Optical network security using unipolar Walsh code
NASA Astrophysics Data System (ADS)
Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila
2018-04-01
Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
1993-01-01
upon designation of DoD Activity Address Code (DoDAAC) or other code coordinated with the value-added network (VAN). Mandatory ISA06 106 Interc.ange...coordinated with the value-added network (VAN). Non-DoD activities use identification code qualified by ISA05 and coordinated with the VAN. Mandatory...designation of DoD Activity Address Code (DoDAAC) or other code coordinated with the value-added network (VAN). Mandatory ISA08 107 Interchange Receiver
Protograph LDPC Codes Over Burst Erasure Channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.
Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues
2011-03-01
222 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011 2595 Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay... noncoherent reception, channel estima- tion. I. INTRODUCTION IN the two-way relay channel (TWRC), a pair of sourceterminals exchange information...2011 4. TITLE AND SUBTITLE Noncoherent Physical-Layer Network Coding with FSK Modulation:Relay Receiver Design Issues 5a. CONTRACT NUMBER 5b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2013-07-01
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2013-07-01
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.
Computer Code for Transportation Network Design and Analysis
DOT National Transportation Integrated Search
1977-01-01
This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...
A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks.
Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang
2017-08-08
Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs.
Smart photonic networks and computer security for image data
NASA Astrophysics Data System (ADS)
Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.
1998-02-01
Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.
A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks
Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang
2017-01-01
Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs. PMID:28786915
NASA Astrophysics Data System (ADS)
Dao, Thanh Hai
2018-01-01
Network coding techniques are seen as the new dimension to improve the network performances thanks to the capability of utilizing network resources more efficiently. Indeed, the application of network coding to the realm of failure recovery in optical networks has been marking a major departure from traditional protection schemes as it could potentially achieve both rapid recovery and capacity improvement, challenging the prevailing wisdom of trading capacity efficiency for speed recovery and vice versa. In this context, the maturing of all-optical XOR technologies appears as a good match to the necessity of a more efficient protection in transparent optical networks. In addressing this opportunity, we propose to use a practical all-optical XOR network coding to leverage the conventional 1 + 1 optical path protection in transparent WDM optical networks. The network coding-assisted protection solution combines protection flows of two demands sharing the same destination node in supportive conditions, paving the way for reducing the backup capacity. A novel mathematical model taking into account the operation of new protection scheme for optimal network designs is formulated as the integer linear programming. Numerical results based on extensive simulations on realistic topologies, COST239 and NSFNET networks, are presented to highlight the benefits of our proposal compared to the conventional approach in terms of wavelength resources efficiency and network throughput.
Recent advances in coding theory for near error-free communications
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.
1991-01-01
Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.
Variable weight spectral amplitude coding for multiservice OCDMA networks
NASA Astrophysics Data System (ADS)
Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.
2017-09-01
The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.
Medical reliable network using concatenated channel codes through GSM network.
Ahmed, Emtithal; Kohno, Ryuji
2013-01-01
Although the 4(th) generation (4G) of global mobile communication network, i.e. Long Term Evolution (LTE) coexisting with the 3(rd) generation (3G) has successfully started; the 2(nd) generation (2G), i.e. Global System for Mobile communication (GSM) still playing an important role in many developing countries. Without any other reliable network infrastructure, GSM can be applied for tele-monitoring applications, where high mobility and low cost are necessary. A core objective of this paper is to introduce the design of a more reliable and dependable Medical Network Channel Code system (MNCC) through GSM Network. MNCC design based on simple concatenated channel code, which is cascade of an inner code (GSM) and an extra outer code (Convolution Code) in order to protect medical data more robust against channel errors than other data using the existing GSM network. In this paper, the MNCC system will provide Bit Error Rate (BER) equivalent to the BER for medical tele monitoring of physiological signals, which is 10(-5) or less. The performance of the MNCC has been proven and investigated using computer simulations under different channels condition such as, Additive White Gaussian Noise (AWGN), Rayleigh noise and burst noise. Generally the MNCC system has been providing better performance as compared to GSM.
NASA Astrophysics Data System (ADS)
Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.
A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.
2004-01-01
The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.
A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks
Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin
2016-01-01
Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044
A neutron spectrum unfolding computer code based on artificial neural networks
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2014-02-01
The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in the HTML format. NSDann unfolding code is freely available, upon request to the authors.
Special issue on network coding
NASA Astrophysics Data System (ADS)
Monteiro, Francisco A.; Burr, Alister; Chatzigeorgiou, Ioannis; Hollanti, Camilla; Krikidis, Ioannis; Seferoglu, Hulya; Skachek, Vitaly
2017-12-01
Future networks are expected to depart from traditional routing schemes in order to embrace network coding (NC)-based schemes. These have created a lot of interest both in academia and industry in recent years. Under the NC paradigm, symbols are transported through the network by combining several information streams originating from the same or different sources. This special issue contains thirteen papers, some dealing with design aspects of NC and related concepts (e.g., fountain codes) and some showcasing the application of NC to new services and technologies, such as data multi-view streaming of video or underwater sensor networks. One can find papers that show how NC turns data transmission more robust to packet losses, faster to decode, and more resilient to network changes, such as dynamic topologies and different user options, and how NC can improve the overall throughput. This issue also includes papers showing that NC principles can be used at different layers of the networks (including the physical layer) and how the same fundamental principles can lead to new distributed storage systems. Some of the papers in this issue have a theoretical nature, including code design, while others describe hardware testbeds and prototypes.
