large metropolitan networks, though it is a key vehicle for the transmission of contagious outbreaks. Co-presence encounters during daily transit use provide us with a city-scale time-resolved physical contact network, consisting of 1 billion contacts among 3 million transit users. Here, we study the advantage that knowledge of such co-presence structures may provide for early detection of contagious outbreaks. We first examine the “friend sensor” scheme - a simple, but universal strategy requiring only local information - and demonstrate that it provides significant early detection of simulated outbreaks. Taking advantage of the full network structure, we then identify advanced “global sensor sets”, obtaining substantial early warning times savings over the friends sensor scheme. Individuals with highest number of encounters are the most efficient sensors, with performance comparable to individuals with the highest travel frequency, exploratory behavior and structural centrality. An efficiency balance emerges when testing the dependency on sensor size and evaluating sensor reliability; we find that substantial and reliable lead-time could be attained by monitoring only 0.01% of the population with the highest degree. PMID:24903017

  8. Insurance companies struggle to balance medical and pharmacy networks: cost and access are often at odds; enrollees are caught in the middle.

    PubMed

    Barlas, Stephen

    2015-01-01

    Confusion over which physicians, facilities, and pharmacies are in insurance companies' networks has become an issue among enrollees in marketplace plans under health care reform, Medicare Advantage plans, and even accountable care organizations.

  9. Managing Ongoing EVSE Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Cabell

    The costs associated with EVSE begin with picking the best location and unit for the job, but they continue with electricity and network charges through the life of your vehicle. This presentation tells how to balance electricity demand charges and network management costs through smart planning at your program's inception.

  10. A Bayesian network approach for causal inferences in pesticide risk assessment and management

    EPA Science Inventory

    Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...

  11. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  12. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    PubMed

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  13. Cross counter-based adaptive assembly scheme in optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-jun; Dong, Wen; Le, Zi-chun; Chen, Wan-jun; Sun, Xingshu

    2009-11-01

    A novel adaptive assembly algorithm called Cross-counter Balance Adaptive Assembly Period (CBAAP) is proposed in this paper. The major difference between CBAAP and other adaptive assembly algorithms is that the threshold of CBAAP can be dynamically adjusted according to the cross counter and step length value. In terms of assembly period and the burst loss probability, we compare the performance of CBAAP with those of three typical algorithms FAP (Fixed Assembly Period), FBL (Fixed Burst Length) and MBMAP (Min-Burst length-Max-Assembly-Period) in the simulation part. The simulation results demonstrate the effectiveness of our algorithm.

  14. Genome-scale fluxes predicted under the guidance of enzyme abundance using a novel hyper-cube shrink algorithm.

    PubMed

    Xie, Zhengwei; Zhang, Tianyu; Ouyang, Qi

    2018-02-01

    One of the long-expected goals of genome-scale metabolic modelling is to evaluate the influence of the perturbed enzymes on flux distribution. Both ordinary differential equation (ODE) models and constraint-based models, like Flux balance analysis (FBA), lack the capacity to perform metabolic control analysis (MCA) for large-scale networks. In this study, we developed a hyper-cube shrink algorithm (HCSA) to incorporate the enzymatic properties into the FBA model by introducing a pseudo reaction V constrained by enzymatic parameters. Our algorithm uses the enzymatic information quantitatively rather than qualitatively. We first demonstrate the concept by applying HCSA to a simple three-node network, whereby we obtained a good correlation between flux and enzyme abundance. We then validate its prediction by comparison with ODE and with a synthetic network producing voilacein and analogues in Saccharomyces cerevisiae. We show that HCSA can mimic the state-state results of ODE. Finally, we show its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast. We show the ability of HCSA to operate without biomass flux and perform MCA to determine rate-limiting reactions. Algorithm was implemented by Matlab and C ++. The code is available at https://github.com/kekegg/HCSA. xiezhengwei@hsc.pku.edu.cn or qi@pku.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Radio Resource Allocation on Complex 4G Wireless Cellular Networks

    NASA Astrophysics Data System (ADS)

    Psannis, Kostas E.

    2015-09-01

    In this article we consider the heuristic algorithm which improves step by step wireless data delivery over LTE cellular networks by using the total transmit power with the constraint on users’ data rates, and the total throughput with the constraints on the total transmit power as well as users’ data rates, which are jointly integrated into a hybrid-layer design framework to perform radio resource allocation for multiple users, and to effectively decide the optimal system parameter such as modulation and coding scheme (MCS) in order to adapt to the varying channel quality. We propose new heuristic algorithm which balances the accessible data rate, the initial data rates of each user allocated by LTE scheduler, the priority indicator which signals delay- throughput- packet loss awareness of the user, and the buffer fullness by achieving maximization of radio resource allocation for multiple users. It is noted that the overall performance is improved with the increase in the number of users, due to multiuser diversity. Experimental results illustrate and validate the accuracy of the proposed methodology.

