Distributed semantic networks and CLIPS
NASA Technical Reports Server (NTRS)
Snyder, James; Rodriguez, Tony
1991-01-01
Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.
A Complex Network Approach to Distributional Semantic Models
Utsumi, Akira
2015-01-01
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940
Developing Visualization Techniques for Semantics-based Information Networks
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Hall, David R.
2003-01-01
Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.
A Tri-network Model of Human Semantic Processing
Xu, Yangwen; He, Yong; Bi, Yanchao
2017-01-01
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266
ERIC Educational Resources Information Center
Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.
2016-01-01
We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…
Semantic networks based on titles of scientific papers
NASA Astrophysics Data System (ADS)
Pereira, H. B. B.; Fadigas, I. S.; Senna, V.; Moret, M. A.
2011-03-01
In this paper we study the topological structure of semantic networks based on titles of papers published in scientific journals. It discusses its properties and presents some reflections on how the use of social and complex network models can contribute to the diffusion of knowledge. The proposed method presented here is applied to scientific journals where the titles of papers are in English or in Portuguese. We show that the topology of studied semantic networks are small-world and scale-free.
Hypermedia-Assisted Instruction and Second Language Learning: A Semantic-Network-Based Approach.
ERIC Educational Resources Information Center
Liu, Min
This literature review examines a hypermedia learning environment from a semantic network basis and the application of such an environment to second language learning. (A semantic network is defined as a conceptual representation of knowledge in human memory). The discussion is organized under the following headings and subheadings: (1) Advantages…
ERIC Educational Resources Information Center
Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica
2011-01-01
Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…
Gruenenfelder, Thomas M; Recchia, Gabriel; Rubin, Tim; Jones, Michael N
2016-08-01
We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on an associative network (POC) successfully predicted all of the network properties and predicted a word's top five associates as well as or better than the better of the two constituent models. The results suggest that participants switch between a contextual representation and an associative network when generating free associations. We discuss the role that each of these representations may play in lexical semantic memory. Concordant with recent multicomponent theories of semantic memory, the associative network may encode coordinate relations between concepts (e.g., the relation between pea and bean, or between sparrow and robin), and contextual representations may be used to process information about more abstract concepts. Copyright © 2015 Cognitive Science Society, Inc.
Discovering Central Practitioners in a Medical Discussion Forum Using Semantic Web Analytics.
Rajabi, Enayat; Abidi, Syed Sibte Raza
2017-01-01
The aim of this paper is to investigate semantic web based methods to enrich and transform a medical discussion forum in order to perform semantics-driven social network analysis. We use the centrality measures as well as semantic similarity metrics to identify the most influential practitioners within a discussion forum. The centrality results of our approach are in line with centrality measures produced by traditional SNA methods, thus validating the applicability of semantic web based methods for SNA, particularly for analyzing social networks for specialized discussion forums.
Fast Distributed Dynamics of Semantic Networks via Social Media.
Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández
2015-01-01
We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.
Fast Distributed Dynamics of Semantic Networks via Social Media
Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego
2015-01-01
We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953
A suffix arrays based approach to semantic search in P2P systems
NASA Astrophysics Data System (ADS)
Shi, Qingwei; Zhao, Zheng; Bao, Hu
2007-09-01
Building a semantic search system on top of peer-to-peer (P2P) networks is becoming an attractive and promising alternative scheme for the reason of scalability, Data freshness and search cost. In this paper, we present a Suffix Arrays based algorithm for Semantic Search (SASS) in P2P systems, which generates a distributed Semantic Overlay Network (SONs) construction for full-text search in P2P networks. For each node through the P2P network, SASS distributes document indices based on a set of suffix arrays, by which clusters are created depending on words or phrases shared between documents, therefore, the search cost for a given query is decreased by only scanning semantically related documents. In contrast to recently announced SONs scheme designed by using metadata or predefined-class, SASS is an unsupervised approach for decentralized generation of SONs. SASS is also an incremental, linear time algorithm, which efficiently handle the problem of nodes update in P2P networks. Our simulation results demonstrate that SASS yields high search efficiency in dynamic environments.
Ruan, W; Bürkle, T; Dudeck, J
2000-01-01
In this paper we present a data dictionary server for the automated navigation of information sources. The underlying knowledge is represented within a medical data dictionary. The mapping between medical terms and information sources is based on a semantic network. The key aspect of implementing the dictionary server is how to represent the semantic network in a way that is easier to navigate and to operate, i.e. how to abstract the semantic network and to represent it in memory for various operations. This paper describes an object-oriented design based on Java that represents the semantic network in terms of a group of objects. A node and its relationships to its neighbors are encapsulated in one object. Based on such a representation model, several operations have been implemented. They comprise the extraction of parts of the semantic network which can be reached from a given node as well as finding all paths between a start node and a predefined destination node. This solution is independent of any given layout of the semantic structure. Therefore the module, called Giessen Data Dictionary Server can act independent of a specific clinical information system. The dictionary server will be used to present clinical information, e.g. treatment guidelines or drug information sources to the clinician in an appropriate working context. The server is invoked from clinical documentation applications which contain an infobutton. Automated navigation will guide the user to all the information relevant to her/his topic, which is currently available inside our closed clinical network.
Computer-Based Semantic Network in Molecular Biology: A Demonstration.
ERIC Educational Resources Information Center
Callman, Joshua L.; And Others
This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…
Semantic Web and Contextual Information: Semantic Network Analysis of Online Journalistic Texts
NASA Astrophysics Data System (ADS)
Lim, Yon Soo
This study examines why contextual information is important to actualize the idea of semantic web, based on a case study of a socio-political issue in South Korea. For this study, semantic network analyses were conducted regarding English-language based 62 blog posts and 101 news stories on the web. The results indicated the differences of the meaning structures between blog posts and professional journalism as well as between conservative journalism and progressive journalism. From the results, this study ascertains empirical validity of current concerns about the practical application of the new web technology, and discusses how the semantic web should be developed.
Network-Based Visual Analysis of Tabular Data
ERIC Educational Resources Information Center
Liu, Zhicheng
2012-01-01
Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…
Disruption of Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI
Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico
2018-01-01
Subtle semantic deficits can be observed in Alzheimer’s disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke’s area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. PMID:29197559
Intelligent Agents as a Basis for Natural Language Interfaces
1988-01-01
language analysis component of UC, which produces a semantic representa tion of the input. This representation is in the form of a KODIAK network (see...Appendix A). Next, UC’s Concretion Mechanism performs concretion inferences ([Wilensky, 1983] and [Norvig, 1983]) based on the semantic network...The first step in UC’s processing is done by UC’s parser/understander component which produces a KODIAK semantic network representa tion of
Peng, Jiajie; Zhang, Xuanshuo; Hui, Weiwei; Lu, Junya; Li, Qianqian; Liu, Shuhui; Shang, Xuequn
2018-03-19
Gene Ontology (GO) is one of the most popular bioinformatics resources. In the past decade, Gene Ontology-based gene semantic similarity has been effectively used to model gene-to-gene interactions in multiple research areas. However, most existing semantic similarity approaches rely only on GO annotations and structure, or incorporate only local interactions in the co-functional network. This may lead to inaccurate GO-based similarity resulting from the incomplete GO topology structure and gene annotations. We present NETSIM2, a new network-based method that allows researchers to measure GO-based gene functional similarities by considering the global structure of the co-functional network with a random walk with restart (RWR)-based method, and by selecting the significant term pairs to decrease the noise information. Based on the EC number (Enzyme Commission)-based groups of yeast and Arabidopsis, evaluation test shows that NETSIM2 can enhance the accuracy of Gene Ontology-based gene functional similarity. Using NETSIM2 as an example, we found that the accuracy of semantic similarities can be significantly improved after effectively incorporating the global gene-to-gene interactions in the co-functional network, especially on the species that gene annotations in GO are far from complete.
Semantic Networks and Social Networks
ERIC Educational Resources Information Center
Downes, Stephen
2005-01-01
Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.
Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie
2016-12-01
Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.
Language Networks Associated with Computerized Semantic Indices
Pakhomov, Serguei V. S.; Jones, David T.; Knopman, David S.
2014-01-01
Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. PMID:25315785
Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI.
Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico
2018-02-10
Subtle semantic deficits can be observed in Alzheimer's disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke's area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Language networks associated with computerized semantic indices.
Pakhomov, Serguei V S; Jones, David T; Knopman, David S
2015-01-01
Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory. Copyright © 2014 Elsevier Inc. All rights reserved.
Generating Researcher Networks with Identified Persons on a Semantic Service Platform
NASA Astrophysics Data System (ADS)
Jung, Hanmin; Lee, Mikyoung; Kim, Pyung; Lee, Seungwoo
This paper describes a Semantic Web-based method to acquire researcher networks by means of identification scheme, ontology, and reasoning. Three steps are required to realize it; resolving co-references, finding experts, and generating researcher networks. We adopt OntoFrame as an underlying semantic service platform and apply reasoning to make direct relations between far-off classes in ontology schema. 453,124 Elsevier journal articles with metadata and full-text documents in information technology and biomedical domains have been loaded and served on the platform as a test set.
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2014-01-01
Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.
Rule-based support system for multiple UMLS semantic type assignments
Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia
2012-01-01
Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716
Ontology Alignment Architecture for Semantic Sensor Web Integration
Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo
2013-01-01
Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523
Ontology alignment architecture for semantic sensor Web integration.
Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo
2013-09-18
Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.
Semantic policy and adversarial modeling for cyber threat identification and avoidance
NASA Astrophysics Data System (ADS)
DeFrancesco, Anton; McQueary, Bruce
2009-05-01
Today's enterprise networks undergo a relentless barrage of attacks from foreign and domestic adversaries. These attacks may be perpetrated with little to no funding, but may wreck incalculable damage upon the enterprises security, network infrastructure, and services. As more services come online, systems that were once in isolation now provide information that may be combined dynamically with information from other systems to create new meaning on the fly. Security issues are compounded by the potential to aggregate individual pieces of information and infer knowledge at a higher classification than any of its constituent parts. To help alleviate these challenges, in this paper we introduce the notion of semantic policy and discuss how it's use is evolving from a robust approach to access control to preempting and combating attacks in the cyber domain, The introduction of semantic policy and adversarial modeling to network security aims to ask 'where is the network most vulnerable', 'how is the network being attacked', and 'why is the network being attacked'. The first aspect of our approach is integration of semantic policy into enterprise security to augment traditional network security with an overall awareness of policy access and violations. This awareness allows the semantic policy to look at the big picture - analyzing trends and identifying critical relations in system wide data access. The second aspect of our approach is to couple adversarial modeling with semantic policy to move beyond reactive security measures and into a proactive identification of system weaknesses and areas of vulnerability. By utilizing Bayesian-based methodologies, the enterprise wide meaning of data and semantic policy is applied to probability and high-level risk identification. This risk identification will help mitigate potential harm to enterprise networks by enabling resources to proactively isolate, lock-down, and secure systems that are most vulnerable.
Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia
2012-06-21
Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.
Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao
2015-09-01
Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478
A Bloom Filter-Powered Technique Supporting Scalable Semantic Discovery in Data Service Networks
NASA Astrophysics Data System (ADS)
Zhang, J.; Shi, R.; Bao, Q.; Lee, T. J.; Ramachandran, R.
2016-12-01
More and more Earth data analytics software products are published onto the Internet as a service, in the format of either heavyweight WSDL service or lightweight RESTful API. Such reusable data analytics services form a data service network, which allows Earth scientists to compose (mashup) services into value-added ones. Therefore, it is important to have a technique that is capable of helping Earth scientists quickly identify appropriate candidate datasets and services in the global data service network. Most existing services discovery techniques, however, mainly rely on syntax or semantics-based service matchmaking between service requests and available services. Since the scale of the data service network is increasing rapidly, the run-time computational cost will soon become a bottleneck. To address this issue, this project presents a way of applying network routing mechanism to facilitate data service discovery in a service network, featuring scalability and performance. Earth data services are automatically annotated in Web Ontology Language for Services (OWL-S) based on their metadata, semantic information, and usage history. Deterministic Annealing (DA) technique is applied to dynamically organize annotated data services into a hierarchical network, where virtual routers are created to represent semantic local network featuring leading terms. Afterwards Bloom Filters are generated over virtual routers. A data service search request is transformed into a network routing problem in order to quickly locate candidate services through network hierarchy. A neural network-powered technique is applied to assure network address encoding and routing performance. A series of empirical study has been conducted to evaluate the applicability and effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh
2016-09-01
Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.
An Enriched Unified Medical Language System Semantic Network with a Multiple Subsumption Hierarchy
Zhang, Li; Perl, Yehoshua; Halper, Michael; Geller, James; Cimino, James J.
2004-01-01
Objective: The Unified Medical Language System's (UMLS's) Semantic Network's (SN's) two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. In this article, the SN is expanded into a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links are added as warranted. Design: Two methodologies are presented to identify and add new viable IS-A links. The first methodology is based on imposing the characteristic of connectivity on a previously presented partition of the SN. Four transformations are provided to find viable IS-A links in the process of converting the partition's disconnected groups into connected ones. The second methodology identifies new IS-A links through a string matching process involving names and definitions of various semantic types in the SN. A domain expert is needed to review all the results to determine the validity of the new IS-A links. Results: Nineteen new IS-A links are added to the SN, and four new semantic types are also created to support the multiple subsumption framework. The resulting network, called the Enriched Semantic Network (ESN), exhibits a DAG-structured hierarchy. A partition of the ESN containing 19 connected groups is also derived. Conclusion: The ESN is an expanded abstraction of the UMLS compared with the original SN. Its multiple subsumption hierarchy can accommodate semantic types with multiple parents. Its representation thus provides direct access to a broader range of subsumption knowledge. PMID:14764611
Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network
Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord
2015-01-01
Background The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM’s semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. Objective The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. Methods In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. Results The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. Conclusions It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively. PMID:27731860
Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network.
Tix, Nadine; Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord
2015-11-11
The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM's semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively.
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2012-01-01
Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718
The Topology of a Discussion: The #Occupy Case.
Gargiulo, Floriana; Bindi, Jacopo; Apolloni, Andrea
2015-01-01
We analyse a large sample of the Twitter activity that developed around the social movement 'Occupy Wall Street', to study the complex interactions between the human communication activity and the semantic content of a debate. We use a network approach based on the analysis of the bipartite graph @Users-#Hashtags and of its projections: the 'semantic network', whose nodes are hashtags, and the 'users interest network', whose nodes are users. In the first instance, we find out that discussion topics (#hashtags) present a high structural heterogeneity, with a relevant role played by the semantic hubs that are responsible to guarantee the continuity of the debate. In the users' case, the self-organisation process of users' activity, leads to the emergence of two classes of communicators: the 'professionals' and the 'amateurs'. Both the networks present a strong community structure, based on the differentiation of the semantic topics, and a high level of structural robustness when certain sets of topics are censored and/or accounts are removed. By analysing the characteristics of the dynamical networks we can distinguish three phases of the discussion about the movement. Each phase corresponds to a specific moment of the movement: from declaration of intent, organisation and development and the final phase of political reactions. Each phase is characterised by the presence of prototypical #hashtags in the discussion.
An open repositories network development for medical teaching resources.
Soula, Gérard; Darmoni, Stefan; Le Beux, Pierre; Renard, Jean-Marie; Dahamna, Badisse; Fieschi, Marius
2010-01-01
The lack of interoperability between repositories of heterogeneous and geographically widespread data is an obstacle to the diffusion, sharing and reutilization of those data. We present the development of an open repositories network taking into account both the syntactic and semantic interoperability of the different repositories and based on international standards in this field. The network is used by the medical community in France for the diffusion and sharing of digital teaching resources. The syntactic interoperability of the repositories is managed using the OAI-PMH protocol for the exchange of metadata describing the resources. Semantic interoperability is based, on one hand, on the LOM standard for the description of resources and on MESH for the indexing of the latter and, on the other hand, on semantic interoperability management designed to optimize compliance with standards and the quality of the metadata.
Developing A Web-based User Interface for Semantic Information Retrieval
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Keller, Richard M.
2003-01-01
While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.
Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
Finding gene regulatory network candidates using the gene expression knowledge base.
Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin
2014-12-10
Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.
Exploiting Recurring Structure in a Semantic Network
NASA Technical Reports Server (NTRS)
Wolfe, Shawn R.; Keller, Richard M.
2004-01-01
With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.
Semantic integration to identify overlapping functional modules in protein interaction networks
Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong
2007-01-01
Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343
Conceptual Hierarchies in a Flat Attractor Network
O’Connor, Christopher M.; Cree, George S.; McRae, Ken
2009-01-01
The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable
Grilli, Matthew D
2017-11-01
Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.
Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks
NASA Astrophysics Data System (ADS)
Rajendran, Balaji; Kombiah, Iyakutti
Web-based Knowledge Gathering (WKG) is a specialized and complex information seeking task carried out by many users on the web, for their various learning, and decision-making requirements. We construct a contextual semantic structure by observing the actions of the users involved in WKG task, in order to gain an understanding of their task and requirement. We also build a knowledge warehouse in the form of a master Semantic Link Network (SLX) that accommodates and assimilates all the contextual semantic structures. This master SLX, which is a socio-contextual network, is then mined to provide contextual inputs to the current users through their agents. We validated our approach through experiments and analyzed the benefits to the users in terms of resource explorations and the time saved. The results are positive enough to motivate us to implement in a larger scale.
Knowledge represented using RDF semantic network in the concept of semantic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz
The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less
Auditing Associative Relations across Two Knowledge Sources
Vizenor, Lowell T.; Bodenreider, Olivier; McCray, Alexa T.
2009-01-01
Objectives This paper proposes a novel semantic method for auditing associative relations in biomedical terminologies. We tested our methodology on two Unified Medical Language System (UMLS) knowledge sources. Methods We use the UMLS semantic groups as high-level representations of the domain and range of relationships in the Metathesaurus and in the Semantic Network. A mapping created between Metathesaurus relationships and Semantic Network relationships forms the basis for comparing the signatures of a given Metathesaurus relationship to the signatures of the semantic relationship to which it is mapped. The consistency of Metathesaurus relations is studied for each relationship. Results Of the 177 associative relationships in the Metathesaurus, 84 (48%) exhibit a high degree of consistency with the corresponding Semantic Network relationships. Overall, 63% of the 1.8M associative relations in the Metathesaurus are consistent with relations in the Semantic Network. Conclusion The semantics of associative relationships in biomedical terminologies should be defined explicitly by their developers. The Semantic Network would benefit from being extended with new relationships and with new relations for some existing relationships. The UMLS editing environment could take advantage of the correspondence established between relationships in the Metathesaurus and the Semantic Network. Finally, the auditing method also yielded useful information for refining the mapping of associative relationships between the two sources. PMID:19475724
Fully convolutional network with cluster for semantic segmentation
NASA Astrophysics Data System (ADS)
Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin
2018-04-01
At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.
MESUR: USAGE-BASED METRICS OF SCHOLARLY IMPACT
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOLLEN, JOHAN; RODRIGUEZ, MARKO A.; VAN DE SOMPEL, HERBERT
2007-01-30
The evaluation of scholarly communication items is now largely a matter of expert opinion or metrics derived from citation data. Both approaches can fail to take into account the myriad of factors that shape scholarly impact. Usage data has emerged as a promising complement to existing methods o fassessment but the formal groundwork to reliably and validly apply usage-based metrics of schlolarly impact is lacking. The Andrew W. Mellon Foundation funded MESUR project constitutes a systematic effort to define, validate and cross-validate a range of usage-based metrics of schlolarly impact by creating a semantic model of the scholarly communication process.more » The constructed model will serve as the basis of a creating a large-scale semantic network that seamlessly relates citation, bibliographic and usage data from a variety of sources. A subsequent program that uses the established semantic network as a reference data set will determine the characteristics and semantics of a variety of usage-based metrics of schlolarly impact. This paper outlines the architecture and methodology adopted by the MESUR project and its future direction.« less
How Semantic Radicals in Chinese characters Facilitate Hierarchical Category-Based Induction.
Wang, Xiaoxi; Ma, Xie; Tao, Yun; Tao, Yachen; Li, Hong
2018-04-03
Prior studies indicate that the semantic radical in Chinese characters contains category information that can support the independent retrieval of category information through the lexical network to the conceptual network. Inductive reasoning relies on category information; thus, semantic radicals may influence inductive reasoning. As most natural concepts are hierarchically structured in the human brain, this study examined how semantic radicals impact inductive reasoning for hierarchical concepts. The study used animal and plant nouns, organized in basic, superordinate, and subordinate levels; half had a semantic radical and half did not. Eighteen participants completed an inductive reasoning task. Behavioural and event-related potential (ERP) data were collected. The behavioural results showed that participants reacted faster and more accurately in the with-semantic-radical condition than in the without-semantic-radical condition. For the ERPs, differences between the conditions were found, and these differences lasted from the very early cognitive processing stage (i.e., the N1 time window) to the relatively late processing stages (i.e., the N400 and LPC time windows). Semantic radicals can help to distinguish the hierarchies earlier (in the N400 period) than characters without a semantic radical (in the LPC period). These results provide electrophysiological evidence that semantic radicals may improve sensitivity to distinguish between hierarchical concepts.
Mapping the Structure of Semantic Memory
ERIC Educational Resources Information Center
Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J.
2013-01-01
Aggregating snippets from the semantic memories of many individuals may not yield a good map of an individual's semantic memory. The authors analyze the structure of semantic networks that they sampled from individuals through a new snowball sampling paradigm during approximately 6 weeks of 1-hr daily sessions. The semantic networks of individuals…
Ontology Design of Influential People Identification Using Centrality
NASA Astrophysics Data System (ADS)
Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi
2018-04-01
Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.
Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu
2017-01-01
Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.
Information Warfare: Evaluation of Operator Information Processing Models
1997-10-01
that people can describe or report, including both episodic and semantic information. Declarative memory contains a network of knowledge represented...second dimension corresponds roughly to the distinction between episodic and semantic memory that is commonly made in cognitive psychology. Episodic ...3 is long-term memory for the discourse, a subset of episodic memory . Partition 4 is long-term semantic memory , or the knowledge-base. According to
A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.
Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel
2012-10-15
A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.
Structure at every scale: A semantic network account of the similarities between unrelated concepts.
De Deyne, Simon; Navarro, Daniel J; Perfors, Amy; Storms, Gert
2016-09-01
Similarity plays an important role in organizing the semantic system. However, given that similarity cannot be defined on purely logical grounds, it is important to understand how people perceive similarities between different entities. Despite this, the vast majority of studies focus on measuring similarity between very closely related items. When considering concepts that are very weakly related, little is known. In this article, we present 4 experiments showing that there are reliable and systematic patterns in how people evaluate the similarities between very dissimilar entities. We present a semantic network account of these similarities showing that a spreading activation mechanism defined over a word association network naturally makes correct predictions about weak similarities, whereas, though simpler, models based on direct neighbors between word pairs derived using the same network cannot. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG.
Jin, Wenquan; Kim, Do Hyeun
2018-02-20
Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.
Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG
Kim, Do Hyeun
2018-01-01
Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system. PMID:29461493
Using RDF to Model the Structure and Process of Systems
NASA Astrophysics Data System (ADS)
Rodriguez, Marko A.; Watkins, Jennifer H.; Bollen, Johan; Gershenson, Carlos
Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 109 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.
Kumar, Anand; Ciccarese, Paolo; Quaglini, Silvana; Stefanelli, Mario; Caffi, Ezio; Boiocchi, Lorenzo
2003-01-01
Medical knowledge in clinical practice guideline (GL) texts is the source of task-based computer-interpretable clinical guideline models (CIGMs). We have used Unified Medical Language System (UMLS) semantic types (STs) to understand the percentage of GL text which belongs to a particular ST. We also use UMLS semantic network together with the CIGM-specific ontology to derive a semantic meaning behind the GL text. In order to achieve this objective, we took nine GL texts from the National Guideline Clearinghouse (NGC) and marked up the text dealing with a particular ST. The STs we took into consideration were restricted taking into account the requirements of a task-based CIGM. We used DARPA Agent Markup Language and Ontology Inference Layer (DAML + OIL) to create the UMLS and CIGM specific semantic network. For the latter, as a bench test, we used the 1999 WHO-International Society of Hypertension Guidelines for the Management of Hypertension. We took into consideration the UMLS STs closest to the clinical tasks. The percentage of the GL text dealing with the ST "Health Care Activity" and subtypes "Laboratory Procedure", "Diagnostic Procedure" and "Therapeutic or Preventive Procedure" were measured. The parts of text belonging to other STs or comments were separated. A mapping of terms belonging to other STs was done to the STs under "HCA" for representation in DAML + OIL. As a result, we found that the three STs under "HCA" were the predominant STs present in the GL text. In cases where the terms of related STs existed, they were mapped into one of the three STs. The DAML + OIL representation was able to describe the hierarchy in task-based CIGMs. To conclude, we understood that the three STs could be used to represent the semantic network of the task-bases CIGMs. We identified some mapping operators which could be used for the mapping of other STs into these.
Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts
He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang
2018-01-01
The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments. PMID:29375930
Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts.
He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang
2017-11-01
The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments.
NASA Astrophysics Data System (ADS)
Chen, K.; Weinmann, M.; Gao, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M.
2018-05-01
In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.
NASA Astrophysics Data System (ADS)
Wang, Z.; Li, T.; Pan, L.; Kang, Z.
2017-09-01
With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method can achieve a good performance on indoor RGB-D image semantic segmentation.
Order recall in verbal short-term memory: The role of semantic networks.
Poirier, Marie; Saint-Aubin, Jean; Mair, Ali; Tehan, Gerry; Tolan, Anne
2015-04-01
In their recent article, Acheson, MacDonald, and Postle (Journal of Experimental Psychology: Learning, Memory, and Cognition 37:44-59, 2011) made an important but controversial suggestion: They hypothesized that (a) semantic information has an effect on order information in short-term memory (STM) and (b) order recall in STM is based on the level of activation of items within the relevant lexico-semantic long-term memory (LTM) network. However, verbal STM research has typically led to the conclusion that factors such as semantic category have a large effect on the number of correctly recalled items, but little or no impact on order recall (Poirier & Saint-Aubin, Quarterly Journal of Experimental Psychology 48A:384-404, 1995; Saint-Aubin, Ouellette, & Poirier, Psychonomic Bulletin & Review 12:171-177, 2005; Tse, Memory 17:874-891, 2009). Moreover, most formal models of short-term order memory currently suggest a separate mechanism for order coding-that is, one that is separate from item representation and not associated with LTM lexico-semantic networks. Both of the experiments reported here tested the predictions that we derived from Acheson et al. The findings show that, as predicted, manipulations aiming to affect the activation of item representations significantly impacted order memory.
Exemplar-Based Image and Video Stylization Using Fully Convolutional Semantic Features.
Zhu, Feida; Yan, Zhicheng; Bu, Jiajun; Yu, Yizhou
2017-05-10
Color and tone stylization in images and videos strives to enhance unique themes with artistic color and tone adjustments. It has a broad range of applications from professional image postprocessing to photo sharing over social networks. Mainstream photo enhancement softwares, such as Adobe Lightroom and Instagram, provide users with predefined styles, which are often hand-crafted through a trial-and-error process. Such photo adjustment tools lack a semantic understanding of image contents and the resulting global color transform limits the range of artistic styles it can represent. On the other hand, stylistic enhancement needs to apply distinct adjustments to various semantic regions. Such an ability enables a broader range of visual styles. In this paper, we first propose a novel deep learning architecture for exemplar-based image stylization, which learns local enhancement styles from image pairs. Our deep learning architecture consists of fully convolutional networks (FCNs) for automatic semantics-aware feature extraction and fully connected neural layers for adjustment prediction. Image stylization can be efficiently accomplished with a single forward pass through our deep network. To extend our deep network from image stylization to video stylization, we exploit temporal superpixels (TSPs) to facilitate the transfer of artistic styles from image exemplars to videos. Experiments on a number of datasets for image stylization as well as a diverse set of video clips demonstrate the effectiveness of our deep learning architecture.
Semantic web for integrated network analysis in biomedicine.
Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y
2009-03-01
The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.
NASA Astrophysics Data System (ADS)
Ristau, Henry
Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.
Social Networking on the Semantic Web
ERIC Educational Resources Information Center
Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam
2005-01-01
Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…
Application of artifical intelligence principles to the analysis of "crazy" speech.
Garfield, D A; Rapp, C
1994-04-01
Artificial intelligence computer simulation methods can be used to investigate psychotic or "crazy" speech. Here, symbolic reasoning algorithms establish semantic networks that schematize speech. These semantic networks consist of two main structures: case frames and object taxonomies. Node-based reasoning rules apply to object taxonomies and pathway-based reasoning rules apply to case frames. Normal listeners may recognize speech as "crazy talk" based on violations of node- and pathway-based reasoning rules. In this article, three separate segments of schizophrenic speech illustrate violations of these rules. This artificial intelligence approach is compared and contrasted with other neurolinguistic approaches and is discussed as a conceptual link between neurobiological and psychodynamic understandings of psychopathology.
Scientific Knowledge Discovery in Complex Semantic Networks of Geophysical Systems
NASA Astrophysics Data System (ADS)
Fox, P.
2012-04-01
The vast majority of explorations of the Earth's systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or semantic, level. Recent successes in the application of complex network theory and algorithms to climate data, raise expectations that more general graph-based approaches offer the opportunity for new discoveries. In the past ~ 5 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using semantically-equipped tools, and semantically aware interfaces between science application components allowing for discovery at the knowledge level. More recently, formal semantic approaches to continuous and aggregate physical processes are beginning to show promise and are soon likely to be ready to apply to geoscientific systems. To illustrate these opportunities, this presentation presents two application examples featuring domain vocabulary (ontology) and property relations (named and typed edges in the graphs). First, a climate knowledge discovery pilot encoding and exploration of CMIP5 catalog information with the eventual goal to encode and explore CMIP5 data. Second, a multi-stakeholder knowledge network for integrated assessments in marine ecosystems, where the data is highly inter-disciplinary.
Elements of Network-Based Assessment
ERIC Educational Resources Information Center
Gibson, David
2007-01-01
Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…
Event Congruency and Episodic Encoding: A Developmental fMRI Study
ERIC Educational Resources Information Center
Maril, Anat; Avital, Rinat; Reggev, Niv; Zuckerman, Maya; Sadeh, Talya; Sira, Liat Ben; Livneh, Neta
2011-01-01
A known contributor to adults' superior memory performance compared to children is their differential reliance on an existing knowledge base. Compared to those of adults, children's semantic networks are less accessible and less established, a difference that is also thought to contribute to children's relative resistance to semantically related…
KOJAK: Scalable Semantic Link Discovery Via Integrated Knowledge-Based and Statistical Reasoning
2006-11-01
program can find interesting connections in a network without having to learn the patterns of interestingness beforehand. The key advantage of our...Interesting Instances in Semantic Graphs Below we describe how the UNICORN framework can discover interesting instances in a multi-relational dataset...We can now describe how UNICORN solves the first problem of finding the top interesting nodes in a semantic net by ranking them according to
Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.
Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng
2018-04-20
Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.
GFD-Net: A novel semantic similarity methodology for the analysis of gene networks.
Díaz-Montaña, Juan J; Díaz-Díaz, Norberto; Gómez-Vela, Francisco
2017-04-01
Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet). Copyright © 2017 Elsevier Inc. All rights reserved.
Fronto-temporal interactions are functionally relevant for semantic control in language processing.
Wawrzyniak, Max; Hoffstaedter, Felix; Klingbeil, Julian; Stockert, Anika; Wrede, Katrin; Hartwigsen, Gesa; Eickhoff, Simon B; Classen, Joseph; Saur, Dorothee
2017-01-01
Semantic cognition, i.e. processing of meaning is based on semantic representations and their controlled retrieval. Semantic control has been shown to be implemented in a network that consists of left inferior frontal (IFG), and anterior and posterior middle temporal gyri (a/pMTG). We aimed to disrupt semantic control processes with continuous theta burst stimulation (cTBS) over left IFG and pMTG and to study whether behavioral effects are moderated by induced alterations in resting-state functional connectivity. To this end, we applied real cTBS over left IFG and left pMTG as well as sham stimulation on 20 healthy participants in a within-subject design. Stimulation was followed by resting-state functional magnetic resonance imaging and a semantic priming paradigm. Resting-state functional connectivity of regions of interest in left IFG, pMTG and aMTG revealed highly interconnected left-lateralized fronto-temporal networks representing the semantic system. We did not find any significant direct modulation of either task performance or resting-state functional connectivity by effective cTBS. However, after sham cTBS, functional connectivity between IFG and pMTG correlated with task performance under high semantic control demands in the semantic priming paradigm. These findings provide evidence for the functional relevance of interactions between IFG and pMTG for semantic control processes. This interaction was functionally less relevant after cTBS over aIFG which might be interpretable in terms of an indirect disruptive effect of cTBS.
Jiang, Guoqian; Wang, Chen; Zhu, Qian; Chute, Christopher G
2013-01-01
Knowledge-driven text mining is becoming an important research area for identifying pharmacogenomics target genes. However, few of such studies have been focused on the pharmacogenomics targets of adverse drug events (ADEs). The objective of the present study is to build a framework of knowledge integration and discovery that aims to support pharmacogenomics target predication of ADEs. We integrate a semantically annotated literature corpus Semantic MEDLINE with a semantically coded ADE knowledgebase known as ADEpedia using a semantic web based framework. We developed a knowledge discovery approach combining a network analysis of a protein-protein interaction (PPI) network and a gene functional classification approach. We performed a case study of drug-induced long QT syndrome for demonstrating the usefulness of the framework in predicting potential pharmacogenomics targets of ADEs.
A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web
de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández
2014-01-01
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678
A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.
de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso
2014-06-18
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.
Medical Concept Normalization in Social Media Posts with Recurrent Neural Networks.
Tutubalina, Elena; Miftahutdinov, Zulfat; Nikolenko, Sergey; Malykh, Valentin
2018-06-12
Text mining of scientific libraries and social media has already proven itself as a reliable tool for drug repurposing and hypothesis generation. The task of mapping a disease mention to a concept in a controlled vocabulary, typically to the standard thesaurus in the Unified Medical Language System (UMLS), is known as medical concept normalization. This task is challenging due to the differences in the use of medical terminology between health care professionals and social media texts coming from the lay public. To bridge this gap, we use sequence learning with recurrent neural networks and semantic representation of one- or multi-word expressions: we develop end-to-end architectures directly tailored to the task, including bidirectional Long Short-Term Memory, Gated Recurrent Units with an attention mechanism, and additional semantic similarity features based on UMLS. Our evaluation against a standard benchmark shows that recurrent neural networks improve results over an effective baseline for classification based on convolutional neural networks. A qualitative examination of mentions discovered in a dataset of user reviews collected from popular online health information platforms as well as a quantitative evaluation both show improvements in the semantic representation of health-related expressions in social media. Copyright © 2018. Published by Elsevier Inc.
Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images
Cao, Jianfang; Chen, Lichao
2015-01-01
With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818
ERIC Educational Resources Information Center
Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey
2009-01-01
To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…
Haebig, Eileen; Kaushanskaya, Margarita; Ellis Weismer, Susan
2015-12-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development.
Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis
2016-01-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development. PMID:26210517
CNN-based ranking for biomedical entity normalization.
Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong
2017-10-03
Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.