NASA Astrophysics Data System (ADS)
The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.
Programmable multi-node quantum network design and simulation
NASA Astrophysics Data System (ADS)
Dasari, Venkat R.; Sadlier, Ronald J.; Prout, Ryan; Williams, Brian P.; Humble, Travis S.
2016-05-01
Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications.
Evolutionary Computation with Spatial Receding Horizon Control to Minimize Network Coding Resources
Leeson, Mark S.
2014-01-01
The minimization of network coding resources, such as coding nodes and links, is a challenging task, not only because it is a NP-hard problem, but also because the problem scale is huge; for example, networks in real world may have thousands or even millions of nodes and links. Genetic algorithms (GAs) have a good potential of resolving NP-hard problems like the network coding problem (NCP), but as a population-based algorithm, serious scalability and applicability problems are often confronted when GAs are applied to large- or huge-scale systems. Inspired by the temporal receding horizon control in control engineering, this paper proposes a novel spatial receding horizon control (SRHC) strategy as a network partitioning technology, and then designs an efficient GA to tackle the NCP. Traditional network partitioning methods can be viewed as a special case of the proposed SRHC, that is, one-step-wide SRHC, whilst the method in this paper is a generalized N-step-wide SRHC, which can make a better use of global information of network topologies. Besides the SRHC strategy, some useful designs are also reported in this paper. The advantages of the proposed SRHC and GA for the NCP are illustrated by extensive experiments, and they have a good potential of being extended to other large-scale complex problems. PMID:24883371
Impact of dynamic rate coding aspects of mobile phone networks on forensic voice comparison.
Alzqhoul, Esam A S; Nair, Balamurali B T; Guillemin, Bernard J
2015-09-01
Previous studies have shown that landline and mobile phone networks are different in their ways of handling the speech signal, and therefore in their impact on it. But the same is also true of the different networks within the mobile phone arena. There are two major mobile phone technologies currently in use today, namely the global system for mobile communications (GSM) and code division multiple access (CDMA) and these are fundamentally different in their design. For example, the quality of the coded speech in the GSM network is a function of channel quality, whereas in the CDMA network it is determined by channel capacity (i.e., the number of users sharing a cell site). This paper examines the impact on the speech signal of a key feature of these networks, namely dynamic rate coding, and its subsequent impact on the task of likelihood-ratio-based forensic voice comparison (FVC). Surprisingly, both FVC accuracy and precision are found to be better for both GSM- and CDMA-coded speech than for uncoded. Intuitively one expects FVC accuracy to increase with increasing coded speech quality. This trend is shown to occur for the CDMA network, but, surprisingly, not for the GSM network. Further, in respect to comparisons between these two networks, FVC accuracy for CDMA-coded speech is shown to be slightly better than for GSM-coded speech, particularly when the coded-speech quality is high, but in terms of FVC precision the two networks are shown to be very similar. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
2011-05-01
rate convolutional codes or the prioritized Rate - Compatible Punctured ...Quality of service RCPC Rate - compatible and punctured convolutional codes SNR Signal to noise ratio SSIM... Convolutional (RCPC) codes . The RCPC codes achieve UEP by puncturing off different amounts of coded bits of the parent code . The
Monitor Network Traffic with Packet Capture (pcap) on an Android Device
2015-09-01
administrative privileges . Under the current design Android development requirement, an Android Graphical User Interface (GUI) application cannot directly...build an Android application to monitor network traffic using open source packet capture (pcap) libraries. 15. SUBJECT TERMS ELIDe, Android , pcap 16...Building Application with Native Codes 5 8.1 Calling Native Codes Using JNI 5 8.2 Calling Native Codes from an Android Application 8 9. Retrieve Live
NASA Astrophysics Data System (ADS)
Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.
Design and Implementation of Decoy Enhanced Dynamic Virtualization Networks
2016-12-12
From - To) 12/12/2016 Final 07/01/2015-08/31/2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Design and Implementation of Decoy Enhanced Dynamic...TELEPHONE NUMBER (Include area code) 703-993-1715 Standard Form 298 (Rev . 8/98) Prescribed by ANSI Std . Z39.18 " Design and Implementation of...8 2 Design and Implementation ofDecoy Enhanced Dynamic Virtualization Networks 1 Major Goals The relatively static configurations of networks and
NASA Astrophysics Data System (ADS)
Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.
2018-05-01
One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.
Apply network coding for H.264/SVC multicasting
NASA Astrophysics Data System (ADS)
Wang, Hui; Kuo, C.-C. Jay
2008-08-01
In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.
NASA Astrophysics Data System (ADS)
Nasaruddin; Tsujioka, Tetsuo
An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.
NASA Astrophysics Data System (ADS)
The present conference on the development status of communications systems in the context of electronic warfare gives attention to topics in spread spectrum code acquisition, digital speech technology, fiber-optics communications, free space optical communications, the networking of HF systems, and applications and evaluation methods for digital speech. Also treated are issues in local area network system design, coding techniques and applications, technology applications for HF systems, receiver technologies, software development status, channel simultion/prediction methods, C3 networking spread spectrum networks, the improvement of communication efficiency and reliability through technical control methods, mobile radio systems, and adaptive antenna arrays. Finally, communications system cost analyses, spread spectrum performance, voice and image coding, switched networks, and microwave GaAs ICs, are considered.