  16. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    PubMed

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  17. Enhanced Online Access Requires Redesigned Delivery Options and Cost Models

    ERIC Educational Resources Information Center

    Stern, David

    2007-01-01

    Rapidly developing online information technologies provide dramatically new capabilities and opportunities, and place new responsibilities on all involved to recreate networks for scholarly communication. Collaborations between all segments of the information network are made possible and necessary as we attempt to find a balanced and mutually…

  18. Teacher Professionalization in the Age of Social Networking Sites

    ERIC Educational Resources Information Center

    Kimmons, Royce; Veletsianos, George

    2015-01-01

    As teacher education students become professionals, they face a number of tensions related to identity, social participation, and work-life balance, which may be further complicated by social networking sites (SNS). This qualitative study sought to articulate tensions that arose between professionalization influences and teacher education student…

  19. Concussion History and Time Since Concussion Do not Influence Static and Dynamic Balance in Collegiate Athletes.

    PubMed

    Merritt, Eric D; Brown, Cathleen N; Queen, Robin M; Simpson, Kathy J; Schmidt, Julianne D

    2017-11-01

    Dynamic balance deficits exist following a concussion, sometimes years after injury. However, clinicians lack practical tools for assessing dynamic balance. To determine if there are significant differences in static and dynamic balance performance between individuals with and without a history of concussion. Cross sectional. Clinical research laboratory. 45 collegiate student-athletes with a history of concussion (23 males, 22 females; age = 20.0 ± 1.4 y; height = 175.8 ± 11.6 cm; mass = 76.4 ± 19.2 kg) and 45 matched controls with no history of concussion (23 males, 22 females; age = 20.0 ± 1.3 y; height = 178.8 ± 13.2 cm; mass = 75.7 ± 18.2 kg). Participants completed a static (Balance Error Scoring System) and dynamic (Y Balance Test-Lower Quarter) balance assessment. A composite score was calculated from the mean normalized Y Balance Test-Lower Quarter reach distances. Firm, foam, and overall errors were counted during the Balance Error Scoring System by a single reliable rater. One-way ANOVAs were used to compare balance performance between groups. Pearson's correlations were performed to determine the relationship between the time since the most recent concussion and balance performance. A Bonferonni adjusted a priori α < 0.025 was used for all analyses. Static and dynamic balance performance did not significantly differ between groups. No significant correlation was found between the time since the most recent concussion and balance performance. Collegiate athletes with a history of concussion do not present with static or dynamic balance deficits when measured using clinical assessments. More research is needed to determine whether the Y Balance Test-Lower Quarter is sensitive to acute balance deficits following concussion.

  20. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    PubMed

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  1. Enzyme efficiency: An open reaction system perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Kinshuk, E-mail: kb36@rice.edu; Bhattacharyya, Kamal, E-mail: pchemkb@gmail.com

    2015-12-21

    A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form, applies to closed systems as well. The idea originates from the description of classical enzyme kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating the network not only deterministically but also stochastically. The latter accounts for any significant amount of noise that can be present in biological systems and hence reveals its impact on efficiency. Numerical verification of the results is also performed. It is found that the deterministic equation overestimates the efficiency, the more so for verymore » small system sizes. Roles of various kinetics parameters and system sizes on the efficiency are thoroughly explored and compared with the standard definition k{sub 2}/K{sub M}. Study of substrate fluctuation also indicates an interesting efficiency-accuracy balance.« less

  2. Parallel processing by cortical inhibition enables context-dependent behavior.

    PubMed

    Kuchibhotla, Kishore V; Gill, Jonathan V; Lindsay, Grace W; Papadoyannis, Eleni S; Field, Rachel E; Sten, Tom A Hindmarsh; Miller, Kenneth D; Froemke, Robert C

    2017-01-01

    Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV + , SOM + , and VIP + interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.

  3. LIBRA: An inexpensive geodetic network densification system

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Gantsweg, M.; Callahan, P. S.

    1975-01-01

    A description is given of the Libra (Locations Interposed by Ranging Aircraft) system, by which geodesy and earth strain measurements can be performed rapidly and inexpensively to several hundred auxiliary points with respect to a few fundamental control points established by any other technique, such as radio interferometry or satellite ranging. This low-cost means of extending the accuracy of space age geodesy to local surveys provides speed and spatial resolution useful, for example, for earthquake hazards estimation. Libra may be combined with an existing system, Aries (Astronomical Radio Interferometric Earth Surveying) to provide a balanced system adequate to meet the geophysical needs, and applicable to conventional surveying. The basic hardware design was outlined and specifications were defined. Then need for network densification was described. The following activities required to implement the proposed Libra system are also described: hardware development, data reduction, tropospheric calibrations, schedule of development and estimated costs.