Provenance-Based Approaches to Semantic Web Service Discovery and Usage
ERIC Educational Resources Information Center
Narock, Thomas William
2012-01-01
The World Wide Web Consortium defines a Web Service as "a software system designed to support interoperable machine-to-machine interaction over a network." Web Services have become increasingly important both within and across organizational boundaries. With the recent advent of the Semantic Web, web services have evolved into semantic…
Levels of processing and language modality specificity in working memory.
Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker
2013-03-01
Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kuhlmann, Michael; Hofmann, Markus J.; Jacobs, Arthur M.
2017-01-01
How do humans perform difficult forced-choice evaluations, e.g., of words that have been previously rated as being neutral? Here we tested the hypothesis that in this case, the valence of semantic associates is of significant influence. From corpus based co-occurrence statistics as a measure of association strength we computed individual neighborhoods for single neutral words comprised of the 10 words with the largest association strength. We then selected neutral words according to the valence of the associated words included in the neighborhoods, which were either mostly positive, mostly negative, mostly neutral or mixed positive and negative, and tested them using a valence decision task (VDT). The data showed that the valence of semantic neighbors can predict valence judgments to neutral words. However, all but the positive neighborhood items revealed a high tendency to elicit negative responses. For the positive and negative neighborhood categories responses congruent with the neighborhood's valence were faster than incongruent responses. We interpret this effect as a semantic network process that supports the evaluation of neutral words by assessing the valence of the associative semantic neighborhood. In this perspective, valence is considered a semantic super-feature, at least partially represented in associative activation patterns of semantic networks. PMID:28348538
Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi
2018-05-16
Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.
Kuhlmann, Michael; Hofmann, Markus J; Jacobs, Arthur M
2017-01-01
How do humans perform difficult forced-choice evaluations, e.g., of words that have been previously rated as being neutral? Here we tested the hypothesis that in this case, the valence of semantic associates is of significant influence. From corpus based co-occurrence statistics as a measure of association strength we computed individual neighborhoods for single neutral words comprised of the 10 words with the largest association strength. We then selected neutral words according to the valence of the associated words included in the neighborhoods, which were either mostly positive, mostly negative, mostly neutral or mixed positive and negative, and tested them using a valence decision task (VDT). The data showed that the valence of semantic neighbors can predict valence judgments to neutral words. However, all but the positive neighborhood items revealed a high tendency to elicit negative responses. For the positive and negative neighborhood categories responses congruent with the neighborhood's valence were faster than incongruent responses. We interpret this effect as a semantic network process that supports the evaluation of neutral words by assessing the valence of the associative semantic neighborhood. In this perspective, valence is considered a semantic super-feature, at least partially represented in associative activation patterns of semantic networks.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
A top-down manner-based DCNN architecture for semantic image segmentation.
Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin
2017-01-01
Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.
Cheyette, Samuel J.; Plaut, David C.
2016-01-01
The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012, Brain and Language, 120, 271-281; Laszlo & Armstrong, 2014, Brain and Language, 132, 22-27) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on “implicit semantic prediction error” (Rabovsky & McRae, 2014, Cognition, 132, 68-98) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. PMID:27871623
Cheyette, Samuel J; Plaut, David C
2017-05-01
The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on "implicit semantic prediction error" (Rabovsky & McRae, 2014) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional changes in the cortical semantic network in amnestic mild cognitive impairment.
Pineault, Jessica; Jolicoeur, Pierre; Grimault, Stephan; Bermudez, Patrick; Brambati, Simona Maria; Lacombe, Jacinthe; Villalpando, Juan Manuel; Kergoat, Marie-Jeanne; Joubert, Sven
2018-05-01
Semantic memory impairment has been documented in individuals with amnestic Mild cognitive impairment (aMCI), who are at risk of developing Alzheimer's disease (AD), yet little is known about the neural basis of this breakdown. The aim of this study was to investigate the brain mechanisms associated with semantic performance in aMCI patients. A group of aMCI patients and a group of healthy controls carried out a semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG). During the task, participants were shown famous faces and had to determine whether each famous person matched a given occupation. The main hypotheses were that (a) semantic processing should be compromised for aMCI patients, and (b) these deficits should be associated with cortical dysfunctions within specific areas of the semantic network. Behavioral results showed that aMCI participants were significantly slower and less accurate than controls at the semantic task. Additionally, relative to controls, a significant pattern of hyperactivation was found in the aMCI group within specific regions of the extended semantic network, including the right anterior temporal lobe (ATL) and fusiform gyrus. Abnormal functional activation within key areas of the semantic network suggests that it is compromised early in the disease process. Moreover, this pattern of right ATL and fusiform gyrus hyperactivation was positively associated with gray matter integrity in specific areas, but was not associated with any pattern of atrophy, suggesting that this pattern of hyperactivation may precede structural alteration of the semantic network in aMCI. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Visual and semantic processing of living things and artifacts: an FMRI study.
Zannino, Gian Daniele; Buccione, Ivana; Perri, Roberta; Macaluso, Emiliano; Lo Gerfo, Emanuele; Caltagirone, Carlo; Carlesimo, Giovanni A
2010-03-01
We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word-picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target-foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.
Semantic transcoding of video based on regions of interest
NASA Astrophysics Data System (ADS)
Lim, Jeongyeon; Kim, Munchurl; Kim, Jong-Nam; Kim, Kyeongsoo
2003-06-01
Traditional transcoding on multimedia has been performed from the perspectives of user terminal capabilities such as display sizes and decoding processing power, and network resources such as available network bandwidth and quality of services (QoS) etc. The adaptation (or transcoding) of multimedia contents to given such constraints has been made by frame dropping and resizing of audiovisual, as well as reduction of SNR (Signal-to-Noise Ratio) values by saving the resulting bitrates. Not only such traditional transcoding is performed from the perspective of user"s environment, but also we incorporate a method of semantic transcoding of audiovisual based on region of interest (ROI) from user"s perspective. Users can designate their interested parts in images or video so that the corresponding video contents can be adapted focused on the user"s ROI. We incorporate the MPEG-21 DIA (Digital Item Adaptation) framework in which such semantic information of the user"s ROI is represented and delivered to the content provider side as XDI (context digital item). Representation schema of our semantic information of the user"s ROI has been adopted in MPEG-21 DIA Adaptation Model. In this paper, we present the usage of semantic information of user"s ROI for transcoding and show our system implementation with experimental results.
The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length
ERIC Educational Resources Information Center
Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam
2017-01-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…
Trust estimation of the semantic web using semantic web clustering
NASA Astrophysics Data System (ADS)
Shirgahi, Hossein; Mohsenzadeh, Mehran; Haj Seyyed Javadi, Hamid
2017-05-01
Development of semantic web and social network is undeniable in the Internet world these days. Widespread nature of semantic web has been very challenging to assess the trust in this field. In recent years, extensive researches have been done to estimate the trust of semantic web. Since trust of semantic web is a multidimensional problem, in this paper, we used parameters of social network authority, the value of pages links authority and semantic authority to assess the trust. Due to the large space of semantic network, we considered the problem scope to the clusters of semantic subnetworks and obtained the trust of each cluster elements as local and calculated the trust of outside resources according to their local trusts and trust of clusters to each other. According to the experimental result, the proposed method shows more than 79% Fscore that is about 11.9% in average more than Eigen, Tidal and centralised trust methods. Mean of error in this proposed method is 12.936, that is 9.75% in average less than Eigen and Tidal trust methods.
A neural network model of semantic memory linking feature-based object representation and words.
Cuppini, C; Magosso, E; Ursino, M
2009-06-01
Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).
Cairelli, Michael J.; Miller, Christopher M.; Fiszman, Marcelo; Workman, T. Elizabeth; Rindflesch, Thomas C.
2013-01-01
Applying the principles of literature-based discovery (LBD), we elucidate the paradox that obesity is beneficial in critical care despite contributing to disease generally. Our approach enhances a previous extension to LBD, called “discovery browsing,” and is implemented using Semantic MEDLINE, which summarizes the results of a PubMed search into an interactive graph of semantic predications. The methodology allows a user to construct argumentation underpinning an answer to a biomedical question by engaging the user in an iterative process between system output and user knowledge. Components of the Semantic MEDLINE output graph identified as “interesting” by the user both contribute to subsequent searches and are constructed into a logical chain of relationships constituting an explanatory network in answer to the initial question. Based on this methodology we suggest that phthalates leached from plastic in critical care interventions activate PPAR gamma, which is anti-inflammatory and abundant in obese patients. PMID:24551329
Teodoro, Douglas; Pasche, Emilie; Gobeill, Julien; Emonet, Stéphane; Ruch, Patrick; Lovis, Christian
2012-05-29
Antimicrobial resistance has reached globally alarming levels and is becoming a major public health threat. Lack of efficacious antimicrobial resistance surveillance systems was identified as one of the causes of increasing resistance, due to the lag time between new resistances and alerts to care providers. Several initiatives to track drug resistance evolution have been developed. However, no effective real-time and source-independent antimicrobial resistance monitoring system is available publicly. To design and implement an architecture that can provide real-time and source-independent antimicrobial resistance monitoring to support transnational resistance surveillance. In particular, we investigated the use of a Semantic Web-based model to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Following the agile software development methodology, we derived the main requirements needed for effective antimicrobial resistance monitoring, from which we proposed a decentralized monitoring architecture based on the Semantic Web stack. The architecture uses an ontology-driven approach to promote the integration of a network of sentinel hospitals or laboratories. Local databases are wrapped into semantic data repositories that automatically expose local computing-formalized laboratory information in the Web. A central source mediator, based on local reasoning, coordinates the access to the semantic end points. On the user side, a user-friendly Web interface provides access and graphical visualization to the integrated views. We designed and implemented the online Antimicrobial Resistance Trend Monitoring System (ARTEMIS) in a pilot network of seven European health care institutions sharing 70+ million triples of information about drug resistance and consumption. Evaluation of the computing performance of the mediator demonstrated that, on average, query response time was a few seconds (mean 4.3, SD 0.1 × 10(2) seconds). Clinical pertinence assessment showed that resistance trends automatically calculated by ARTEMIS had a strong positive correlation with the European Antimicrobial Resistance Surveillance Network (EARS-Net) (ρ = .86, P < .001) and the Sentinel Surveillance of Antibiotic Resistance in Switzerland (SEARCH) (ρ = .84, P < .001) systems. Furthermore, mean resistance rates extracted by ARTEMIS were not significantly different from those of either EARS-Net (∆ = ±0.130; 95% confidence interval -0 to 0.030; P < .001) or SEARCH (∆ = ±0.042; 95% confidence interval -0.004 to 0.028; P = .004). We introduce a distributed monitoring architecture that can be used to build transnational antimicrobial resistance surveillance networks. Results indicated that the Semantic Web-based approach provided an efficient and reliable solution for development of eHealth architectures that enable online antimicrobial resistance monitoring from heterogeneous data sources. In future, we expect that more health care institutions can join the ARTEMIS network so that it can provide a large European and wider biosurveillance network that can be used to detect emerging bacterial resistance in a multinational context and support public health actions.
Pasche, Emilie; Gobeill, Julien; Emonet, Stéphane; Ruch, Patrick; Lovis, Christian
2012-01-01
Background Antimicrobial resistance has reached globally alarming levels and is becoming a major public health threat. Lack of efficacious antimicrobial resistance surveillance systems was identified as one of the causes of increasing resistance, due to the lag time between new resistances and alerts to care providers. Several initiatives to track drug resistance evolution have been developed. However, no effective real-time and source-independent antimicrobial resistance monitoring system is available publicly. Objective To design and implement an architecture that can provide real-time and source-independent antimicrobial resistance monitoring to support transnational resistance surveillance. In particular, we investigated the use of a Semantic Web-based model to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Methods Following the agile software development methodology, we derived the main requirements needed for effective antimicrobial resistance monitoring, from which we proposed a decentralized monitoring architecture based on the Semantic Web stack. The architecture uses an ontology-driven approach to promote the integration of a network of sentinel hospitals or laboratories. Local databases are wrapped into semantic data repositories that automatically expose local computing-formalized laboratory information in the Web. A central source mediator, based on local reasoning, coordinates the access to the semantic end points. On the user side, a user-friendly Web interface provides access and graphical visualization to the integrated views. Results We designed and implemented the online Antimicrobial Resistance Trend Monitoring System (ARTEMIS) in a pilot network of seven European health care institutions sharing 70+ million triples of information about drug resistance and consumption. Evaluation of the computing performance of the mediator demonstrated that, on average, query response time was a few seconds (mean 4.3, SD 0.1×102 seconds). Clinical pertinence assessment showed that resistance trends automatically calculated by ARTEMIS had a strong positive correlation with the European Antimicrobial Resistance Surveillance Network (EARS-Net) (ρ = .86, P < .001) and the Sentinel Surveillance of Antibiotic Resistance in Switzerland (SEARCH) (ρ = .84, P < .001) systems. Furthermore, mean resistance rates extracted by ARTEMIS were not significantly different from those of either EARS-Net (∆ = ±0.130; 95% confidence interval –0 to 0.030; P < .001) or SEARCH (∆ = ±0.042; 95% confidence interval –0.004 to 0.028; P = .004). Conclusions We introduce a distributed monitoring architecture that can be used to build transnational antimicrobial resistance surveillance networks. Results indicated that the Semantic Web-based approach provided an efficient and reliable solution for development of eHealth architectures that enable online antimicrobial resistance monitoring from heterogeneous data sources. In future, we expect that more health care institutions can join the ARTEMIS network so that it can provide a large European and wider biosurveillance network that can be used to detect emerging bacterial resistance in a multinational context and support public health actions. PMID:22642960
NASA Astrophysics Data System (ADS)
Colomo-Palacios, Ricardo; Jiménez-López, Diego; García-Crespo, Ángel; Blanco-Iglesias, Borja
eLearning educative processes are a challenge for educative institutions and education professionals. In an environment in which learning resources are being produced, catalogued and stored using innovative ways, SOLE provides a platform in which exam questions can be produced supported by Web 2.0 tools, catalogued and labeled via semantic web and stored and distributed using eLearning standards. This paper presents, SOLE, a social network of exam questions sharing particularized for Software Engineering domain, based on semantics and built using semantic web and eLearning standards, such as IMS Question and Test Interoperability specification 2.1.
Neural bases of event knowledge and syntax integration in comprehension of complex sentences.
Malaia, Evie; Newman, Sharlene
2015-01-01
Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest that telic verbs facilitate online processing by means of consolidating the event schemas in episodic memory and by easing the computation of syntactico-thematic hierarchies in the left inferior frontal gyrus. The results demonstrate that syntax-semantics integration relies on trade-offs among a distributed network of regions for maximum comprehension efficiency.
Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation
NASA Astrophysics Data System (ADS)
Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid
2018-04-01
The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.
Graves, William W.; Binder, Jeffrey R.; Desai, Rutvik H.; Humphries, Colin; Stengel, Benjamin C.; Seidenberg, Mark S.
2014-01-01
Are there multiple ways to be a skilled reader? To address this longstanding, unresolved question, we hypothesized that individual variability in using semantic information in reading aloud would be associated with neuroanatomical variation in pathways linking semantics and phonology. Left-hemisphere regions of interest for diffusion tensor imaging analysis were defined based on fMRI results, including two regions linked with semantic processing – angular gyrus (AG) and inferior temporal sulcus (ITS) – and two linked with phonological processing – posterior superior temporal gyrus (pSTG) and posterior middle temporal gyrus (pMTG). Effects of imageability (a semantic measure) on response times varied widely among individuals and covaried with the volume of pathways through the ITS and pMTG, and through AG and pSTG, partially overlapping the inferior longitudinal fasciculus and the posterior branch of the arcuate fasciculus. These results suggest strategy differences among skilled readers associated with structural variation in the neural reading network. PMID:24735993
Combinatorial semantics strengthens angular-anterior temporal coupling.
Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel
2015-04-01
The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grethe, Jeffrey S; Ross, Edward; Little, David; Sanders, Brian; Gupta, Amarnath; Astakhov, Vadim
2009-01-01
This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.
A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links
NASA Astrophysics Data System (ADS)
Türker, Ilker; Sulak, Eyüb Ekmel
2018-02-01
Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.
Research in Knowledge Representation for Natural Language Understanding
1980-11-01
artificial intelligence, natural language understanding , parsing, syntax, semantics, speaker meaning, knowledge representation, semantic networks...TinB PAGE map M W006 1Report No. 4513 L RESEARCH IN KNOWLEDGE REPRESENTATION FOR NATURAL LANGUAGE UNDERSTANDING Annual Report 1 September 1979 to 31... understanding , knowledge representation, and knowledge based inference. The work that we have been doing falls into three classes, successively motivated by
Intrinsic functional network architecture of human semantic processing: Modules and hubs.
Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao
2016-05-15
Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.
Solbrig, Harold R; Chute, Christopher G
2012-01-01
Objective The objective of this study is to develop an approach to evaluate the quality of terminological annotations on the value set (ie, enumerated value domain) components of the common data elements (CDEs) in the context of clinical research using both unified medical language system (UMLS) semantic types and groups. Materials and methods The CDEs of the National Cancer Institute (NCI) Cancer Data Standards Repository, the NCI Thesaurus (NCIt) concepts and the UMLS semantic network were integrated using a semantic web-based framework for a SPARQL-enabled evaluation. First, the set of CDE-permissible values with corresponding meanings in external controlled terminologies were isolated. The corresponding value meanings were then evaluated against their NCI- or UMLS-generated semantic network mapping to determine whether all of the meanings fell within the same semantic group. Results Of the enumerated CDEs in the Cancer Data Standards Repository, 3093 (26.2%) had elements drawn from more than one UMLS semantic group. A random sample (n=100) of this set of elements indicated that 17% of them were likely to have been misclassified. Discussion The use of existing semantic web tools can support a high-throughput mechanism for evaluating the quality of large CDE collections. This study demonstrates that the involvement of multiple semantic groups in an enumerated value domain of a CDE is an effective anchor to trigger an auditing point for quality evaluation activities. Conclusion This approach produces a useful quality assurance mechanism for a clinical study CDE repository. PMID:22511016
Vatansever, Deniz; Bzdok, Danilo; Wang, Hao-Ting; Mollo, Giovanna; Sormaz, Mladen; Murphy, Charlotte; Karapanagiotidis, Theodoros; Smallwood, Jonathan; Jefferies, Elizabeth
2017-09-01
Contemporary theories assume that semantic cognition emerges from a neural architecture in which different component processes are combined to produce aspects of conceptual thought and behaviour. In addition to the state-level, momentary variation in brain connectivity, individuals may also differ in their propensity to generate particular configurations of such components, and these trait-level differences may relate to individual differences in semantic cognition. We tested this view by exploring how variation in intrinsic brain functional connectivity between semantic nodes in fMRI was related to performance on a battery of semantic tasks in 154 healthy participants. Through simultaneous decomposition of brain functional connectivity and semantic task performance, we identified distinct components of semantic cognition at rest. In a subsequent validation step, these data-driven components demonstrated explanatory power for neural responses in an fMRI-based semantic localiser task and variation in self-generated thoughts during the resting-state scan. Our findings showed that good performance on harder semantic tasks was associated with relative segregation at rest between frontal brain regions implicated in controlled semantic retrieval and the default mode network. Poor performance on easier tasks was linked to greater coupling between the same frontal regions and the anterior temporal lobe; a pattern associated with deliberate, verbal thematic thoughts at rest. We also identified components that related to qualities of semantic cognition: relatively good performance on pictorial semantic tasks was associated with greater separation of angular gyrus from frontal control sites and greater integration with posterior cingulate and anterior temporal cortex. In contrast, good speech production was linked to the separation of angular gyrus, posterior cingulate and temporal lobe regions. Together these data show that quantitative and qualitative variation in semantic cognition across individuals emerges from variations in the interaction of nodes within distinct functional brain networks. Copyright © 2017 Elsevier Inc. All rights reserved.
Constructing a Graph Database for Semantic Literature-Based Discovery.
Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C
2015-01-01
Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.
ERIC Educational Resources Information Center
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2012-01-01
Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…
Semantic network analysis of vaccine sentiment in online social media.
Kang, Gloria J; Ewing-Nelson, Sinclair R; Mackey, Lauren; Schlitt, James T; Marathe, Achla; Abbas, Kaja M; Swarup, Samarth
2017-06-22
To examine current vaccine sentiment on social media by constructing and analyzing semantic networks of vaccine information from highly shared websites of Twitter users in the United States; and to assist public health communication of vaccines. Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United States, posing significant risk of disease outbreaks, yet remains poorly understood. We constructed semantic networks of vaccine information from internet articles shared by Twitter users in the United States. We analyzed resulting network topology, compared semantic differences, and identified the most salient concepts within networks expressing positive, negative, and neutral vaccine sentiment. The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in discourse compared to the larger, less-connected network of negative vaccine sentiment. The positive sentiment network centered around parents and focused on communicating health risks and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of government organizations that communicate scientific evidence supporting positive vaccine benefits. Semantic network analysis of vaccine sentiment in online social media can enhance understanding of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary approach to better understand complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence and vaccination coverage in the United States. Copyright © 2017. Published by Elsevier Ltd.
Context-Based Tourism Information Filtering with a Semantic Rule Engine
Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio
2012-01-01
This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction. PMID:22778584
Context-based tourism information filtering with a semantic rule engine.
Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio
2012-01-01
This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction.
Kim, Hongkeun
2016-01-08
It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semantic encoding of relational databases in wireless networks
NASA Astrophysics Data System (ADS)
Benjamin, David P.; Walker, Adrian
2005-03-01
Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.
Auditing the NCI Thesaurus with Semantic Web Technologies
Mougin, Fleur; Bodenreider, Olivier
2008-01-01
Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed. PMID:18999265
Auditing the NCI thesaurus with semantic web technologies.
Mougin, Fleur; Bodenreider, Olivier
2008-11-06
Auditing biomedical terminologies often results in the identification of inconsistencies and thus helps to improve their quality. In this paper, we present a method based on Semantic Web technologies for auditing biomedical terminologies and apply it to the NCI thesaurus. We stored the NCI thesaurus concepts and their properties in an RDF triple store. By querying this store, we assessed the consistency of both hierarchical and associative relations from the NCI thesaurus among themselves and with corresponding relations in the UMLS Semantic Network. We show that the consistency is better for associative relations than for hierarchical relations. Causes for inconsistency and benefits from using Semantic Web technologies for auditing purposes are discussed.
A fusion network for semantic segmentation using RGB-D data
NASA Astrophysics Data System (ADS)
Yuan, Jiahui; Zhang, Kun; Xia, Yifan; Qi, Lin; Dong, Junyu
2018-04-01
Semantic scene parsing is considerable in many intelligent field, including perceptual robotics. For the past few years, pixel-wise prediction tasks like semantic segmentation with RGB images has been extensively studied and has reached very remarkable parsing levels, thanks to convolutional neural networks (CNNs) and large scene datasets. With the development of stereo cameras and RGBD sensors, it is expected that additional depth information will help improving accuracy. In this paper, we propose a semantic segmentation framework incorporating RGB and complementary depth information. Motivated by the success of fully convolutional networks (FCN) in semantic segmentation field, we design a fully convolutional networks consists of two branches which extract features from both RGB and depth data simultaneously and fuse them as the network goes deeper. Instead of aggregating multiple model, our goal is to utilize RGB data and depth data more effectively in a single model. We evaluate our approach on the NYU-Depth V2 dataset, which consists of 1449 cluttered indoor scenes, and achieve competitive results with the state-of-the-art methods.
Centrality-based Selection of Semantic Resources for Geosciences
NASA Astrophysics Data System (ADS)
Cerba, Otakar; Jedlicka, Karel
2017-04-01
Semantical questions intervene almost in all disciplines dealing with geographic data and information, because relevant semantics is crucial for any way of communication and interaction among humans as well as among machines. But the existence of such a large number of different semantic resources (such as various thesauri, controlled vocabularies, knowledge bases or ontologies) makes the process of semantics implementation much more difficult and complicates the use of the advantages of semantics. This is because in many cases users are not able to find the most suitable resource for their purposes. The research presented in this paper introduces a methodology consisting of an analysis of identical relations in Linked Data space, which covers a majority of semantic resources, to find a suitable resource of semantic information. Identical links interconnect representations of an object or a concept in various semantic resources. Therefore this type of relations is considered to be crucial from the view of Linked Data, because these links provide new additional information, including various views on one concept based on different cultural or regional aspects (so-called social role of Linked Data). For these reasons it is possible to declare that one reasonable criterion for feasible semantic resources for almost all domains, including geosciences, is their position in a network of interconnected semantic resources and level of linking to other knowledge bases and similar products. The presented methodology is based on searching of mutual connections between various instances of one concept using "follow your nose" approach. The extracted data on interconnections between semantic resources are arranged to directed graphs and processed by various metrics patterned on centrality computing (degree, closeness or betweenness centrality). Semantic resources recommended by the research could be used for providing semantically described keywords for metadata records or as names of items in data models. Such an approach enables much more efficient data harmonization, integration, sharing and exploitation. * * * * This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports. This publication was supported by project Data-Driven Bioeconomy (DataBio) from the ICT-15-2016-2017, Big Data PPP call.
ERIC Educational Resources Information Center
Bastiaansen, Marcel C. M.; Oostenveld, Robert; Jensen, Ole; Hagoort, Peter
2008-01-01
An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects…
Joubert, Sven; Brambati, Simona M; Ansado, Jennyfer; Barbeau, Emmanuel J; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Céline; Kergoat, Marie-Jeanne
2010-03-01
Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls. Item-by-item analyses showed that anomia in aMCI and early AD was significantly associated with underlying semantic knowledge of famous people but not with semantic knowledge of objects. Moreover, semantic knowledge of the same concepts was impaired in both the visual and the verbal modalities. Finally, voxel-based morphometry analyses revealed that semantic impairment in aMCI and AD was associated with cortical atrophy in the anterior temporal lobe (ATL) region as well as in the inferior prefrontal cortex (IPC), some of the key regions of the semantic cognition network. These findings suggest that the semantic impairment in aMCI may result from a breakdown of semantic knowledge of famous people and objects, combined with difficulties in the selection, manipulation and retrieval of this knowledge. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Ontology- and graph-based similarity assessment in biological networks.
Wang, Haiying; Zheng, Huiru; Azuaje, Francisco
2010-10-15
A standard systems-based approach to biomarker and drug target discovery consists of placing putative biomarkers in the context of a network of biological interactions, followed by different 'guilt-by-association' analyses. The latter is typically done based on network structural features. Here, an alternative analysis approach in which the networks are analyzed on a 'semantic similarity' space is reported. Such information is extracted from ontology-based functional annotations. We present SimTrek, a Cytoscape plugin for ontology-based similarity assessment in biological networks. http://rosalind.infj.ulst.ac.uk/SimTrek.html francisco.azuaje@crp-sante.lu Supplementary data are available at Bioinformatics online.
Investigating the structure of semantic networks in low and high creative persons
Kenett, Yoed N.; Anaki, David; Faust, Miriam
2014-01-01
According to Mednick's (1962) theory of individual differences in creativity, creative individuals appear to have a richer and more flexible associative network than less creative individuals. Thus, creative individuals are characterized by “flat” (broader associations) instead of “steep” (few, common associations) associational hierarchies. To study these differences, we implement a novel computational approach to the study of semantic networks, through the analysis of free associations. The core notion of our method is that concepts in the network are related to each other by their association correlations—overlap of similar associative responses (“association clouds”). We began by collecting a large sample of participants who underwent several creativity measurements and used a decision tree approach to divide the sample into low and high creative groups. Next, each group underwent a free association generation paradigm which allowed us to construct and analyze the semantic networks of both groups. Comparison of the semantic memory networks of persons with low creative ability and persons with high creative ability revealed differences between the two networks. The semantic memory network of persons with low creative ability seems to be more rigid, compared to the network of persons with high creative ability, in the sense that it is more spread out and breaks apart into more sub-parts. We discuss how our findings are in accord and extend Mednick's (1962) theory and the feasibility of using network science paradigms to investigate high level cognition. PMID:24959129
Semantic Segmentation of Building Elements Using Point Cloud Hashing
NASA Astrophysics Data System (ADS)
Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.
2018-05-01
For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).
Mimoza: web-based semantic zooming and navigation in metabolic networks.
Zhukova, Anna; Sherman, David J
2015-02-26
The complexity of genome-scale metabolic models makes them quite difficult for human users to read, since they contain thousands of reactions that must be included for accurate computer simulation. Interestingly, hidden similarities between groups of reactions can be discovered, and generalized to reveal higher-level patterns. The web-based navigation system Mimoza allows a human expert to explore metabolic network models in a semantically zoomable manner: The most general view represents the compartments of the model; the next view shows the generalized versions of reactions and metabolites in each compartment; and the most detailed view represents the initial network with the generalization-based layout (where similar metabolites and reactions are placed next to each other). It allows a human expert to grasp the general structure of the network and analyze it in a top-down manner Mimoza can be installed standalone, or used on-line at http://mimoza.bordeaux.inria.fr/ , or installed in a Galaxy server for use in workflows. Mimoza views can be embedded in web pages, or downloaded as COMBINE archives.
Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?
Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S
2015-09-01
Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Measuring semantic similarities by combining gene ontology annotations and gene co-function networks
Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; ...
2015-02-14
Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less
SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services
USDA-ARS?s Scientific Manuscript database
SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...
Semantic networks for odors and colors in Alzheimer's disease.
Razani, Jill; Chan, Agnes; Nordin, Steven; Murphy, Claire
2010-05-01
Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD.
Alignment of the UMLS semantic network with BioTop: methodology and assessment.
Schulz, Stefan; Beisswanger, Elena; van den Hoek, László; Bodenreider, Olivier; van Mulligen, Erik M
2009-06-15
For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up several design errors that could be fixed. A comparison between a human curator and the ontology yielded only a low agreement. Ontology reasoning was also used to successfully identify 133 inconsistent semantic-type combinations. BioTop, the OWL DL representation of the UMLS SN, and the mapping ontology are available at http://www.purl.org/biotop/.
ERIC Educational Resources Information Center
Rodd, Jennifer M.; Longe, Olivia A.; Randall, Billi; Tyler, Lorraine K.
2010-01-01
Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities…
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
ERIC Educational Resources Information Center
Steyvers, Mark; Tenenbaum, Joshua B.
2005-01-01
We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…
Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique
NASA Astrophysics Data System (ADS)
Kalinovsky, A.; Liauchuk, V.; Tarasau, A.
2017-05-01
In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.
Sculpting the UMLS Refined Semantic Network.
He, Zhe; Morrey, C Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James
2014-01-01
The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a "combination semantic type" is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 "small ISTs" in the 2013AA version of the UMLS to finalize the longitudinal study. Over the years it was found that the editors of the UMLS introduced some new inconsistencies that resulted in the reintroduction of unwarranted ISTs that had already been eliminated as a result of their previous corrections. Because of that, the transformation of the RSN into a compact network covering all necessary categories for the UMLS was slowed down. The corrections suggested by an audit of the 2013AA version of the UMLS achieve a compact RSN of equal magnitude as the UMLS SN. The number of ISTs has been reduced to 336. We also demonstrate how auditing the semantic type assignments of UMLS concepts can expose other modeling errors in the UMLS source terminologies, e.g., SNOMED CT, LOINC, and RxNORM that are important for health informatics. Such errors would otherwise stay hidden. It is hoped that the UMLS curators will implement all required corrections and use the RSN along with the SN when maintaining and extending the UMLS. When used correctly, the RSN will support the prevention of the accidental introduction of inconsistent semantic type assignments into the UMLS. Furthermore, this way the RSN will support the exposure of other hidden errors and inconsistencies in health informatics terminologies, which are sources of the UMLS. Notably, the development of the RSN materializes the deeper, more refined Semantic Network for the UMLS that its designers envisioned originally but had not implemented.
Learning From Short Text Streams With Topic Drifts.
Li, Peipei; He, Lu; Wang, Haiyan; Hu, Xuegang; Zhang, Yuhong; Li, Lei; Wu, Xindong
2017-09-18
Short text streams such as search snippets and micro blogs have been popular on the Web with the emergence of social media. Unlike traditional normal text streams, these data present the characteristics of short length, weak signal, high volume, high velocity, topic drift, etc. Short text stream classification is hence a very challenging and significant task. However, this challenge has received little attention from the research community. Therefore, a new feature extension approach is proposed for short text stream classification with the help of a large-scale semantic network obtained from a Web corpus. It is built on an incremental ensemble classification model for efficiency. First, more semantic contexts based on the senses of terms in short texts are introduced to make up of the data sparsity using the open semantic network, in which all terms are disambiguated by their semantics to reduce the noise impact. Second, a concept cluster-based topic drifting detection method is proposed to effectively track hidden topic drifts. Finally, extensive studies demonstrate that as compared to several well-known concept drifting detection methods in data stream, our approach can detect topic drifts effectively, and it enables handling short text streams effectively while maintaining the efficiency as compared to several state-of-the-art short text classification approaches.
Contextually guided very-high-resolution imagery classification with semantic segments
NASA Astrophysics Data System (ADS)
Zhao, Wenzhi; Du, Shihong; Wang, Qiao; Emery, William J.
2017-10-01
Contextual information, revealing relationships and dependencies between image objects, is one of the most important information for the successful interpretation of very-high-resolution (VHR) remote sensing imagery. Over the last decade, geographic object-based image analysis (GEOBIA) technique has been widely used to first divide images into homogeneous parts, and then to assign semantic labels according to the properties of image segments. However, due to the complexity and heterogeneity of VHR images, segments without semantic labels (i.e., semantic-free segments) generated with low-level features often fail to represent geographic entities (such as building roofs usually be partitioned into chimney/antenna/shadow parts). As a result, it is hard to capture contextual information across geographic entities when using semantic-free segments. In contrast to low-level features, "deep" features can be used to build robust segments with accurate labels (i.e., semantic segments) in order to represent geographic entities at higher levels. Based on these semantic segments, semantic graphs can be constructed to capture contextual information in VHR images. In this paper, semantic segments were first explored with convolutional neural networks (CNN) and a conditional random field (CRF) model was then applied to model the contextual information between semantic segments. Experimental results on two challenging VHR datasets (i.e., the Vaihingen and Beijing scenes) indicate that the proposed method is an improvement over existing image classification techniques in classification performance (overall accuracy ranges from 82% to 96%).
Generating Poetry Title Based on Semantic Relevance with Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Li, Z.; Niu, K.; He, Z. Q.
2017-09-01
Several approaches have been proposed to automatically generate Chinese classical poetry (CCP) in the past few years, but automatically generating the title of CCP is still a difficult problem. The difficulties are mainly reflected in two aspects. First, the words used in CCP are very different from modern Chinese words and there are no valid word segmentation tools. Second, the semantic relevance of characters in CCP not only exists in one sentence but also exists between the same positions of adjacent sentences, which is hard to grasp by the traditional text summarization models. In this paper, we propose an encoder-decoder model for generating the title of CCP. Our model encoder is a convolutional neural network (CNN) with two kinds of filters. To capture the commonly used words in one sentence, one kind of filters covers two characters horizontally at each step. The other covers two characters vertically at each step and can grasp the semantic relevance of characters between adjacent sentences. Experimental results show that our model is better than several other related models and can capture the semantic relevance of CCP more accurately.
The structure of semantic person memory: evidence from semantic priming in person recognition.