Designing Networks for Innovation
ERIC Educational Resources Information Center
Laskowski, Paul Luke
2009-01-01
The last decades have seen tremendous growth and transformation in the Internet's commercial landscape. Underneath this success, however, the underlying network architecture has shown a marked resistance to change; it is now described as stagnant and ossified. Numerous design proposals have been developed by researchers, implemented in code, and…
Three-tier multi-granularity switching system based on PCE
NASA Astrophysics Data System (ADS)
Wang, Yubao; Sun, Hao; Liu, Yanfei
2017-10-01
With the growing demand for business communications, electrical signal processing optical path switching can't meet the demand. The multi-granularity switch system that can improve node routing and switching capabilities came into being. In the traditional network, each node is responsible for calculating the path; synchronize the whole network state, which will increase the burden on the network, so the concept of path calculation element (PCE) is proposed. The PCE is responsible for routing and allocating resources in the network1. In the traditional band-switched optical network, the wavelength is used as the basic routing unit, resulting in relatively low wavelength utilization. Due to the limitation of wavelength continuity, the routing design of the band technology becomes complicated, which directly affects the utilization of the system. In this paper, optical code granularity is adopted. There is no continuity of the optical code, and the number of optical codes is more flexible than the wavelength. For the introduction of optical code switching, we propose a Code Group Routing Entity (CGRE) algorithm. In short, the combination of three-tier multi-granularity optical switching system and PCE can simplify the network structure, reduce the node load, and enhance the network scalability and survivability. Realize the intelligentization of optical network.
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
Spread Spectrum Visual Sensor Network Resource Management Using an End-to-End Cross-Layer Design
2011-02-01
Coding In this work, we use rate compatible punctured convolutional (RCPC) codes for channel coding [11]. Using RCPC codes al- lows us to utilize Viterbi’s...11] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389...source coding rate , a channel coding rate , and a power level to all nodes in the
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-01-01
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-02-03
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.
ANNarchy: a code generation approach to neural simulations on parallel hardware
Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.
2015-01-01
Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957
Subsonic Aircraft With Regression and Neural-Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2004-01-01
At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics, Inc., Mountainview, CA), the regression training required a fraction of a CPU second, whereas neural network training was between 1 and 9 min, as given. For a single analysis cycle, the 3-sec CPU time required by the FLOPS code was reduced to milliseconds by the approximators. For design calculations, the time with the FLOPS code was 34 min. It was reduced to 2 sec with the regression method and to 4 min by the neural network technique. The performance of the regression and neural network methods was found to be satisfactory for the analysis and design optimization of the subsonic aircraft.
Study and simulation of low rate video coding schemes
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Yun-Chung; Kipp, G.
1992-01-01
The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design.
Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen
2018-09-01
We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-08
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.
NetCoDer: A Retransmission Mechanism for WSNs Based on Cooperative Relays and Network Coding
Valle, Odilson T.; Montez, Carlos; Medeiros de Araujo, Gustavo; Vasques, Francisco; Moraes, Ricardo
2016-01-01
Some of the most difficult problems to deal with when using Wireless Sensor Networks (WSNs) are related to the unreliable nature of communication channels. In this context, the use of cooperative diversity techniques and the application of network coding concepts may be promising solutions to improve the communication reliability. In this paper, we propose the NetCoDer scheme to address this problem. Its design is based on merging cooperative diversity techniques and network coding concepts. We evaluate the effectiveness of the NetCoDer scheme through both an experimental setup with real WSN nodes and a simulation assessment, comparing NetCoDer performance against state-of-the-art TDMA-based (Time Division Multiple Access) retransmission techniques: BlockACK, Master/Slave and Redundant TDMA. The obtained results highlight that the proposed NetCoDer scheme clearly improves the network performance when compared with other retransmission techniques. PMID:27258280
Graphing in Groups: Learning about Lines in a Collaborative Classroom Network Environment
ERIC Educational Resources Information Center
White, Tobin; Wallace, Matthew; Lai, Kevin
2012-01-01
This article presents a design experiment in which we explore new structures for classroom collaboration supported by a classroom network of handheld graphing calculators. We describe a design for small group investigations of linear functions and present findings from its implementation in three high school algebra classrooms. Our coding of the…
Integrated coding-aware intra-ONU scheduling for passive optical networks with inter-ONU traffic
NASA Astrophysics Data System (ADS)
Li, Yan; Dai, Shifang; Wu, Weiwei
2016-12-01
Recently, with the soaring of traffic among optical network units (ONUs), network coding (NC) is becoming an appealing technique for improving the performance of passive optical networks (PONs) with such inter-ONU traffic. However, in the existed NC-based PONs, NC can only be implemented by buffering inter-ONU traffic at the optical line terminal (OLT) to wait for the establishment of coding condition, such passive uncertain waiting severely limits the effect of NC technique. In this paper, we will study integrated coding-aware intra-ONU scheduling in which the scheduling of inter-ONU traffic within each ONU will be undertaken by the OLT to actively facilitate the forming of coding inter-ONU traffic based on the global inter-ONU traffic distribution, and then the performance of PONs with inter-ONU traffic can be significantly improved. We firstly design two report message patterns and an inter-ONU traffic transmission framework as the basis for the integrated coding-aware intra-ONU scheduling. Three specific scheduling strategies are then proposed for adapting diverse global inter-ONU traffic distributions. The effectiveness of the work is finally evaluated by both theoretical analysis and simulations.