  4. Using the D-Wave 2X Quantum Computer to Explore the Formation of Global Terrorist Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosiano, John Joseph; Roberts, Randy Mark; Sims, Benjamin Hayden

    Social networks with signed edges (+/-) play an important role in an area of social network theory called structural balance. In these networks, edges represent relationships that are labeled as either friendly (+) or hostile (-). A signed social network is balanced only if all cycles of three or more nodes in the graph have an odd number of hostile edges. A fundamental property of a balanced network is that it can be cleanly divided into 2 factions, where all relationships within each faction are friendly, and all relationships between members of different factions are hostile. The more unbalanced amore » network is, the more edges will fail to adhere to this rule, making factions more ambiguous. Social theory suggests unbalanced networks should be unstable, a finding that has been supported by research on gangs, which shows that unbalanced relationships are associated with greater violence, possibly due to this increased ambiguity about factional allegiances (Nakamura et al). One way to estimate the imbalance in a network, if only edge relationships are known, is to assign nodes to factions that minimize the number of violations of the edge rule described above. This problem is known to be computationally NP-hard. However, Facchetti et al. have pointed out that it is equivalent to an Ising model with a Hamiltonian that effectively counts the number of edge rule violations. Therefore, finding the assignment of factions that minimizes energy of the equivalent Ising system yields an estimate of the imbalance in the network. Based on the Ising model equivalence of the signed-social network balance problem, we have used the D-Wave 2X quantum annealing computer to explore some aspects of signed social networks. Because connectivity in the D-Wave computer is limited to its particular native topology, arbitrary networks cannot be represented directly. Rather, they must be “embedded” using a technique in which multiple qubits are chained together with special weights to simulate a collection of nodes with the required connectivity. This limits the size of a fully connected network in the D-Wave to about 50 simulated nodes, using all of the approximately 1150 qubits in the machine. In order to keep within this limitation, while exploring a problem of potential social relevance, we constructed time series of historical network snapshots from Stanford’s Mapping Militants Project, where nodes represent militant organizations, and edges represent either alliances or rivalries between organizations. We constructed two series from different theaters – Iraq and Syria – spanning timelines from about 2000 to 2016, each with networks whose maximum size was in the 20-30 node range. Computationally, our experience suggests D-Wave technology is promising, providing fast, nearly constant scaling of computational effort in the main part of the calculation that relies on the quantum annealing cycle. However, the cost of embedding an arbitrary network of interest in the D-Wave native topology scales poorly. If the embedding cost can be amortized relative to the annealing cycle, it may be possible to gain a substantial advantage over classical computing methods, provided a large enough network can be accommodated by partitioning into subnetworks or some similar strategy. In terms of our application to networks of militant organizations, we found a rise in network imbalance in the Syrian theater that appears to correspond roughly with the entrance of the Islamic State into a milieu already populated with other groups, a phenomenon we plan to explore in more detail. In these very preliminary results, we also noticed that during at least one period where both the size and imbalance of the network increased substantially, the imbalance per edge seemed to remain fairly steady. This may suggest some adaptive behavior among the participating factions, which may also warrant further exploration.« less

  5. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks.

    PubMed

    Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian

    2018-05-10

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%.

  6. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks

    PubMed Central

    Yu, Shidi; Liu, Xiao; Cai, Zhiping; Wang, Tian

    2018-01-01

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%. PMID:29748525

  7. Pseudo paths towards minimum energy states in network dynamics

    NASA Astrophysics Data System (ADS)

    Hedayatifar, L.; Hassanibesheli, F.; Shirazi, A. H.; Vasheghani Farahani, S.; Jafari, G. R.

    2017-10-01

    The dynamics of networks forming on Heider balance theory moves towards lower tension states. The condition derived from this theory enforces agents to reevaluate and modify their interactions to achieve equilibrium. These possible changes in network's topology can be considered as various paths that guide systems to minimum energy states. Based on this theory the final destination of a system could reside on a local minimum energy, ;jammed state;, or the global minimum energy, balanced states. The question we would like to address is whether jammed states just appear by chance? Or there exist some pseudo paths that bound a system towards a jammed state. We introduce an indicator to suspect the location of a jammed state based on the Inverse Participation Ratio method (IPR). We provide a margin before a local minimum where the number of possible paths dramatically drastically decreases. This is a condition that proves adequate for ending up on a jammed states.

  8. Security-Oriented and Load-Balancing Wireless Data Routing Game in the Integration of Advanced Metering Infrastructure Network in Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Fulin; Cao, Yang; Zhang, Jun Jason

    Ensuring flexible and reliable data routing is indispensable for the integration of Advanced Metering Infrastructure (AMI) networks, we propose a secure-oriented and load-balancing wireless data routing scheme. A novel utility function is designed based on security routing scheme. Then, we model the interactive security-oriented routing strategy among meter data concentrators or smart grid meters as a mixed-strategy network formation game. Finally, such problem results in a stable probabilistic routing scheme with proposed distributed learning algorithm. One contributions is that we studied that different types of applications affect the routing selection strategy and the strategy tendency. Another contributions is that themore » chosen strategy of our mixed routing can adaptively to converge to a new mixed strategy Nash equilibrium (MSNE) during the learning process in the smart grid.« less

  9. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  10. The Device Centric Communication System for 5G Networks

    NASA Astrophysics Data System (ADS)

    Biswash, S. K.; Jayakody, D. N. K.