Wiese, Holger
2011-11-01
This paper reviews research on the structure of semantic person memory as examined with semantic priming. In this experimental paradigm, a familiarity decision on a target face or written name is usually faster when it is preceded by a related as compared to an unrelated prime. This effect has been shown to be relatively short lived and susceptible to interfering items. Moreover, semantic priming can cross stimulus domains, such that a written name can prime a target face and vice versa. However, it remains controversial whether representations of people are stored in associative networks based on co-occurrence, or in more abstract semantic categories. In line with prominent cognitive models of face recognition, which explain semantic priming by shared semantic information between prime and target, recent research demonstrated that priming could be obtained from purely categorically related, non-associated prime/target pairs. Although strategic processes, such as expectancy and retrospective matching likely contribute, there is also evidence for a non-strategic contribution to priming, presumably related to spreading activation. Finally, a semantic priming effect has been demonstrated in the N400 event-related potential (ERP) component, which may reflect facilitated access to semantic information. It is concluded that categorical relatedness is one organizing principle of semantic person memory. ©2011 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Xue, Di-Xiu; Zhang, Rong; Zhao, Yuan-Yuan; Xu, Jian-Ming; Wang, Ya-Lei
2017-07-01
Cancer recognition is the prerequisite to determine appropriate treatment. This paper focuses on the semantic segmentation task of microvascular morphological types on narrowband images to aid clinical examination of esophageal cancer. The most challenge for semantic segmentation is incomplete-labeling. Our key insight is to build fully convolutional networks (FCNs) with double-label to make pixel-wise predictions. The roi-label indicating ROIs (region of interest) is introduced as extra constraint to guild feature learning. Trained end-to-end, the FCN model with two target jointly optimizes both segmentation of sem-label (semantic label) and segmentation of roi-label within the framework of self-transfer learning based on multi-task learning theory. The learning representation ability of shared convolutional networks for sem-label is improved with support of roi-label via achieving a better understanding of information outside the ROIs. Our best FCN model gives satisfactory segmentation result with mean IU up to 77.8% (pixel accuracy > 90%). The results show that the proposed approach is able to assist clinical diagnosis to a certain extent.
ERIC Educational Resources Information Center
de Wit, Bianca; Kinoshita, Sachiko
2015-01-01
Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…
Balthazar, Marcio L.F.; Yasuda, Clarissa L.; Lopes, Tátila M.; Pereira, Fabrício R.S.; Damasceno, Benito Pereira; Cendes, Fernando
2011-01-01
Neuroanatomical correlations of naming and lexical-semantic memory are not yet fully understood. The most influential approaches share the view that semantic representations reflect the manner in which information has been acquired through perception and action, and that each brain area processes different modalities of semantic representations. Despite these anatomical differences in semantic processing, generalization across different features that have similar semantic significance is one of the main characteristics of human cognition. Methods We evaluated the brain regions related to naming, and to the semantic generalization, of visually presented drawings of objects from the Boston Naming Test (BNT), which comprises different categories, such as animals, vegetables, tools, food, and furniture. In order to create a model of lesion method, a sample of 48 subjects presenting with a continuous decline both in cognitive functions, including naming skills, and in grey matter density (GMD) was compared to normal young adults with normal aging, amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s disease (AD). Semantic errors on the BNT, as well as naming performance, were correlated with whole brain GMD as measured by voxel-based morphometry (VBM). Results The areas most strongly related to naming and to semantic errors were the medial temporal structures, thalami, superior and inferior temporal gyri, especially their anterior parts, as well as prefrontal cortices (inferior and superior frontal gyri). Conclusion The possible role of each of these areas in the lexical-semantic networks was discussed, along with their contribution to the models of semantic memory organization. PMID:29213726
Semantic Social Network Portal for Collaborative Online Communities
ERIC Educational Resources Information Center
Neumann, Marco; O'Murchu, Ina; Breslin, John; Decker, Stefan; Hogan, Deirdre; MacDonaill, Ciaran
2005-01-01
Purpose: The motivation for this investigation is to apply social networking features to a semantic network portal, which supports the efforts in enterprise training units to up-skill the employee in the company, and facilitates the creation and reuse of knowledge in online communities. Design/methodology/approach: The paper provides an overview…
Musical and verbal semantic memory: two distinct neural networks?
Groussard, M; Viader, F; Hubert, V; Landeau, B; Abbas, A; Desgranges, B; Eustache, F; Platel, H
2010-02-01
Semantic memory has been investigated in numerous neuroimaging and clinical studies, most of which have used verbal or visual, but only very seldom, musical material. Clinical studies have suggested that there is a relative neural independence between verbal and musical semantic memory. In the present study, "musical semantic memory" is defined as memory for "well-known" melodies without any knowledge of the spatial or temporal circumstances of learning, while "verbal semantic memory" corresponds to general knowledge about concepts, again without any knowledge of the spatial or temporal circumstances of learning. Our aim was to compare the neural substrates of musical and verbal semantic memory by administering the same type of task in each modality. We used high-resolution PET H(2)O(15) to observe 11 young subjects performing two main tasks: (1) a musical semantic memory task, where the subjects heard the first part of familiar melodies and had to decide whether the second part they heard matched the first, and (2) a verbal semantic memory task with the same design, but where the material consisted of well-known expressions or proverbs. The musical semantic memory condition activated the superior temporal area and inferior and middle frontal areas in the left hemisphere and the inferior frontal area in the right hemisphere. The verbal semantic memory condition activated the middle temporal region in the left hemisphere and the cerebellum in the right hemisphere. We found that the verbal and musical semantic processes activated a common network extending throughout the left temporal neocortex. In addition, there was a material-dependent topographical preference within this network, with predominantly anterior activation during musical tasks and predominantly posterior activation during semantic verbal tasks. Copyright (c) 2009 Elsevier Inc. All rights reserved.
The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A.
2015-01-01
The ability to represent concepts and the relationships between them is critical to human cognition. How does the brain code relationships between items that share basic conceptual properties (e.g., dog and wolf) while simultaneously representing associative links between dissimilar items that co-occur in particular contexts (e.g., dog and bone)? To clarify the neural bases of these semantic components in neurologically intact participants, both types of semantic relationship were investigated in an fMRI study optimized for anterior temporal lobe (ATL) coverage. The clear principal finding was that the same core semantic network (ATL, superior temporal sulcus, ventral prefrontal cortex) was equivalently engaged when participants made semantic judgments on the basis of association or conceptual similarity. Direct comparisons revealed small, weaker differences for conceptual similarity > associative decisions (e.g., inferior prefrontal cortex) and associative > conceptual similarity (e.g., ventral parietal cortex) which appear to reflect graded differences in task difficulty. Indeed, once reaction time was entered as a covariate into the analysis, no associative versus category differences remained. The paper concludes with a discussion of how categorical/feature-based and associative relationships might be represented within a single, unified semantic system. PMID:25636912
Semantic associative relations and conceptual processing.
Di Giacomo, Dina; De Federicis, Lucia Serenella; Pistelli, Manuela; Fiorenzi, Daniela; Passafiume, Domenico
2012-02-01
We analysed the organisation of semantic network using associative mechanisms between different types of information and studied the progression of the use of these associative relations during development. We aimed to verify the linkage of concepts with the use of semantic associative relations. The goal of this study was to analyse the cognitive ability to use associative relations between various items when describing old and/or new concepts. We examined the performance of 100 subjects between the ages of 4 and 7 years on an experimental task using five associative relations based on verbal encoding. The results showed that children are able to use the five semantic associative relations at age 4, but performance with each of the different associative relations improves at different times during development. Functional and part/whole relations develop at an early age, whereas the superordinate relations develop later. Our study clarified the characteristics of the progression of semantic associations during development as well as the roles that associative relations play in the structure and improvement of the semantic store.
Sculpting the UMLS Refined Semantic Network
Morrey, C. Paul; Perl, Yehoshua; Elhanan, Gai; Chen, Ling; Chen, Yan; Geller, James
2014-01-01
Background The Refined Semantic Network (RSN) for the UMLS was previously introduced to complement the UMLS Semantic Network (SN). The RSN partitions the UMLS Metathesaurus (META) into disjoint groups of concepts. Each such group is semantically uniform. However, the RSN was initially an order of magnitude larger than the SN, which is undesirable since to be useful, a semantic network should be compact. Most semantic types in the RSN represent combinations of semantic types in the UMLS SN. Such a “combination semantic type” is called Intersection Semantic Type (IST). Many ISTs are assigned to very few concepts. Moreover, when reviewing those concepts, many semantic type assignment inconsistencies were found. After correcting those inconsistencies many ISTs, among them some that contradicted UMLS rules, disappeared, which made the RSN smaller. Objective The authors performed a longitudinal study with the goal of reducing the size of the RSN to become compact. This goal was achieved by correcting inconsistencies and errors in the IST assignments in the UMLS, which additionally helped identify and correct ambiguities, inconsistencies, and errors in source terminologies widely used in the realm of public health. Methods In this paper, we discuss the process and steps employed in this longitudinal study and the intermediate results for different stages. The sculpting process includes removing redundant semantic type assignments, expanding semantic type assignments, and removing illegitimate ISTs by auditing ISTs of small extents. However, the emphasis of this paper is not on the auditing methodologies employed during the process, since they were introduced in earlier publications, but on the strategy of employing them in order to transform the RSN into a compact network. For this paper we also performed a comprehensive audit of 168 “small ISTs” in the 2013AA version of the UMLS to finalize the longitudinal study. Results Over the years it was found that the editors of the UMLS introduced some new inconsistencies that resulted in the reintroduction of unwarranted ISTs that had already been eliminated as a result of their previous corrections. Because of that, the transformation of the RSN into a compact network covering all necessary categories for the UMLS was slowed down. The corrections suggested by an audit of the 2013AA version of the UMLS achieve a compact RSN of equal magnitude as the UMLS SN. The number of ISTs has been reduced to 336. We also demonstrate how auditing the semantic type assignments of UMLS concepts can expose other modeling errors in the UMLS source terminologies, e.g., SNOMED CT, LOINC, and RxNORM that are important for health informatics. Such errors would otherwise stay hidden. Conclusions It is hoped that the UMLS curators will implement all required corrections and use the RSN along with the SN when maintaining and extending the UMLS. When used correctly, the RSN will support the prevention of the accidental introduction of inconsistent semantic type assignments into the UMLS. Furthermore, this way the RSN will support the exposure of other hidden errors and inconsistencies in health informatics terminologies, which are sources of the UMLS. Notably, the development of the RSN materializes the deeper, more refined Semantic Network for the UMLS that its designers envisioned originally but had not implemented. PMID:25422719
Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R
2014-01-01
Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.
Topic segmentation via community detection in complex networks
NASA Astrophysics Data System (ADS)
de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.
2016-06-01
Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.
Topic segmentation via community detection in complex networks.
de Arruda, Henrique F; Costa, Luciano da F; Amancio, Diego R
2016-06-01
Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.
ERIC Educational Resources Information Center
Mayer, John; Kieras, David E.
Using a system based on standard augmented transition network (ATN) parsing approach, this report describes a technique for the rapid development of natural language parsing, called High-Level Grammar Specification Language (HGSL). The first part of the report describes the syntax and semantics of HGSL and the network implementation of each of its…
Kiran, Swathi; Meier, Erin L.; Kapse, Kushal J.; Glynn, Peter A.
2015-01-01
In this study, we examined regions in the left and right hemisphere language network that were altered in terms of the underlying neural activation and effective connectivity subsequent to language rehabilitation. Eight persons with chronic post-stroke aphasia and eight normal controls participated in the current study. Patients received a 10 week semantic feature-based rehabilitation program to improve their skills. Therapy was provided on atypical examples of one trained category while two control categories were monitored; the categories were counterbalanced across patients. In each fMRI session, two experimental tasks were conducted: (a) picture naming and (b) semantic feature verification of trained and untrained categories. Analysis of treatment effect sizes revealed that all patients showed greater improvements on the trained category relative to untrained categories. Results from this study show remarkable patterns of consistency despite the inherent variability in lesion size and activation patterns across patients. Across patients, activation that emerged as a function of rehabilitation on the trained category included bilateral IFG, bilateral SFG, LMFG, and LPCG for picture naming; and bilateral IFG, bilateral MFG, LSFG, and bilateral MTG for semantic feature verification. Analysis of effective connectivity using Dynamic Causal Modeling (DCM) indicated that LIFG was the consistently significantly modulated region after rehabilitation across participants. These results indicate that language networks in patients with aphasia resemble normal language control networks and that this similarity is accentuated by rehabilitation. PMID:26106314
Information Resources Usage in Project Management Digital Learning System
ERIC Educational Resources Information Center
Davidovitch, Nitza; Belichenko, Margarita; Kravchenko, Yurii
2017-01-01
The article combines a theoretical approach to structuring knowledge that is based on the integrated use of fuzzy semantic network theory predicates, Boolean functions, theory of complexity of network structures and some practical aspects to be considered in the distance learning at the university. The paper proposes a methodological approach that…
Ontology-Based Peer Exchange Network (OPEN)
ERIC Educational Resources Information Center
Dong, Hui
2010-01-01
In current Peer-to-Peer networks, distributed and semantic free indexing is widely used by systems adopting "Distributed Hash Table" ("DHT") mechanisms. Although such systems typically solve a. user query rather fast in a deterministic way, they only support a very narrow search scheme, namely the exact hash key match. Furthermore, DHT systems put…
A knowledge-based, concept-oriented view generation system for clinical data.
Zeng, Q; Cimino, J J
2001-04-01
Information overload is a well-known problem for clinicians who must review large amounts of data in patient records. Concept-oriented views, which organize patient data around clinical concepts such as diagnostic strategies and therapeutic goals, may offer a solution to the problem of information overload. However, although concept-oriented views are desirable, they are difficult to create and maintain. We have developed a general-purpose, knowledge-based approach to the generation of concept-oriented views and have developed a system to test our approach. The system creates concept-oriented views through automated identification of relevant patient data. The knowledge in the system is represented by both a semantic network and rules. The key relevant data identification function is accomplished by a rule-based traversal of the semantic network. This paper focuses on the design and implementation of the system; an evaluation of the system is reported separately.
Visual analysis of large heterogeneous social networks by semantic and structural abstraction.
Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina
2006-01-01
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.
NASA Astrophysics Data System (ADS)
Yashchenko, Vitaliy A.
2000-03-01
On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.
The Semantic Network Model of Creativity: Analysis of Online Social Media Data
ERIC Educational Resources Information Center
Yu, Feng; Peng, Theodore; Peng, Kaiping; Zheng, Sam Xianjun; Liu, Zhiyuan
2016-01-01
The central hypothesis of Semantic Network Model of Creativity is that creative people, who are exposed to more information that are both novel and useful, will have more interconnections between event schemas in their associations. The networks of event schemas in creative people's minds were expected to be wider and denser than those in less…
Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin
2017-05-01
Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the biomedical domain with generalizability. Copyright © 2017 Elsevier Inc. All rights reserved.
Minicucci, Domenic; Guediche, Sara; Blumstein, Sheila E
2013-08-01
The current study explored how factors of acoustic-phonetic and lexical competition affect access to the lexical-semantic network during spoken word recognition. An auditory semantic priming lexical decision task was presented to subjects while in the MR scanner. Prime-target pairs consisted of prime words with the initial voiceless stop consonants /p/, /t/, and /k/ followed by word and nonword targets. To examine the neural consequences of lexical and sound structure competition, primes either had voiced minimal pair competitors or they did not, and they were either acoustically modified to be poorer exemplars of the voiceless phonetic category or not. Neural activation associated with semantic priming (Unrelated-Related conditions) revealed a bilateral fronto-temporo-parietal network. Within this network, clusters in the left insula/inferior frontal gyrus (IFG), left superior temporal gyrus (STG), and left posterior middle temporal gyrus (pMTG) showed sensitivity to lexical competition. The pMTG also demonstrated sensitivity to acoustic modification, and the insula/IFG showed an interaction between lexical competition and acoustic modification. These findings suggest the posterior lexical-semantic network is modulated by both acoustic-phonetic and lexical structure, and that the resolution of these two sources of competition recruits frontal structures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Context-rich semantic framework for effective data-to-decisions in coalition networks
NASA Astrophysics Data System (ADS)
Grueneberg, Keith; de Mel, Geeth; Braines, Dave; Wang, Xiping; Calo, Seraphin; Pham, Tien
2013-05-01
In a coalition context, data fusion involves combining of soft (e.g., field reports, intelligence reports) and hard (e.g., acoustic, imagery) sensory data such that the resulting output is better than what it would have been if the data are taken individually. However, due to the lack of explicit semantics attached with such data, it is difficult to automatically disseminate and put the right contextual data in the hands of the decision makers. In order to understand the data, explicit meaning needs to be added by means of categorizing and/or classifying the data in relationship to each other from base reference sources. In this paper, we present a semantic framework that provides automated mechanisms to expose real-time raw data effectively by presenting appropriate information needed for a given situation so that an informed decision could be made effectively. The system utilizes controlled natural language capabilities provided by the ITA (International Technology Alliance) Controlled English (CE) toolkit to provide a human-friendly semantic representation of messages so that the messages can be directly processed in human/machine hybrid environments. The Real-time Semantic Enrichment (RTSE) service adds relevant contextual information to raw data streams from domain knowledge bases using declarative rules. The rules define how the added semantics and context information are derived and stored in a semantic knowledge base. The software framework exposes contextual information from a variety of hard and soft data sources in a fast, reliable manner so that an informed decision can be made using semantic queries in intelligent software systems.
Semantic Interpretation of An Artificial Neural Network
1995-12-01
ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of
Natural language acquisition in large scale neural semantic networks
NASA Astrophysics Data System (ADS)
Ealey, Douglas
This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.
First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery
NASA Astrophysics Data System (ADS)
Obrock, L. S.; Gülch, E.
2018-05-01
The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.
A Hybrid 3D Indoor Space Model
NASA Astrophysics Data System (ADS)
Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel
2016-10-01
GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.
Mining integrated semantic networks for drug repositioning opportunities
Mullen, Joseph; Tipney, Hannah
2016-01-01
Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions. PMID:26844016
A transversal approach to predict gene product networks from ontology-based similarity
Chabalier, Julie; Mosser, Jean; Burgun, Anita
2007-01-01
Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807
A VGI data integration framework based on linked data model
NASA Astrophysics Data System (ADS)
Wan, Lin; Ren, Rongrong
2015-12-01
This paper aims at the geographic data integration and sharing method for multiple online VGI data sets. We propose a semantic-enabled framework for online VGI sources cooperative application environment to solve a target class of geospatial problems. Based on linked data technologies - which is one of core components of semantic web, we can construct the relationship link among geographic features distributed in diverse VGI platform by using linked data modeling methods, then deploy these semantic-enabled entities on the web, and eventually form an interconnected geographic data network to support geospatial information cooperative application across multiple VGI data sources. The mapping and transformation from VGI sources to RDF linked data model is presented to guarantee the unique data represent model among different online social geographic data sources. We propose a mixed strategy which combined spatial distance similarity and feature name attribute similarity as the measure standard to compare and match different geographic features in various VGI data sets. And our work focuses on how to apply Markov logic networks to achieve interlinks of the same linked data in different VGI-based linked data sets. In our method, the automatic generating method of co-reference object identification model according to geographic linked data is discussed in more detail. It finally built a huge geographic linked data network across loosely-coupled VGI web sites. The results of the experiment built on our framework and the evaluation of our method shows the framework is reasonable and practicable.
Semi-supervised word polarity identification in resource-lean languages.
Dehdarbehbahani, Iman; Shakery, Azadeh; Faili, Heshaam
2014-10-01
Sentiment words, as fundamental constitutive parts of subjective sentences, have a substantial effect on analysis of opinions, emotions and beliefs. Most of the proposed methods for identifying the semantic orientations of words exploit rich linguistic resources such as WordNet, subjectivity corpora, or polarity tagged words. Shortage of such linguistic resources in resource-lean languages affects the performance of word polarity identification in these languages. In this paper, we present a method which exploits a language with rich subjectivity analysis resources (English) to identify the polarity of words in a resource-lean foreign language. The English WordNet and a sparse foreign WordNet infrastructure are used to create a heterogeneous, multilingual and weighted semantic network. To identify the semantic orientation of foreign words, a random walk based method is applied to the semantic network along with a set of automatically weighted English positive and negative seeds. In a post-processing phase, synonym and antonym relations in the foreign WordNet are used to filter the random walk results. Our experiments on English and Persian languages show that the proposed method can outperform state-of-the-art word polarity identification methods in both languages. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Supramodal Neural Network for Speech and Gesture Semantics: An fMRI Study
Weis, Susanne; Kircher, Tilo
2012-01-01
In a natural setting, speech is often accompanied by gestures. As language, speech-accompanying iconic gestures to some extent convey semantic information. However, if comprehension of the information contained in both the auditory and visual modality depends on same or different brain-networks is quite unknown. In this fMRI study, we aimed at identifying the cortical areas engaged in supramodal processing of semantic information. BOLD changes were recorded in 18 healthy right-handed male subjects watching video clips showing an actor who either performed speech (S, acoustic) or gestures (G, visual) in more (+) or less (−) meaningful varieties. In the experimental conditions familiar speech or isolated iconic gestures were presented; during the visual control condition the volunteers watched meaningless gestures (G−), while during the acoustic control condition a foreign language was presented (S−). The conjunction of the visual and acoustic semantic processing revealed activations extending from the left inferior frontal gyrus to the precentral gyrus, and included bilateral posterior temporal regions. We conclude that proclaiming this frontotemporal network the brain's core language system is to take too narrow a view. Our results rather indicate that these regions constitute a supramodal semantic processing network. PMID:23226488
NASA Astrophysics Data System (ADS)
D'Agostino, Gregorio; De Nicola, Antonio
2016-10-01
Exploiting the information about members of a Social Network (SN) represents one of the most attractive and dwelling subjects for both academic and applied scientists. The community of Complexity Science and especially those researchers working on multiplex social systems are devoting increasing efforts to outline general laws, models, and theories, to the purpose of predicting emergent phenomena in SN's (e.g. success of a product). On the other side the semantic web community aims at engineering a new generation of advanced services tailored to specific people needs. This implies defining constructs, models and methods for handling the semantic layer of SNs. We combined models and techniques from both the former fields to provide a hybrid approach to understand a basic (yet complex) phenomenon: the propagation of individual interests along the social networks. Since information may move along different social networks, one should take into account a multiplex structure. Therefore we introduced the notion of "Semantic Multiplex". In this paper we analyse two different semantic social networks represented by authors publishing in the Computer Science and those in the American Physical Society Journals. The comparison allows to outline common and specific features.
Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study.
D'Mello, Anila M; Turkeltaub, Peter E; Stoodley, Catherine J
2017-02-08
It has been proposed that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. In language, semantic prediction speeds speech production and comprehension. Right cerebellar lobules VI and VII (including Crus I/II) are engaged during a variety of language processes and are functionally connected with cerebral cortical language networks. Further, right posterolateral cerebellar neuromodulation modifies behavior during predictive language processing. These data are consistent with a role for the cerebellum in semantic processing and semantic prediction. We combined transcranial direct current stimulation (tDCS) and fMRI to assess the behavioral and neural consequences of cerebellar tDCS during a sentence completion task. Task-based and resting-state fMRI data were acquired in healthy human adults ( n = 32; μ = 23.1 years) both before and after 20 min of 1.5 mA anodal ( n = 18) or sham ( n = 14) tDCS applied to the right posterolateral cerebellum. In the sentence completion task, the first four words of the sentence modulated the predictability of the final target word. In some sentences, the preceding context strongly predicted the target word, whereas other sentences were nonpredictive. Completion of predictive sentences increased activation in right Crus I/II of the cerebellum. Relative to sham tDCS, anodal tDCS increased activation in right Crus I/II during semantic prediction and enhanced resting-state functional connectivity between hubs of the reading/language networks. These results are consistent with a role for the right posterolateral cerebellum beyond motor aspects of language, and suggest that cerebellar internal models of linguistic stimuli support semantic prediction. SIGNIFICANCE STATEMENT Cerebellar involvement in language tasks and language networks is now well established, yet the specific cerebellar contribution to language processing remains unclear. It is thought that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. Here we combined neuroimaging and neuromodulation to provide evidence that the cerebellum is specifically involved in semantic prediction during sentence processing. We found that activation within right Crus I/II was enhanced when semantic predictions were made, and we show that modulation of this region with transcranial direct current stimulation alters both activation patterns and functional connectivity within whole-brain language networks. For the first time, these data show that cerebellar neuromodulation impacts activation patterns specifically during predictive language processing. Copyright © 2017 the authors 0270-6474/17/371604-10$15.00/0.
Pizzagalli, D; Lehmann, D; Brugger, P
2001-01-01
The present investigation tested the hypothesis that, as an aspect of schizotypal thinking, the formation of paranormal beliefs was related to spreading activation characteristics within semantic networks. From a larger student population (n = 117) prescreened for paranormal belief, 12 strong believers and 12 strong disbelievers (all women) were invited for a lateralized semantic priming task with directly and indirectly related prime-target pairs. Believers showed stronger indirect (but not direct) semantic priming effects than disbelievers after left (but not right) visual field stimulation, indicating faster appreciation of distant semantic relations specifically by the right hemisphere, reportedly specialized in coarse rather than focused semantic processing. These results are discussed in the light of recent findings in schizophrenic patients with thought disorders. They suggest that a disinhibition with semantic networks may underlie the formation of paranormal belief. The potential usefulness of work with healthy subjects for neuropsychiatric research is stressed. Copyright 2001 S. Karger AG, Basel
Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven
2015-10-01
Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anderson, Thomas S.
2016-05-01
The Global Information Network Architecture is an information technology based on Vector Relational Data Modeling, a unique computational paradigm, DoD network certified by USARMY as the Dragon Pulse Informa- tion Management System. This network available modeling environment for modeling models, where models are configured using domain relevant semantics and use network available systems, sensors, databases and services as loosely coupled component objects and are executable applications. Solutions are based on mission tactics, techniques, and procedures and subject matter input. Three recent ARMY use cases are discussed a) ISR SoS. b) Modeling and simulation behavior validation. c) Networked digital library with behaviors.
A Sieving ANN for Emotion-Based Movie Clip Classification
NASA Astrophysics Data System (ADS)
Watanapa, Saowaluk C.; Thipakorn, Bundit; Charoenkitkarn, Nipon
Effective classification and analysis of semantic contents are very important for the content-based indexing and retrieval of video database. Our research attempts to classify movie clips into three groups of commonly elicited emotions, namely excitement, joy and sadness, based on a set of abstract-level semantic features extracted from the film sequence. In particular, these features consist of six visual and audio measures grounded on the artistic film theories. A unique sieving-structured neural network is proposed to be the classifying model due to its robustness. The performance of the proposed model is tested with 101 movie clips excerpted from 24 award-winning and well-known Hollywood feature films. The experimental result of 97.8% correct classification rate, measured against the collected human-judges, indicates the great potential of using abstract-level semantic features as an engineered tool for the application of video-content retrieval/indexing.
Guide on Data Models in the Selection and Use of Database Management Systems. Final Report.
ERIC Educational Resources Information Center
Gallagher, Leonard J.; Draper, Jesse M.
A tutorial introduction to data models in general is provided, with particular emphasis on the relational and network models defined by the two proposed ANSI (American National Standards Institute) database language standards. Examples based on the network and relational models include specific syntax and semantics, while examples from the other…
Network-Based Learning and Assessment Applications on the Semantic Web
ERIC Educational Resources Information Center
Gibson, David
2005-01-01
Today's Web applications are already "aware" of the network of computers and data on the Internet, in the sense that they perceive, remember, and represent knowledge external to themselves. However, Web applications are generally not able to respond to the meaning and context of the information in their memories. As a result, most applications are…
Some Semantic Structures for Representing English Meanings.
ERIC Educational Resources Information Center
Simmons, R. F.
This paper defines the structure of a semantic network for use in representing discourse and lexical meanings. The structure is designed to represent underlying semantic meanings that, with a lexicon and a grammar, can generate natural-language sentences in a linguistically justifiable manner. The semantics of natural English can be defined as a…
Heterogeniety and Heterarchy: How far can network analyses in Earth and space sciences?
NASA Astrophysics Data System (ADS)
Prabhu, A.; Fox, P. A.; Eleish, A.; Li, C.; Pan, F.; Zhong, H.
2017-12-01
The vast majority of explorations of Earth systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or conceptual/ semantic, level. Recent successes in the application of complex network theory and algorithms to minerology, fossils and proteins over billions of years of Earth's history, raise expectations that more general graph-based approaches offer the opportunity for new discoveries = needles instead of haystacks. In the past 10 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using open-source tools, allow for discovery at the knowledge level. This presentation will cover the fundamentals of data-rich network analyses for geosciences, provide illustrative examples in mineral evolution and offer future paths for consideration.
Modeling of cell signaling pathways in macrophages by semantic networks
Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem
2004-01-01
Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system. PMID:15494071
[Schizophrenia and semantic priming effects].
Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S
2006-01-01
This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.
Towards Semantic Modelling of Business Processes for Networked Enterprises
NASA Astrophysics Data System (ADS)
Furdík, Karol; Mach, Marián; Sabol, Tomáš
The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.
Categorizing words through semantic memory navigation
NASA Astrophysics Data System (ADS)
Borge-Holthoefer, J.; Arenas, A.
2010-03-01
Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.
Gardini, Simona; Venneri, Annalena; Sambataro, Fabio; Cuetos, Fernando; Fasano, Fabrizio; Marchi, Massimo; Crisi, Girolamo; Caffarra, Paolo
2015-01-01
Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population.
[Electrophysiological bases of semantic processing of objects].
Kahlaoui, Karima; Baccino, Thierry; Joanette, Yves; Magnié, Marie-Noële
2007-02-01
How pictures and words are stored and processed in the human brain constitute a long-standing question in cognitive psychology. Behavioral studies have yielded a large amount of data addressing this issue. Generally speaking, these data show that there are some interactions between the semantic processing of pictures and words. However, behavioral methods can provide only limited insight into certain findings. Fortunately, Event-Related Potential (ERP) provides on-line cues about the temporal nature of cognitive processes and contributes to the exploration of their neural substrates. ERPs have been used in order to better understand semantic processing of words and pictures. The main objective of this article is to offer an overview of the electrophysiologic bases of semantic processing of words and pictures. Studies presented in this article showed that the processing of words is associated with an N 400 component, whereas pictures elicited both N 300 and N 400 components. Topographical analysis of the N 400 distribution over the scalp is compatible with the idea that both image-mediated concrete words and pictures access an amodal semantic system. However, given the distinctive N 300 patterns, observed only during picture processing, it appears that picture and word processing rely upon distinct neuronal networks, even if they end up activating more or less similar semantic representations.
2014-01-01
Background The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. Results For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. Conclusions Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing. PMID:24456150
Emadzadeh, Ehsan; Sarker, Abeed; Nikfarjam, Azadeh; Gonzalez, Graciela
2017-01-01
Social networks, such as Twitter, have become important sources for active monitoring of user-reported adverse drug reactions (ADRs). Automatic extraction of ADR information can be crucial for healthcare providers, drug manufacturers, and consumers. However, because of the non-standard nature of social media language, automatically extracted ADR mentions need to be mapped to standard forms before they can be used by operational pharmacovigilance systems. We propose a modular natural language processing pipeline for mapping (normalizing) colloquial mentions of ADRs to their corresponding standardized identifiers. We seek to accomplish this task and enable customization of the pipeline so that distinct unlabeled free text resources can be incorporated to use the system for other normalization tasks. Our approach, which we call Hybrid Semantic Analysis (HSA), sequentially employs rule-based and semantic matching algorithms for mapping user-generated mentions to concept IDs in the Unified Medical Language System vocabulary. The semantic matching component of HSA is adaptive in nature and uses a regression model to combine various measures of semantic relatedness and resources to optimize normalization performance on the selected data source. On a publicly available corpus, our normalization method achieves 0.502 recall and 0.823 precision (F-measure: 0.624). Our proposed method outperforms a baseline based on latent semantic analysis and another that uses MetaMap.
Semantic wireless localization of WiFi terminals in smart buildings
NASA Astrophysics Data System (ADS)
Ahmadi, H.; Polo, A.; Moriyama, T.; Salucci, M.; Viani, F.
2016-06-01
The wireless localization of mobile terminals in indoor scenarios by means of a semantic interpretation of the environment is addressed in this work. A training-less approach based on the real-time calibration of a simple path loss model is proposed which combines (i) the received signal strength information measured by the wireless terminal and (ii) the topological features of the localization domain. A customized evolutionary optimization technique has been designed to estimate the optimal target position that fits the complex wireless indoor propagation and the semantic target-environment relation, as well. The proposed approach is experimentally validated in a real building area where the available WiFi network is opportunistically exploited for data collection. The presented results point out a reduction of the localization error obtained with the introduction of a very simple semantic interpretation of the considered scenario.
Mining semantic networks of bioinformatics e-resources from the literature
2011-01-01
Background There have been a number of recent efforts (e.g. BioCatalogue, BioMoby) to systematically catalogue bioinformatics tools, services and datasets. These efforts rely on manual curation, making it difficult to cope with the huge influx of various electronic resources that have been provided by the bioinformatics community. We present a text mining approach that utilises the literature to automatically extract descriptions and semantically profile bioinformatics resources to make them available for resource discovery and exploration through semantic networks that contain related resources. Results The method identifies the mentions of resources in the literature and assigns a set of co-occurring terminological entities (descriptors) to represent them. We have processed 2,691 full-text bioinformatics articles and extracted profiles of 12,452 resources containing associated descriptors with binary and tf*idf weights. Since such representations are typically sparse (on average 13.77 features per resource), we used lexical kernel metrics to identify semantically related resources via descriptor smoothing. Resources are then clustered or linked into semantic networks, providing the users (bioinformaticians, curators and service/tool crawlers) with a possibility to explore algorithms, tools, services and datasets based on their relatedness. Manual exploration of links between a set of 18 well-known bioinformatics resources suggests that the method was able to identify and group semantically related entities. Conclusions The results have shown that the method can reconstruct interesting functional links between resources (e.g. linking data types and algorithms), in particular when tf*idf-like weights are used for profiling. This demonstrates the potential of combining literature mining and simple lexical kernel methods to model relatedness between resource descriptors in particular when there are few features, thus potentially improving the resource description, discovery and exploration process. The resource profiles are available at http://gnode1.mib.man.ac.uk/bioinf/semnets.html PMID:21388573
The evaluative imaging of mental models - Visual representations of complexity
NASA Technical Reports Server (NTRS)
Dede, Christopher
1989-01-01
The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.
Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
William C. McLendon III; Brost, Randy C.
Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a singlemore » road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.« less
Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang
2017-02-20
Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
Semantic Representation of Newly Learned L2 Words and Their Integration in the L2 Lexicon
ERIC Educational Resources Information Center
Bordag, Denisa; Kirschenbaum, Amit; Rogahn, Maria; Opitz, Andreas
2017-01-01
The present semantic priming study explores the integration of newly learnt L2 German words into the L2 semantic network of German advanced learners. It provides additional evidence in support of earlier findings reporting semantic inhibition effects for emergent representations. An inhibitory mechanism is proposed that temporarily decreases the…
Porting Social Media Contributions with SIOC
NASA Astrophysics Data System (ADS)
Bojars, Uldis; Breslin, John G.; Decker, Stefan
Social media sites, including social networking sites, have captured the attention of millions of users as well as billions of dollars in investment and acquisition. To better enable a user's access to multiple sites, portability between social media sites is required in terms of both (1) the personal profiles and friend networks and (2) a user's content objects expressed on each site. This requires representation mechanisms to interconnect both people and objects on the Web in an interoperable, extensible way. The Semantic Web provides the required representation mechanisms for portability between social media sites: it links people and objects to record and represent the heterogeneous ties that bind each to the other. The FOAF (Friend-of-a-Friend) initiative provides a solution to the first requirement, and this paper discusses how the SIOC (Semantically-Interlinked Online Communities) project can address the latter. By using agreed-upon Semantic Web formats like FOAF and SIOC to describe people, content objects, and the connections that bind them together, social media sites can interoperate and provide portable data by appealing to some common semantics. In this paper, we will discuss the application of Semantic Web technology to enhance current social media sites with semantics and to address issues with portability between social media sites. It has been shown that social media sites can serve as rich data sources for SIOC-based applications such as the SIOC Browser, but in the other direction, we will now show how SIOC data can be used to represent and port the diverse social media contributions (SMCs) made by users on heterogeneous sites.
Episodic Memory, Semantic Memory, and Fluency.
ERIC Educational Resources Information Center
Schaefer, Carl F.
1980-01-01
Suggests that creating a second-language semantic network can be conceived as developing a plan for retrieving second-language word forms. Characteristics of linguistic performance which will promote fluency are discussed in light of the distinction between episodic and semantic memory. (AMH)
Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness
Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.
2015-01-01
A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057
SITRUS: Semantic Infrastructure for Wireless Sensor Networks
Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.
2015-01-01
Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974
Spreading activation in nonverbal memory networks.
Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald
2017-09-01
Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.
Forced to remember: when memory is biased by salient information.
Santangelo, Valerio
2015-04-15
The last decades have seen a rapid growing in the attempt to understand the key factors involved in the internal memory representation of the external world. Visual salience have been found to provide a major contribution in predicting the probability for an item/object embedded in a complex setting (i.e., a natural scene) to be encoded and then remembered later on. Here I review the existing literature highlighting the impact of perceptual- (based on low-level sensory features) and semantics-related salience (based on high-level knowledge) on short-term memory representation, along with the neural mechanisms underpinning the interplay between these factors. The available evidence reveal that both perceptual- and semantics-related factors affect attention selection mechanisms during the encoding of natural scenes. Biasing internal memory representation, both perceptual and semantics factors increase the probability to remember high- to the detriment of low-saliency items. The available evidence also highlight an interplay between these factors, with a reduced impact of perceptual-related salience in biasing memory representation as a function of the increasing availability of semantics-related salient information. The neural mechanisms underpinning this interplay involve the activation of different portions of the frontoparietal attention control network. Ventral regions support the assignment of selection/encoding priorities based on high-level semantics, while the involvement of dorsal regions reflects priorities assignment based on low-level sensory features. Copyright © 2015 Elsevier B.V. All rights reserved.
Semantic super networks: A case analysis of Wikipedia papers
NASA Astrophysics Data System (ADS)
Kostyuchenko, Evgeny; Lebedeva, Taisiya; Goritov, Alexander
2017-11-01
An algorithm for constructing super-large semantic networks has been developed in current work. Algorithm was tested using the "Cosmos" category of the Internet encyclopedia "Wikipedia" as an example. During the implementation, a parser for the syntax analysis of Wikipedia pages was developed. A graph based on list of articles and categories was formed. On the basis of the obtained graph analysis, algorithms for finding domains of high connectivity in a graph were proposed and tested. Algorithms for constructing a domain based on the number of links and the number of articles in the current subject area is considered. The shortcomings of these algorithms are shown and explained, an algorithm is developed on their joint use. The possibility of applying a combined algorithm for obtaining the final domain is shown. The problem of instability of the received domain was discovered when starting an algorithm from two neighboring vertices related to the domain.
Interests diffusion in social networks
NASA Astrophysics Data System (ADS)
D'Agostino, Gregorio; D'Antonio, Fulvio; De Nicola, Antonio; Tucci, Salvatore
2015-10-01
We provide a model for diffusion of interests in Social Networks (SNs). We demonstrate that the topology of the SN plays a crucial role in the dynamics of the individual interests. Understanding cultural phenomena on SNs and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.
L-GRAAL: Lagrangian graphlet-based network aligner.
Malod-Dognin, Noël; Pržulj, Nataša
2015-07-01
Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. n.malod-dognin@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
A lexical semantic hub for heteromodal naming in middle fusiform gyrus.
Forseth, Kiefer James; Kadipasaoglu, Cihan Mehmet; Conner, Christopher Richard; Hickok, Gregory; Knight, Robert Thomas; Tandon, Nitin
2018-07-01
Semantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood. We hypothesize that inputs to the semantic memory system engage a specific heteromodal network hub that integrates lexical retrieval with the appropriate semantic content. Such a network hub has been proposed by others, but has thus far eluded precise spatiotemporal delineation. This limitation in our understanding of semantic memory has impeded progress in the treatment of anomia. We evaluated the cortical structure and dynamics of the lexical semantic network in driving speech production in a large cohort of patients with epilepsy using electrocorticography (n = 64), functional MRI (n = 36), and direct cortical stimulation (n = 30) during two generative language processes that rely on semantic knowledge: visual picture naming and auditory naming to definition. Each task also featured a non-semantic control condition: scrambled pictures and reversed speech, respectively. These large-scale data of the left, language-dominant hemisphere uniquely enable convergent, high-resolution analyses of neural mechanisms characterized by rapid, transient dynamics with strong interactions between distributed cortical substrates. We observed three stages of activity during both visual picture naming and auditory naming to definition that were serially organized: sensory processing, lexical semantic processing, and articulation. Critically, the second stage was absent in both the visual and auditory control conditions. Group activity maps from both electrocorticography and functional MRI identified heteromodal responses in middle fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus; furthermore, the spectrotemporal profiles of these three regions revealed coincident activity preceding articulation. Only in the middle fusiform gyrus did direct cortical stimulation disrupt both naming tasks while still preserving the ability to repeat sentences. These convergent data strongly support a model in which a distinct neuroanatomical substrate in middle fusiform gyrus provides access to object semantic information. This under-appreciated locus of semantic processing is at risk in resections for temporal lobe epilepsy as well as in trauma and strokes that affect the inferior temporal cortex-it may explain the range of anomic states seen in these conditions. Further characterization of brain network behaviour engaging this region in both healthy and diseased states will expand our understanding of semantic memory and further development of therapies directed at anomia.
MSEE: Stochastic Cognitive Linguistic Behavior Models for Semantic Sensing
2013-09-01
recognition, a Gaussian Process Dynamic Model with Social Network Analysis (GPDM-SNA) for a small human group action recognition, an extended GPDM-SNA...44 3.2. Small Human Group Activity Modeling Based on Gaussian Process Dynamic Model and Social Network Analysis (SN-GPDM...51 Approved for public release; distribution unlimited. 3 3.2.3. Gaussian Process Dynamical Model and
Convergence of semantics and emotional expression within the IFG pars orbitalis.
Belyk, Michel; Brown, Steven; Lim, Jessica; Kotz, Sonja A
2017-08-01
Humans communicate through a combination of linguistic and emotional channels, including propositional speech, writing, sign language, music, but also prosodic, facial, and gestural expression. These channels can be interpreted separately or they can be integrated to multimodally convey complex meanings. Neural models of the perception of semantics and emotion include nodes for both functions in the inferior frontal gyrus pars orbitalis (IFGorb). However, it is not known whether this convergence involves a common functional zone or instead specialized subregions that process semantics and emotion separately. To address this, we performed Kernel Density Estimation meta-analyses of published neuroimaging studies of the perception of semantics or emotion that reported activation in the IFGorb. The results demonstrated that the IFGorb contains two zones with distinct functional profiles. A lateral zone, situated immediately ventral to Broca's area, was implicated in both semantics and emotion. Another zone, deep within the ventral frontal operculum, was engaged almost exclusively by studies of emotion. Follow-up analysis using Meta-Analytic Connectivity Modeling demonstrated that both zones were frequently co-activated with a common network of sensory, motor, and limbic structures, although the lateral zone had a greater association with prefrontal cortical areas involved in executive function. The status of the lateral IFGorb as a point of convergence between the networks for processing semantic and emotional content across modalities of communication is intriguing since this structure is preserved across primates with limited semantic abilities. Hence, the IFGorb may have initially evolved to support the comprehension of emotional signals, being later co-opted to support semantic communication in humans by forming new connections with brain regions that formed the human semantic network. Copyright © 2017 Elsevier Inc. All rights reserved.
van Ackeren, Markus J; Rueschemeyer, Shirley-Ann
2014-01-01
In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically, participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud) and asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE). Each pair of features described properties from either the same modality (e.g., silver, tiny = visual features) or different modalities (e.g., silver, loud = visual, auditory). Behavioral and EEG data were collected. The results show that verifying features that are putatively represented in the same modality-specific network is faster than verifying features across modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta range (4-6 Hz) in left anterior temporal lobe (ATL), a putative hub for integrating distributed semantic content. In addition, enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal semantic hubs such as left ATL.
Classification with an edge: Improving semantic image segmentation with boundary detection
NASA Astrophysics Data System (ADS)
Marmanis, D.; Schindler, K.; Wegner, J. D.; Galliani, S.; Datcu, M.; Stilla, U.
2018-01-01
We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the SEGNET encoder-decoder architecture. Second, we also include boundary detection in FCN-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.
The neural basis for novel semantic categorization.
Koenig, Phyllis; Smith, Edward E; Glosser, Guila; DeVita, Chris; Moore, Peachie; McMillan, Corey; Gee, Jim; Grossman, Murray
2005-01-15
We monitored regional cerebral activity with BOLD fMRI during acquisition of a novel semantic category and subsequent categorization of test stimuli by a rule-based strategy or a similarity-based strategy. We observed different patterns of activation in direct comparisons of rule- and similarity-based categorization. During rule-based category acquisition, subjects recruited anterior cingulate, thalamic, and parietal regions to support selective attention to perceptual features, and left inferior frontal cortex to helps maintain rules in working memory. Subsequent rule-based categorization revealed anterior cingulate and parietal activation while judging stimuli whose conformity with the rules was readily apparent, and left inferior frontal recruitment during judgments of stimuli whose conformity was less apparent. By comparison, similarity-based category acquisition showed recruitment of anterior prefrontal and posterior cingulate regions, presumably to support successful retrieval of previously encountered exemplars from long-term memory, and bilateral temporal-parietal activation for perceptual feature integration. Subsequent similarity-based categorization revealed temporal-parietal, posterior cingulate, and anterior prefrontal activation. These findings suggest that large-scale networks support relatively distinct categorization processes during the acquisition and judgment of semantic category knowledge.
Computer-Based Mapping for Curriculum Development.
ERIC Educational Resources Information Center
Allen, Brockenbrough S.; And Others
This article describes the results of a three-month experiment in the use of computer-based semantic networks for curriculum development. A team of doctoral and master's degree students developed a 1200-item computer database representing a tentative "domain of competency" for a proposed MA degree in Workforce Education and Lifelong…
Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages
NASA Astrophysics Data System (ADS)
Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio
Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.
Semantic deficits in Spanish-English bilingual children with language impairment.
Sheng, Li; Peña, Elizabeth D; Bedore, Lisa M; Fiestas, Christine E
2012-02-01
To examine the nature and extent of semantic deficits in bilingual children with language impairment (LI). Thirty-seven Spanish-English bilingual children with LI (ranging from age 7;0 [years;months] to 9;10) and 37 typically developing (TD) age-matched peers generated 3 associations to 12 pairs of translation equivalents in English and Spanish. Responses were coded as paradigmatic (e.g., dinner-lunch, cena-desayuno [dinner-breakfast]), syntagmatic (e.g., delicious-pizza, delicioso-frijoles [delicious-beans]), and errors (e.g., wearing-where, vestirse-mal [to get dressed-bad]). A semantic depth score was derived in each language and conceptually by combining children's performance in both languages. The LI group achieved significantly lower semantic depth scores than the TD group after controlling for group differences in vocabulary size. Children showed higher conceptual scores than single-language scores. Both groups showed decreases in semantic depth scores across multiple elicitations. Analyses of individual performances indicated that semantic deficits (1 SD below the TD mean semantic depth score) were manifested in 65% of the children with LI and in 14% of the TD children. School-age bilingual children with and without LI demonstrated spreading activation of semantic networks. Consistent with the literature on monolingual children with LI, sparsely linked semantic networks characterize a considerable proportion of bilingual children with LI.
Knowledge Representation Issues in Semantic Graphs for Relationship Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barthelemy, M; Chow, E; Eliassi-Rad, T
2005-02-02
An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less
Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F
2014-02-01
A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.
Distinct neural substrates for semantic knowledge and naming in the temporoparietal network.
Gesierich, Benno; Jovicich, Jorge; Riello, Marianna; Adriani, Michela; Monti, Alessia; Brentari, Valentina; Robinson, Simon D; Wilson, Stephen M; Fairhall, Scott L; Gorno-Tempini, Maria Luisa
2012-10-01
Patients with anterior temporal lobe (ATL) lesions show semantic and lexical retrieval deficits, and the differential role of this area in the 2 processes is debated. Functional neuroimaging in healthy individuals has not clarified the matter because semantic and lexical processes usually occur simultaneously and automatically. Furthermore, the ATL is a region challenging for functional magnetic resonance imaging (fMRI) due to susceptibility artifacts, especially at high fields. In this study, we established an optimized ATL-sensitive fMRI acquisition protocol at 4 T and applied an event-related paradigm to study the identification (i.e., association of semantic biographical information) of celebrities, with and without the ability to retrieve their proper names. While semantic processing reliably activated the ATL, only more posterior areas in the left temporal and temporal-parietal junction were significantly modulated by covert lexical retrieval. These results suggest that within a temporoparietal network, the ATL is relatively more important for semantic processing, and posterior language regions are relatively more important for lexical retrieval.
Ben Abdallah, Emna; Folschette, Maxime; Roux, Olivier; Magnin, Morgan
2017-01-01
This paper addresses the problem of finding attractors in biological regulatory networks. We focus here on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks (AN). AN is a general and well-suited formalism to study complex interactions between different components (genes, proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped. Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding the attractors in the model to understand the long-term behaviors. We present a computational logical method based on answer set programming (ASP) to identify all attractors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous updating modes. The logical approach goes through a complete enumeration of the states of the network in order to find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computational experiments which show good performance and fit the expected theoretical results in the literature. The originality of our approach lies on the exhaustive enumeration of all possible (sets of) states verifying the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all existing attractors up to a given size (20 states). This size is only limited by memory and computation time.
The canonical semantic network supports residual language function in chronic post-stroke aphasia
Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Vannest, Jennifer; Holland, Scott; Dietz, Aimee; Szaflarski, Jerzy P.
2016-01-01
Current theories of language recovery after stroke are limited by a reliance on small studies. Here, we aimed to test predictions of current theory and resolve inconsistencies regarding right hemispheric contributions to long-term recovery. We first defined the canonical semantic network in 43 healthy controls. Then, in a group of 43 patients with chronic post-stroke aphasia, we tested whether activity in this network predicted performance on measures of semantic comprehension, naming, and fluency while controlling for lesion volume effects. Canonical network activation accounted for 22–33% of the variance in language test scores. Whole-brain analyses corroborated these findings, and revealed a core set of regions showing positive relationships to all language measures. We next evaluated the relationship between activation magnitudes in left and right hemispheric portions of the network, and characterized how right hemispheric activation related to the extent of left hemispheric damage. Activation magnitudes in each hemispheric network were strongly correlated, but four right frontal regions showed heightened activity in patients with large lesions. Activity in two of these regions (inferior frontal gyrus pars opercularis and supplementary motor area) was associated with better language abilities in patients with larger lesions, but poorer language abilities in patients with smaller lesions. Our results indicate that bilateral language networks support language processing after stroke, and that right hemispheric activations related to extensive left hemisphere damage occur outside of the canonical semantic network and differentially relate to behavior depending on the extent of left hemispheric damage. PMID:27981674
Mechanism-based Pharmacovigilance over the Life Sciences Linked Open Data Cloud.
Kamdar, Maulik R; Musen, Mark A
2017-01-01
Adverse drug reactions (ADR) result in significant morbidity and mortality in patients, and a substantial proportion of these ADRs are caused by drug-drug interactions (DDIs). Pharmacovigilance methods are used to detect unanticipated DDIs and ADRs by mining Spontaneous Reporting Systems, such as the US FDA Adverse Event Reporting System (FAERS). However, these methods do not provide mechanistic explanations for the discovered drug-ADR associations in a systematic manner. In this paper, we present a systems pharmacology-based approach to perform mechanism-based pharmacovigilance. We integrate data and knowledge from four different sources using Semantic Web Technologies and Linked Data principles to generate a systems network. We present a network-based Apriori algorithm for association mining in FAERS reports. We evaluate our method against existing pharmacovigilance methods for three different validation sets. Our method has AUROC statistics of 0.7-0.8, similar to current methods, and event-specific thresholds generate AUROC statistics greater than 0.75 for certain ADRs. Finally, we discuss the benefits of using Semantic Web technologies to attain the objectives for mechanism-based pharmacovigilance.
van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.
2013-01-01
Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124
Deep visual-semantic for crowded video understanding
NASA Astrophysics Data System (ADS)
Deng, Chunhua; Zhang, Junwen
2018-03-01
Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.
A technological infrastructure to sustain Internetworked Enterprises
NASA Astrophysics Data System (ADS)
La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis
In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.
Aging and Semantic Activation.
ERIC Educational Resources Information Center
Howard, Darlene V.
Three studies tested the theory that long term memory consists of a semantically organized network of concept nodes interconnected by leveled associations or relations, and that when a stimulus is processed, the corresponding concept node is assumed to be temporarily activated and this activation spreads to nearby semantically related nodes. In…
Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia
Collins, Jessica A; Montal, Victor; Hochberg, Daisy; Quimby, Megan; Mandelli, Maria Luisa; Makris, Nikos; Seeley, William W; Gorno-Tempini, Maria Luisa; Dickerson, Bradford C
2017-01-01
Abstract A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region’s strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole. PMID:28040670
Semantic Analysis of Email Using Domain Ontologies and WordNet
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Keller, Richard M.
2005-01-01
The problem of capturing and accessing knowledge in paper form has been supplanted by a problem of providing structure to vast amounts of electronic information. Systems that can construct semantic links for natural language documents like email messages automatically will be a crucial element of semantic email tools. We have designed an information extraction process that can leverage the knowledge already contained in an existing semantic web, recognizing references in email to existing nodes in a network of ontology instances by using linguistic knowledge and knowledge of the structure of the semantic web. We developed a heuristic score that uses several forms of evidence to detect references in email to existing nodes in the Semanticorganizer repository's network. While these scores cannot directly support automated probabilistic inference, they can be used to rank nodes by relevance and link those deemed most relevant to email messages.
Transcranial Direct Current Stimulation Effects on Semantic Processing in Healthy Individuals.
Joyal, Marilyne; Fecteau, Shirley
2016-01-01
Semantic processing allows us to use conceptual knowledge about the world. It has been associated with a large distributed neural network that includes the frontal, temporal and parietal cortices. Recent studies using transcranial direct current stimulation (tDCS) also contributed at investigating semantic processing. The goal of this article was to review studies investigating semantic processing in healthy individuals with tDCS and discuss findings from these studies in line with neuroimaging results. Based on functional magnetic resonance imaging studies assessing semantic processing, we predicted that tDCS applied over the inferior frontal gyrus, middle temporal gyrus, and posterior parietal cortex will impact semantic processing. We conducted a search on Pubmed and selected 27 articles in which tDCS was used to modulate semantic processing in healthy subjects. We analysed each article according to these criteria: demographic information, experimental outcomes assessing semantic processing, study design, and effects of tDCS on semantic processes. From the 27 reviewed studies, 8 found main effects of stimulation. In addition to these 8 studies, 17 studies reported an interaction between stimulus types and stimulation conditions (e.g. incoherent functional, but not instrumental, actions were processed faster when anodal tDCS was applied over the posterior parietal cortex as compared to sham tDCS). Results suggest that regions in the frontal, temporal, and parietal cortices are involved in semantic processing. tDCS can modulate some aspects of semantic processing and provide information on the functional roles of brain regions involved in this cognitive process. Copyright © 2016 Elsevier Inc. All rights reserved.
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing
Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.
Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.
Network Alterations Supporting Word Retrieval in Patients with Medial Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Protzner, Andrea B.; McAndrews, Mary Pat
2011-01-01
Although the hippocampus is not considered a key structure in semantic memory, patients with medial-temporal lobe epilepsy (mTLE) have deficits in semantic access on some word retrieval tasks. We hypothesized that these deficits reflect the negative impact of focal epilepsy on remote cerebral structures. Thus, we expected that the networks that…
Applying Semantic Web Services and Wireless Sensor Networks for System Integration
NASA Astrophysics Data System (ADS)
Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente
In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.
Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang
2017-01-01
Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed. PMID:28230725
Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian
2015-01-01
In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.
Harvey, Denise Y; Schnur, Tatiana T
2015-06-01
Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hodgetts, Carl J; Postans, Mark; Warne, Naomi; Varnava, Alice; Lawrence, Andrew D; Graham, Kim S
2017-09-01
Autobiographical memory (AM) is multifaceted, incorporating the vivid retrieval of contextual detail (episodic AM), together with semantic knowledge that infuses meaning and coherence into past events (semantic AM). While neuropsychological evidence highlights a role for the hippocampus and anterior temporal lobe (ATL) in episodic and semantic AM, respectively, it is unclear whether these constitute dissociable large-scale AM networks. We used high angular resolution diffusion-weighted imaging and constrained spherical deconvolution-based tractography to assess white matter microstructure in 27 healthy young adult participants who were asked to recall past experiences using word cues. Inter-individual variation in the microstructure of the fornix (the main hippocampal input/output pathway) related to the amount of episodic, but not semantic, detail in AMs - independent of memory age. Conversely, microstructure of the inferior longitudinal fasciculus, linking occipitotemporal regions with ATL, correlated with semantic, but not episodic, AMs. Further, these significant correlations remained when controlling for hippocampal and ATL grey matter volume, respectively. This striking correlational double dissociation supports the view that distinct, large-scale distributed brain circuits underpin context and concepts in AM. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Henry, Maya L; Beeson, Pélagie M; Alexander, Gene E; Rapcsak, Steven Z
2012-02-01
Connectionist theories of language propose that written language deficits arise as a result of damage to semantic and phonological systems that also support spoken language production and comprehension, a view referred to as the "primary systems" hypothesis. The objective of the current study was to evaluate the primary systems account in a mixed group of individuals with primary progressive aphasia (PPA) by investigating the relation between measures of nonorthographic semantic and phonological processing and written language performance and by examining whether common patterns of cortical atrophy underlie impairments in spoken versus written language domains. Individuals with PPA and healthy controls were administered a language battery, including assessments of semantics, phonology, reading, and spelling. Voxel-based morphometry was used to examine the relation between gray matter volumes and language measures within brain regions previously implicated in semantic and phonological processing. In accordance with the primary systems account, our findings indicate that spoken language performance is strongly predictive of reading/spelling profile in individuals with PPA and suggest that common networks of critical left hemisphere regions support central semantic and phonological processes recruited for spoken and written language.
ERIC Educational Resources Information Center
Anshari, Muhammad; Alas, Yabit; Guan, Lim Sei
2016-01-01
Utilizing online learning resources (OLR) from multi channels in learning activities promise extended benefits from traditional based learning-centred to a collaborative based learning-centred that emphasises pervasive learning anywhere and anytime. While compiling big data, cloud computing, and semantic web into OLR offer a broader spectrum of…
Pervasive Knowledge, Social Networks, and Cloud Computing: E-Learning 2.0
ERIC Educational Resources Information Center
Anshari, Muhammad; Alas, Yabit; Guan, Lim Sei
2015-01-01
Embedding Web 2.0 in learning processes has extended learning from traditional based learning-centred to a collaborative based learning-centred institution that emphasises learning anywhere and anytime. While deploying Semantic Web into e-learning offers a broader spectrum of pervasive knowledge acquisition to enrich users' experience in learning.…
Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues
2017-05-01
The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.
Liu, Dan; Liu, Xuejun; Wu, Yiguang
2018-04-24
This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.
NASA Astrophysics Data System (ADS)
Xue, L.; Liu, C.; Wu, Y.; Li, H.
2018-04-01
Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.
Semantic graphs and associative memories
NASA Astrophysics Data System (ADS)
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Using triggered operations to offload collective communication operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas
2010-04-01
Efficient collective operations are a major component of application scalability. Offload of collective operations onto the network interface reduces many of the latencies that are inherent in network communications and, consequently, reduces the time to perform the collective operation. To support offload, it is desirable to expose semantic building blocks that are simple to offload and yet powerful enough to implement a variety of collective algorithms. This paper presents the implementation of barrier and broadcast leveraging triggered operations - a semantic building block for collective offload. Triggered operations are shown to be both semantically powerful and capable of improving performance.
Kim, Minji; Choi, Mona; Youm, Yoosik
2017-12-01
As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies. © 2017 Korean Society of Nursing Science
Semantic Web-based Vocabulary Broker for Open Science
NASA Astrophysics Data System (ADS)
Ritschel, B.; Neher, G.; Iyemori, T.; Murayama, Y.; Kondo, Y.; Koyama, Y.; King, T. A.; Galkin, I. A.; Fung, S. F.; Wharton, S.; Cecconi, B.
2016-12-01
Keyword vocabularies are used to tag and to identify data of science data repositories. Such vocabularies consist of controlled terms and the appropriate concepts, such as GCMD1 keywords or the ESPAS2 keyword ontology. The Semantic Web-based mash-up of domain-specific, cross- or even trans-domain vocabularies provides unique capabilities in the network of appropriate data resources. Based on a collaboration between GFZ3, the FHP4, the WDC for Geomagnetism5 and the NICT6 we developed the concept of a vocabulary broker for inter- and trans-disciplinary data detection and integration. Our prototype of the Semantic Web-based vocabulary broker uses OSF7 for the mash-up of geo and space research vocabularies, such as GCMD keywords, ESPAS keyword ontology and SPASE8 keyword vocabulary. The vocabulary broker starts the search with "free" keywords or terms of a specific vocabulary scheme. The vocabulary broker almost automatically connects the different science data repositories which are tagged by terms of the aforementioned vocabularies. Therefore the mash-up of the SKOS9 based vocabularies with appropriate metadata from different domains can be realized by addressing LOD10 resources or virtual SPARQL11 endpoints which maps relational structures into the RDF format12. In order to demonstrate such a mash-up approach in real life, we installed and use a D2RQ13 server for the integration of IUGONET14 data which are managed by a relational database. The OSF based vocabulary broker and the D2RQ platform are installed at virtual LINUX machines at the Kyoto University. The vocabulary broker meets the standard of a main component of the WDS15 knowledge network. The Web address of the vocabulary broker is http://wdcosf.kugi.kyoto-u.ac.jp 1 Global Change Master Directory2 Near earth space data infrastructure for e-science3 German Research Centre for Geosciences4 University of Applied Sciences Potsdam5 World Data Center for Geomagnetism Kyoto6 National Institute of Information and Communications Technology Tokyo7 Open Semantic Framework8 Space Physics Archive Search and Extract9 Simple Knowledge Organization System10 Linked Open Data11 SPARQL Protocol And RDF Query12 Resource Description Framework13 Database to RDF Query14 Inter-university Upper atmosphere Global Observation NETwork15 World Data System
A fully convolutional networks (FCN) based image segmentation algorithm in binocular imaging system
NASA Astrophysics Data System (ADS)
Long, Zourong; Wei, Biao; Feng, Peng; Yu, Pengwei; Liu, Yuanyuan
2018-01-01
This paper proposes an image segmentation algorithm with fully convolutional networks (FCN) in binocular imaging system under various circumstance. Image segmentation is perfectly solved by semantic segmentation. FCN classifies the pixels, so as to achieve the level of image semantic segmentation. Different from the classical convolutional neural networks (CNN), FCN uses convolution layers instead of the fully connected layers. So it can accept image of arbitrary size. In this paper, we combine the convolutional neural network and scale invariant feature matching to solve the problem of visual positioning under different scenarios. All high-resolution images are captured with our calibrated binocular imaging system and several groups of test data are collected to verify this method. The experimental results show that the binocular images are effectively segmented without over-segmentation. With these segmented images, feature matching via SURF method is implemented to obtain regional information for further image processing. The final positioning procedure shows that the results are acceptable in the range of 1.4 1.6 m, the distance error is less than 10mm.
Issues in Semantic Memory: A Response to Glass and Holyoak. Technical Report No. 101.
ERIC Educational Resources Information Center
Shoben, Edward J.; And Others
Glass and Holyoak (1975) have raised two issues related to the distinction between set-theoretic and network theories of semantic memory, contending that: (a) their version of a network theory, the Marker Search model, is conceptually and empirically superior to the Feature Comparison model version of a set-theoretic theory; and (b) the contrast…
Impact of Machine-Translated Text on Entity and Relationship Extraction
2014-12-01
20 1 1. Introduction Using social network analysis tools is an important asset in...semantic modeling software to automatically build detailed network models from unstructured text. Contour imports unstructured text and then maps the text...onto an existing ontology of frames at the sentence level, using FrameNet, a structured language model, and through Semantic Role Labeling ( SRL
Translation-aware semantic segmentation via conditional least-square generative adversarial networks
NASA Astrophysics Data System (ADS)
Zhang, Mi; Hu, Xiangyun; Zhao, Like; Pang, Shiyan; Gong, Jinqi; Luo, Min
2017-10-01
Semantic segmentation has recently made rapid progress in the field of remote sensing and computer vision. However, many leading approaches cannot simultaneously translate label maps to possible source images with a limited number of training images. The core issue is insufficient adversarial information to interpret the inverse process and proper objective loss function to overcome the vanishing gradient problem. We propose the use of conditional least squares generative adversarial networks (CLS-GAN) to delineate visual objects and solve these problems. We trained the CLS-GAN network for semantic segmentation to discriminate dense prediction information either from training images or generative networks. We show that the optimal objective function of CLS-GAN is a special class of f-divergence and yields a generator that lies on the decision boundary of discriminator that reduces possible vanished gradient. We also demonstrate the effectiveness of the proposed architecture at translating images from label maps in the learning process. Experiments on a limited number of high resolution images, including close-range and remote sensing datasets, indicate that the proposed method leads to the improved semantic segmentation accuracy and can simultaneously generate high quality images from label maps.
Lexical-semantic processing in the semantic priming paradigm in aphasic patients.
Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès
2012-09-01
There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.
Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R
2016-09-21
The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.
Are all judgments created equal? An fMRI study of semantic and episodic metamemory predictions.
Reggev, Niv; Zuckerman, Maya; Maril, Anat
2011-04-01
Metamemory refers to the ability of individuals to monitor and control their own memory performance. Although little theoretical consideration of the possible differences between the monitoring of episodic and of semantic knowledge has been published, results from patient and drug studies that used the "feeling of knowing" (FOK) paradigm show a selective impairment in the accuracy of episodic monitoring but not in its semantic counterpart. Similarly, neuroimaging studies provide indirect evidence for separate patterns of activation during episodic or semantic FOKs. However, the semantic-episodic distinction hypothesis has not been directly addressed. In the current event-related fMRI study, we used a within-subject, within-experiment comparison of the monitoring of semantic and episodic content. Whereas the common neural correlates of episodic and semantic FOKs observed in this study generally replicate the previous neuroimaging findings, several regions were found to be differentially associated with each task. Activity of the right inferior frontal gyrus was modulated by the semantic-episodic factor only during the negative predictions of retrieval, suggesting that negative predictions are based on partially distinct mechanisms during each task. A posterior midline network, known to be activated during episodic retrieval, was activated during episodic and not semantic monitoring, suggesting that episodic FOKs rely, to some extent, on common episodic retrieval processes. These findings suggest that theoretical accounts of the etiology and function of FOKs may benefit from incorporating the prediction directionality (positive/negative) and the memory domain (semantic/episodic) distinctions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Devereux, Barry J; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K
2013-11-27
Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects.
MediaNet: a multimedia information network for knowledge representation
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu
2000-10-01
In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.
Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.
Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray
2014-03-01
We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.
A Comparison of Five FMRI Protocols for Mapping Speech Comprehension Systems
Binder, Jeffrey R.; Swanson, Sara J.; Hammeke, Thomas A.; Sabsevitz, David S.
2008-01-01
Aims Many fMRI protocols for localizing speech comprehension have been described, but there has been little quantitative comparison of these methods. We compared five such protocols in terms of areas activated, extent of activation, and lateralization. Methods FMRI BOLD signals were measured in 26 healthy adults during passive listening and active tasks using words and tones. Contrasts were designed to identify speech perception and semantic processing systems. Activation extent and lateralization were quantified by counting activated voxels in each hemisphere for each participant. Results Passive listening to words produced bilateral superior temporal activation. After controlling for pre-linguistic auditory processing, only a small area in the left superior temporal sulcus responded selectively to speech. Active tasks engaged an extensive, bilateral attention and executive processing network. Optimal results (consistent activation and strongly lateralized pattern) were obtained by contrasting an active semantic decision task with a tone decision task. There was striking similarity between the network of brain regions activated by the semantic task and the network of brain regions that showed task-induced deactivation, suggesting that semantic processing occurs during the resting state. Conclusions FMRI protocols for mapping speech comprehension systems differ dramatically in pattern, extent, and lateralization of activation. Brain regions involved in semantic processing were identified only when an active, non-linguistic task was used as a baseline, supporting the notion that semantic processing occurs whenever attentional resources are not controlled. Identification of these lexical-semantic regions is particularly important for predicting language outcome in patients undergoing temporal lobe surgery. PMID:18513352
Semantic integration of data on transcriptional regulation
Baitaluk, Michael; Ponomarenko, Julia
2010-01-01
Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517
Semantic integration of data on transcriptional regulation.
Baitaluk, Michael; Ponomarenko, Julia
2010-07-01
Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a 'one-stop shop' experience for users seeking information essential for deciphering and modeling gene regulatory networks. IntegromeDB, a semantic graph-based 'deep-web' data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org baitaluk@sdsc.edu Supplementary data are available at Bioinformatics online.
Han, Seunghee; Kim, Ki Joon; Kim, Jang Hyun
2017-07-01
This study explicates nomophobia by developing a research model that identifies several determinants of smartphone separation anxiety and by conducting semantic network analyses on smartphone users' verbal descriptions of the meaning of their smartphones. Structural equation modeling of the proposed model indicates that personal memories evoked by smartphones encourage users to extend their identity onto their devices. When users perceive smartphones as their extended selves, they are more likely to get attached to the devices, which, in turn, leads to nomophobia by heightening the phone proximity-seeking tendency. This finding is also supplemented by the results of the semantic network analyses revealing that the words related to memory, self, and proximity-seeking are indeed more frequently used in the high, compared with low, nomophobia group.