A network coding based routing protocol for underwater sensor networks.
Wu, Huayang; Chen, Min; Guan, Xin
2012-01-01
Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.
A Network Coding Based Routing Protocol for Underwater Sensor Networks
Wu, Huayang; Chen, Min; Guan, Xin
2012-01-01
Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045
Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang
2017-09-06
The synchronization control problem is investigated for a class of discrete-time dynamical networks with packet dropouts via a coding-decoding-based approach. The data is transmitted through digital communication channels and only the sequence of finite coded signals is sent to the controller. A series of mutually independent Bernoulli distributed random variables is utilized to model the packet dropout phenomenon occurring in the transmissions of coded signals. The purpose of the addressed synchronization control problem is to design a suitable coding-decoding procedure for each node, based on which an efficient decoder-based control protocol is developed to guarantee that the closed-loop network achieves the desired synchronization performance. By applying a modified uniform quantization approach and the Kronecker product technique, criteria for ensuring the detectability of the dynamical network are established by means of the size of the coding alphabet, the coding period and the probability information of packet dropouts. Subsequently, by resorting to the input-to-state stability theory, the desired controller parameter is obtained in terms of the solutions to a certain set of inequality constraints which can be solved effectively via available software packages. Finally, two simulation examples are provided to demonstrate the effectiveness of the obtained results.
Channel coding in the space station data system network
NASA Technical Reports Server (NTRS)
Healy, T.
1982-01-01
A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.
NASA Astrophysics Data System (ADS)
Kim, Seong-Whan; Suthaharan, Shan; Lee, Heung-Kyu; Rao, K. R.
2001-01-01
Quality of Service (QoS)-guarantee in real-time communication for multimedia applications is significantly important. An architectural framework for multimedia networks based on substreams or flows is effectively exploited for combining source and channel coding for multimedia data. But the existing frame by frame approach which includes Moving Pictures Expert Group (MPEG) cannot be neglected because it is a standard. In this paper, first, we designed an MPEG transcoder which converts an MPEG coded stream into variable rate packet sequences to be used for our joint source/channel coding (JSCC) scheme. Second, we designed a classification scheme to partition the packet stream into multiple substreams which have their own QoS requirements. Finally, we designed a management (reservation and scheduling) scheme for substreams to support better perceptual video quality such as the bound of end-to-end jitter. We have shown that our JSCC scheme is better than two other two popular techniques by simulation and real video experiments on the TCP/IP environment.
An adaptive distributed data aggregation based on RCPC for wireless sensor networks
NASA Astrophysics Data System (ADS)
Hua, Guogang; Chen, Chang Wen
2006-05-01
One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks
Video transmission on ATM networks. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung
1993-01-01
The broadband integrated services digital network (B-ISDN) is expected to provide high-speed and flexible multimedia applications. Multimedia includes data, graphics, image, voice, and video. Asynchronous transfer mode (ATM) is the adopted transport techniques for B-ISDN and has the potential for providing a more efficient and integrated environment for multimedia. It is believed that most broadband applications will make heavy use of visual information. The prospect of wide spread use of image and video communication has led to interest in coding algorithms for reducing bandwidth requirements and improving image quality. The major results of a study on the bridging of network transmission performance and video coding are: Using two representative video sequences, several video source models are developed. The fitness of these models are validated through the use of statistical tests and network queuing performance. A dual leaky bucket algorithm is proposed as an effective network policing function. The concept of the dual leaky bucket algorithm can be applied to a prioritized coding approach to achieve transmission efficiency. A mapping of the performance/control parameters at the network level into equivalent parameters at the video coding level is developed. Based on that, a complete set of principles for the design of video codecs for network transmission is proposed.
NASA Astrophysics Data System (ADS)
Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi
2006-12-01
In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.
NASA Astrophysics Data System (ADS)
Sikder, Somali; Ghosh, Shila
2018-02-01
This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.
Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system
NASA Astrophysics Data System (ADS)
Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.
2017-11-01
Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage
Artificial neural network prediction of aircraft aeroelastic behavior
NASA Astrophysics Data System (ADS)
Pesonen, Urpo Juhani
An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.
Topology design and performance analysis of an integrated communication network
NASA Technical Reports Server (NTRS)
Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.
1985-01-01
A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.
Comparative Analysis of Disruption Tolerant Network Routing Simulations in the One and NS-3
2017-12-01
real systems with less work compared to ns-2. In order to meet the design goals of ns-3, the entire code structure changed to a modular design . As a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3...Thesis 03-23-2016 to 12-15-2017 4. TITLE AND SUBTITLE COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3 5
The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code.
Kunkel, Susanne; Schenck, Wolfram
2017-01-01
NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.
The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code
Kunkel, Susanne; Schenck, Wolfram
2017-01-01
NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling. PMID:28701946
Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678
Automated construction of node software using attributes in a ubiquitous sensor network environment.