    2017-01-01

    The Fifth Generation Communication (5G) networks have several functional features such as: Massive Multiple Input and Multiple Output (MIMO), Device centric data and voice support, Smarter-device communications, etc. The objective for 5G networks is to gain the 1000x more throughput, 10x spectral efficiency, 100 x more energy efficiency than existing technologies. The 5G system will provide the balance between the Quality of Experience (QoE) and the Quality of Service (QoS), without compromising the user benefit. The data rate has been the key metric for wireless QoS; QoE deals with the delay and throughput. In order to realize a balance between the QoS and QoE, we propose a cellular Device centric communication methodology for the overlapping network coverage area in the 5G communication system. The multiple beacon signals mobile tower refers to an overlapping network area, and a user must be forwarded to the next location area. To resolve this issue, we suggest the user centric methodology (without Base Station interface) to handover the device in the next area, until the users finalize the communication. The proposed method will reduce the signalling cost and overheads for the communication.

  11. EDOVE: Energy and Depth Variance-Based Opportunistic Void Avoidance Scheme for Underwater Acoustic Sensor Networks

    PubMed Central

    Eun, Yongsoon

    2017-01-01

    Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node’s depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15% packet delivery ratio, propagates 50% less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes. PMID:28954395

  12. EDOVE: Energy and Depth Variance-Based Opportunistic Void Avoidance Scheme for Underwater Acoustic Sensor Networks.

    PubMed

    Bouk, Safdar Hussain; Ahmed, Syed Hassan; Park, Kyung-Joon; Eun, Yongsoon

    2017-09-26

    Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node's depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15 % packet delivery ratio, propagates 50 % less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes.

  13. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br; Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the fullmore » synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.« less

  14. Interictal to Ictal Phase Transition in a Small-World Network

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Cravens, Gary; Worth, Robert

    Real-time detection and prediction of seizures in patients with epilepsy is essential for rapid intervention. Here, we perform a full Hodgkin-Huxley calculation using n 50 in silico neurons configured in a small-world network topology to generate simulated EEG signals. The connectivity matrix, constructed using a Watts-Strogatz algorithm, admits randomized or deterministic entries. We find that situations corresponding to interictal (non-seizure) and ictal (seizure) states are separated by a phase transition that can be influenced by congenital channelopathies, anticonvulsant drugs, and connectome plasticity. The interictal phase exhibits scale-free phenomena, as characterized by a power law form of the spectral power density, while the ictal state suffers from pathological synchronization. We compare the results with intracranial EEG data and show how these findings may be used to detect or even predict seizure onset. Along with the balance of excitatory and inhibitory factors, the network topology plays a large role in determining the overall characteristics of brain activity. We have developed a new platform for testing the conditions that contribute to the phase transition between non-seizure and seizure states.

  15. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  16. Balanced VS Imbalanced Training Data: Classifying Rapideye Data with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.

    2016-06-01

    The accuracy of supervised image classification is highly dependent upon several factors such as the design of training set (sample selection, composition, purity and size), resolution of input imagery and landscape heterogeneity. The design of training set is still a challenging issue since the sensitivity of classifier algorithm at learning stage is different for the same dataset. In this paper, the classification of RapidEye imagery with balanced and imbalanced training data for mapping the crop types was addressed. Classification with imbalanced training data may result in low accuracy in some scenarios. Support Vector Machines (SVM), Maximum Likelihood (ML) and Artificial Neural Network (ANN) classifications were implemented here to classify the data. For evaluating the influence of the balanced and imbalanced training data on image classification algorithms, three different training datasets were created. Two different balanced datasets which have 70 and 100 pixels for each class of interest and one imbalanced dataset in which each class has different number of pixels were used in classification stage. Results demonstrate that ML and NN classifications are affected by imbalanced training data in resulting a reduction in accuracy (from 90.94% to 85.94% for ML and from 91.56% to 88.44% for NN) while SVM is not affected significantly (from 94.38% to 94.69%) and slightly improved. Our results highlighted that SVM is proven to be a very robust, consistent and effective classifier as it can perform very well under balanced and imbalanced training data situations. Furthermore, the training stage should be precisely and carefully designed for the need of adopted classifier.

  17. Fertility preservation in women--a practical guide to preservation techniques and therapeutic strategies in breast cancer, Hodgkin's lymphoma and borderline ovarian tumours by the fertility preservation network FertiPROTEKT.