Meyer, Georg F; Harrison, Neil R; Wuerger, Sophie M
2013-08-01
An extensive network of cortical areas is involved in multisensory object and action recognition. This network draws on inferior frontal, posterior temporal, and parietal areas; activity is modulated by familiarity and the semantic congruency of auditory and visual component signals even if semantic incongruences are created by combining visual and auditory signals representing very different signal categories, such as speech and whole body actions. Here we present results from a high-density ERP study designed to examine the time-course and source location of responses to semantically congruent and incongruent audiovisual speech and body actions to explore whether the network involved in action recognition consists of a hierarchy of sequentially activated processing modules or a network of simultaneously active processing sites. We report two main results:1) There are no significant early differences in the processing of congruent and incongruent audiovisual action sequences. The earliest difference between congruent and incongruent audiovisual stimuli occurs between 240 and 280 ms after stimulus onset in the left temporal region. Between 340 and 420 ms, semantic congruence modulates responses in central and right frontal areas. Late differences (after 460 ms) occur bilaterally in frontal areas.2) Source localisation (dipole modelling and LORETA) reveals that an extended network encompassing inferior frontal, temporal, parasaggital, and superior parietal sites are simultaneously active between 180 and 420 ms to process auditory–visual action sequences. Early activation (before 120 ms) can be explained by activity in mainly sensory cortices. . The simultaneous activation of an extended network between 180 and 420 ms is consistent with models that posit parallel processing of complex action sequences in frontal, temporal and parietal areas rather than models that postulate hierarchical processing in a sequence of brain regions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Huebner, Philip A.; Willits, Jon A.
2018-01-01
Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243
Semiotics and agents for integrating and navigating through multimedia representations of concepts
NASA Astrophysics Data System (ADS)
Joyce, Dan W.; Lewis, Paul H.; Tansley, Robert H.; Dobie, Mark R.; Hall, Wendy
1999-12-01
The purpose of this paper is two-fold. We begin by exploring the emerging trend to view multimedia information in terms of low-level and high-level components; the former being feature-based and the latter the 'semantics' intrinsic to what is portrayed by the media object. Traditionally, this has been viewed by employing analogies with generative linguistics. Recently, a new perceptive based on the semiotic tradition has been alluded to in several papers. We believe this to be a more appropriate approach. From this, we propose an approach for tackling this problem which uses an associative data structure expressing authored information together with intelligent agents acting autonomously over this structure. We then show how neural networks can be used to implement such agents. The agents act as 'vehicles' for bridging the gap between multimedia semantics and concrete expressions of high-level knowledge, but we suggest that traditional neural network techniques for classification are not architecturally adequate.
The Source of the Symbolic Numerical Distance and Size Effects
Krajcsi, Attila; Lengyel, Gábor; Kojouharova, Petia
2016-01-01
Human number understanding is thought to rely on the analog number system (ANS), working according to Weber’s law. We propose an alternative account, suggesting that symbolic mathematical knowledge is based on a discrete semantic system (DSS), a representation that stores values in a semantic network, similar to the mental lexicon or to a conceptual network. Here, focusing on the phenomena of numerical distance and size effects in comparison tasks, first we discuss how a DSS model could explain these numerical effects. Second, we demonstrate that the DSS model can give quantitatively as appropriate a description of the effects as the ANS model. Finally, we show that symbolic numerical size effect is mainly influenced by the frequency of the symbols, and not by the ratios of their values. This last result suggests that numerical distance and size effects cannot be caused by the ANS, while the DSS model might be the alternative approach that can explain the frequency-based size effect. PMID:27917139
Raising the IQ in full-text searching via intelligent querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kero, R.; Russell, L.; Swietlik, C.
1994-11-01
Current Information Retrieval (IR) technologies allow for efficient access to relevant information, provided that user selected query terms coincide with the specific linguistical choices made by the authors whose works constitute the text-base. Therefore, the challenge is to enhance the limited searching capability of state-of-the-practice IR. This can be done either with augmented clients that overcome current server searching deficiencies, or with added capabilities that can augment searching algorithms on the servers. The technology being investigated is that of deductive databases, with a set of new techniques called cooperative answering. This technology utilizes semantic networks to allow for navigation betweenmore » possible query search term alternatives. The augmented search terms are passed to an IR engine and the results can be compared. The project utilizes the OSTI Environment, Safety and Health Thesaurus to populate the domain specific semantic network and the text base of ES&H related documents from the Facility Profile Information Management System as the domain specific search space.« less
Publishing high-quality climate data on the semantic web
NASA Astrophysics Data System (ADS)
Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry
2013-04-01
The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface temperature dataset, Australian Climate Observations Reference Network - Surface Air Temperature (ACORN-SAT) [BoM, 2012b]. This dataset contains daily homogenised surface temperature observations for 112 locations around Australia, dating back to 1910. An ontology for the dataset was developed [Lefort et. al., 2012], based on the existing Semantic Sensor Network ontology [Compton et. al., 2012] and the W3C RDF Data Cube vocabulary [W3C, 2012]. Additional vocabularies were developed, e.g. for BoM weather stations and rainfall districts. The dataset was converted to RDF and loaded into an RDF triplestore. The Linked-Data API (http://code.google.com/p/linked-data-api) was used to configure specific URI query patterns (e.g. for observation timeseries slices by station), and a SPARQL endpoint was provided for direct querying. In addition, some demonstration 'mash-ups' were developed, providing an interactive browser-based interface to the temperature timeseries. References [Berners-Lee et. al., 2001] Tim Berners-Lee, James Hendler and Ora Lassila (2001), "The Semantic Web", Scientific American, May 2001. [Berners-Lee, 2006] Tim Berners-Lee (2006), "Linked Data - Design Issues", W3C [http://www.w3.org/DesignIssues/LinkedData.html] [BoM, 2012a] Bureau of Meteorology (2012), "Environmental information" [http://www.bom.gov.au/environment/] [BoM, 2012b] Bureau of Meteorology (2012), "Australian Climate Observations Reference Network - Surface Air Temperature" [http://www.bom.gov.au/climate/change/acorn-sat/] [Compton et. al., 2012] Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, Kerry Taylor (2012), "The SSN Ontology of the W3C Semantic Sensor Network Incubator Group", J. Web Semantics, 17 (2012) [http://dx.doi.org/10.1016/j.websem.2012.05.003] [Lefort et. al., 2012] Laurent Lefort, Josh Bobruk, Armin Haller, Kerry Taylor and Andrew Woolf (2012), "A Linked Sensor Data Cube for a 100 Year Homogenised daily temperature dataset", Proc. Semantic Sensor Networks 2012 [http://ceur-ws.org/Vol-904/paper10.pdf] [W3C, 2012] W3C (2012), "The RDF Data Cube Vocabulary", [http://www.w3.org/TR/vocab-data-cube/
NASA Astrophysics Data System (ADS)
Borne, K. D.
2009-12-01
The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to represent and encode the new knowledge, and how to curate the discovered knowledge. This talk will address the emergence of U-Science as a type of Semantic e-Science, and will explore challenges, implementations, and results. Semantic e-Science and U-Science applications and concepts will be discussed within the context of one particular implementation (AstroDAS: Astronomy Distributed Annotation System) and its applicability to petascale science projects such as the LSST (Large Synoptic Survey Telescope), coming online within the next few years.
ERIC Educational Resources Information Center
Pizzioli, Fabrizio; Schelstraete, Marie-Anne
2011-01-01
The hypothesis indicating an overactivation of the lexico-semantic network in children with specific language impairment (SLI) was tested using an auditory pair-primed paradigm (PPP), where participants made a lexical-decision on the second word of a noun pair that could be semantically related, or not, to the first one. Though children with SLI…
ERIC Educational Resources Information Center
Lavigne, Frederic; Dumercy, Laurent; Darmon, Nelly
2011-01-01
Recall and language comprehension while processing sequences of words involves multiple semantic priming between several related and/or unrelated words. Accounting for multiple and interacting priming effects in terms of underlying neuronal structure and dynamics is a challenge for current models of semantic priming. Further elaboration of current…
ERIC Educational Resources Information Center
Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.
2008-01-01
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…
Knowledge-based approaches to the maintenance of a large controlled medical terminology.
Cimino, J J; Clayton, P D; Hripcsak, G; Johnson, S B
1994-01-01
OBJECTIVE: Develop a knowledge-based representation for a controlled terminology of clinical information to facilitate creation, maintenance, and use of the terminology. DESIGN: The Medical Entities Dictionary (MED) is a semantic network, based on the Unified Medical Language System (UMLS), with a directed acyclic graph to represent multiple hierarchies. Terms from four hospital systems (laboratory, electrocardiography, medical records coding, and pharmacy) were added as nodes in the network. Additional knowledge about terms, added as semantic links, was used to assist in integration, harmonization, and automated classification of disparate terminologies. RESULTS: The MED contains 32,767 terms and is in active clinical use. Automated classification was successfully applied to terms for laboratory specimens, laboratory tests, and medications. One benefit of the approach has been the automated inclusion of medications into multiple pharmacologic and allergenic classes that were not present in the pharmacy system. Another benefit has been the reduction of maintenance efforts by 90%. CONCLUSION: The MED is a hybrid of terminology and knowledge. It provides domain coverage, synonymy, consistency of views, explicit relationships, and multiple classification while preventing redundancy, ambiguity (homonymy) and misclassification. PMID:7719786
Supervised guiding long-short term memory for image caption generation based on object classes
NASA Astrophysics Data System (ADS)
Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan
2018-03-01
The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.
NASA Astrophysics Data System (ADS)
Rahmani, K.; Mayer, H.
2018-05-01
In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.
Kaufmann, Stefan
2013-08-01
The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals. Copyright © 2013 Cognitive Science Society, Inc.
Real-time object detection and semantic segmentation for autonomous driving
NASA Astrophysics Data System (ADS)
Li, Baojun; Liu, Shun; Xu, Weichao; Qiu, Wei
2018-02-01
In this paper, we proposed a Highly Coupled Network (HCNet) for joint objection detection and semantic segmentation. It follows that our method is faster and performs better than the previous approaches whose decoder networks of different tasks are independent. Besides, we present multi-scale loss architecture to learn better representation for different scale objects, but without extra time in the inference phase. Experiment results show that our method achieves state-of-the-art results on the KITTI datasets. Moreover, it can run at 35 FPS on a GPU and thus is a practical solution to object detection and semantic segmentation for autonomous driving.
SAYKIN, ANDREW J.; FLASHMAN, LAURA A.; FRUTIGER, SALLY A.; JOHNSON, STERLING C.; MAMOURIAN, ALEXANDER C.; MORITZ, CHAD H.; O’JILE, JUDITH R.; RIORDAN, HENRY J.; SANTULLI, ROBERT B.; SMITH, CYNTHIA A.; WEAVER, JOHN B.
2015-01-01
Impairment in semantic processing occurs early in Alzheimer’s disease (AD) and differential impact on subtypes of semantic relations have been reported, yet there is little data on the neuroanatomic basis of these deficits. Patients with mild AD and healthy controls underwent 3 functional MRI auditory stimulation tasks requiring semantic or phonological decisions (match–mismatch) about word pairs (category–exemplar, category–function, pseudoword). Patients showed a significant performance deficit only on the exemplar task. On voxel-based fMRI activation analyses, controls showed a clear activation focus in the left superior temporal gyrus for the phonological task; patients showed additional foci in the left dorsolateral prefrontal and bilateral cingulate areas. On the semantic tasks, predominant activation foci were seen in the inferior and middle frontal gyrus (left greater than right) in both groups but patients showed additional activation suggesting compensatory recruitment of locally expanded foci and remote regions, for example, right frontal activation during the exemplar task. Covariance analyses indicated that exemplar task performance was strongly related to signal increase in bilateral medial prefrontal cortex. The authors conclude that fMRI can reveal similarities and differences in functional neuroanatomical processing of semantic and phonological information in mild AD compared to healthy elderly, and can help to bridge cognitive and neural investigations of the integrity of semantic networks in AD. PMID:10439584
A neural network simulation package in CLIPS
NASA Technical Reports Server (NTRS)
Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John
1990-01-01
The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.
Implementing a frame representation in CLIPS/COOL
NASA Technical Reports Server (NTRS)
Myers, Leonard; Snyder, James
1991-01-01
An implementation is described and evaluated of frames in COOL. The test case is a frame based semantic network previously implemented in CLIPS (C Language Integrated Production System) Version 4.3 as part of the Intelligent Computer Aided Design System (ICADS) and reported at the first CLIPS conference.
Rogalsky, Corianne
2009-01-01
Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589
Improving life sciences information retrieval using semantic web technology.
Quan, Dennis
2007-05-01
The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.
Semantic Segmentation of Indoor Point Clouds Using Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Babacan, K.; Chen, L.; Sohn, G.
2017-11-01
As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.
A dictionary server for supplying context sensitive medical knowledge.
Ruan, W; Bürkle, T; Dudeck, J
2000-01-01
The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service.
Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro
2011-07-01
Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.
System and method for knowledge based matching of users in a network
Verspoor, Cornelia Maria [Santa Fe, NM; Sims, Benjamin Hayden [Los Alamos, NM; Ambrosiano, John Joseph [Los Alamos, NM; Cleland, Timothy James [Los Alamos, NM
2011-04-26
A knowledge-based system and methods to matchmaking and social network extension are disclosed. The system is configured to allow users to specify knowledge profiles, which are collections of concepts that indicate a certain topic or area of interest selected from an. The system utilizes the knowledge model as the semantic space within which to compare similarities in user interests. The knowledge model is hierarchical so that indications of interest in specific concepts automatically imply interest in more general concept. Similarity measures between profiles may then be calculated based on suitable distance formulas within this space.
Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams
NASA Astrophysics Data System (ADS)
Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge
This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.
Single Sided Messaging v. 0.6.6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Matthew Leon; Farmer, Matthew Shane; Hassani, Amin
Single-Sided Messaging (SSM) is a portable, multitransport networking library that enables applications to leverage potential one-sided capabilities of underlying network transports. It also provides desirable semantics that services for highperformance, massively parallel computers can leverage, such as an explicit cancel operation for pending transmissions, as well as enhanced matching semantics favoring large numbers of buffers attached to a single match entry. This release supports TCP/IP, shared memory, and Infiniband.
Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.
Smith, Ryan M; Beversdorf, David Q
2008-07-01
Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.
Jelinek, Lena; Hottenrott, Birgit; Moritz, Steffen
2009-12-01
Building upon semantic network models, it is proposed that individuals with obsessive-compulsive disorder (OCD) process ambiguous words (e.g., homographs such as cancer) preferably in the context of the OC meaning (i.e., illness) and connect them to a lesser degree to other (neutral) cognitions (e.g., animal). To investigate this assumption, a new task was designed requiring participants to generate up to five associations for different cue words. Cue words were either emotionally neutral, negative or OC-relevant. Two thirds of the items were homographs, while the rest was unambiguous. Twenty-five OCD and 21 healthy participants were recruited via internet. Analyses reveal that OCD participants produced significantly more negative and OC-relevant associations than controls, supporting the assumption of biased associative networks in OCD. The findings support the use of psychological interventions such as Association Splitting that aim at restructuring associative networks in OCD by broadening the semantic scope of OC cognitions.
Social networking sites use and the morphology of a social-semantic brain network.
Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine
2017-09-30
Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.
Nestor, P.G.; Han, S.D.; Niznikiewicz, M.; Salisbury, D.; Spencer, K.; Shenton, M.E.; McCarley, R.W.
2010-01-01
We view schizophrenia as producing a failure of attentional modulation that leads to a breakdown in the selective enhancement or inhibition of semantic/lexical representations whose biological substrata are widely distributed across left (dominant) temporal and frontal lobes. Supporting behavioral evidence includes word recall studies that have pointed to a disturbance in connectivity (associative strength) but not network size (number of associates) in patients with schizophrenia. Paralleling these findings are recent neural network simulation studies of the abnormal connectivity effect in schizophrenia through ‘lesioning’ network connection weights while holding constant network size. Supporting evidence at the level of biology are in vitro studies examining N-methyl-d-aspartate (NMDA) receptor antagonists on recurrent inhibition; simulations in neural populations with realistically modeled biophysical properties show NMDA antagonists produce a schizophrenia-like disturbance in pattern association. We propose a similar failure of NMDA-mediated recurrent inhibition as a candidate biological substrate for attention and semantic anomalies of schizophrenia. PMID:11454433
Semantic segmentation of mFISH images using convolutional networks.
Pardo, Esteban; Morgado, José Mário T; Malpica, Norberto
2018-04-30
Multicolor in situ hybridization (mFISH) is a karyotyping technique used to detect major chromosomal alterations using fluorescent probes and imaging techniques. Manual interpretation of mFISH images is a time consuming step that can be automated using machine learning; in previous works, pixel or patch wise classification was employed, overlooking spatial information which can help identify chromosomes. In this work, we propose a fully convolutional semantic segmentation network for the interpretation of mFISH images, which uses both spatial and spectral information to classify each pixel in an end-to-end fashion. The semantic segmentation network developed was tested on samples extracted from a public dataset using cross validation. Despite having no labeling information of the image it was tested on, our algorithm yielded an average correct classification ratio (CCR) of 87.41%. Previously, this level of accuracy was only achieved with state of the art algorithms when classifying pixels from the same image in which the classifier has been trained. These results provide evidence that fully convolutional semantic segmentation networks may be employed in the computer aided diagnosis of genetic diseases with improved performance over the current image analysis methods. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
García Castro, Alexander; García-Castro, Leyla Jael; Labarga, Alberto; Giraldo, Olga; Montaña, César; O'Neil, Kieran; Bateman, John A.
Rather than a document that is being constantly re-written as in the wiki approach, the Living Document (LD) is one that acts as a document router, operating by means of structured and organized social tagging and existing ontologies. It offers an environment where users can manage papers and related information, share their knowledge with their peers and discover hidden associations among the shared knowledge. The LD builds upon both the Semantic Web, which values the integration of well-structured data, and the Social Web, which aims to facilitate interaction amongst people by means of user-generated content. In this vein, the LD is similar to a social networking system, with users as central nodes in the network, with the difference that interaction is focused on papers rather than people. Papers, with their ability to represent research interests, expertise, affiliations, and links to web based tools and databanks, represent a central axis for interaction amongst users. To begin to show the potential of this vision, we have implemented a novel web prototype that enables researchers to accomplish three activities central to the Semantic Web vision: organizing, sharing and discovering. Availability: http://www.scientifik.info/
Devereux, Barry J.; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K.
2013-01-01
Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects. PMID:24285896
Crowther, Jason E.; Martin, Randi C.
2014-01-01
Studies of semantic interference in language production have provided evidence for a role of cognitive control mechanisms in regulating the activation of semantic competitors during naming. The present study investigated the relationship between individual differences in cognitive control abilities, for both younger and older adults, and the degree of semantic interference in a blocked cyclic naming task. We predicted that individuals with lower working memory capacity (as measured by word span), lesser ability to inhibit distracting responses (as measured by Stroop interference), and a lesser ability to resolve proactive interference (as measured by a recent negatives task) would show a greater increase in semantic interference in naming, with effects being larger for older adults. Instead, measures of cognitive control were found to relate to specific indices of semantic interference in the naming task, rather than overall degree of semantic interference, and few interactions with age were found, with younger and older adults performing similarly. The increase in naming latencies across naming trials within a cycle was negatively correlated with word span for both related and unrelated conditions, suggesting a strategy of narrowing response alternatives based upon memory for the set of item names. Evidence for a role of inhibition in response selection was obtained, as Stroop interference correlated positively with the change in naming latencies across cycles for the related, but not unrelated, condition. In contrast, recent negatives interference correlated negatively with the change in naming latencies across unrelated cycles, suggesting that individual differences in this tap the degree of strengthening of links in a lexical network based upon prior exposure. Results are discussed in terms of current models of lexical selection and consequences for word retrieval in more naturalistic production. PMID:24478675
Modal and Temporal Argumentation Networks
NASA Astrophysics Data System (ADS)
Barringer, Howard; Gabbay, Dov M.
The traditional Dung networks depict arguments as atomic and studies the relationships of attack between them. This can be generalised in two ways. One is to consider, for example, various forms of attack, support and feedback. Another is to add content to nodes and put there not just atomic arguments but more structure, for example, proofs in some logic or simply just formulas from a richer language. This paper offers to use temporal and modal language formulas to represent arguments in the nodes of a network. The suitable semantics for such networks is Kripke semantics. We also introduce a new key concept of usability of an argument.
Exploring the presentation of HPV information online: A semantic network analysis of websites.
Ruiz, Jeanette B; Barnett, George A
2015-06-26
Negative vaccination-related information online leads some to opt out of recommended vaccinations. To determine how HPV vaccine information is presented online and what concepts co-occur. A semantic network analysis of the words in first-page Google search results was conducted using three negative, three neutral, and three positive search terms for 10 base concepts such as HPV vaccine, and HPV immunizations. In total, 223 of the 300 websites retrieved met inclusion requirements. Website information was analyzed using network statistics to determine what words most frequently appear, which words co-occur, and the sentiment of the words. High levels of word interconnectivity were found suggesting a rich set of semantic links and a very integrated set of concepts. Limited number of words held centrality indicating limited concept prominence. This dense network signifies concepts that are well connected. Negative words were most prevalent and were associated with describing the HPV vaccine's side-effects as well as the negative effects of HPV and cervical cancer. A smaller cluster focuses on reporting negative vaccine side-effects. Clustering shows the words women and girls closely located to the words sexually, virus, and infection. Information about the HPV vaccine online centered on a limited number of concepts. HPV vaccine benefits as well as the risks of HPV, including severity and susceptibility, were centrally presented. Word cluster results imply that HPV vaccine information for women and girls is discussed in more sexual terms than for men and boys. Copyright © 2015 Elsevier Ltd. All rights reserved.
Systematic Representation of Knowledge of Ecology: Concepts and Relationships.
ERIC Educational Resources Information Center
Garb, Yaakov; And Others
This study describes efforts to apply principles of systematic knowledge representation (concept mapping and computer-based semantic networking techniques) to the domain of ecology. A set of 24 relationships and modifiers is presented that seem sufficient for describing all ecological relationships discussed in an introductory course. Many of…
NASA Astrophysics Data System (ADS)
Yang, Xue; Sun, Hao; Fu, Kun; Yang, Jirui; Sun, Xian; Yan, Menglong; Guo, Zhi
2018-01-01
Ship detection has been playing a significant role in the field of remote sensing for a long time but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection and the redundancy of detection region. In order to solve such problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN) which can effectively detect ship in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN), which is aimed at solving the problem resulted from the narrow width of the ship. Compared with previous multi-scale detectors such as Feature Pyramid Network (FPN), DFPN builds the high-level semantic feature-maps for all scales by means of dense connections, through which enhances the feature propagation and encourages the feature reuse. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multi-scale ROI Align for the purpose of maintaining the completeness of semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has a state-of-the-art performance.
Classifying patents based on their semantic content.
Bergeaud, Antonin; Potiron, Yoann; Raimbault, Juste
2017-01-01
In this paper, we extend some usual techniques of classification resulting from a large-scale data-mining and network approach. This new technology, which in particular is designed to be suitable to big data, is used to construct an open consolidated database from raw data on 4 million patents taken from the US patent office from 1976 onward. To build the pattern network, not only do we look at each patent title, but we also examine their full abstract and extract the relevant keywords accordingly. We refer to this classification as semantic approach in contrast with the more common technological approach which consists in taking the topology when considering US Patent office technological classes. Moreover, we document that both approaches have highly different topological measures and strong statistical evidence that they feature a different model. This suggests that our method is a useful tool to extract endogenous information.
Classifying patents based on their semantic content
2017-01-01
In this paper, we extend some usual techniques of classification resulting from a large-scale data-mining and network approach. This new technology, which in particular is designed to be suitable to big data, is used to construct an open consolidated database from raw data on 4 million patents taken from the US patent office from 1976 onward. To build the pattern network, not only do we look at each patent title, but we also examine their full abstract and extract the relevant keywords accordingly. We refer to this classification as semantic approach in contrast with the more common technological approach which consists in taking the topology when considering US Patent office technological classes. Moreover, we document that both approaches have highly different topological measures and strong statistical evidence that they feature a different model. This suggests that our method is a useful tool to extract endogenous information. PMID:28445550
Leveraging EHR Data for Outcomes and Comparative Effectiveness Research in Oncology
Harris, Marcelline R.; Buyuktur, Ayse G.; Clark, Patricia M.; An, Lawrence C.; Hanauer, David A.
2012-01-01
Along with the increasing adoption of electronic health records (EHRs) are expectations that data collected within EHRs will be readily available for outcomes and comparative effectiveness research. Yet the ability to effectively share and reuse data depends on implementing and configuring EHRs with these goals in mind from the beginning. Data sharing and integration must be planned both locally as well as nationally. The rich data transmission and semantic infrastructure developed by the National Cancer Institute (NCI) for research provides an excellent example of moving beyond paper-based paradigms and exploiting the power of semantically robust, network-based systems, and engaging both domain and informatics expertise. Similar efforts are required to address current challenges in sharing EHR data. PMID:22948276
Overlap in the functional neural systems involved in semantic and episodic memory retrieval.
Rajah, M N; McIntosh, A R
2005-03-01
Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.
Rice, Grace E; Caswell, Helen; Moore, Perry; Lambon Ralph, Matthew A; Hoffman, Paul
2018-06-06
One critical feature of any well-engineered system is its resilience to perturbation and minor damage. The purpose of the current study was to investigate how resilience is achieved in higher cognitive systems, which we explored through the domain of semantic cognition. Convergent evidence implicates the bilateral anterior temporal lobes (ATLs) as a conceptual knowledge hub. While bilateral damage to this region produces profound semantic impairment, unilateral atrophy/resection or transient perturbation has a limited effect. Two neural mechanisms might underpin this resilience to unilateral ATL damage: 1) the undamaged ATL upregulates its activation in order to compensate; and/or 2) prefrontal regions involved in control of semantic retrieval upregulate to compensate for the impoverished semantic representations that follow from ATL damage. To test these possibilities, 34 postsurgical temporal lobe epilepsy patients and 20 age-matched controls were scanned whilst completing semantic tasks. Pictorial tasks, which produced bilateral frontal and temporal activation, showed few activation differences between patients and control participants. Written word tasks, however, produced a left-lateralized activation pattern and greater differences between the groups. Patients with right ATL resection increased activation in left inferior frontal gyrus (IFG). Patients with left ATL resection upregulated both the right ATL and right IFG. Consistent with recent computational models, these results indicate that 1) written word semantic processing in patients with ATL resection is supported by upregulation of semantic knowledge and control regions, principally in the undamaged hemisphere, and 2) pictorial semantic processing is less affected, presumably because it draws on a more bilateral network.
Neural correlates of semantic associations in patients with schizophrenia.
Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo
2014-03-01
Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.
How activation, entanglement, and searching a semantic network contribute to event memory.
Nelson, Douglas L; Kitto, Kirsty; Galea, David; McEvoy, Cathy L; Bruza, Peter D
2013-08-01
Free-association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long-lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist-cuing, primed free-association, intralist-cuing, and single-item recognition tasks. The findings also show that when a related word is presented in order to cue the recall of a studied word, the cue activates the target in an array of related words that distract and reduce the probability of the target's selection. The activation of the semantic network produces priming benefits during encoding, and search costs during retrieval. In extralist cuing, recall is a negative function of cue-to-distractor strength, and a positive function of neighborhood density, cue-to-target strength, and target-to-cue strength. We show how these four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks, indicating that the contribution of the semantic network varies with the context provided by the task. Finally, we evaluate spreading-activation and quantum-like entanglement explanations for the priming effects produced by neighborhood density.
Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks
NASA Astrophysics Data System (ADS)
Sun, Xiaofeng; Shen, Shuhan; Lin, Xiangguo; Hu, Zhanyi
2017-10-01
High-resolution remote sensing data classification has been a challenging and promising research topic in the community of remote sensing. In recent years, with the rapid advances of deep learning, remarkable progress has been made in this field, which facilitates a transition from hand-crafted features designing to an automatic end-to-end learning. A deep fully convolutional networks (FCNs) based ensemble learning method is proposed to label the high-resolution aerial images. To fully tap the potentials of FCNs, both the Visual Geometry Group network and a deeper residual network, ResNet, are employed. Furthermore, to enlarge training samples with diversity and gain better generalization, in addition to the commonly used data augmentation methods (e.g., rotation, multiscale, and aspect ratio) in the literature, aerial images from other datasets are also collected for cross-scene learning. Finally, we combine these learned models to form an effective FCN ensemble and refine the results using a fully connected conditional random field graph model. Experiments on the ISPRS 2-D Semantic Labeling Contest dataset show that our proposed end-to-end classification method achieves an overall accuracy of 90.7%, a state-of-the-art in the field.
Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes
2013-01-01
Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained. PMID:23385405
Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes
2013-01-31
Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.
Cano, Isaac; Tényi, Ákos; Schueller, Christine; Wolff, Martin; Huertas Migueláñez, M Mercedes; Gomez-Cabrero, David; Antczak, Philipp; Roca, Josep; Cascante, Marta; Falciani, Francesco; Maier, Dieter
2014-11-28
Previously we generated a chronic obstructive pulmonary disease (COPD) specific knowledge base (http://www.copdknowledgebase.eu) from clinical and experimental data, text-mining results and public databases. This knowledge base allowed the retrieval of specific molecular networks together with integrated clinical and experimental data. The COPDKB has now been extended to integrate over 40 public data sources on functional interaction (e.g. signal transduction, transcriptional regulation, protein-protein interaction, gene-disease association). In addition we integrated COPD-specific expression and co-morbidity networks connecting over 6 000 genes/proteins with physiological parameters and disease states. Three mathematical models describing different aspects of systemic effects of COPD were connected to clinical and experimental data. We have completely redesigned the technical architecture of the user interface and now provide html and web browser-based access and form-based searches. A network search enables the use of interconnecting information and the generation of disease-specific sub-networks from general knowledge. Integration with the Synergy-COPD Simulation Environment enables multi-scale integrated simulation of individual computational models while integration with a Clinical Decision Support System allows delivery into clinical practice. The COPD Knowledge Base is the only publicly available knowledge resource dedicated to COPD and combining genetic information with molecular, physiological and clinical data as well as mathematical modelling. Its integrated analysis functions provide overviews about clinical trends and connections while its semantically mapped content enables complex analysis approaches. We plan to further extend the COPDKB by offering it as a repository to publish and semantically integrate data from relevant clinical trials. The COPDKB is freely available after registration at http://www.copdknowledgebase.eu.
Mathematical Logic in the Human Brain: Semantics
Friedrich, Roland M.; Friederici, Angela D.
2013-01-01
As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge. PMID:23301101
A dictionary server for supplying context sensitive medical knowledge.
Ruan, W.; Bürkle, T.; Dudeck, J.
2000-01-01
The Giessen Data Dictionary Server (GDDS), developed at Giessen University Hospital, integrates clinical systems with on-line, context sensitive medical knowledge to help with making medical decisions. By "context" we mean the clinical information that is being presented at the moment the information need is occurring. The dictionary server makes use of a semantic network supported by a medical data dictionary to link terms from clinical applications to their proper information sources. It has been designed to analyze the network structure itself instead of knowing the layout of the semantic net in advance. This enables us to map appropriate information sources to various clinical applications, such as nursing documentation, drug prescription and cancer follow up systems. This paper describes the function of the dictionary server and shows how the knowledge stored in the semantic network is used in the dictionary service. PMID:11079978
Mathematical logic in the human brain: semantics.
Friedrich, Roland M; Friederici, Angela D
2013-01-01
As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.
Liu, Bin; Jin, Min; Zeng, Pan
2015-10-01
The identification of gene-phenotype relationships is very important for the treatment of human diseases. Studies have shown that genes causing the same or similar phenotypes tend to interact with each other in a protein-protein interaction (PPI) network. Thus, many identification methods based on the PPI network model have achieved good results. However, in the PPI network, some interactions between the proteins encoded by candidate gene and the proteins encoded by known disease genes are very weak. Therefore, some studies have combined the PPI network with other genomic information and reported good predictive performances. However, we believe that the results could be further improved. In this paper, we propose a new method that uses the semantic similarity between the candidate gene and known disease genes to set the initial probability vector of a random walk with a restart algorithm in a human PPI network. The effectiveness of our method was demonstrated by leave-one-out cross-validation, and the experimental results indicated that our method outperformed other methods. Additionally, our method can predict new causative genes of multifactor diseases, including Parkinson's disease, breast cancer and obesity. The top predictions were good and consistent with the findings in the literature, which further illustrates the effectiveness of our method. Copyright © 2015 Elsevier Inc. All rights reserved.
A semantically rich and standardised approach enhancing discovery of sensor data and metadata
NASA Astrophysics Data System (ADS)
Kokkinaki, Alexandra; Buck, Justin; Darroch, Louise
2016-04-01
The marine environment plays an essential role in the earth's climate. To enhance the ability to monitor the health of this important system, innovative sensors are being produced and combined with state of the art sensor technology. As the number of sensors deployed is continually increasing,, it is a challenge for data users to find the data that meet their specific needs. Furthermore, users need to integrate diverse ocean datasets originating from the same or even different systems. Standards provide a solution to the above mentioned challenges. The Open Geospatial Consortium (OGC) has created Sensor Web Enablement (SWE) standards that enable different sensor networks to establish syntactic interoperability. When combined with widely accepted controlled vocabularies, they become semantically rich and semantic interoperability is achievable. In addition, Linked Data is the recommended best practice for exposing, sharing and connecting information on the Semantic Web using Uniform Resource Identifiers (URIs), Resource Description Framework (RDF) and RDF Query Language (SPARQL). As part of the EU-funded SenseOCEAN project, the British Oceanographic Data Centre (BODC) is working on the standardisation of sensor metadata enabling 'plug and play' sensor integration. Our approach combines standards, controlled vocabularies and persistent URIs to publish sensor descriptions, their data and associated metadata as 5 star Linked Data and OGC SWE (SensorML, Observations & Measurements) standard. Thus sensors become readily discoverable, accessible and useable via the web. Content and context based searching is also enabled since sensors descriptions are understood by machines. Additionally, sensor data can be combined with other sensor or Linked Data datasets to form knowledge. This presentation will describe the work done in BODC to achieve syntactic and semantic interoperability in the sensor domain. It will illustrate the reuse and extension of the Semantic Sensor Network (SSN) ontology to Linked Sensor Ontology (LSO) and the steps taken to combine OGC SWE with the Linked Data approach through alignment and embodiment of other ontologies. It will then explain how data and models were annotated with controlled vocabularies to establish unambiguous semantics and interconnect them with data from different sources. Finally, it will introduce the RDF triple store where the sensor descriptions and metadata are stored and can be queried through the standard query language SPARQL. Providing different flavours of machine readable interpretations of sensors, sensor data and metadata enhances discoverability but most importantly allows seamless aggregation of information from different networks that will finally produce knowledge.
Face (and Nose) Priming for Book: The Malleability of Semantic Memory
Coane, Jennifer H.; Balota, David A.