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.
Fiber-Optic Terahertz Data-Communication Networks
NASA Technical Reports Server (NTRS)
Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.
1994-01-01
Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.
Automated Concurrent Blackboard System Generation in C++
NASA Technical Reports Server (NTRS)
Kaplan, J. A.; McManus, J. W.; Bynum, W. L.
1999-01-01
In his 1992 Ph.D. thesis, "Design and Analysis Techniques for Concurrent Blackboard Systems", John McManus defined several performance metrics for concurrent blackboard systems and developed a suite of tools for creating and analyzing such systems. These tools allow a user to analyze a concurrent blackboard system design and predict the performance of the system before any code is written. The design can be modified until simulated performance is satisfactory. Then, the code generator can be invoked to generate automatically all of the code required for the concurrent blackboard system except for the code implementing the functionality of each knowledge source. We have completed the port of the source code generator and a simulator for a concurrent blackboard system. The source code generator generates the necessary C++ source code to implement the concurrent blackboard system using Parallel Virtual Machine (PVM) running on a heterogeneous network of UNIX(trademark) workstations. The concurrent blackboard simulator uses the blackboard specification file to predict the performance of the concurrent blackboard design. The only part of the source code for the concurrent blackboard system that the user must supply is the code implementing the functionality of the knowledge sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werley, Kenneth Alan; Mccown, Andrew William
The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. Thismore » third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.« less
Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong
2013-01-01
Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols. PMID:24193100
Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong
2013-11-04
Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.
Networks for image acquisition, processing and display
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.
1990-01-01
The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.
NASA Astrophysics Data System (ADS)
Wei, Chengying; Xiong, Cuilian; Liu, Huanlin
2017-12-01
Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.P.; Bangs, A.L.; Butler, P.L.
Hetero Helix is a programming environment which simulates shared memory on a heterogeneous network of distributed-memory computers. The machines in the network may vary with respect to their native operating systems and internal representation of numbers. Hetero Helix presents a simple programming model to developers, and also considers the needs of designers, system integrators, and maintainers. The key software technology underlying Hetero Helix is the use of a compiler'' which analyzes the data structures in shared memory and automatically generates code which translates data representations from the format native to each machine into a common format, and vice versa. Themore » design of Hetero Helix was motivated in particular by the requirements of robotics applications. Hetero Helix has been used successfully in an integration effort involving 27 CPUs in a heterogeneous network and a body of software totaling roughly 100,00 lines of code. 25 refs., 6 figs.« less
Bosse, Stefan
2015-01-01
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550
Bosse, Stefan
2015-02-16
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.
Channel coding for underwater acoustic single-carrier CDMA communication system
NASA Astrophysics Data System (ADS)
Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong
2017-01-01
CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.
TNSPackage: A Fortran2003 library designed for tensor network state methods
NASA Astrophysics Data System (ADS)
Dong, Shao-Jun; Liu, Wen-Yuan; Wang, Chao; Han, Yongjian; Guo, G.-C.; He, Lixin
2018-07-01
Recently, the tensor network states (TNS) methods have proven to be very powerful tools to investigate the strongly correlated many-particle physics in one and two dimensions. The implementation of TNS methods depends heavily on the operations of tensors, including contraction, permutation, reshaping tensors, SVD and so on. Unfortunately, the most popular computer languages for scientific computation, such as Fortran and C/C++ do not have a standard library for such operations, and therefore make the coding of TNS very tedious. We develop a Fortran2003 package that includes all kinds of basic tensor operations designed for TNS. It is user-friendly and flexible for different forms of TNS, and therefore greatly simplifies the coding work for the TNS methods.
On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.
1997-01-01
Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.
The language parallel Pascal and other aspects of the massively parallel processor
NASA Technical Reports Server (NTRS)
Reeves, A. P.; Bruner, J. D.
1982-01-01
A high level language for the Massively Parallel Processor (MPP) was designed. This language, called Parallel Pascal, is described in detail. A description of the language design, a description of the intermediate language, Parallel P-Code, and details for the MPP implementation are included. Formal descriptions of Parallel Pascal and Parallel P-Code are given. A compiler was developed which converts programs in Parallel Pascal into the intermediate Parallel P-Code language. The code generator to complete the compiler for the MPP is being developed independently. A Parallel Pascal to Pascal translator was also developed. The architecture design for a VLSI version of the MPP was completed with a description of fault tolerant interconnection networks. The memory arrangement aspects of the MPP are discussed and a survey of other high level languages is given.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects.
Layer-based buffer aware rate adaptation design for SHVC video streaming
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan
2016-09-01
This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
BGen: A UML Behavior Network Generator Tool
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Reder, Leonard J.; Balian, Harry
2010-01-01
BGen software was designed for autogeneration of code based on a graphical representation of a behavior network used for controlling automatic vehicles. A common format used for describing a behavior network, such as that used in the JPL-developed behavior-based control system, CARACaS ["Control Architecture for Robotic Agent Command and Sensing" (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40] includes a graph with sensory inputs flowing through the behaviors in order to generate the signals for the actuators that drive and steer the vehicle. A computer program to translate Unified Modeling Language (UML) Freeform Implementation Diagrams into a legacy C implementation of Behavior Network has been developed in order to simplify the development of C-code for behavior-based control systems. UML is a popular standard developed by the Object Management Group (OMG) to model software architectures graphically. The C implementation of a Behavior Network is functioning as a decision tree.