    PubMed

    von Wolff, Michael; Montag, Markus; Dittrich, Ralf; Denschlag, Dominik; Nawroth, Frank; Lawrenz, Barbara

    2011-08-01

    Fertility preservation methods are playing an increasing role in women up to the age of 40 years because of rising survival rates in those affected by cancer. However, balanced practical recommendations concerning all relevant fertility preservation, to support doctors in counselling and treating patients, are still rare. These recommendations were prepared by the network FertiPROTEKT ( http://www.fertiprotect.eu ), a collaboration of around 70 centres in Germany, Switzerland and Austria. The recommendations were developed by specialists in reproductive medicine, reproductive biology and oncology, which gave a comprehensive overview of all named techniques as well as their benefits and risks. Furthermore, practice-orientated recommendations for the individual use of fertility preservation methods for various indications such as breast cancer, Hodgkin's lymphoma and borderline ovarian tumours are given. Various options such as ovarian stimulation and cryopreservation of unfertilised or fertilised oocytes, cryopreservation and transplantation of ovarian tissue, GnRH-agonist administration and transposition of the ovaries can be offered. All the techniques can be performed alone or in combination within a maximum of 2 weeks with low risk and different success rates. Fertility preservation in women has become an option with realistic chances to become pregnant after cytotoxic therapies. The information provided allows a well balanced and realistic counselling and treatment.

  18. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    PubMed

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polettini, M., E-mail: matteo.polettini@uni.lu; Wachtel, A., E-mail: artur.wachtel@uni.lu; Esposito, M., E-mail: massimilano.esposito@uni.lu

    We study the effect of intrinsic noise on the thermodynamic balance of complex chemical networks subtending cellular metabolism and gene regulation. A topological network property called deficiency, known to determine the possibility of complex behavior such as multistability and oscillations, is shown to also characterize the entropic balance. In particular, when deficiency is zero the average stochastic dissipation rate equals that of the corresponding deterministic model, where correlations are disregarded. In fact, dissipation can be reduced by the effect of noise, as occurs in a toy model of metabolism that we employ to illustrate our findings. This phenomenon highlights thatmore » there is a close interplay between deficiency and the activation of new dissipative pathways at low molecule numbers.« less

  20. Complex behavior in chains of nonlinear oscillators.

    PubMed

    Alonso, Leandro M

    2017-06-01

    This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.

  1. Statistical physics of balance theory

    PubMed Central

    Belaza, Andres M.; Hoefman, Kevin; Bramson, Aaron; van den Heuvel, Milan; Schoors, Koen

    2017-01-01

    Triadic relationships are accepted to play a key role in the dynamics of social and political networks. Building on insights gleaned from balance theory in social network studies and from Boltzmann-Gibbs statistical physics, we propose a model to quantitatively capture the dynamics of the four types of triadic relationships in a network. Central to our model are the triads’ incidence rates and the idea that those can be modeled by assigning a specific triadic energy to each type of triadic relation. We emphasize the role of the degeneracy of the different triads and how it impacts the degree of frustration in the political network. In order to account for a persistent form of disorder in the formation of the triadic relationships, we introduce the systemic variable temperature. In order to learn about the dynamics and motives, we propose a generic Hamiltonian with three terms to model the triadic energies. One term is connected with a three-body interaction that captures balance theory. The other terms take into account the impact of heterogeneity and of negative edges in the triads. The validity of our model is tested on four datasets including the time series of triadic relationships for the standings between two classes of alliances in a massively multiplayer online game (MMOG). We also analyze real-world data for the relationships between the “agents” involved in the Syrian civil war, and in the relations between countries during the Cold War era. We find emerging properties in the triadic relationships in a political network, for example reflecting itself in a persistent hierarchy between the four triadic energies, and in the consistency of the extracted parameters from comparing the model Hamiltonian to the data. PMID:28846726

  2. Statistical physics of balance theory.

    PubMed

    Belaza, Andres M; Hoefman, Kevin; Ryckebusch, Jan; Bramson, Aaron; van den Heuvel, Milan; Schoors, Koen

    2017-01-01

    Triadic relationships are accepted to play a key role in the dynamics of social and political networks. Building on insights gleaned from balance theory in social network studies and from Boltzmann-Gibbs statistical physics, we propose a model to quantitatively capture the dynamics of the four types of triadic relationships in a network. Central to our model are the triads' incidence rates and the idea that those can be modeled by assigning a specific triadic energy to each type of triadic relation. We emphasize the role of the degeneracy of the different triads and how it impacts the degree of frustration in the political network. In order to account for a persistent form of disorder in the formation of the triadic relationships, we introduce the systemic variable temperature. In order to learn about the dynamics and motives, we propose a generic Hamiltonian with three terms to model the triadic energies. One term is connected with a three-body interaction that captures balance theory. The other terms take into account the impact of heterogeneity and of negative edges in the triads. The validity of our model is tested on four datasets including the time series of triadic relationships for the standings between two classes of alliances in a massively multiplayer online game (MMOG). We also analyze real-world data for the relationships between the "agents" involved in the Syrian civil war, and in the relations between countries during the Cold War era. We find emerging properties in the triadic relationships in a political network, for example reflecting itself in a persistent hierarchy between the four triadic energies, and in the consistency of the extracted parameters from comparing the model Hamiltonian to the data.