2010-01-01
There are two general classes of models of semantic structure that support semantic priming effects. Feature-overlap models of semantic priming assume that shared features between primes and targets are critical (e.g., cat-DOG). Associative accounts assume that contextual co-occurrence is critical and that the system is organized along associations independent of featural overlap (e.g., leash-DOG). If unrelated concepts can become related as a result of contextual co-occurrence, this would be more supportive of associative accounts and provide insight into the nature of the network underlying “semantic” priming effects. Naturally co-occurring recent associations (e.g., face-BOOK) were tested under conditions that minimize strategic influences (i.e., short stimulus onset asynchrony, low relatedness proportion) in a semantic priming paradigm. Priming for new associations did not differ from the priming found for pre-existing relations (e.g., library-BOOK). Mediated priming (e.g., nose-BOOK) was also found. These results suggest that contextual associations can result in the reorganization of the network that subserves “semantic” priming effects. PMID:20494866
Blood vessels segmentation of hatching eggs based on fully convolutional networks
NASA Astrophysics Data System (ADS)
Geng, Lei; Qiu, Ling; Wu, Jun; Xiao, Zhitao
2018-04-01
FCN, trained end-to-end, pixels-to-pixels, predict result of each pixel. It has been widely used for semantic segmentation. In order to realize the blood vessels segmentation of hatching eggs, a method based on FCN is proposed in this paper. The training datasets are composed of patches extracted from very few images to augment data. The network combines with lower layer and deconvolution to enables precise segmentation. The proposed method frees from the problem that training deep networks need large scale samples. Experimental results on hatching eggs demonstrate that this method can yield more accurate segmentation outputs than previous researches. It provides a convenient reference for fertility detection subsequently.
NEREC, an effective brain mapping protocol for combined language and long-term memory functions.
Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica
2015-12-01
Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language and long-term memory encoding/recall) instead of applying isolated tasks to map temporoparietal regions, (b) analyzing NE data based on performances recorded during REC, (c) double-mapping networks involved in naming and in long-term memory encoding and retrieval, (d) focusing on remembering with hippocampal activation and familiarity judgment with lateral temporal cortices activation, and (e) short duration of examination and feasibility. These aspects are of particular interest in patients with TLE, who frequently show impairment of these cognitive functions. Here, we show that the novel protocol is suited for this clinical evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Wang, Changjian; Liu, Xiaohui; Jin, Shiyao
2018-01-01
Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Peng; Gong, Jianya; Di, Liping
Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information andmore » discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.« less
Konstantinidis, Stathis Th; Wharrad, Heather; Windle, Richard; Bamidis, Panagiotis D
2017-01-01
The knowledge existing in the World Wide Web is exponentially expanding, while continuous advancements in health sciences contribute to the creation of new knowledge. There are a lot of efforts trying to identify how the social connectivity can endorse patients' empowerment, while other studies look at the identification and the quality of online materials. However, emphasis has not been put on the big picture of connecting the existing resources with the patients "new habits" of learning through their own Personal Learning Networks. In this paper we propose a framework for empowering patients' digital health literacy adjusted to patients' currents needs by utilizing the contemporary way of learning through Personal Learning Networks, existing high quality learning resources and semantics technologies for interconnecting knowledge pieces. The framework based on the concept of knowledge maps for health as defined in this paper. Health Digital Literacy needs definitely further enhancement and the use of the proposed concept might lead to useful tools which enable use of understandable health trusted resources tailored to each person needs.
New methods for analyzing semantic graph based assessments in science education
NASA Astrophysics Data System (ADS)
Vikaros, Lance Steven
This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the reliability and scalability of semantic graph based assessments without requiring constraint of how ideas are expressed.
NASA Astrophysics Data System (ADS)
Thovex, Christophe; Trichet, Francky
The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.
Knowledge Extraction and Semantic Annotation of Text from the Encyclopedia of Life
Thessen, Anne E.; Parr, Cynthia Sims
2014-01-01
Numerous digitization and ontological initiatives have focused on translating biological knowledge from narrative text to machine-readable formats. In this paper, we describe two workflows for knowledge extraction and semantic annotation of text data objects featured in an online biodiversity aggregator, the Encyclopedia of Life. One workflow tags text with DBpedia URIs based on keywords. Another workflow finds taxon names in text using GNRD for the purpose of building a species association network. Both workflows work well: the annotation workflow has an F1 Score of 0.941 and the association algorithm has an F1 Score of 0.885. Existing text annotators such as Terminizer and DBpedia Spotlight performed well, but require some optimization to be useful in the ecology and evolution domain. Important future work includes scaling up and improving accuracy through the use of distributional semantics. PMID:24594988
Semantic Space as a Metapopulation System: Modelling the Wikipedia Information Flow Network
NASA Astrophysics Data System (ADS)
Masucci, A. Paolo; Kalampokis, Alkiviadis; Eguíluz, Víctor M.; Hernández-García, Emilio
The meaning of a word can be defined as an indefinite set of interpretants, which are other words that circumscribe the semantic content of the word they represent (Derrida 1982). In the same way each interpretant has a set of interpretants representing it and so on. Hence the indefinite chain of meaning assumes a rhizomatic shape that can be represented and analysed via the modern techniques of network theory (Dorogovtsev and Mendes 2013).
AEGIS: A Lightweight Firewall for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Sajjad; Raghunathan, Vijay
Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.
The Relationship between the Learning Strategies and Learning Styles in a Hypermedia Environment.
ERIC Educational Resources Information Center
Liu, Min; Reed, W. Michael
Different learning strategies that are used by field-independent (FI) and field-dependent (FD) people in a hypermedia-assisted instructional setting were studied with 63 international college students for whom English was a second language. The treatment was a semantic network-based hypermedia-assisted language-learning environment to help…
1988-01-19
approach for the analysis of aerial images. In this approach image analysis is performed ast three levels of abstraction, namely iconic or low-level... image analysis , symbolic or medium-level image analysis , and semantic or high-level image analysis . Domain dependent knowledge about prototypical urban
Adaptively Selecting Biology Questions Generated from a Semantic Network
ERIC Educational Resources Information Center
Zhang, Lishan; VanLehn, Kurt
2017-01-01
The paper describes a biology tutoring system with adaptive question selection. Questions were selected for presentation to the student based on their utilities, which were estimated from the chance that the student's competence would increase if the questions were asked. Competence was represented by the probability of mastery of a set of biology…
Co-occurrence frequency evaluated with large language corpora boosts semantic priming effects.
Brunellière, Angèle; Perre, Laetitia; Tran, ThiMai; Bonnotte, Isabelle
2017-09-01
In recent decades, many computational techniques have been developed to analyse the contextual usage of words in large language corpora. The present study examined whether the co-occurrence frequency obtained from large language corpora might boost purely semantic priming effects. Two experiments were conducted: one with conscious semantic priming, the other with subliminal semantic priming. Both experiments contrasted three semantic priming contexts: an unrelated priming context and two related priming contexts with word pairs that are semantically related and that co-occur either frequently or infrequently. In the conscious priming presentation (166-ms stimulus-onset asynchrony, SOA), a semantic priming effect was recorded in both related priming contexts, which was greater with higher co-occurrence frequency. In the subliminal priming presentation (66-ms SOA), no significant priming effect was shown, regardless of the related priming context. These results show that co-occurrence frequency boosts pure semantic priming effects and are discussed with reference to models of semantic network.
A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems
NASA Astrophysics Data System (ADS)
Pawlicki, Ted
1988-03-01
Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.
Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro
2011-01-01
Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org. PMID:21632604
Automated Inspection of Power Line Corridors to Measure Vegetation Undercut Using Uav-Based Images
NASA Astrophysics Data System (ADS)
Maurer, M.; Hofer, M.; Fraundorfer, F.; Bischof, H.
2017-08-01
Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.
Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M
2015-01-01
Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.
Automaticity of phonological and semantic processing during visual word recognition.
Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C
2017-04-01
Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Constructing Adverse Outcome Pathways: a Demonstration of ...
Adverse outcome pathway (AOP) provides a conceptual framework to evaluate and integrate chemical toxicity and its effects across the levels of biological organization. As such, it is essential to develop a resource-efficient and effective approach to extend molecular initiating events (MIEs) of chemicals to their downstream phenotypes of a greater regulatory relevance. A number of ongoing public phenomics (high throughput phenotyping) efforts have been generating abundant phenotypic data annotated with ontology terms. These phenotypes can be analyzed semantically and linked to MIEs of interest, all in the context of a knowledge base integrated from a variety of ontologies for various species and knowledge domains. In such analyses, two phenotypic profiles (PPs; anchored by genes or diseases) each characterized by multiple ontology terms are compared for their semantic similarities within a common ontology graph, but across boundaries of species and knowledge domains. Taking advantage of publicly available ontologies and software tool kits, we have implemented an OS-Mapping (Ontology-based Semantics Mapping) approach as a Java application, and constructed a network of 19383 PPs as nodes with edges weighed by their pairwise semantic similarity scores. Individual PPs were assembled from public phenomics data. Out of possible 1.87×108 pairwise connections among these nodes, about 71% of them have similarity scores between 0.2 and the maximum possible of 1.0.
InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology
Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; ...
2016-08-31
Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less
InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.
Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; Juan, Liran; Jiang, Qinghua; Wang, Yadong; Chen, Jin
2016-08-31
The Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. We present InteGO2, a web tool that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface. InteGO2 can be accessed via http://mlg.hit.edu.cn:8089/ .
InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang
Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less
Simultenious binary hash and features learning for image retrieval
NASA Astrophysics Data System (ADS)
Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.
2016-05-01
Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.
Beaty, Roger E; Christensen, Alexander P; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L
2017-03-01
Functional neuroimaging research has recently revealed brain network interactions during performance on creative thinking tasks-particularly among regions of the default and executive control networks-but the cognitive mechanisms related to these interactions remain poorly understood. Here we test the hypothesis that the executive control network can interact with the default network to inhibit salient conceptual knowledge (i.e., pre-potent responses) elicited from memory during creative idea production. Participants studied common noun-verb pairs and were given a cued-recall test with corrective feedback to strengthen the paired association in memory. They then completed a verb generation task that presented either a previously studied noun (high-constraint) or an unstudied noun (low-constraint), and were asked to "think creatively" while searching for a novel verb to relate to the presented noun. Latent Semantic Analysis of verbal responses showed decreased semantic distance values in the high-constraint (i.e., interference) condition, which corresponded to increased neural activity within regions of the default (posterior cingulate cortex and bilateral angular gyri), salience (right anterior insula), and executive control (left dorsolateral prefrontal cortex) networks. Independent component analysis of intrinsic functional connectivity networks extended this finding by revealing differential interactions among these large-scale networks across the task conditions. The results suggest that interactions between the default and executive control networks underlie response inhibition during constrained idea production, providing insight into specific neurocognitive mechanisms supporting creative cognition. Copyright © 2017 Elsevier Inc. All rights reserved.
Ehret, Phillip J; Monroe, Brian M; Read, Stephen J
2015-05-01
We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.
Multimedia Information Networks in Social Media
NASA Astrophysics Data System (ADS)
Cao, Liangliang; Qi, Guojun; Tsai, Shen-Fu; Tsai, Min-Hsuan; Pozo, Andrey Del; Huang, Thomas S.; Zhang, Xuemei; Lim, Suk Hwan
The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.
Knowledge-base browsing: an application of hybrid distributed/local connectionist networks
NASA Astrophysics Data System (ADS)
Samad, Tariq; Israel, Peggy
1990-08-01
We describe a knowledge base browser based on a connectionist (or neural network) architecture that employs both distributed and local representations. The distributed representations are used for input and output thereby enabling associative noise-tolerant interaction with the environment. Internally all representations are fully local. This simplifies weight assignment and facilitates network configuration for specific applications. In our browser concepts and relations in a knowledge base are represented using " microfeatures. " The microfeatures can encode semantic attributes structural features contextual information etc. Desired portions of the knowledge base can then be associatively retrieved based on a structured cue. An ordered list of partial matches is presented to the user for selection. Microfeatures can also be used as " bookmarks" they can be placed dynamically at appropriate points in the knowledge base and subsequently used as retrieval cues. A proof-of-concept system has been implemented for an internally developed Honeywell-proprietary knowledge acquisition tool. 1.
Semantic image segmentation with fused CNN features
NASA Astrophysics Data System (ADS)
Geng, Hui-qiang; Zhang, Hua; Xue, Yan-bing; Zhou, Mian; Xu, Guang-ping; Gao, Zan
2017-09-01
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network (CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field (CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively.
NASA Astrophysics Data System (ADS)
Gong, Tao; Shuai, Lan; Wu, Yicheng
2014-12-01
By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.
GoDisco: Selective Gossip Based Dissemination of Information in Social Community Based Overlays
NASA Astrophysics Data System (ADS)
Datta, Anwitaman; Sharma, Rajesh
We propose and investigate a gossip based, social principles and behavior inspired decentralized mechanism (GoDisco) to disseminate information in online social community networks, using exclusively social links and exploiting semantic context to keep the dissemination process selective to relevant nodes. Such a designed dissemination scheme using gossiping over a egocentric social network is unique and is arguably a concept whose time has arrived, emulating word of mouth behavior and can have interesting applications like probabilistic publish/subscribe, decentralized recommendation and contextual advertisement systems, to name a few. Simulation based experiments show that despite using only local knowledge and contacts, the system has good global coverage and behavior.
Use artificial neural network to align biological ontologies.
Huang, Jingshan; Dang, Jiangbo; Huhns, Michael N; Zheng, W Jim
2008-09-16
Being formal, declarative knowledge representation models, ontologies help to address the problem of imprecise terminologies in biological and biomedical research. However, ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have exhibited a great deal of variety, because different parties can design ontologies according to their own conceptual views of the world. It is therefore becoming critical to align ontologies from different parties. During automated/semi-automated alignment across biological ontologies, different semantic aspects, i.e., concept name, concept properties, and concept relationships, contribute in different degrees to alignment results. Therefore, a vector of weights must be assigned to these semantic aspects. It is not trivial to determine what those weights should be, and current methodologies depend a lot on human heuristics. In this paper, we take an artificial neural network approach to learn and adjust these weights, and thereby support a new ontology alignment algorithm, customized for biological ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based aligning algorithms. This approach has been evaluated by aligning two real-world biological ontologies, whose features include huge file size, very few instances, concept names in numerical strings, and others. The promising experiment results verify our proposed hypothesis, i.e., three weights for semantic aspects learned from a subset of concepts are representative of all concepts in the same ontology. Therefore, our method represents a large leap forward towards automating biological ontology alignment.
Using a high-dimensional graph of semantic space to model relationships among words
Jackson, Alice F.; Bolger, Donald J.
2014-01-01
The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD). PMID:24860525
Using a high-dimensional graph of semantic space to model relationships among words.
Jackson, Alice F; Bolger, Donald J
2014-01-01
The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).
Structural and functional correlates for language efficiency in auditory word processing.
Jung, JeYoung; Kim, Sunmi; Cho, Hyesuk; Nam, Kichun
2017-01-01
This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.
Structural and functional correlates for language efficiency in auditory word processing
Kim, Sunmi; Cho, Hyesuk; Nam, Kichun
2017-01-01
This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally. PMID:28892503
ERIC Educational Resources Information Center
Whitney, Carin; Kirk, Marie; O'Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth
2012-01-01
To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus…
The Analysis of RDF Semantic Data Storage Optimization in Large Data Era
NASA Astrophysics Data System (ADS)
He, Dandan; Wang, Lijuan; Wang, Can
2018-03-01
With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.
Visual Information-Processing in the Perception of Features and Objects
1989-01-05
or nodes in a semantic memory network, whereas recall and recognition depend on separate episodic memory traces. In our experiment, we used the same...problem for the account in terms of the separation of episodic from semantic memory , since no pre- existing representations of our line patterns were... semantic memory : amnesic patients were thought to have lost the ability to lay down (or retrieve) episodic traces of autobiographical events, but had
Knowledge Reasoning with Semantic Data for Real-Time Data Processing in Smart Factory
Wang, Shiyong; Li, Di; Liu, Chengliang
2018-01-01
The application of high-bandwidth networks and cloud computing in manufacturing systems will be followed by mass data. Industrial data analysis plays important roles in condition monitoring, performance optimization, flexibility, and transparency of the manufacturing system. However, the currently existing architectures are mainly for offline data analysis, not suitable for real-time data processing. In this paper, we first define the smart factory as a cloud-assisted and self-organized manufacturing system in which physical entities such as machines, conveyors, and products organize production through intelligent negotiation and the cloud supervises this self-organized process for fault detection and troubleshooting based on data analysis. Then, we propose a scheme to integrate knowledge reasoning and semantic data where the reasoning engine processes the ontology model with real time semantic data coming from the production process. Based on these ideas, we build a benchmarking system for smart candy packing application that supports direct consumer customization and flexible hybrid production, and the data are collected and processed in real time for fault diagnosis and statistical analysis. PMID:29415444
Semantic and episodic memory of music are subserved by distinct neural networks.
Platel, Hervé; Baron, Jean-Claude; Desgranges, Béatrice; Bernard, Frédéric; Eustache, Francis
2003-09-01
Numerous functional imaging studies have shown that retrieval from semantic and episodic memory is subserved by distinct neural networks. However, these results were essentially obtained with verbal and visuospatial material. The aim of this work was to determine the neural substrates underlying the semantic and episodic components of music using familiar and nonfamiliar melodic tunes. To study musical semantic memory, we designed a task in which the instruction was to judge whether or not the musical extract was felt as "familiar." To study musical episodic memory, we constructed two delayed recognition tasks, one containing only familiar and the other only nonfamiliar items. For each recognition task, half of the extracts (targets) were presented in the prior semantic task. The episodic and semantic tasks were to be contrasted by a comparison to two perceptive control tasks and to one another. Cerebral blood flow was assessed by means of the oxygen-15-labeled water injection method, using high-resolution PET. Distinct patterns of activations were found. First, regarding the episodic memory condition, bilateral activations of the middle and superior frontal gyri and precuneus (more prominent on the right side) were observed. Second, the semantic memory condition disclosed extensive activations in the medial and orbital frontal cortex bilaterally, the left angular gyrus, and predominantly the left anterior part of the middle temporal gyri. The findings from this study are discussed in light of the available neuropsychological data obtained in brain-damaged subjects and functional neuroimaging studies.
Dynamic information processing states revealed through neurocognitive models of object semantics
Clarke, Alex
2015-01-01
Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632
Semantic mechanisms may be responsible for developing synesthesia
Mroczko-Wąsowicz, Aleksandra; Nikolić, Danko
2014-01-01
Currently, little is known about how synesthesia develops and which aspects of synesthesia can be acquired through a learning process. We review the increasing evidence for the role of semantic representations in the induction of synesthesia, and argue for the thesis that synesthetic abilities are developed and modified by semantic mechanisms. That is, in certain people semantic mechanisms associate concepts with perception-like experiences—and this association occurs in an extraordinary way. This phenomenon can be referred to as “higher” synesthesia or ideasthesia. The present analysis suggests that synesthesia develops during childhood and is being enriched further throughout the synesthetes’ lifetime; for example, the already existing concurrents may be adopted by novel inducers or new concurrents may be formed. For a deeper understanding of the origin and nature of synesthesia we propose to focus future research on two aspects: (i) the similarities between synesthesia and ordinary phenomenal experiences based on concepts; and (ii) the tight entanglement of perception, cognition and the conceptualization of the world. Importantly, an explanation of how biological systems get to generate experiences, synesthetic or not, may have to involve an explanation of how semantic networks are formed in general and what their role is in the ability to be aware of the surrounding world. PMID:25191239
Ulrich, Martin; Adams, Sarah C; Kiefer, Markus
2014-11-01
In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. © 2014 Wiley Periodicals, Inc.
Priming semantic concepts affects the dynamics of aesthetic appreciation.
Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian
2010-10-01
Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.
Classification of clinically useful sentences in clinical evidence resources.
Morid, Mohammad Amin; Fiszman, Marcelo; Raja, Kalpana; Jonnalagadda, Siddhartha R; Del Fiol, Guilherme
2016-04-01
Most patient care questions raised by clinicians can be answered by online clinical knowledge resources. However, important barriers still challenge the use of these resources at the point of care. To design and assess a method for extracting clinically useful sentences from synthesized online clinical resources that represent the most clinically useful information for directly answering clinicians' information needs. We developed a Kernel-based Bayesian Network classification model based on different domain-specific feature types extracted from sentences in a gold standard composed of 18 UpToDate documents. These features included UMLS concepts and their semantic groups, semantic predications extracted by SemRep, patient population identified by a pattern-based natural language processing (NLP) algorithm, and cue words extracted by a feature selection technique. Algorithm performance was measured in terms of precision, recall, and F-measure. The feature-rich approach yielded an F-measure of 74% versus 37% for a feature co-occurrence method (p<0.001). Excluding predication, population, semantic concept or text-based features reduced the F-measure to 62%, 66%, 58% and 69% respectively (p<0.01). The classifier applied to Medline sentences reached an F-measure of 73%, which is equivalent to the performance of the classifier on UpToDate sentences (p=0.62). The feature-rich approach significantly outperformed general baseline methods. This approach significantly outperformed classifiers based on a single type of feature. Different types of semantic features provided a unique contribution to overall classification performance. The classifier's model and features used for UpToDate generalized well to Medline abstracts. Copyright © 2016 Elsevier Inc. All rights reserved.
Cousins, Katheryn A Q; Grossman, Murray
2017-12-01
Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.
Dopaminergic modulation of semantic priming in healthy volunteers.
Roesch-Ely, Daniela; Weiland, Stephan; Scheffel, Hans; Schwaninger, Markus; Hundemer, Hans-Peter; Kolter, Thomas; Weisbrod, Matthias
2006-09-15
Semantic priming is a function related to prefrontal cortical (PFC) networks and is lateralized. There is evidence that semantic priming underlies dopaminergic modulation. It is known that the D1-receptor is more abundant in prefrontal networks; however, until now there have been no studies investigating the selective modulation of semantic priming with dopamine agonists. Furthermore, D1 receptor dysfunction has been described in schizophrenia, and patients with formal thought disorder seem to have disturbed focusing of associations and increased indirect priming. With a subtraction design, we compared the influence of pergolide (D1/D2 agonist) with bromocriptine (D2 agonist) and placebo, in a randomized, double-blind, crossover design in 40 healthy male volunteers. Subjects performed a lateralized lexical decision task including direct and indirect related prime-target pairs (stimulus onset asynchrony = 750 msec). Only on pergolide a decrease of the indirect priming in the left hemisphere presentations was found. These findings point to a potential selective modulation of agonists with a D1 component on the focusing of semantic associations. The clinical relevance of this study is that it might help the development of therapeutic strategies for treating cognitive deficits in schizophrenia and Parkinson's disease, which are highly relevant to the functional outcome.
Tomasello, Rosario; Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2017-04-01
Neuroimaging and patient studies show that different areas of cortex respectively specialize for general and selective, or category-specific, semantic processing. Why are there both semantic hubs and category-specificity, and how come that they emerge in different cortical regions? Can the activation time-course of these areas be predicted and explained by brain-like network models? In this present work, we extend a neurocomputational model of human cortical function to simulate the time-course of cortical processes of understanding meaningful concrete words. The model implements frontal and temporal cortical areas for language, perception, and action along with their connectivity. It uses Hebbian learning to semantically ground words in aspects of their referential object- and action-related meaning. Compared with earlier proposals, the present model incorporates additional neuroanatomical links supported by connectivity studies and downscaled synaptic weights in order to control for functional between-area differences purely due to the number of in- or output links of an area. We show that learning of semantic relationships between words and the objects and actions these symbols are used to speak about, leads to the formation of distributed circuits, which all include neuronal material in connector hub areas bridging between sensory and motor cortical systems. Therefore, these connector hub areas acquire a role as semantic hubs. By differentially reaching into motor or visual areas, the cortical distributions of the emergent 'semantic circuits' reflect aspects of the represented symbols' meaning, thus explaining category-specificity. The improved connectivity structure of our model entails a degree of category-specificity even in the 'semantic hubs' of the model. The relative time-course of activation of these areas is typically fast and near-simultaneous, with semantic hubs central to the network structure activating before modality-preferential areas carrying semantic information. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
2012-01-01
Background Previous attempts to investigate the effects of semantic tasks on picture naming in both healthy controls and people with aphasia have typically been confounded by inclusion of the phonological word form of the target item. As a result, it is difficult to isolate any facilitatory effects of a semantically-focused task to either lexical-semantic or phonological processing. This functional magnetic resonance imaging (fMRI) study examined the neurological mechanisms underlying short-term (within minutes) and long-term (within days) facilitation of naming from a semantic task that did not include the phonological word form, in both participants with aphasia and age-matched controls. Results Behavioral results showed that a semantic task that did not include the phonological word form can successfully facilitate subsequent picture naming in both healthy controls and individuals with aphasia. The whole brain neuroimaging results for control participants identified a repetition enhancement effect in the short-term, with modulation of activity found in regions that have not traditionally been associated with semantic processing, such as the right lingual gyrus (extending to the precuneus) and the left inferior occipital gyrus (extending to the fusiform gyrus). In contrast, the participants with aphasia showed significant differences in activation over both the short- and the long-term for facilitated items, predominantly within either left hemisphere regions linked to semantic processing or their right hemisphere homologues. Conclusions For control participants in this study, the short-lived facilitation effects of a prior semantic task that did not include the phonological word form were primarily driven by object priming and episodic memory mechanisms. However, facilitation effects appeared to engage a predominantly semantic network in participants with aphasia over both the short- and the long-term. The findings of the present study also suggest that right hemisphere involvement may be supportive rather than maladaptive, and that a large distributed perisylvian network in both cerebral hemispheres supports the facilitation of naming in individuals with aphasia. PMID:22882806
Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring
NASA Astrophysics Data System (ADS)
Stocklöw, Carsten; Kamieth, Felix
In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.
Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.
Zhan, Huijing; Shi, Boxin; Kot, Alex C
2017-08-04
Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.
The role of the left anterior temporal lobe in semantic composition vs. semantic memory.
Westerlund, Masha; Pylkkänen, Liina
2014-05-01
The left anterior temporal lobe (LATL) is robustly implicated in semantic processing by a growing body of literature. However, these results have emerged from two distinct bodies of work, addressing two different processing levels. On the one hand, the LATL has been characterized as a 'semantic hub׳ that binds features of concepts across a distributed network, based on results from semantic dementia and hemodynamic findings on the categorization of specific compared to basic exemplars. On the other, the LATL has been implicated in combinatorial operations in language, as shown by increased activity in this region associated with the processing of sentences and of basic phrases. The present work aimed to reconcile these two literatures by independently manipulating combination and concept specificity within a minimal MEG paradigm. Participants viewed simple nouns that denoted either low specificity (fish) or high specificity categories (trout) presented in either combinatorial (spotted fish/trout) or non-combinatorial contexts (xhsl fish/trout). By combining these paradigms from the two literatures, we directly compared the engagement of the LATL in semantic memory vs. semantic composition. Our results indicate that although noun specificity subtly modulates the LATL activity elicited by single nouns, it most robustly affects the size of the composition effect when these nouns are adjectivally modified, with low specificity nouns eliciting a much larger effect. We conclude that these findings are compatible with an account in which the specificity and composition effects arise from a shared mechanism of meaning specification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visual object naming in patients with small lesions centered at the left temporopolar region.
Campo, Pablo; Poch, Claudia; Toledano, Rafael; Igoa, José Manuel; Belinchón, Mercedes; García-Morales, Irene; Gil-Nagel, Antonio
2016-01-01
Naming is considered a left hemisphere function that operates according to a posterior-anterior specificity gradient, with more fine-grained information processed in most anterior regions of the temporal lobe (ATL), including the temporal pole (TP). Word finding difficulties are typically assessed using visual confrontation naming tasks, and have been associated with selective damage to ATL resulting from different aetiologies. Nonetheless, the role of the ATL and, more specifically, of the TP in the naming network is not completely established. Most of the accumulated evidence is based on studies on patients with extensive lesions, often bilateral. Furthermore, there is a considerable variability in the anatomical definition of ATL. To better understand the specific involvement of the left TP in visual object naming, we assessed a group of patients with an epileptogenic lesion centered at the TP, and compared their performance with that of a strictly matched control group. We also administered a battery of verbal and non-verbal semantic tasks that was used as a semantic memory baseline. Patients showed an impaired naming ability, manifesting in a certain degree of anomia and semantically related naming errors, which was influenced by concept familiarity. This pattern took place in a context of mild semantic dysfunction that was evident in different types and modalities of semantic tasks. Therefore, current findings demonstrate that a restricted lesion to the left TP can cause a significant deficit in object naming. Of importance, the observed semantic impairment was far from the devastating degradation observed in semantic dementia and other bilateral conditions.
Kroenke, Klaus-Martin; Kraft, Indra; Regenbrecht, Frank; Obrig, Hellmuth
2013-01-01
Gestures accompany speech and enrich human communication. When aphasia interferes with verbal abilities, gestures become even more relevant, compensating for and/or facilitating verbal communication. However, small-scale clinical studies yielded diverging results with regard to a therapeutic gesture benefit for lexical retrieval. Based on recent functional neuroimaging results, delineating a speech-gesture integration network for lexical learning in healthy adults, we hypothesized that the commonly observed variability may stem from differential patholinguistic profiles in turn depending on lesion pattern. Therefore we used a controlled novel word learning paradigm to probe the impact of gestures on lexical learning, in the lesioned language network. Fourteen patients with chronic left hemispheric lesions and mild residual aphasia learned 30 novel words for manipulable objects over four days. Half of the words were trained with gestures while the other half were trained purely verbally. For the gesture condition, rootwords were visually presented (e.g., Klavier, [piano]), followed by videos of the corresponding gestures and the auditory presentation of the novel words (e.g., /krulo/). Participants had to repeat pseudowords and simultaneously reproduce gestures. In the verbal condition no gesture-video was shown and participants only repeated pseudowords orally. Correlational analyses confirmed that gesture benefit depends on the patholinguistic profile: lesser lexico-semantic impairment correlated with better gesture-enhanced learning. Conversely largely preserved segmental-phonological capabilities correlated with better purely verbal learning. Moreover, structural MRI-analysis disclosed differential lesion patterns, most interestingly suggesting that integrity of the left anterior temporal pole predicted gesture benefit. Thus largely preserved semantic capabilities and relative integrity of a semantic integration network are prerequisites for successful use of the multimodal learning strategy, in which gestures may cause a deeper semantic rooting of the novel word-form. The results tap into theoretical accounts of gestures in lexical learning and suggest an explanation for the diverging effect in therapeutical studies advocating gestures in aphasia rehabilitation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor
2016-01-01
Analysis of user interactions in online communities could improve our understanding of health-related behaviors and inform the design of technological solutions that support behavior change. However, to achieve this we would need methods that provide granular perspective, yet are scalable. In this paper, we present a methodology for high-throughput semantic and network analysis of large social media datasets, combining semi-automated text categorization with social network analytics. We apply this method to derive content-specific network visualizations of 16,492 user interactions in an online community for smoking cessation. Performance of the categorization system was reasonable (average F-measure of 0.74, with system-rater reliability approaching rater-rater reliability). The resulting semantically specific network analysis of user interactions reveals content- and behavior-specific network topologies. Implications for socio-behavioral health and wellness platforms are also discussed.
ERIC Educational Resources Information Center
Wiese, Holger; Schweinberger, Stefan R.
2008-01-01
Whether representations of people are stored in associative networks based on co-occurrence or are stored in terms of more abstract semantic categories is a controversial question. In the present study, participants performed fame decisions to unfamiliar or famous target faces (Experiment 1) or names (Experiment 2), which were primed, either by…
Enhancing Users' Participation in Business Process Modeling through Ontology-Based Training
NASA Astrophysics Data System (ADS)
Macris, A.; Malamateniou, F.; Vassilacopoulos, G.
Successful business process design requires active participation of users who are familiar with organizational activities and business process modelling concepts. Hence, there is a need to provide users with reusable, flexible, agile and adaptable training material in order to enable them instil their knowledge and expertise in business process design and automation activities. Knowledge reusability is of paramount importance in designing training material on process modelling since it enables users participate actively in process design/redesign activities stimulated by the changing business environment. This paper presents a prototype approach for the design and use of training material that provides significant advantages to both the designer (knowledge - content reusability and semantic web enabling) and the user (semantic search, knowledge navigation and knowledge dissemination). The approach is based on externalizing domain knowledge in the form of ontology-based knowledge networks (i.e. training scenarios serving specific training needs) so that it is made reusable.
Access to Biomedical Information: The Unified Medical Language System.
ERIC Educational Resources Information Center
Squires, Steven J.
1993-01-01
Describes the development of a Unified Medical Language System (UMLS) by the National Library of Medicine that will retrieve and integrate information from a variety of information resources. Highlights include the metathesaurus; the UMLS semantic network; semantic locality; information sources map; evaluation of the metathesaurus; future…
Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy
Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth
2015-01-01
The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956
Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao
2018-06-01
Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.
Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang
2017-01-01
On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization. PMID:29255440
Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang
2017-01-01
On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization.
Simoes Loureiro, Isabelle; Lefebvre, Laurent
2016-10-01
Taxonomic and thematic relationships are core elements of lexico-semantic networks. However, the weight of both links differs in semantic memory, with distinct support for natural and manufactured objects: natural objects tend to be more taxonomically identified while manufactured objects benefit more from the underlying thematic relationships. Alzheimer's disease (AD) causes early semantic memory impairment characterized by a category-specific deterioration, where natural objects are more sensitive to the disease than manufactured objects. However, relatively few studies have examined the progressive deterioration of specific thematic versus taxonomic relations in both categories of objects in AD. To better understand semantic memory disorganization in AD and analyze the potential interaction effect between the category (natural/manufactured), the condition (thematic/taxonomic) and AD, we will investigate the lexico-semantic network in 82 AD patients (divided into three groups depending on their global cognitive deterioration and their performance in a preliminary semantic knowledge questionnaire (mild (AD1), moderate (AD2) and advanced (AD3) stages of semantic knowledge alteration). The experimental protocol contains two tasks: an implicit semantic priming paradigm and an explicit card-sorting test that uses the same items, equally divided between natural and manufactured objects. Results show a distinct taxonomic and thematic evolution pattern with early taxonomic deterioration. Natural objects are also more vulnerable to the disease. Lastly, there is an interaction effect between the category and the condition in the priming task indicating that natural objects are more taxonomically organized and manufactured objects benefit more from both thematic and taxonomic organizations, reinforcing the idea of the robustness of this category. The theoretical accounts of these observations will be discussed in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ham, S.; Oh, Y.; Choi, K.; Lee, I.
2018-05-01
Detecting unregistered buildings from aerial images is an important task for urban management such as inspection of illegal buildings in green belt or update of GIS database. Moreover, the data acquisition platform of photogrammetry is evolving from manned aircraft to UAVs (Unmanned Aerial Vehicles). However, it is very costly and time-consuming to detect unregistered buildings from UAV images since the interpretation of aerial images still relies on manual efforts. To overcome this problem, we propose a system which automatically detects unregistered buildings from UAV images based on deep learning methods. Specifically, we train a deconvolutional network with publicly opened geospatial data, semantically segment a given UAV image into a building probability map and compare the building map with existing GIS data. Through this procedure, we could detect unregistered buildings from UAV images automatically and efficiently. We expect that the proposed system can be applied for various urban management tasks such as monitoring illegal buildings or illegal land-use change.