Design of Provider-Provisioned Website Protection Scheme against Malware Distribution
NASA Astrophysics Data System (ADS)
Yagi, Takeshi; Tanimoto, Naoto; Hariu, Takeo; Itoh, Mitsutaka
Vulnerabilities in web applications expose computer networks to security threats, and many websites are used by attackers as hopping sites to attack other websites and user terminals. These incidents prevent service providers from constructing secure networking environments. To protect websites from attacks exploiting vulnerabilities in web applications, service providers use web application firewalls (WAFs). WAFs filter accesses from attackers by using signatures, which are generated based on the exploit codes of previous attacks. However, WAFs cannot filter unknown attacks because the signatures cannot reflect new types of attacks. In service provider environments, the number of exploit codes has recently increased rapidly because of the spread of vulnerable web applications that have been developed through cloud computing. Thus, generating signatures for all exploit codes is difficult. To solve these problems, our proposed scheme detects and filters malware downloads that are sent from websites which have already received exploit codes. In addition, to collect information for detecting malware downloads, web honeypots, which automatically extract the communication records of exploit codes, are used. According to the results of experiments using a prototype, our scheme can filter attacks automatically so that service providers can provide secure and cost-effective network environments.
NASA Astrophysics Data System (ADS)
Elgaud, M. M.; Zan, M. S. D.; Abushagur, A. G.; Bakar, A. Ashrif A.
2017-07-01
This paper reports the employment of autocorrelation properties of Golay complementary codes (GCC) to enhance the performance of the time domain multiplexing fiber Bragg grating (TDM-FBG) sensing network. By encoding the light from laser with a stream of non-return-to-zero (NRZ) form of GCC and launching it into the sensing area that consists of the FBG sensors, we have found that the FBG signals can be decoded correctly with the autocorrelation calculations, confirming the successful demonstration of coded TDM-FBG sensor network. OptiGrating and OptiSystem simulators were used to design customized FBG sensors and perform the coded TDM-FBG sensor simulations, respectively. Results have substantiated the theoretical dependence of SNR enhancement on the code length of GCC, where the maximum SNR improvement of about 9 dB is achievable with the use of 256 bits of GCC compared to that of 4 bits case. Furthermore, the GCC has also extended the strain exposure up to 30% higher compared to the maximum of the conventional single pulse case. The employment of GCC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse case, under the same conditions.
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.
Rangachari, Pavani
2008-01-01
CONTEXT/PURPOSE: With the growing momentum toward hospital quality measurement and reporting by public and private health care payers, hospitals face increasing pressures to improve their medical record documentation and administrative data coding accuracy. This study explores the relationship between the organizational knowledge-sharing structure related to quality and hospital coding accuracy for quality measurement. Simultaneously, this study seeks to identify other leadership/management characteristics associated with coding for quality measurement. Drawing upon complexity theory, the literature on "professional complex systems" has put forth various strategies for managing change and turnaround in professional organizations. In so doing, it has emphasized the importance of knowledge creation and organizational learning through interdisciplinary networks. This study integrates complexity, network structure, and "subgoals" theories to develop a framework for knowledge-sharing network effectiveness in professional complex systems. This framework is used to design an exploratory and comparative research study. The sample consists of 4 hospitals, 2 showing "good coding" accuracy for quality measurement and 2 showing "poor coding" accuracy. Interviews and surveys are conducted with administrators and staff in the quality, medical staff, and coding subgroups in each facility. Findings of this study indicate that good coding performance is systematically associated with a knowledge-sharing network structure rich in brokerage and hierarchy (with leaders connecting different professional subgroups to each other and to the external environment), rather than in density (where everyone is directly connected to everyone else). It also implies that for the hospital organization to adapt to the changing environment of quality transparency, senior leaders must undertake proactive and unceasing efforts to coordinate knowledge exchange across physician and coding subgroups and connect these subgroups with the changing external environment.
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1993-01-01
A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.
Image sensor system with bio-inspired efficient coding and adaptation.
Okuno, Hirotsugu; Yagi, Tetsuya
2012-08-01
We designed and implemented an image sensor system equipped with three bio-inspired coding and adaptation strategies: logarithmic transform, local average subtraction, and feedback gain control. The system comprises a field-programmable gate array (FPGA), a resistive network, and active pixel sensors (APS), whose light intensity-voltage characteristics are controllable. The system employs multiple time-varying reset voltage signals for APS in order to realize multiple logarithmic intensity-voltage characteristics, which are controlled so that the entropy of the output image is maximized. The system also employs local average subtraction and gain control in order to obtain images with an appropriate contrast. The local average is calculated by the resistive network instantaneously. The designed system was successfully used to obtain appropriate images of objects that were subjected to large changes in illumination.
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.
1997-01-01
The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of todays engineering design. These statistical approximations, or metamodels, are used to replace the actual expensive computer analyses, facilitating multidisciplinary, multiobjective optimization and concept exploration. In this paper we review several of these techniques including design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We survey their existing application in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of statistical approximation techniques in given situations and how common pitfalls can be avoided.