  3. The energy balance and pressure in the solar transition zone for network and active region features

    NASA Technical Reports Server (NTRS)

    Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.

    1979-01-01

    The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).

  4. Effects of levodopa on corticostriatal circuits supporting working memory in Parkinson's disease.

    PubMed

    Simioni, Alison C; Dagher, Alain; Fellows, Lesley K

    2017-08-01

    Working memory dysfunction is common in Parkinson's disease, even in its early stages, but its neural basis is debated. Working memory performance likely reflects a balance between corticostriatal dysfunction and compensatory mechanisms. We tested this hypothesis by examining working memory performance with a letter n-back task in 19 patients with mild-moderate Parkinson's disease and 20 demographically matched healthy controls. Parkinson's disease patients were tested after an overnight washout of their usual dopamine replacement therapy, and again after a standard dose of levodopa. FMRI was used to assess task-related activation and resting state functional connectivity; changes in BOLD signal were related to performance to disentangle pathological and compensatory processes. Parkinson's disease patients off dopamine replacement therapy displayed significantly reduced spatial extent of task-related activation in left prefrontal and bilateral parietal cortex, and poorer working memory performance, compared to controls. Amongst the Parkinson's disease patients off dopamine replacement therapy, relatively better performance was associated with greater activation of right dorsolateral prefrontal cortex compared to controls, consistent with compensatory right hemisphere recruitment. Administration of levodopa remediated the working memory deficit in the Parkinson's disease group, and resulted in a different pattern of performance-correlated activity, with a shift to greater left ventrolateral prefrontal cortex activation in patients on, compared to off dopamine replacement therapy. Levodopa also significantly increased resting-state functional connectivity between caudate and right parietal cortex (within the right fronto-parietal attentional network). The strength of this connectivity contributed to better performance in patients and controls, suggesting a general compensatory mechanism. These findings argue that Parkinson's disease patients can recruit additional neural resources, here, the right fronto-parietal network, to optimize working memory performance despite impaired corticostriatal function. Levodopa seems to both boost engagement of a task-specific prefrontal region, and strengthen a putative compensatory caudate-cortical network to support this executive function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Monitoring groundwater: optimising networks to take account of cost effectiveness, legal requirements and enforcement realities

    NASA Astrophysics Data System (ADS)

    Allan, A.; Spray, C.

    2013-12-01

    The quality of monitoring networks and modeling in environmental regulation is increasingly important. This is particularly true with respect to groundwater management, where data may be limited, physical processes poorly understood and timescales very long. The powers of regulators may be fatally undermined by poor or non-existent networks, primarily through mismatches between the legal standards that networks must meet, actual capacity and the evidentiary standards of courts. For example, in the second and third implementation reports on the Water Framework Directive, the European Commission drew attention to gaps in the standards of mandatory monitoring networks, where the standard did not meet the reality. In that context, groundwater monitoring networks should provide a reliable picture of groundwater levels and a ';coherent and comprehensive' overview of chemical status so that anthropogenically influenced long-term upward trends in pollutant levels can be tracked. Confidence in this overview should be such that 'the uncertainty from the monitoring process should not add significantly to the uncertainty of controlling the risk', with densities being sufficient to allow assessment of the impact of abstractions and discharges on levels in groundwater bodies at risk. The fact that the legal requirements for the quality of monitoring networks are set out in very vague terms highlights the many variables that can influence the design of monitoring networks. However, the quality of a monitoring network as part of the armory of environmental regulators is potentially of crucial importance. If, as part of enforcement proceedings, a regulator takes an offender to court and relies on conclusions derived from monitoring networks, a defendant may be entitled to question those conclusions. If the credibility, reliability or relevance of a monitoring network can be undermined, because it is too sparse, for example, this could have dramatic consequences on the ability of a regulator to ensure compliance with legal standards. On the other hand, it can be ruinously expensive to set up a monitoring network in remote areas and regulators must therefore balance the cost effectiveness of these networks against the chance that a court might question their fitness for purpose. This presentation will examine how regulators can balance legal standards for monitoring against the cost of developing and maintaining the requisite networks, while still producing observable improvements in water and ecosystem quality backed by legally enforceable sanctions for breaches. Reflecting the findings from the EU-funded GENESIS project, it will look at case law from around the world to assess how tribunals balance competing models, and the extent to which decisions may be revisited in the light of new scientific understanding. Finally, it will make recommendations to assist regulators in optimising their network designs for enforcement.