An ontological system for interoperable spatial generalisation in biodiversity monitoring
NASA Astrophysics Data System (ADS)
Nieland, Simon; Moran, Niklas; Kleinschmit, Birgit; Förster, Michael
2015-11-01
Semantic heterogeneity remains a barrier to data comparability and standardisation of results in different fields of spatial research. Because of its thematic complexity, differing acquisition methods and national nomenclatures, interoperability of biodiversity monitoring information is especially difficult. Since data collection methods and interpretation manuals broadly vary there is a need for automatised, objective methodologies for the generation of comparable data-sets. Ontology-based applications offer vast opportunities in data management and standardisation. This study examines two data-sets of protected heathlands in Germany and Belgium which are based on remote sensing image classification and semantically formalised in an OWL2 ontology. The proposed methodology uses semantic relations of the two data-sets, which are (semi-)automatically derived from remote sensing imagery, to generate objective and comparable information about the status of protected areas by utilising kernel-based spatial reclassification. This automatised method suggests a generalisation approach, which is able to generate delineation of Special Areas of Conservation (SAC) of the European biodiversity Natura 2000 network. Furthermore, it is able to transfer generalisation rules between areas surveyed with varying acquisition methods in different countries by taking into account automated inference of the underlying semantics. The generalisation results were compared with the manual delineation of terrestrial monitoring. For the different habitats in the two sites an accuracy of above 70% was detected. However, it has to be highlighted that the delineation of the ground-truth data inherits a high degree of uncertainty, which is discussed in this study.
Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian
2016-09-28
The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.
Dissociating functional brain networks by decoding the between-subject variability
Seghier, Mohamed L.; Price, Cathy J.
2009-01-01
In this study we illustrate how the functional networks involved in a single task (e.g. the sensory, cognitive and motor components) can be segregated without cognitive subtractions at the second-level. The method used is based on meaningful variability in the patterns of activation between subjects with the assumption that regions belonging to the same network will have comparable variations from subject to subject. fMRI data were collected from thirty nine healthy volunteers who were asked to indicate with a button press if visually presented words were semantically related or not. Voxels were classified according to the similarity in their patterns of between-subject variance using a second-level unsupervised fuzzy clustering algorithm. The results were compared to those identified by cognitive subtractions of multiple conditions tested in the same set of subjects. This illustrated that the second-level clustering approach (on activation for a single task) was able to identify the functional networks observed using cognitive subtractions (e.g. those associated with vision, semantic associations or motor processing). In addition the fuzzy clustering approach revealed other networks that were not dissociated by the cognitive subtraction approach (e.g. those associated with high- and low-level visual processing and oculomotor movements). We discuss the potential applications of our method which include the identification of “hidden” or unpredicted networks as well as the identification of systems level signatures for different subgroupings of clinical and healthy populations. PMID:19150501
ERIC Educational Resources Information Center
Ohler, Jason
2008-01-01
The semantic web or Web 3.0 makes information more meaningful to people by making it more understandable to machines. In this article, the author examines the implications of Web 3.0 for education. The author considers three areas of impact: knowledge construction, personal learning network maintenance, and personal educational administration.…
Shifting Interests: Changes in the Lexical Semantics of ED-MEDIA
ERIC Educational Resources Information Center
Wild, Fridolin; Valentine, Chris; Scott, Peter
2010-01-01
Large research networks naturally form complex communities with overlapping but not identical expertise. To map the distribution of professional competence in field of "technology-enhanced learning", the lexical semantics expressed in research articles published in a representative, large-scale conference (ED-MEDIA) can be investigated and changes…
The left inferior parietal lobe represents stored hand-postures for object use and action prediction
van Elk, Michiel
2014-01-01
Action semantics enables us to plan actions with objects and to predict others' object-directed actions as well. Previous studies have suggested that action semantics are represented in a fronto-parietal action network that has also been implicated to play a role in action observation. In the present fMRI study it was investigated how activity within this network changes as a function of the predictability of an action involving multiple objects and requiring the use of action semantics. Participants performed an action prediction task in which they were required to anticipate the use of a centrally presented object that could be moved to an associated target object (e.g., hammer—nail). The availability of actor information (i.e., presenting a hand grasping the central object) and the number of possible target objects (i.e., 0, 1, or 2 target objects) were independently manipulated, resulting in different levels of predictability. It was found that making an action prediction based on actor information resulted in an increased activation in the extrastriate body area (EBA) and the fronto-parietal action observation network (AON). Predicting actions involving a target object resulted in increased activation in the bilateral IPL and frontal motor areas. Within the AON, activity in the left inferior parietal lobe (IPL) and the left premotor cortex (PMC) increased as a function of the level of action predictability. Together these findings suggest that the left IPL represents stored hand-postures that can be used for planning object-directed actions and for predicting other's actions as well. PMID:24795681
A cloud-based data network approach for translational cancer research.
Xing, Wei; Tsoumakos, Dimitrios; Ghanem, Moustafa
2015-01-01
We develop a new model and associated technology for constructing and managing self-organizing data to support translational cancer research studies. We employ a semantic content network approach to address the challenges of managing cancer research data. Such data is heterogeneous, large, decentralized, growing and continually being updated. Moreover, the data originates from different information sources that may be partially overlapping, creating redundancies as well as contradictions and inconsistencies. Building on the advantages of elasticity of cloud computing, we deploy the cancer data networks on top of the CELAR Cloud platform to enable more effective processing and analysis of Big cancer data.
Mapping the semantic structure of cognitive neuroscience.
Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A
2014-09-01
Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.
Enabling Discoveries in Earth Sciences Through the Geosciences Network (GEON)
NASA Astrophysics Data System (ADS)
Seber, D.; Baru, C.; Memon, A.; Lin, K.; Youn, C.
2005-12-01
Taking advantage of the state-of-the-art information technology resources GEON researchers are building a cyberinfrastructure designed to enable data sharing, semantic data integration, high-end computations and 4D visualization in easy-to-use web-based environments. The GEON Network currently allows users to search and register Earth science resources such as data sets (GIS layers, GMT files, geoTIFF images, ASCII files, relational databases etc), software applications or ontologies. Portal based access mechanisms enable developers to built dynamic user interfaces to conduct advanced processing and modeling efforts across distributed computers and supercomputers. Researchers and educators can access the networked resources through the GEON portal and its portlets that were developed to conduct better and more comprehensive science and educational studies. For example, the SYNSEIS portlet in GEON enables users to access in near-real time seismic waveforms from the IRIS Data Management Center, easily build a 3D geologic model within the area of the seismic station(s) and the epicenter and perform a 3D synthetic seismogram analysis to understand the lithospheric structure and earthquake source parameters for any given earthquake in the US. Similarly, GEON's workbench area enables users to create their own work environment and copy, visualize and analyze any data sets within the network, and create subsets of the data sets for their own purposes. Since all these resources are built as part of a Service-oriented Architecture (SOA), they are also used in other development platforms. One such platform is Kepler Workflow system which can access web service based resources and provides users with graphical programming interfaces to build a model to conduct computations and/or visualization efforts using the networked resources. Developments in the area of semantic integration of the networked datasets continue to advance and prototype studies can be accessed via the GEON portal at www.geongrid.org
The semantic web in translational medicine: current applications and future directions
Machado, Catia M.; Rebholz-Schuhmann, Dietrich; Freitas, Ana T.; Couto, Francisco M.
2015-01-01
Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. PMID:24197933
The semantic web in translational medicine: current applications and future directions.
Machado, Catia M; Rebholz-Schuhmann, Dietrich; Freitas, Ana T; Couto, Francisco M
2015-01-01
Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. © The Author 2013. Published by Oxford University Press.
Spatial Relation Predicates in Topographic Feature Semantics
Varanka, Dalia E.; Caro, Holly K.
2013-01-01
Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.
The cognitive structural approach for image restoration
NASA Astrophysics Data System (ADS)
Mardare, Igor; Perju, Veacheslav; Casasent, David
2008-03-01
It is analyzed the important and actual problem of the defective images of scenes restoration. The proposed approach provides restoration of scenes by a system on the basis of human intelligence phenomena reproduction used for restoration-recognition of images. The cognitive models of the restoration process are elaborated. The models are realized by the intellectual processors constructed on the base of neural networks and associative memory using neural network simulator NNToolbox from MATLAB 7.0. The models provides restoration and semantic designing of images of scenes under defective images of the separate objects.
An fMRI study of semantic processing in men with schizophrenia
Kubicki, M.; McCarley, R.W.; Nestor, P.G.; Huh, T.; Kikinis, R.; Shenton, M.E.; Wible, C.G.
2009-01-01
As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance. PMID:14683698
An fMRI study of semantic processing in men with schizophrenia.
Kubicki, M; McCarley, R W; Nestor, P G; Huh, T; Kikinis, R; Shenton, M E; Wible, C G
2003-12-01
As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance.
SemanticFind: Locating What You Want in a Patient Record, Not Just What You Ask For
Prager, John M.; Liang, Jennifer J.; Devarakonda, Murthy V.
2017-01-01
We present a new model of patient record search, called SemanticFind, which goes beyond traditional textual and medical synonym matches by locating patient data that a clinician would want to see rather than just what they ask for. The new model is implemented by making extensive use of the UMLS semantic network, distributional semantics, and NLP, to match query terms along several dimensions in a patient record with the returned matches organized accordingly. The new approach finds all clinically related concepts without the user having to ask for them. An evaluation of the accuracy of SemanticFind shows that it found twice as many relevant matches compared to those found by literal (traditional) search alone, along with very high precision and recall. These results suggest potential uses for SemanticFind in clinical practice, retrospective chart reviews, and in automated extraction of quality metrics. PMID:28815139
Semi-Supervised Learning to Identify UMLS Semantic Relations.
Luo, Yuan; Uzuner, Ozlem
2014-01-01
The UMLS Semantic Network is constructed by experts and requires periodic expert review to update. We propose and implement a semi-supervised approach for automatically identifying UMLS semantic relations from narrative text in PubMed. Our method analyzes biomedical narrative text to collect semantic entity pairs, and extracts multiple semantic, syntactic and orthographic features for the collected pairs. We experiment with seeded k-means clustering with various distance metrics. We create and annotate a ground truth corpus according to the top two levels of the UMLS semantic relation hierarchy. We evaluate our system on this corpus and characterize the learning curves of different clustering configuration. Using KL divergence consistently performs the best on the held-out test data. With full seeding, we obtain macro-averaged F-measures above 70% for clustering the top level UMLS relations (2-way), and above 50% for clustering the second level relations (7-way).
Imageability and semantic association in the representation and processing of event verbs.
Xu, Xu; Kang, Chunyan; Guo, Taomei
2016-05-01
This study examined the relative salience of imageability (the degree to which a word evokes mental imagery) versus semantic association (the density of semantic network in which a word is embedded) in the representation and processing of four types of event verbs: sensory, cognitive, speech, and motor verbs. ERP responses were recorded, while 34 university students performed on a lexical decision task. Analysis focused primarily on amplitude differences across verb conditions within the N400 time window where activities are considered representing meaning activation. Variation in N400 amplitude across four types of verbs was found significantly associated with the level of imageability, but not the level of semantic association. The findings suggest imageability as a more salient factor relative to semantic association in the processing of these verbs. The role of semantic association and the representation of speech verbs are also discussed.
FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks
Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A.; Zulkarnain, Zuriati A.
2016-01-01
Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol’s semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery. PMID:27338411
FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks.
Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A; Zulkarnain, Zuriati A
2016-06-22
Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.
CaseLog: semantic network interface to a student computer-based patient record system.
Cimino, C.; Goldman, E. K.; Curtis, J. A.; Reichgott, M. J.
1993-01-01
We have developed a computer program called CaseLog, which serves as an exemplary, computer-based patient record (CPR) system. The program allows for the introduction of the students to issues unique to patient record systems. These include record security, unique patient identifiers, and the use of controlled vocabularies. A particularly challenging aspect of the development of this program was allowing for student entry of controlled vocabulary terms. There were four goals we wished to achieve: students should be able to find the terms they are looking for; once a term has been found, it should be easy to find contextually related terms; it should be easy to determine that a sought-for term is not in the vocabulary; and the structure of the vocabulary should be dynamically altered by contextual information to allow its use for a variety of purposes. We chose a semantic network for our vocabulary structure. Within the processing power of the equipment we were working with, we achieved our goals. This paper will describe the development of the vocabulary, the design of the CaseLog program, and the feedback from student users of the program. PMID:8130581
NASA Astrophysics Data System (ADS)
Alani, Harith; Szomszor, Martin; Cattuto, Ciro; van den Broeck, Wouter; Correndo, Gianluca; Barrat, Alain
Social interactions are one of the key factors to the success of conferences and similar community gatherings. This paper describes a novel application that integrates data from the semantic web, online social networks, and a real-world contact sensing platform. This application was successfully deployed at ESWC09, and actively used by 139 people. Personal profiles of the participants were automatically generated using several Web 2.0 systems and semantic academic data sources, and integrated in real-time with face-to-face contact networks derived from wearable sensors. Integration of all these heterogeneous data layers made it possible to offer various services to conference attendees to enhance their social experience such as visualisation of contact data, and a site to explore and connect with other participants. This paper describes the architecture of the application, the services we provided, and the results we achieved in this deployment.
Desai, Rutvik H.; Graves, William W.; Conant, Lisa L.
2009-01-01
Semantic memory refers to knowledge about people, objects, actions, relations, self, and culture acquired through experience. The neural systems that store and retrieve this information have been studied for many years, but a consensus regarding their identity has not been reached. Using strict inclusion criteria, we analyzed 120 functional neuroimaging studies focusing on semantic processing. Reliable areas of activation in these studies were identified using the activation likelihood estimate (ALE) technique. These activations formed a distinct, left-lateralized network comprised of 7 regions: posterior inferior parietal lobe, middle temporal gyrus, fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex, and posterior cingulate gyrus. Secondary analyses showed specific subregions of this network associated with knowledge of actions, manipulable artifacts, abstract concepts, and concrete concepts. The cortical regions involved in semantic processing can be grouped into 3 broad categories: posterior multimodal and heteromodal association cortex, heteromodal prefrontal cortex, and medial limbic regions. The expansion of these regions in the human relative to the nonhuman primate brain may explain uniquely human capacities to use language productively, plan, solve problems, and create cultural and technological artifacts, all of which depend on the fluid and efficient retrieval and manipulation of semantic knowledge. PMID:19329570
The Activation and Monitoring of Memories Produced by Words and Pseudohomophones
ERIC Educational Resources Information Center
Cortese, Michael J.; Khanna, Maya M.; White, Katherine K.; Veljkovic, Ilija; Drumm, Geoffery
2008-01-01
Using the DRM paradigm, our experiments examined the activation and monitoring of memories in semantic and phonological networks. Participants viewed lists of words and/or pseudohomophones (e.g., "dreem"). In Experiment 1, participants verbally recalled lists of semantic associates or attempted to write them as they appeared during study. False…
An Investigation of Two Ways of Presenting Vocabulary
ERIC Educational Resources Information Center
Papathanasiou, Evagelia
2009-01-01
The use of semantic links or networks in L2 vocabulary acquisition has been a popular subject for numerous studies. On one hand, there is a strong theoretical background stating that presenting words in related fashion facilitates the learning of L2 vocabulary. On the other hand, research evidence indicates that semantically related vocabulary…
Semantic Service Matchmaking in the ATM Domain Considering Infrastructure Capability Constraints
NASA Astrophysics Data System (ADS)
Moser, Thomas; Mordinyi, Richard; Sunindyo, Wikan Danar; Biffl, Stefan
In a service-oriented environment business processes flexibly build on software services provided by systems in a network. A key design challenge is the semantic matchmaking of business processes and software services in two steps: 1. Find for one business process the software services that meet or exceed the BP requirements; 2. Find for all business processes the software services that can be implemented within the capability constraints of the underlying network, which poses a major problem since even for small scenarios the solution space is typically very large. In this chapter we analyze requirements from mission-critical business processes in the Air Traffic Management (ATM) domain and introduce an approach for semi-automatic semantic matchmaking for software services, the “System-Wide Information Sharing” (SWIS) business process integration framework. A tool-supported semantic matchmaking process like SWIS can provide system designers and integrators with a set of promising software service candidates and therefore strongly reduces the human matching effort by focusing on a much smaller space of matchmaking candidates. We evaluate the feasibility of the SWIS approach in an industry use case from the ATM domain.
Triangulation of the neurocomputational architecture underpinning reading aloud
Hoffman, Paul; Lambon Ralph, Matthew A.; Woollams, Anna M.
2015-01-01
The goal of cognitive neuroscience is to integrate cognitive models with knowledge about underlying neural machinery. This significant challenge was explored in relation to word reading, where sophisticated computational-cognitive models exist but have made limited contact with neural data. Using distortion-corrected functional MRI and dynamic causal modeling, we investigated the interactions between brain regions dedicated to orthographic, semantic, and phonological processing while participants read words aloud. We found that the lateral anterior temporal lobe exhibited increased activation when participants read words with irregular spellings. This area is implicated in semantic processing but has not previously been considered part of the reading network. We also found meaningful individual differences in the activation of this region: Activity was predicted by an independent measure of the degree to which participants use semantic knowledge to read. These characteristics are predicted by the connectionist Triangle Model of reading and indicate a key role for semantic knowledge in reading aloud. Premotor regions associated with phonological processing displayed the reverse characteristics. Changes in the functional connectivity of the reading network during irregular word reading also were consistent with semantic recruitment. These data support the view that reading aloud is underpinned by the joint operation of two neural pathways. They reveal that (i) the ATL is an important element of the ventral semantic pathway and (ii) the division of labor between the two routes varies according to both the properties of the words being read and individual differences in the degree to which participants rely on each route. PMID:26124121
Emotion regulation, attention to emotion, and the ventral attentional network
Viviani, Roberto
2013-01-01
Accounts of the effect of emotional information on behavioral response and current models of emotion regulation are based on two opposed but interacting processes: automatic bottom-up processes (triggered by emotionally arousing stimuli) and top-down control processes (mapped to prefrontal cortical areas). Data on the existence of a third attentional network operating without recourse to limited-capacity processes but influencing response raise the issue of how it is integrated in emotion regulation. We summarize here data from attention to emotion, voluntary emotion regulation, and on the origin of biases against negative content suggesting that the ventral network is modulated by exposure to emotional stimuli when the task does not constrain the handling of emotional content. In the parietal lobes, preferential activation of ventral areas associated with “bottom-up” attention by ventral network theorists is strongest in studies of cognitive reappraisal. In conditions when no explicit instruction is given to change one's response to emotional stimuli, control of emotionally arousing stimuli is observed without concomitant activation of the dorsal attentional network, replaced by a shift of activation toward ventral areas. In contrast, in studies where emotional stimuli are placed in the role of distracter, the observed deactivation of these ventral semantic association areas is consistent with the existence of proactive control on the role emotional representations are allowed to take in generating response. It is here argued that attentional orienting mechanisms located in the ventral network constitute an intermediate kind of process, with features only partially in common with effortful and automatic processes, which plays an important role in handling emotion by conveying the influence of semantic networks, with which the ventral network is co-localized. Current neuroimaging work in emotion regulation has neglected this system by focusing on a bottom-up/top-down dichotomy of attentional control. PMID:24223546
Semantic eScience for Ecosystem Understanding and Monitoring: The Jefferson Project Case Study
NASA Astrophysics Data System (ADS)
McGuinness, D. L.; Pinheiro da Silva, P.; Patton, E. W.; Chastain, K.
2014-12-01
Monitoring and understanding ecosystems such as lakes and their watersheds is becoming increasingly important. Accelerated eutrophication threatens our drinking water sources. Many believe that the use of nutrients (e.g., road salts, fertilizers, etc.) near these sources may have negative impacts on animal and plant populations and water quality although it is unclear how to best balance broad community needs. The Jefferson Project is a joint effort between RPI, IBM and the Fund for Lake George aimed at creating an instrumented water ecosystem along with an appropriate cyberinfrastructure that can serve as a global model for ecosystem monitoring, exploration, understanding, and prediction. One goal is to help communities understand the potential impacts of actions such as road salting strategies so that they can make appropriate informed recommendations that serve broad community needs. Our semantic eScience team is creating a semantic infrastructure to support data integration and analysis to help trained scientists as well as the general public to better understand the lake today, and explore potential future scenarios. We are leveraging our RPI Tetherless World Semantic Web methodology that provides an agile process for describing use cases, identification of appropriate background ontologies and technologies, implementation, and evaluation. IBM is providing a state-of-the-art sensor network infrastructure along with a collection of tools to share, maintain, analyze and visualize the network data. In the context of this sensor infrastructure, we will discuss our semantic approach's contributions in three knowledge representation and reasoning areas: (a) human interventions on the deployment and maintenance of local sensor networks including the scientific knowledge to decide how and where sensors are deployed; (b) integration, interpretation and management of data coming from external sources used to complement the project's models; and (c) knowledge about simulation results including parameters, interpretation of results, and comparison of results against external data. We will also demonstrate some example queries highlighting the benefits of our semantic approach and will also identify reusable components.
Event-related rTMS at encoding affects differently deep and shallow memory traces.
Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone
2010-10-15
The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by semantic processing. Copyright 2010 Elsevier Inc. All rights reserved.
Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C.
2014-01-01
Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology. PMID:24921649
Chen, Guocai; Cairelli, Michael J; Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C
2014-06-01
Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology.
A Semantic Approach with Decision Support for Safety Service in Smart Home Management
Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli
2016-01-01
Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate. PMID:27527170
A Semantic Approach with Decision Support for Safety Service in Smart Home Management.
Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli
2016-08-03
Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate.
Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy
2008-12-01
We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.
Statistics and dynamics of attractor networks with inter-correlated patterns
NASA Astrophysics Data System (ADS)
Kropff, E.
2007-02-01
In an embodied feature representation view, the semantic memory represents concepts in the brain by the associated activation of the features that describe it, each one of them processed in a differentiated region of the cortex. This system has been modeled with a Potts attractor network. Several studies of feature representation show that the correlation between patterns plays a crucial role in semantic memory. The present work focuses on two aspects of the effect of correlations in attractor networks. In first place, it assesses how a Potts network can store a set of patterns with non-trivial correlations between them. This is done through a simple and biologically plausible modification to the classical learning rule. In second place, it studies the complexity of latching transitions between attractor states, and how this complexity can be controlled.
Effects of Transcranial Direct Current Stimulation on Neural Networks in Young and Older Adults
Martin, Andrew K; Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Flöel, Agnes
2017-11-01
Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni- and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults.
Guerrero, J M; Martínez-Tomás, R; Rincón, M; Peraita, H
2016-01-01
Early detection of Alzheimer's disease (AD) has become one of the principal focuses of research in medicine, particularly when the disease is incipient or even prodromic, because treatments are more effective in these stages. Lexical-semantic-conceptual deficit (LSCD) in the oral definitions of semantic categories for basic objects is an important early indicator in the evaluation of the cognitive state of patients. The objective of this research is to define an economic procedure for cognitive impairment (CI) diagnosis, which may be associated with early stages of AD, by analysing cognitive alterations affecting declarative semantic memory. Because of its low cost, it could be used for routine clinical evaluations or screenings, leading to more expensive and selective tests that confirm or rule out the disease accurately. It should necessarily be an explanatory procedure, which would allow us to study the evolution of the disease in relation to CI, the irregularities in different semantic categories, and other neurodegenerative diseases. On the basis of these requirements, we hypothesise that Bayesian networks (BNs) are the most appropriate tool for this purpose. We have developed a BN for CI diagnosis in mild and moderate AD patients by analysing the oral production of semantic features. The BN causal model represents LSCD in certain semantic categories, both of living things (dog, pine, and apple) and non-living things (chair, car, and trousers), as symptoms of CI. The model structure, the qualitative part of the model, uses domain knowledge obtained from psychology experts and epidemiological studies. Further, the model parameters, the quantitative part of the model, are learnt automatically from epidemiological studies and Peraita and Grasso's linguistic corpus of oral definitions. This corpus was prepared with an incidental sampling and included the analysis of the oral linguistic production of 81 participants (42 cognitively healthy elderly people and 39 mild and moderate AD patients) from Madrid region's hospitals. Experienced neurologists diagnosed these cases following the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA)'s Alzheimer's criteria, performing, among other explorations and tests, a minimum neuropsychological exploration that included the Mini-Mental State Examination test. BN's classification performance is remarkable compared with other machine learning methods, achieving 91% accuracy and 94% precision in mild and moderate AD patients. Apart from this, the BN model facilitates the explanation of the reasoning process and the validation of the conclusions and allows the study of uncommon declarative semantic memory impairments. Our method is able to analyse LSCD in a wide set of semantic categories throughout the progression of CI, being a valuable first screening method in AD diagnosis in its early stages. Because of its low cost, it can be used for routine clinical evaluations or screenings to detect AD in its early stages. Besides, due to its knowledge-based structure, it can be easily extended to provide an explanation of the diagnosis and to the study of other neurodegenerative diseases. Further, this is a key advantage of BNs over other machine learning methods with similar performance: it is a recognisable and explanatory model that allows one to study irregularities in different semantic categories.
Lerner, Itamar; Shriki, Oren
2014-01-01
For the last four decades, semantic priming—the facilitation in recognition of a target word when it follows the presentation of a semantically related prime word—has been a central topic in research of human cognitive processing. Studies have drawn a complex picture of findings which demonstrated the sensitivity of this priming effect to a unique combination of variables, including, but not limited to, the type of relatedness between primes and targets, the prime-target Stimulus Onset Asynchrony (SOA), the relatedness proportion (RP) in the stimuli list and the specific task subjects are required to perform. Automatic processes depending on the activation patterns of semantic representations in memory and controlled strategies adapted by individuals when attempting to maximize their recognition performance have both been implicated in contributing to the results. Lately, we have published a new model of semantic priming that addresses the majority of these findings within one conceptual framework. In our model, semantic memory is depicted as an attractor neural network in which stochastic transitions from one stored pattern to another are continually taking place due to synaptic depression mechanisms. We have shown how such transitions, in combination with a reinforcement-learning rule that adjusts their pace, resemble the classic automatic and controlled processes involved in semantic priming and account for a great number of the findings in the literature. Here, we review the core findings of our model and present new simulations that show how similar principles of parameter-adjustments could account for additional data not addressed in our previous studies, such as the relation between expectancy and inhibition in priming, target frequency and target degradation effects. Finally, we describe two human experiments that validate several key predictions of the model. PMID:24795670
The functional connectivity of semantic task changes in the recovery from stroke aphasia
NASA Astrophysics Data System (ADS)
Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi
2007-03-01
Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (p<0.05). And the functional connectivity networks of the normal subjects were t-tested as group network. From the result, we can know the semantic functional connectivity of stroke aphasic patient and normal subjects are different. The activated areas of the left inferior frontal gyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.
Visual affective classification by combining visual and text features.
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task.
Visual affective classification by combining visual and text features
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task. PMID:28850566
NASA Astrophysics Data System (ADS)
Li, Jun; Qin, Qiming; Xie, Chao; Zhao, Yue
2012-10-01
The update frequency of digital road maps influences the quality of road-dependent services. However, digital road maps surveyed by probe vehicles or extracted from remotely sensed images still have a long updating circle and their cost remain high. With GPS technology and wireless communication technology maturing and their cost decreasing, floating car technology has been used in traffic monitoring and management, and the dynamic positioning data from floating cars become a new data source for updating road maps. In this paper, we aim to update digital road maps using the floating car data from China's National Commercial Vehicle Monitoring Platform, and present an incremental road network extraction method suitable for the platform's GPS data whose sampling frequency is low and which cover a large area. Based on both spatial and semantic relationships between a trajectory point and its associated road segment, the method classifies each trajectory point, and then merges every trajectory point into the candidate road network through the adding or modifying process according to its type. The road network is gradually updated until all trajectories have been processed. Finally, this method is applied in the updating process of major roads in North China and the experimental results reveal that it can accurately derive geometric information of roads under various scenes. This paper provides a highly-efficient, low-cost approach to update digital road maps.
Utilizing semantic networks to database and retrieve generalized stochastic colored Petri nets
NASA Technical Reports Server (NTRS)
Farah, Jeffrey J.; Kelley, Robert B.
1992-01-01
Previous work has introduced the Planning Coordinator (PCOORD), a coordinator functioning within the hierarchy of the Intelligent Machine Mode. Within the structure of the Planning Coordinator resides the Primitive Structure Database (PSDB) functioning to provide the primitive structures utilized by the Planning Coordinator in the establishing of error recovery or on-line path plans. This report further explores the Primitive Structure Database and establishes the potential of utilizing semantic networks as a means of efficiently storing and retrieving the Generalized Stochastic Colored Petri Nets from which the error recovery plans are derived.
The Role of Context in Producing Item Interactions and False Memories
ERIC Educational Resources Information Center
Tehan, Gerald; Humphreys, Michael S.; Tolan, Georgina Anne; Pitcher, Cameron
2004-01-01
Cued recall with an extralist cue poses a challenge for contemporary memory theory in that there is a need to explain how episodic and semantic information are combined. A parallel activation and intersection approach proposes one such means by assuming that an experimental cue will elicit its preexisting semantic network and a context cue will…
Fine-Tuning Neural Patient Question Retrieval Model with Generative Adversarial Networks.
Tang, Guoyu; Ni, Yuan; Wang, Keqiang; Yong, Qin
2018-01-01
The online patient question and answering (Q&A) system attracts an increasing amount of users in China. Patient will post their questions and wait for doctors' response. To avoid the lag time involved with the waiting and to reduce the workload on the doctors, a better method is to automatically retrieve the semantically equivalent question from the archive. We present a Generative Adversarial Networks (GAN) based approach to automatically retrieve patient question. We apply supervised deep learning based approaches to determine the similarity between patient questions. Then a GAN framework is used to fine-tune the pre-trained deep learning models. The experiment results show that fine-tuning by GAN can improve the performance.
Borovsky, Arielle; Ellis, Erica M; Evans, Julia L; Elman, Jeffrey L
2016-11-01
Although the size of a child's vocabulary associates with language-processing skills, little is understood regarding how this relation emerges. This investigation asks whether and how the structure of vocabulary knowledge affects language processing in English-learning 24-month-old children (N = 32; 18 F, 14 M). Parental vocabulary report was used to calculate semantic density in several early-acquired semantic categories. Performance on two language-processing tasks (lexical recognition and sentence processing) was compared as a function of semantic density. In both tasks, real-time comprehension was facilitated for higher density items, whereas lower density items experienced more interference. The findings indicate that language-processing skills develop heterogeneously and are influenced by the semantic network surrounding a known word. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
Ontology based standardization of Petri net modeling for signaling pathways.
Takai-Igarashi, Takako
2005-01-01
Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.
Ontology based standardization of petri net modeling for signaling pathways.
Takai-Igarashi, Takako
2011-01-01
Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.
NASA Astrophysics Data System (ADS)
Evans, Garrett Nolan
In this work, I present two projects that both contribute to the aim of discovering how intelligence manifests in the brain. The first project is a method for analyzing recorded neural signals, which takes the form of a convolution-based metric on neural membrane potential recordings. Relying only on integral and algebraic operations, the metric compares the timing and number of spikes within recordings as well as the recordings' subthreshold features: summarizing differences in these with a single "distance" between the recordings. Like van Rossum's (2001) metric for spike trains, the metric is based on a convolution operation that it performs on the input data. The kernel used for the convolution is carefully chosen such that it produces a desirable frequency space response and, unlike van Rossum's kernel, causes the metric to be first order both in differences between nearby spike times and in differences between same-time membrane potential values: an important trait. The second project is a combinatorial syntax method for connectionist semantic network encoding. Combinatorial syntax has been a point on which those who support a symbol-processing view of intelligent processing and those who favor a connectionist view have had difficulty seeing eye-to-eye. Symbol-processing theorists have persuasively argued that combinatorial syntax is necessary for certain intelligent mental operations, such as reasoning by analogy. Connectionists have focused on the versatility and adaptability offered by self-organizing networks of simple processing units. With this project, I show that there is a way to reconcile the two perspectives and to ascribe a combinatorial syntax to a connectionist network. The critical principle is to interpret nodes, or units, in the connectionist network as bound integrations of the interpretations for nodes that they share links with. Nodes need not correspond exactly to neurons and may correspond instead to distributed sets, or assemblies, of neurons.
Crangle, Colleen E.; Perreau-Guimaraes, Marcos; Suppes, Patrick
2013-01-01
This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model. PMID:23799009
The Body of Evidence: What Can Neuroscience Tell Us about Embodied Semantics?
Hauk, Olaf; Tschentscher, Nadja
2013-01-01
Semantic knowledge is based on the way we perceive and interact with the world. However, the jury is still out on the question: to what degree are neuronal systems that subserve acquisition of semantic knowledge, such as sensory-motor networks, involved in its representation and processing? We will begin with a critical evaluation of the main behavioral and neuroimaging methods with respect to their capability to define the functional roles of specific brain areas. Any behavioral or neuroscientific measure is a conflation of representations and processes. Hence, a combination of behavioral and neurophysiological interactions as well as time-course information is required to define the functional roles of brain areas. This will guide our review of the empirical literature. Most research in this area has been done on semantics of concrete words, where clear theoretical frameworks for an involvement of sensory-motor systems in semantics exist. Most of this evidence still stems from correlational studies that are ambiguous with respect to the behavioral relevance of effects. Evidence for causal effects of sensory-motor systems on semantic processes is still scarce but evolving. Relatively few neuroscientific studies so far have investigated the embodiment of abstract semantics for words, numbers, and arithmetic facts. Here, some correlational evidence exists, but data on causality are mostly absent. We conclude that neuroimaging data, just as behavioral data, have so far not disentangled the fundamental link between process and representation. Future studies should therefore put more emphasis on the effects of task and context on semantic processing. Strong conclusions can only be drawn from a combination of methods that provide time-course information, determine the connectivity among poly- or amodal and sensory-motor areas, link behavioral with neuroimaging measures, and allow causal inferences. We will conclude with suggestions on how this could be accomplished in future research. PMID:23407791
P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.
Young-Rae Cho; Yanan Xin; Speegle, Greg
2015-01-01
Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.
The MMI Device Ontology: Enabling Sensor Integration
NASA Astrophysics Data System (ADS)
Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group
2010-12-01
The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e.g., SensorML, NetCDF). These identifiers can be resolved through a web browser, or other client applications via HTTP against the MMI Ontology Registry and Repository (ORR), where the ontology is maintained. SPARQL-based query capabilities, which are enhanced with reasoning, along with several supported output formats, allow the effective interaction of diverse client applications with the semantic information associated with the device ontology. In this presentation we describe the process for the development of the MMI Device Ontology and illustrate extensions and applications that demonstrate the benefits of adopting this semantic approach, including example queries involving inference. We also highlight the issues encountered and future work.
HyQue: evaluating hypotheses using Semantic Web technologies.
Callahan, Alison; Dumontier, Michel; Shah, Nigam H
2011-05-17
Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks. We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF. HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque.
Overcoming an obstacle in expanding a UMLS semantic type extent.
Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James
2012-02-01
This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. Copyright © 2011 Elsevier Inc. All rights reserved.
Overcoming an Obstacle in Expanding a UMLS Semantic Type Extent
Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James
2011-01-01
This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. PMID:21925287
Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues
2013-08-01
Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bim-Based Indoor Path Planning Considering Obstacles
NASA Astrophysics Data System (ADS)
Xu, M.; Wei, S.; Zlatanova, S.; Zhang, R.