Optical multiple access techniques for on-board routing
NASA Technical Reports Server (NTRS)
Mendez, Antonio J.; Park, Eugene; Gagliardi, Robert M.
1992-01-01
The purpose of this research contract was to design and analyze an optical multiple access system, based on Code Division Multiple Access (CDMA) techniques, for on board routing applications on a future communication satellite. The optical multiple access system was to effect the functions of a circuit switch under the control of an autonomous network controller and to serve eight (8) concurrent users at a point to point (port to port) data rate of 180 Mb/s. (At the start of this program, the bit error rate requirement (BER) was undefined, so it was treated as a design variable during the contract effort.) CDMA was selected over other multiple access techniques because it lends itself to bursty, asynchronous, concurrent communication and potentially can be implemented with off the shelf, reliable optical transceivers compatible with long term unattended operations. Temporal, temporal/spatial hybrids and single pulse per row (SPR, sometimes termed 'sonar matrices') matrix types of CDMA designs were considered. The design, analysis, and trade offs required by the statement of work selected a temporal/spatial CDMA scheme which has SPR properties as the preferred solution. This selected design can be implemented for feasibility demonstration with off the shelf components (which are identified in the bill of materials of the contract Final Report). The photonic network architecture of the selected design is based on M(8,4,4) matrix codes. The network requires eight multimode laser transmitters with laser pulses of 0.93 ns operating at 180 Mb/s and 9-13 dBm peak power, and 8 PIN diode receivers with sensitivity of -27 dBm for the 0.93 ns pulses. The wavelength is not critical, but 830 nm technology readily meets the requirements. The passive optical components of the photonic network are all multimode and off the shelf. Bit error rate (BER) computations, based on both electronic noise and intercode crosstalk, predict a raw BER of (10 exp -3) when all eight users are communicating concurrently. If better BER performance is required, then error correction codes (ECC) using near term electronic technology can be used. For example, the M(8,4,4) optical code together with Reed-Solomon (54,38,8) encoding provides a BER of better than (10 exp -11). The optical transceiver must then operate at 256 Mb/s with pulses of 0.65 ns because the 'bits' are now channel symbols.
Non-coding RNA networks in cancer.
Anastasiadou, Eleni; Jacob, Leni S; Slack, Frank J
2018-01-01
Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.
Yin, Jun; Yang, Yuwang; Wang, Lei
2016-04-01
Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.
Binary video codec for data reduction in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias
2013-02-01
Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2011-03-01
Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.
Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs
NASA Astrophysics Data System (ADS)
Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong
2016-12-01
In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.
NASA Technical Reports Server (NTRS)
Townsend, James C.; Weston, Robert P.; Eidson, Thomas M.
1993-01-01
The Framework for Interdisciplinary Design Optimization (FIDO) is a general programming environment for automating the distribution of complex computing tasks over a networked system of heterogeneous computers. For example, instead of manually passing a complex design problem between its diverse specialty disciplines, the FIDO system provides for automatic interactions between the discipline tasks and facilitates their communications. The FIDO system networks all the computers involved into a distributed heterogeneous computing system, so they have access to centralized data and can work on their parts of the total computation simultaneously in parallel whenever possible. Thus, each computational task can be done by the most appropriate computer. Results can be viewed as they are produced and variables changed manually for steering the process. The software is modular in order to ease migration to new problems: different codes can be substituted for each of the current code modules with little or no effect on the others. The potential for commercial use of FIDO rests in the capability it provides for automatically coordinating diverse computations on a networked system of workstations and computers. For example, FIDO could provide the coordination required for the design of vehicles or electronics or for modeling complex systems.
Surgical Site Infections Following Pediatric Ambulatory Surgery: An Epidemiologic Analysis.
Rinke, Michael L; Jan, Dominique; Nassim, Janelle; Choi, Jaeun; Choi, Steven J
2016-08-01
OBJECTIVE To identify surgical site infection (SSI) rates following pediatric ambulatory surgery, SSI outcomes and risk factors, and sensitivity and specificity of SSI administrative billing codes. DESIGN Retrospective chart review of pediatric ambulatory surgeries with International Classification of Disease, Ninth Revision (ICD-9) codes for SSI, and a systematic random sampling of 5% of surgeries without SSI ICD-9 codes, all adjudicated for SSI on the basis of an ambulatory-adapted National Healthcare Safety Network definition. SETTING Urban pediatric tertiary care center April 1, 2009-March 31, 2014. METHODS SSI rates and sensitivity and specificity of ICD-9 codes were estimated using sampling design, and risk factors were analyzed in case-rest of cohort, and case-control, designs. RESULTS In 15,448 pediatric ambulatory surgeries, 34 patients had ICD-9 codes for SSI and 25 met the adapted National Healthcare Safety Network criteria. One additional SSI was identified with systematic random sampling. The SSI rate following pediatric ambulatory surgery was 2.9 per 1,000 surgeries (95% CI, 1.2-6.9). Otolaryngology surgeries demonstrated significantly lower SSI rates compared with endocrine (P=.001), integumentary (P=.001), male genital (P<.0001), and respiratory (P=.01) surgeries. Almost half of patients with an SSI were admitted, 88% received antibiotics, and 15% returned to the operating room. No risk factors were associated with SSI. The sensitivity of ICD-9 codes for SSI following ambulatory surgery was 55.31% (95% CI, 12.69%-91.33%) and specificity was 99.94% (99.89%-99.97%). CONCLUSIONS SSI following pediatric ambulatory surgery occurs at an appreciable rate and conveys morbidity on children. Infect Control Hosp Epidemiol 2016;37:931-938.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carothers, Christopher D.; Meredith, Jeremy S.; Blanco, Marc