  6. Memory and pattern storage in neural networks with activity dependent synapses

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  7. The balanced scorecard: sustainable performance assessment for forensic laboratories.

    PubMed

    Houck, Max; Speaker, Paul J; Fleming, Arron Scott; Riley, Richard A

    2012-12-01

    The purpose of this article is to introduce the concept of the balanced scorecard into the laboratory management environment. The balanced scorecard is a performance measurement matrix designed to capture financial and non-financial metrics that provide insight into the critical success factors for an organization, effectively aligning organization strategy to key performance objectives. The scorecard helps organizational leaders by providing balance from two perspectives. First, it ensures an appropriate mix of performance metrics from across the organization to achieve operational excellence; thereby the balanced scorecard ensures that no single or limited group of metrics dominates the assessment process, possibly leading to long-term inferior performance. Second, the balanced scorecard helps leaders offset short term performance pressures by giving recognition and weight to long-term laboratory needs that, if not properly addressed, might jeopardize future laboratory performance. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Deployment Experiences of British Army Wives Before, During and After Deployment: Satisfaction with Military Life and Use of Support Networks

    DTIC Science & Technology

    2006-04-01

    capability. One key problem is the extent to which the pressures and demands of both family and military life compete. This work - life balance is especially...deployed to Iraq in 2003 (Op TELIC 1) and subsequently 2004-5 (Op TELIC 5). During periods of deployment, work - life balance may be particularly difficult...Perspectives on the Study of Work Life Balance . Available from: URL: http://www.ucm.es/info/Psyap/enop/guest.htm accessed on August 22 2005. 2. Coser, L

  9. Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements

    NASA Astrophysics Data System (ADS)

    Felicetti, Leonard; Santoni, Fabio

    2014-08-01

    The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.

  10. Comprehensive analysis of a Metabolic Model for lipid production in Rhodosporidium toruloides.

    PubMed

    Castañeda, María Teresita; Nuñez, Sebastián; Garelli, Fabricio; Voget, Claudio; Battista, Hernán De

    2018-05-19

    The yeast Rhodosporidium toruloides has been extensively studied for its application in biolipid production. The knowledge of its metabolism capabilities and the application of constraint-based flux analysis methodology provide useful information for process prediction and optimization. The accuracy of the resulting predictions is highly dependent on metabolic models. A metabolic reconstruction for R. toruloides metabolism has been recently published. On the basis of this model, we developed a curated version that unblocks the central nitrogen metabolism and, in addition, completes charge and mass balances in some reactions neglected in the former model. Then, a comprehensive analysis of network capability was performed with the curated model and compared with the published metabolic reconstruction. The flux distribution obtained by lipid optimization with Flux Balance Analysis was able to replicate the internal biochemical changes that lead to lipogenesis in oleaginous microorganisms. These results motivate the development of a genome-scale model for complete elucidation of R. toruloides metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  12. Is First-Order Vector Autoregressive Model Optimal for fMRI Data?

    PubMed

    Ting, Chee-Ming; Seghouane, Abd-Krim; Khalid, Muhammad Usman; Salleh, Sh-Hussain

    2015-09-01

    We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.g., the Akaike IC (AIC)) are biased and inappropriate for the high-dimensional fMRI data typically with a small sample size. We examine the mixed results on the optimal VAR orders for fMRI, especially the validity of the order-one hypothesis, by a comprehensive evaluation using different model selection criteria over three typical data types--a resting state, an event-related design, and a block design data set--with varying time series dimensions obtained from distinct functional brain networks. We use a more balanced criterion, Kullback's IC (KIC) based on Kullback's symmetric divergence combining two directed divergences. We also consider the bias-corrected versions (AICc and KICc) to improve VAR model selection in small samples. Simulation results show better small-sample selection performance of the proposed criteria over the classical ones. Both bias-corrected ICs provide more accurate and consistent model order choices than their biased counterparts, which suffer from overfitting, with KICc performing the best. Results on real data show that orders greater than one were selected by all criteria across all data sets for the small to moderate dimensions, particularly from small, specific networks such as the resting-state default mode network and the task-related motor networks, whereas low orders close to one but not necessarily one were chosen for the large dimensions of full-brain networks.

  13. A security architecture for health information networks.

    PubMed

    Kailar, Rajashekar; Muralidhar, Vinod

    2007-10-11

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today's healthcare enterprise. Recent work on 'nationwide health information network' architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately.