2017-09-01
At present, 87 % of people's activities are in indoor environment; indoor navigation has become a research issue. As the building structures for people's daily life are more and more complex, many obstacles influence humans' moving. Therefore it is essential to provide an accurate and efficient indoor path planning. Nowadays there are many challenges and problems in indoor navigation. Most existing path planning approaches are based on 2D plans, pay more attention to the geometric configuration of indoor space, often ignore rich semantic information of building components, and mostly consider simple indoor layout without taking into account the furniture. Addressing the above shortcomings, this paper uses BIM (IFC) as the input data and concentrates on indoor navigation considering obstacles in the multi-floor buildings. After geometric and semantic information are extracted, 2D and 3D space subdivision methods are adopted to build the indoor navigation network and to realize a path planning that avoids obstacles. The 3D space subdivision is based on triangular prism. The two approaches are verified by the experiments.
Cortical Memory Mechanisms and Language Origins
ERIC Educational Resources Information Center
Aboitiz, Francisco; Garcia, Ricardo R.; Bosman, Conrado; Brunetti, Enzo
2006-01-01
We have previously proposed that cortical auditory-vocal networks of the monkey brain can be partly homologized with language networks that participate in the phonological loop. In this paper, we suggest that other linguistic phenomena like semantic and syntactic processing also rely on the activation of transient memory networks, which can be…
A revised limbic system model for memory, emotion and behaviour.
Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel
2013-09-01
Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Complex Networks in Psychological Models
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
NASA Astrophysics Data System (ADS)
Guo, Kun; Sun, Yi; Qian, Xin
2017-03-01
With the development of the social network, the interaction between investors in stock market became more fast and convenient. Thus, investor sentiment which can influence their investment decisions may be quickly spread and magnified through the network, and to a certain extent the stock market can be affected. This paper collected the user comments data from a popular professional social networking site of China stock market called Xueqiu, then the investor sentiment data can be obtained through semantic analysis. The dynamic analysis on relationship between investor sentiment and stock market is proposed based on Thermal Optimal Path (TOP) method. The results show that the sentiment data was not always leading over stock market price, and it can be used to predict the stock price only when the stock has high investor attention.
The neural correlates of semantic richness: evidence from an fMRI study of word learning.
Ferreira, Roberto A; Göbel, Silke M; Hymers, Mark; Ellis, Andrew W
2015-04-01
We investigated the neural correlates of concrete nouns with either many or few semantic features. A group of 21 participants underwent two days of training and were then asked to categorize 40 newly learned words and a set of matched familiar words as living or nonliving in an MRI scanner. Our results showed that the most reliable effects of semantic richness were located in the left angular gyrus (AG) and middle temporal gyrus (MTG), where activation was higher for semantically rich than poor words. Other areas showing the same pattern included bilateral precuneus and posterior cingulate gyrus. Our findings support the view that AG and anterior MTG, as part of the multimodal network, play a significant role in representing and integrating semantic features from different input modalities. We propose that activation in bilateral precuneus and posterior cingulate gyrus reflects interplay between AG and episodic memory systems during semantic retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.
Webster, Paula J.; Skipper-Kallal, Laura M.; Frum, Chris A.; Still, Hayley N.; Ward, B. Douglas; Lewis, James W.
2017-01-01
A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds. PMID:28111538
On the universal structure of human lexical semantics
Sutton, Logan; Smith, Eric; Moore, Cristopher; Wilkins, Jon F.; Maddieson, Ian; Croft, William
2016-01-01
How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single “polysemous” word to express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. The methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use. PMID:26831113
Deep-learning derived features for lung nodule classification with limited datasets
NASA Astrophysics Data System (ADS)
Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.
2018-02-01
Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.
Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie
2011-09-01
Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.
Network-based approaches to climate knowledge discovery
NASA Astrophysics Data System (ADS)
Budich, Reinhard; Nyberg, Per; Weigel, Tobias
2011-11-01
Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.
Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.
Losko, Sascha; Heumann, Klaus
2017-01-01
The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.
Griffon, N; Charlet, J; Darmoni, Sj
2013-01-01
To summarize the best papers in the field of Knowledge Representation and Management (KRM). A synopsis of the four selected articles for the IMIA Yearbook 2013 KRM section is provided, as well as highlights of current KRM trends, in particular, of the semantic web in daily health practice. The manual selection was performed in three stages: first a set of 3,106 articles, then a second set of 86 articles followed by a third set of 15 articles, and finally the last set of four chosen articles. Among the four selected articles (see Table 1), one focuses on knowledge engineering to prevent adverse drug events; the objective of the second is to propose mappings between clinical archetypes and SNOMED CT in the context of clinical practice; the third presents an ontology to create a question-answering system; the fourth describes a biomonitoring network based on semantic web technologies. These four articles clearly indicate that the health semantic web has become a part of daily practice of health professionals since 2012. In the review of the second set of 86 articles, the same topics included in the previous IMIA yearbook remain active research fields: Knowledge extraction, automatic indexing, information retrieval, natural language processing, management of health terminologies and ontologies.
NASA Astrophysics Data System (ADS)
Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.
2018-05-01
The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.
Influence of Domain Shift Factors on Deep Segmentation of the Drivable Path of AN Autonomous Vehicle
NASA Astrophysics Data System (ADS)
Bormans, R. P. A.; Lindenbergh, R. C.; Karimi Nejadasl, F.
2018-05-01
One of the biggest challenges for an autonomous vehicle (and hence the WEpod) is to see the world as humans would see it. This understanding is the base for a successful and reliable future of autonomous vehicles. Real-world data and semantic segmentation generally are used to achieve full understanding of its surroundings. However, deploying a pretrained segmentation network to a new, previously unseen domain will not attain similar performance as it would on the domain where it is trained on due to the differences between the domains. Although research is done concerning the mitigation of this domain shift, the factors that cause these differences are not yet fully explored. We filled this gap with the investigation of several factors. A base network was created by a two-step finetuning procedure on a convolutional neural network (SegNet) which is pretrained on CityScapes (a dataset for semantic segmentation). The first tuning step is based on RobotCar (road scenery dataset recorded in Oxford, UK) while afterwards this network is fine-tuned for a second time but now on the KITTI (road scenery dataset recorded in Germany) dataset. With this base, experiments are used to obtain the importance of factors such as horizon line, colour and training order for a successful domain adaptation. In this case the domain adaptation is from the KITTI and RobotCar domain to the WEpod domain. For evaluation, groundtruth labels are created in a weakly-supervised setting. Negative influence was obtained for training on greyscale images instead of RGB images. This resulted in drops of IoU values up to 23.9 % for WEpod test images. The training order is a main contributor for domain adaptation with an increase in IoU of 4.7 %. This shows that the target domain (WEpod) is more closely related to RobotCar than to KITTI.
Empirical modeling of an alcohol expectancy memory network using multidimensional scaling.
Rather, B C; Goldman, M S; Roehrich, L; Brannick, M
1992-02-01
Risk-related antecedent variables can be linked to later alcohol consumption by memory processes, and alcohol expectancies may be one relevant memory content. To advance research in this area, it would be useful to apply current memory models such as semantic network theory to explain drinking decision processes. We used multidimensional scaling (MDS) to empirically model a preliminary alcohol expectancy semantic network, from which a theoretical account of drinking decision making was generated. Subanalyses (PREFMAP) showed how individuals with differing alcohol consumption histories may have had different association pathways within the expectancy network. These pathways may have, in turn influenced future drinking levels and behaviors while the person was under the influence of alcohol. All individuals associated positive/prosocial effects with drinking, but heavier drinkers indicated arousing effects as their highest probability associates, whereas light drinkers expected sedation. An important early step in this MDS modeling process is the determination of iso-meaning expectancy adjective groups, which correspond to theoretical network nodes.
Research in Knowledge Representation for Natural Language Understanding.
1984-09-01
TYPE OF REPORT & PERIOO COVERED RESEARCH IN KNOWLEDGE REPRESENTATION Annual Report FOR NATURAL LANGUAGE UNDERSTANDING 9/1/83 - 8/31/84 S. PERFORMING...nhaber) Artificial intelligence, natural language understanding , knowledge representation, semantics, semantic networks, KL-TWO, NIKL, belief and...attempting to understand and react to a complex, evolving situation. This report summarizes our research in knowledge representation and natural language
Amalric, Marie; Dehaene, Stanislas
2017-02-19
Is mathematical language similar to natural language? Are language areas used by mathematicians when they do mathematics? And does the brain comprise a generic semantic system that stores mathematical knowledge alongside knowledge of history, geography or famous people? Here, we refute those views by reviewing three functional MRI studies of the representation and manipulation of high-level mathematical knowledge in professional mathematicians. The results reveal that brain activity during professional mathematical reflection spares perisylvian language-related brain regions as well as temporal lobe areas classically involved in general semantic knowledge. Instead, mathematical reflection recycles bilateral intraparietal and ventral temporal regions involved in elementary number sense. Even simple fact retrieval, such as remembering that 'the sine function is periodical' or that 'London buses are red', activates dissociated areas for math versus non-math knowledge. Together with other fMRI and recent intracranial studies, our results indicated a major separation between two brain networks for mathematical and non-mathematical semantics, which goes a long way to explain a variety of facts in neuroimaging, neuropsychology and developmental disorders.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).
Van de Putte, Eowyn; De Baene, Wouter; Price, Cathy J; Duyck, Wouter
2018-05-01
This study investigated whether brain activity in Dutch-French bilinguals during semantic access to concepts from one language could be used to predict neural activation during access to the same concepts from another language, in different language modalities/tasks. This was tested using multi-voxel pattern analysis (MVPA), within and across language comprehension (word listening and word reading) and production (picture naming). It was possible to identify the picture or word named, read or heard in one language (e.g. maan, meaning moon) based on the brain activity in a distributed bilateral brain network while, respectively, naming, reading or listening to the picture or word in the other language (e.g. lune). The brain regions identified differed across tasks. During picture naming, brain activation in the occipital and temporal regions allowed concepts to be predicted across languages. During word listening and word reading, across-language predictions were observed in the rolandic operculum and several motor-related areas (pre- and postcentral, the cerebellum). In addition, across-language predictions during reading were identified in regions typically associated with semantic processing (left inferior frontal, middle temporal cortex, right cerebellum and precuneus) and visual processing (inferior and middle occipital regions and calcarine sulcus). Furthermore, across modalities and languages, the left lingual gyrus showed semantic overlap across production and word reading. These findings support the idea of at least partially language- and modality-independent semantic neural representations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gagnepain, Pierre; Fauvel, Baptiste; Desgranges, Béatrice; Gaubert, Malo; Viader, Fausto; Eustache, Francis; Groussard, Mathilde; Platel, Hervé
2017-01-01
The hippocampus has classically been associated with episodic memory, but is sometimes also recruited during semantic memory tasks, especially for the skilled exploration of familiar information. Cognitive control mechanisms guiding semantic memory search may benefit from the set of cognitive processes at stake during musical training. Here, we examined using functional magnetic resonance imaging, whether musical expertise would promote the top–down control of the left inferior frontal gyrus (LIFG) over the generation of hippocampally based goal-directed thoughts mediating the familiarity judgment of proverbs and musical items. Analyses of behavioral data confirmed that musical experts more efficiently access familiar melodies than non-musicians although such increased ability did not transfer to verbal semantic memory. At the brain level, musical expertise specifically enhanced the recruitment of the hippocampus during semantic access to melodies, but not proverbs. Additionally, hippocampal activation contributed to speed of access to familiar melodies, but only in musicians. Critically, causal modeling of neural dynamics between LIFG and the hippocampus further showed that top–down excitatory regulation over the hippocampus during familiarity decision specifically increases with musical expertise – an effect that generalized across melodies and proverbs. At the local level, our data show that musical expertise modulates the online recruitment of hippocampal response to serve semantic memory retrieval of familiar melodies. The reconfiguration of memory network dynamics following musical training could constitute a promising framework to understand its ability to preserve brain functions. PMID:29033805
Swett, Katherine; Miller, Amanda C.; Burns, Scott; Hoeft, Fumiko; Davis, Nicole; Petrill, Stephen A.; Cutting, Laurie E.
2013-01-01
Little is known about the neural correlates of expository text comprehension. In this study, we sought to identify neural networks underlying expository text comprehension, how those networks change over the course of comprehension, and whether information central to the overall meaning of the text is functionally distinct from peripheral information. Seventeen adult subjects read expository passages while being scanned using functional magnetic resonance imaging (fMRI). By convolving phrase onsets with the hemodynamic response function (HRF), we were able to identify regions that increase and decrease in activation over the course of passage comprehension. We found that expository text comprehension relies on the co-activation of the semantic control network and regions in the posterior midline previously associated with mental model updating and integration [posterior cingulate cortex (PCC) and precuneus (PCU)]. When compared to single word comprehension, left PCC and left Angular Gyrus (AG) were activated only for discourse-level comprehension. Over the course of comprehension, reliance on the same regions in the semantic control network increased, while a parietal region associated with attention [intraparietal sulcus (IPS)] decreased. These results parallel previous findings in narrative comprehension that the initial stages of mental model building require greater visuospatial attention processes, while maintenance of the model increasingly relies on semantic integration regions. Additionally, we used an event-related analysis to examine phrases central to the text's overall meaning vs. peripheral phrases. It was found that central ideas are functionally distinct from peripheral ideas, showing greater activation in the PCC and PCU, while over the course of passage comprehension, central and peripheral ideas increasingly recruit different parts of the semantic control network. The finding that central information elicits greater response in mental model updating regions than peripheral ideas supports previous behavioral models on the cognitive importance of distinguishing textual centrality. PMID:24376411
Scientific and educational recommender systems
NASA Astrophysics Data System (ADS)
Guseva, A. I.; Kireev, V. S.; Bochkarev, P. V.; Kuznetsov, I. A.; Philippov, S. A.
2017-01-01
This article discusses the questions associated with the use of reference systems in the preparation of graduates in physical function. The objective of this research is creation of model of recommender system user from the sphere of science and education. The detailed review of current scientific and social network for scientists and the problem of constructing recommender systems in this area. The result of this study is to research user information model systems. The model is presented in two versions: the full one - in the form of a semantic network, and short - in a relational form. The relational model is the projection in the form of semantic network, taking into account the restrictions on the amount of bonds that characterize the number of information items (research results), which interact with the system user.
Evaluation of a UMLS Auditing Process of Semantic Type Assignments
Gu, Huanying; Hripcsak, George; Chen, Yan; Morrey, C. Paul; Elhanan, Gai; Cimino, James J.; Geller, James; Perl, Yehoshua
2007-01-01
The UMLS is a terminological system that integrates many source terminologies. Each concept in the UMLS is assigned one or more semantic types from the Semantic Network, an upper level ontology for biomedicine. Due to the complexity of the UMLS, errors exist in the semantic type assignments. Finding assignment errors may unearth modeling errors. Even with sophisticated tools, discovering assignment errors requires manual review. In this paper we describe the evaluation of an auditing project of UMLS semantic type assignments. We studied the performance of the auditors who reviewed potential errors. We found that four auditors, interacting according to a multi-step protocol, identified a high rate of errors (one or more errors in 81% of concepts studied) and that results were sufficiently reliable (0.67 to 0.70) for the two most common types of errors. However, reliability was low for each individual auditor, suggesting that review of potential errors is resource-intensive. PMID:18693845
[Knowing without remembering: the contribution of developmental amnesia].
Lebrun-Givois, C; Guillery-Girard, B; Thomas-Anterion, C; Laurent, B
2008-05-01
The organization of episodic and semantic memory is currently debated, and especially the rule of the hippocampus in the functioning of these two systems. Since theories derived from the observation of the famous patient HM, that highlighted the involvement of this structure in these two systems, numerous studies questioned the implication of the hippocampus in learning a new semantic knowledge. Among these studies, we found Vargha-Kadem's cases of developmental amnesia. In spite of their clear hippocampal atrophy and a massive impairment of episodic memory, these children were able to acquire de novo new semantic knowledge. In the present paper, we describe a new case of developmental amnesia characteristic of this syndrome. In conclusion, the whole published data question the implication of the hippocampus in every semantic learning and suggest the existence of a neocortical network, slower and that needs more exposures to semantic stimuli than the hippocampal one, which can supply a massive hippocampal impairment.
Shared neural processes support semantic control and action understanding
Davey, James; Rueschemeyer, Shirley-Ann; Costigan, Alison; Murphy, Nik; Krieger-Redwood, Katya; Hallam, Glyn; Jefferies, Elizabeth
2015-01-01
Executive–semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive–semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital–temporal areas, not implicated in action understanding. PMID:25658631
1984-11-01
about the length of duration before or after the zero point". The generalization about snow being white holds at PRESENT. If the generic ...tense, serial tense, system network, systemic grammar, tense grammar, tense semantics, text generation , text production, verbal group * 4- •S 20...purposeful way, as a subprocess of the process of generating text. First, a systemic grammar of English tense (based on work by M A.K. Halliday) is
JPRS Report, Soviet Union, Foreign Military Review, No. 5, May 1988
1988-10-31
nology, Carnegie-Mellon University, and Stanford Uni- versity taking the lead. New constructive ideas were advanced in this period for simulating human...for representing stereotyped situations), products (logical constructions according to rules such as "if..., then..."), semantic networks (formal...battle). A prototype of the expert system, OB.l KB (Order of Battlefield [sic] Variant No. 1 Knowledge Base), was constructed as a result of
Bornmann, Lutz; Haunschild, Robin; Hug, Sven E
2018-01-01
During Eugene Garfield's (EG's) lengthy career as information scientist, he published about 1500 papers. In this study, we use the impressive oeuvre of EG to introduce a new type of bibliometric networks: keyword co-occurrences networks based on the context of citations, which are referenced in a certain paper set (here: the papers published by EG). The citation context is defined by the words which are located around a specific citation. We retrieved the citation context from Microsoft Academic. To interpret and compare the results of the new network type, we generated two further networks: co-occurrence networks which are based on title and abstract keywords from (1) EG's papers and (2) the papers citing EG's publications. The comparison of the three networks suggests that papers of EG and citation contexts of papers citing EG are semantically more closely related to each other than to titles and abstracts of papers citing EG. This result accords with the use of citations in research evaluation that is based on the premise that citations reflect the cognitive influence of the cited on the citing publication.
Time-related patient data retrieval for the case studies from the pharmacogenomics research network
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G.
2012-01-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users’ own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities. PMID:23076712
Time-related patient data retrieval for the case studies from the pharmacogenomics research network.
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G
2012-11-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users' own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities.
On a categorial aspect of knowledge representation
NASA Astrophysics Data System (ADS)
Tataj, Emanuel; Mulawka, Jan; Nieznański, Edward
Adequate representation of data is crucial for modeling any type of data. To faithfully present and describe the relevant section of the world it is necessary to select the method that can easily be implemented on a computer system which will help in further description allowing reasoning. The main objective of this contribution is to present methods of knowledge representation using categorial approach. Next to identify the main advantages for computer implementation. Categorical aspect of knowledge representation is considered in semantic networks realisation. Such method borrows already known metaphysics properties for data modeling process. The potential topics of further development of categorical semantic networks implementations are also underlined.
Gardner, Hannah E; Lambon Ralph, Matthew A; Dodds, Naomi; Jones, Theresa; Ehsan, Sheeba; Jefferies, Elizabeth
2012-04-01
Aphasic patients with multimodal semantic impairment following pFC or temporo-parietal (TP) cortex damage (semantic aphasia [SA]) have deficits characterized by poor control of semantic activation/retrieval, as opposed to loss of semantic knowledge per se. In line with this, SA patients show "refractory effects"; that is, declining accuracy in cyclical word-picture matching tasks when semantically related sets are presented rapidly and repeatedly. This is argued to follow a build-up of competition between targets and distractors. However, the link between poor semantic control and refractory effects is still controversial for two reasons. (1) Some theories propose that refractory effects are specific to verbal or auditory tasks, yet SA patients show poor control over semantic processing in both word and picture semantic tasks. (2) SA can result from lesions to either the left pFC or TP cortex, yet previous work suggests that refractory effects are specifically linked to the left inferior frontal cortex. For the first time, verbal, visual, and nonverbal auditory refractory effects were explored in nine SA patients who had pFC (pFC+) or TP cortex (TP-only) lesions. In all modalities, patient accuracy declined significantly over repetitions. This refractory effect at the group level was driven by pFC+ patients and was not shown by individuals with TP-only lesions. These findings support the theory that SA patients have reduced control over multimodal semantic retrieval and, additionally, suggest there may be functional specialization within the posterior versus pFC elements of the semantic control network.
Neural networks mediating sentence reading in the deaf
Hirshorn, Elizabeth A.; Dye, Matthew W. G.; Hauser, Peter C.; Supalla, Ted R.; Bavelier, Daphne
2014-01-01
The present work addresses the neural bases of sentence reading in deaf populations. To better understand the relative role of deafness and spoken language knowledge in shaping the neural networks that mediate sentence reading, three populations with different degrees of English knowledge and depth of hearing loss were included—deaf signers, oral deaf and hearing individuals. The three groups were matched for reading comprehension and scanned while reading sentences. A similar neural network of left perisylvian areas was observed, supporting the view of a shared network of areas for reading despite differences in hearing and English knowledge. However, differences were observed, in particular in the auditory cortex, with deaf signers and oral deaf showing greatest bilateral superior temporal gyrus (STG) recruitment as compared to hearing individuals. Importantly, within deaf individuals, the same STG area in the left hemisphere showed greater recruitment as hearing loss increased. To further understand the functional role of such auditory cortex re-organization after deafness, connectivity analyses were performed from the STG regions identified above. Connectivity from the left STG toward areas typically associated with semantic processing (BA45 and thalami) was greater in deaf signers and in oral deaf as compared to hearing. In contrast, connectivity from left STG toward areas identified with speech-based processing was greater in hearing and in oral deaf as compared to deaf signers. These results support the growing literature indicating recruitment of auditory areas after congenital deafness for visually-mediated language functions, and establish that both auditory deprivation and language experience shape its functional reorganization. Implications for differential reliance on semantic vs. phonological pathways during reading in the three groups is discussed. PMID:24959127
Liu, Rui; Yue, Yingying; Hou, Zhenghua; Yuan, Yonggui; Wang, Qiao
2018-08-01
Abnormal functional connectivity (FC) in the default mode network (DMN) plays an important role in late-onset depression (LOD) patients. In this study, the risk predictors of LOD based on anterior and posterior DMN are explored. A total of 27 LOD patients and 40 healthy controls (HC) underwent resting-state functional magnetic resonance imaging and cognitive assessments. Firstly, FCs within DMN sub-networks were determined by placing seeds in the ventral medial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC). Secondly, multivariable logistic regression was used to identify risk factors for LOD patients. Finally, correlation analysis was performed to investigate the relationship between risk factors and the cognitive value. Multivariable logistic regression showed that the FCs between the vmPFC and right middle temporal gyrus (MTG) (vmPFC-MTG_R), FCs between the vmPFC and left precuneus (PCu), and FCs between the PCC and left PCu (PCC-PCu_L) were the risk factors for LOD. Furthermore, FCs of the vmPFC-MTG_R and PCC-PCu_L correlated with processing speed (R = 0.35, P = 0.002; R = 0.32, P = 0.009), and FCs of the vmPFC-MTG_R correlated with semantic memory (R = 0.41, P = 0.001). The study was a cross-sectional study. The results may be potentially biased because of a small sample. In this study, we confirmed that LOD patients mainly present cognitive deficits in processing speed and semantic memory. Moreover, our findings further suggested that FCs within DMN sub-networks associated with cognitions were risk factors, which may be used for the prediction of LOD. Copyright © 2018 Elsevier B.V. All rights reserved.
Fargier, Raphaël; Laganaro, Marina
2017-03-01
Picture naming tasks are largely used to elicit the production of specific words and sentences in psycholinguistic and neuroimaging research. However, the generation of lexical concepts from a visual input is clearly not the exclusive way speech production is triggered. In inferential speech encoding, the concept is not provided from a visual input, but is elaborated though semantic and/or episodic associations. It is therefore likely that the cognitive operations leading to lexical selection and word encoding are different in inferential and referential expressive language. In particular, in picture naming lexical selection might ensue from a simple association between a perceptual visual representation and a word with minimal semantic processes, whereas richer semantic associations are involved in lexical retrieval in inferential situations. Here we address this hypothesis by analyzing ERP correlates during word production in a referential and an inferential task. The participants produced the same words elicited from pictures or from short written definitions. The two tasks displayed similar electrophysiological patterns only in the time-period preceding the verbal response. In the stimulus-locked ERPs waveform amplitudes and periods of stable global electrophysiological patterns differed across tasks after the P100 component and until 400-500 ms, suggesting the involvement of different, task-specific neural networks. Based on the analysis of the time-windows affected by specific semantic and lexical variables in each task, we conclude that lexical selection is underpinned by a different set of conceptual and brain processes, with semantic processes clearly preceding word retrieval in naming from definition whereas the semantic information is enriched in parallel with word retrieval in picture naming.
NASA Astrophysics Data System (ADS)
Baez, J.; Lapidaryus, M.; Siegel, Edward Carl-Ludwig
2011-03-01
Riemann-hypothesis physics-proof combines: Siegel-Antonoff-Smith[AMS Joint Mtg.(2002)-Abs.973-03-126] digits on-average statistics HIll[Am. J. Math 123, 3, 887(1996)] logarithm-function's (1,0)-fixed-point base=units=scale-invariance proven Newcomb[Am. J. Math. 4, 39(1881)]-Weyl[Goett. Nachr.(1914); Math. Ann. 7, 313(1916)]-Benford[Proc. Am. Phil. Soc. 78, 4, 51(1938)]-law [Kac, Math. of Stat.-Reasoning(1955); Raimi, Sci. Am. 221, 109(1969)] algebraic-inversion to ONLY Bose-Einstein quantum-statistics(BEQS) with digit d = 0 gapFUL Bose-Einstein Condensation(BEC) insight that digits are quanta are bosons were always digits, via Siegel-Baez category-semantics tabular list-format matrix truth-table analytics in Plato-Aristotle classic "square-of-opposition" : FUZZYICS=CATEGORYICS/Category-Semantics, with Goodkind Bose-Einstein condensation(BEC) ABOVE ground-state with/and Rayleigh(cut-limit of "short-cut method";1870)-Polya(1922)-"Anderson"(1958) localization [Doyle and Snell, Random-Walks and Electrical-Networks, MAA(1981)-p.99-100!!!].
How the Size of Our Social Network Influences Our Semantic Skills
ERIC Educational Resources Information Center
Lev-Ari, Shiri
2016-01-01
People differ in the size of their social network, and thus in the properties of the linguistic input they receive. This article examines whether differences in social network size influence individuals' linguistic skills in their native language, focusing on global comprehension of evaluative language. Study 1 exploits the natural variation in…
A method for exploring implicit concept relatedness in biomedical knowledge network.
Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan
2016-07-19
Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.
Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter
2016-09-21
In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.
System, apparatus and methods to implement high-speed network analyzers
Ezick, James; Lethin, Richard; Ros-Giralt, Jordi; Szilagyi, Peter; Wohlford, David E
2015-11-10
Systems, apparatus and methods for the implementation of high-speed network analyzers are provided. A set of high-level specifications is used to define the behavior of the network analyzer emitted by a compiler. An optimized inline workflow to process regular expressions is presented without sacrificing the semantic capabilities of the processing engine. An optimized packet dispatcher implements a subset of the functions implemented by the network analyzer, providing a fast and slow path workflow used to accelerate specific processing units. Such dispatcher facility can also be used as a cache of policies, wherein if a policy is found, then packet manipulations associated with the policy can be quickly performed. An optimized method of generating DFA specifications for network signatures is also presented. The method accepts several optimization criteria, such as min-max allocations or optimal allocations based on the probability of occurrence of each signature input bit.
Vempati, Uma D; Chung, Caty; Mader, Chris; Koleti, Amar; Datar, Nakul; Vidović, Dušica; Wrobel, David; Erickson, Sean; Muhlich, Jeremy L; Berriz, Gabriel; Benes, Cyril H; Subramanian, Aravind; Pillai, Ajay; Shamu, Caroline E; Schürer, Stephan C
2014-06-01
The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available. © 2014 Society for Laboratory Automation and Screening.
Discovery in a World of Mashups
NASA Astrophysics Data System (ADS)
King, T. A.; Ritschel, B.; Hourcle, J. A.; Moon, I. S.
2014-12-01
When the first digital information was stored electronically, discovery of what existed was through file names and the organization of the file system. With the advent of networks, digital information was shared on a wider scale, but discovery remained based on file and folder names. With a growing number of information sources, named based discovery quickly became ineffective. The keyword based search engine was one of the first types of a mashup in the world of Web 1.0. Embedded links from one document to another with prescribed relationships between files and the world of Web 2.0 was formed. Search engines like Google used the links to improve search results and a worldwide mashup was formed. While a vast improvement, the need for semantic (meaning rich) discovery was clear, especially for the discovery of scientific data. In response, every science discipline defined schemas to describe their type of data. Some core schemas where shared, but most schemas are custom tailored even though they share many common concepts. As with the networking of information sources, science increasingly relies on data from multiple disciplines. So there is a need to bring together multiple sources of semantically rich information. We explore how harvesting, conceptual mapping, facet based search engines, search term promotion, and style sheets can be combined to create the next generation of mashups in the emerging world of Web 3.0. We use NASA's Planetary Data System and NASA's Heliophysics Data Environment to illustrate how to create a multi-discipline mash-up.
The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.
Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A
2013-09-25
Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.
Semantic message oriented middleware for publish/subscribe networks
NASA Astrophysics Data System (ADS)
Li, Han; Jiang, Guofei
2004-09-01
The publish/subscribe paradigm of Message Oriented Middleware provides a loosely coupled communication model between distributed applications. Traditional publish/subscribe middleware uses keywords to match advertisements and subscriptions and does not support deep semantic matching. To this end, we designed and implemented a Semantic Message Oriented Middleware system to provide such capabilities for semantic description and matching. We adopted the DARPA Agent Markup Language and Ontology Inference Layer, a formal knowledge representation language for expressing sophisticated classifications and enabling automated inference, as the topic description language in our middleware system. A simple description logic inference system was implemented to handle the matching process between the subscriptions of subscribers and the advertisements of publishers. Moreover our middleware system also has a security architecture to support secure communication and user privilege control.
Drane, Daniel L.; Ojemann, Jeffrey G.; Phatak, Vaishali; Loring, David W.; Gross, Robert E.; Hebb, Adam O.; Silbergeld, Daniel L.; Miller, John W.; Voets, Natalie L.; Saindane, Amit M.; Barsalou, Lawrence; Meador, Kimford J.; Ojemann, George A.; Tranel, Daniel
2012-01-01
This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre-and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. PMID:23040175
Drane, Daniel L; Ojemann, Jeffrey G; Phatak, Vaishali; Loring, David W; Gross, Robert E; Hebb, Adam O; Silbergeld, Daniel L; Miller, John W; Voets, Natalie L; Saindane, Amit M; Barsalou, Lawrence; Meador, Kimford J; Ojemann, George A; Tranel, Daniel
2013-06-01
This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre- and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neurology of anomia in the semantic variant of primary progressive aphasia
Rogalski, Emily; Wieneke, Christina; Cobia, Derin; Rademaker, Alfred; Thompson, Cynthia; Weintraub, Sandra
2009-01-01
The semantic variant of primary progressive aphasia (PPA) is characterized by the combination of word comprehension deficits, fluent aphasia and a particularly severe anomia. In this study, two novel tasks were used to explore the factors contributing to the anomia. The single most common factor was a blurring of distinctions among members of a semantic category, leading to errors of overgeneralization in word–object matching tasks as well as in word definitions and object descriptions. This factor was more pronounced for natural kinds than artifacts. In patients with the more severe anomias, conceptual maps were more extensively disrupted so that inter-category distinctions were as impaired as intra-category distinctions. Many objects that could not be named aloud could be matched to the correct word in patients with mild but not severe anomia, reflecting a gradual intensification of the semantic factor as the naming disorder becomes more severe. Accurate object descriptions were more frequent than accurate word definitions and all patients experienced prominent word comprehension deficits that interfered with everyday activities but no consequential impairment of object usage or face recognition. Magnetic resonance imaging revealed three characteristics: greater atrophy of the left hemisphere; atrophy of anterior components of the perisylvian language network in the superior and middle temporal gyri; and atrophy of anterior components of the face and object recognition network in the inferior and medial temporal lobes. The left sided asymmetry and perisylvian extension of the atrophy explains the more profound impairment of word than object usage and provides the anatomical basis for distinguishing the semantic variant of primary progressive aphasia from the partially overlapping group of patients that fulfil the widely accepted diagnostic criteria for semantic dementia. PMID:19506067
Neurology of anomia in the semantic variant of primary progressive aphasia.
Mesulam, Marsel; Rogalski, Emily; Wieneke, Christina; Cobia, Derin; Rademaker, Alfred; Thompson, Cynthia; Weintraub, Sandra
2009-09-01
The semantic variant of primary progressive aphasia (PPA) is characterized by the combination of word comprehension deficits, fluent aphasia and a particularly severe anomia. In this study, two novel tasks were used to explore the factors contributing to the anomia. The single most common factor was a blurring of distinctions among members of a semantic category, leading to errors of overgeneralization in word-object matching tasks as well as in word definitions and object descriptions. This factor was more pronounced for natural kinds than artifacts. In patients with the more severe anomias, conceptual maps were more extensively disrupted so that inter-category distinctions were as impaired as intra-category distinctions. Many objects that could not be named aloud could be matched to the correct word in patients with mild but not severe anomia, reflecting a gradual intensification of the semantic factor as the naming disorder becomes more severe. Accurate object descriptions were more frequent than accurate word definitions and all patients experienced prominent word comprehension deficits that interfered with everyday activities but no consequential impairment of object usage or face recognition. Magnetic resonance imaging revealed three characteristics: greater atrophy of the left hemisphere; atrophy of anterior components of the perisylvian language network in the superior and middle temporal gyri; and atrophy of anterior components of the face and object recognition network in the inferior and medial temporal lobes. The left sided asymmetry and perisylvian extension of the atrophy explains the more profound impairment of word than object usage and provides the anatomical basis for distinguishing the semantic variant of primary progressive aphasia from the partially overlapping group of patients that fulfil the widely accepted diagnostic criteria for semantic dementia.
Lexical Processing and Organization in Bilingual First Language Acquisition: Guiding Future Research
DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret
2016-01-01
A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between two languages in the early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. PMID:26866430
An event-related potential study of semantic style-match judgments of artistic furniture.
Lin, Ming-Huang; Wang, Ching-yi; Cheng, Shih-kuen; Cheng, Shih-hung
2011-11-01
This study investigates how semantic networks represent different artistic furniture. Event-related potentials (ERPs) were recorded while participants made style-match judgments for table and chair sets. All of the tables were in the Normal style, whereas the chairs were in the Normal, Minimal, ReadyMade, or Deconstruction styles. The Normal and Minimal chairs had the same rates of "match" responses, which were both higher than the rates for the ReadyMade and Deconstruction chairs. Compared with Normal chairs, the ERPs elicited by both ReadyMade chairs and Deconstruction chairs exhibited reliable N400 effects, which suggests that these two design styles were unlike the Normal design style. However, Minimal chairs evoked ERPs that were similar to the ERPs of Normal chairs. Furthermore, the N400 effects elicited by ReadyMade and Deconstruction chairs showed different scalp distributions. These findings reveal that semantic networks represent different design styles for items of the same category. Copyright © 2011 Elsevier B.V. All rights reserved.