  14. Methodically Modeling the Tor Network

    DTIC Science & Technology

    2012-08-01

    relays for their circuits: the choice is weighted by the rela- tive difference in the perceived throughput of each relay in an attempt to balance...network. A lack of details about and justifications for such choices obscures the level of faithfulness to the live network and decreases confidence...first byte of the data payload is shown in (a) and (b), and time to the last byte in (c) and (d), for various download sizes. ping process . File download

  15. ARPA LOMBARDIA river gauging network: a great daily effort

    NASA Astrophysics Data System (ADS)

    Cislaghi, Matteo; Calabrese, Michele; Condemi, Leonardo; Di Priolo, Sara; Parravicini, Paola; Rondanini, Chiara; Russo, Michele; Cazzuli, Orietta; Mussin, Mauro; Serra, Roberto

    2017-04-01

    ARPA Lombardia is the Environmental Protection Agency of Lombardy, a wide region in northern Italy. ARPA is in charge of river monitoring either for Civil Protection or water balance purposes. Lombardy is characterized by a very complex territory; rivers start from the alpine areas and end in the Po river plain. Each mountain or plain area has specific hydrological features that has to be considered when planning a monitoring network. Moreover, human activities (such as lake regulation, agriculture diversions, hydropower plants with regulation structure etc) add anthropic interferences on the natural river system and can invalidate the collected data. In the last 10 years ARPA performed a major revision of the river gauging network. Each station was analysed using well defined criteria based on the required information (water balance or flood monitoring) and on the suitability of the gauging site (hydraulic characteristic or accessibility for spot measures). In the end more than 30% of the network was revised, many stations were closed and other installed. Particular attention was given to the discharge estimation. Many sites are characterized by backflow effect due to river confluences or to hydropower plants with water regulation structures. In these cases the classic rating curve approach can not be applied. Thus, for the first time in Italy, water velocity side looking doppler sensors were installed on natural rivers and the discharge is estimated with the index velocity method. The Italian Civil Protection Agency requires high transmission standards. No data can be lost for transmission failures and data has to be available every 30 minutes. For these reasons ARPA implemented a double transmission system: the first is based on the existing GPRS network managed by private operators, the second is based on a radio network directly installed by ARPA and totally dedicated to data transmission. This double approach ensures a very robust transmission and it allows ARPA to collect and publish data every 10 minutes. ARPA also decided to freely publish all hydrological data on its web site (http://idro.arpalombardia.it). Since 2010 either real time data or historical long series have been made available to everyone over a webgis platform. Every day ARPA employs check if the network is working correctly and validate the data. The aim is to follow the whole process of data management from its collection on the field to its open publication; this requires a great daily effort from the people in charge of the network maintenance.

  16. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.

    PubMed

    Wiechert, W; de Graaf, A A

    1997-07-05

    The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.

  17. Investigating the relationship between jobs-housing balance and traffic safety.

    PubMed

    Xu, Chengcheng; Li, Haojie; Zhao, Jingya; Chen, Jun; Wang, Wei

    2017-10-01

    This study aimed to investigate the effects of jobs-housing balance on traffic safety. The crash, demographic characteristics, employment, road network, household characteristics and traffic data were collected from the Los Angeles in 2010. One-way ANOVA tests indicated that the jobs-housing ratio significantly affects traffic safety in terms of crash frequency at traffic analysis zone (TAZ). To quantify the safety impacts of jobs-housing balance, the semi-parametric geographically weighted Poisson regression (S-GWPR) was further used to link crash frequency at TAZ with jobs-housing ratio and other contributing factors. The S-GWPR provides better fitness to the data than do the generalized linear regression, as the S-GWPR accounts for the spatial heterogeneity. The S-GWPR results showed that the jobs-housing relationship has a significant association with crash frequency at TAZ when the factors of traffic, network, and household characteristics are controlled. Crash frequency at TAZ level increases with an increase in the jobs-housing ratio. To further investigate the interactive effects between jobs-housing ratio and other factors, a comparative analysis was conducted to compare the variable elasticities under different jobs-housing ratios. The results indicate considerable interactive effects that traffic conditions and road network characteristics have different effects on crash frequency under various jobs-housing ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Balance decrements are associated with age-related muscle property changes.

    PubMed

    Hasson, Christopher J; van Emmerik, Richard E A; Caldwell, Graham E

    2014-08-01

    In this study, a comprehensive evaluation of static and dynamic balance abilities was performed in young and older adults and regression analysis was used to test whether age-related variations in individual ankle muscle mechanical properties could explain differences in balance performance. The mechanical properties included estimates of the maximal isometric force capability, force-length, force-velocity, and series elastic properties of the dorsiflexors and individual plantarflexor muscles (gastrocnemius and soleus). As expected, the older adults performed more poorly on most balance tasks. Muscular maximal isometric force, optimal fiber length, tendon slack length, and velocity-dependent force capabilities accounted for up to 60% of the age-related variation in performance on the static and dynamic balance tests. In general, the plantarflexors had a stronger predictive role than the dorsiflexors. Plantarflexor stiffness was strongly related to general balance performance, particularly in quiet stance; but this effect did not depend on age. Together, these results suggest that age-related differences in balance performance are explained in part by alterations in muscular mechanical properties.

  19. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  20. Nonlinear adaptive networks: A little theory, a few applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Qian, S.; Barnes, C.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.

Top