Performance modeling of extreme-scale applications on accurate representations of potential architectures is critical for designing next generation supercomputing systems because it is impractical to construct prototype systems at scale with new network hardware in order to explore designs and policies. However, these simulations often rely on static application traces that can be difficult to work with because of their size and lack of flexibility to extend or scale up without rerunning the original application. To address this problem, we have created a new technique for generating scalable, flexible workloads from real applications, we have implemented a prototype, called Durango, thatmore » combines a proven analytical performance modeling language, Aspen, with the massively parallel HPC network modeling capabilities of the CODES framework.Our models are compact, parameterized and representative of real applications with computation events. They are not resource intensive to create and are portable across simulator environments. We demonstrate the utility of Durango by simulating the LULESH application in the CODES simulation environment on several topologies and show that Durango is practical to use for simulation without loss of fidelity, as quantified by simulation metrics. During our validation of Durango's generated communication model of LULESH, we found that the original LULESH miniapp code had a latent bug where the MPI_Waitall operation was used incorrectly. This finding underscores the potential need for a tool such as Durango, beyond its benefits for flexible workload generation and modeling.Additionally, we demonstrate the efficacy of Durango's direct integration approach, which links Aspen into CODES as part of the running network simulation model. Here, Aspen generates the application-level computation timing events, which in turn drive the start of a network communication phase. Results show that Durango's performance scales well when executing both torus and dragonfly network models on up to 4K Blue Gene/Q nodes using 32K MPI ranks, Durango also avoids the overheads and complexities associated with extreme-scale trace files.« less
NASA Astrophysics Data System (ADS)
Linzer, Lindsay; Mhamdi, Lassaad; Schumacher, Thomas
2015-01-01
A moment tensor inversion (MTI) code originally developed to compute source mechanisms from mining-induced seismicity data is now being used in the laboratory in a civil engineering research environment. Quantitative seismology methods designed for geological environments are being tested with the aim of developing techniques to assess and monitor fracture processes in structural concrete members such as bridge girders. In this paper, we highlight aspects of the MTI_Toolbox programme that make it applicable to performing inversions on acoustic emission (AE) data recorded by networks of uniaxial sensors. The influence of the configuration of a seismic network on the conditioning of the least-squares system and subsequent moment tensor results for a real, 3-D network are compared to a hypothetical 2-D version of the same network. This comparative analysis is undertaken for different cases: for networks consisting entirely of triaxial or uniaxial sensors; for both P and S-waves, and for P-waves only. The aim is to guide the optimal design of sensor configurations where only uniaxial sensors can be installed. Finally, the findings of recent laboratory experiments where the MTI_Toolbox has been applied to a concrete beam test are presented and discussed.
Network analysis for the visualization and analysis of qualitative data.
Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D
2018-03-01
We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Exact and heuristic algorithms for Space Information Flow.
Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng
2018-01-01
Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.
Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin
2014-10-01
Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.
2014-09-30
underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand
Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.
Majumder, Saikat; Verma, Shrish
2015-01-01
Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2012-01-01
Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.
NASA Astrophysics Data System (ADS)
Aldouri, Muthana; Aljunid, S. A.; Ahmad, R. Badlishah; Fadhil, Hilal A.
2011-06-01
In order to comprise between PIN photo detector and avalanche photodiodes in a system used double weight (DW) code to be a performance of the optical spectrum CDMA in FTTH network with point-to-multi-point (P2MP) application. The performance of PIN against APD is compared through simulation by using opt system software version 7. In this paper we used two networks designed as follows one used PIN photo detector and the second using APD photo diode, both two system using with and without erbium doped fiber amplifier (EDFA). It is found that APD photo diode in this system is better than PIN photo detector for all simulation results. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. Also we are study, the proposing a detection scheme known as AND subtraction detection technique implemented with fiber Bragg Grating (FBG) act as encoder and decoder. This FBG is used to encode and decode the spectral amplitude coding namely double weight (DW) code in Optical Code Division Multiple Access (OCDMA). The performances are characterized through bit error rate (BER) and bit rate (BR) also the received power at various bit rate.
Optimization of multicast optical networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Enabling parallel simulation of large-scale HPC network systems
Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; ...
2016-04-07
Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less
Enabling parallel simulation of large-scale HPC network systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.
Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less
Shlizerman, Eli; Riffell, Jeffrey A.; Kutz, J. Nathan
2014-01-01
The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns. PMID:25165442
Hybrid services efficient provisioning over the network coding-enabled elastic optical networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen
2017-03-01
As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.
On the optimum signal constellation design for high-speed optical transport networks.
Liu, Tao; Djordjevic, Ivan B
2012-08-27
In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.
A long constraint length VLSI Viterbi decoder for the DSN
NASA Technical Reports Server (NTRS)
Statman, J. I.; Zimmerman, G.; Pollara, F.; Collins, O.
1988-01-01
A Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). The objective is to complete a prototype of this decoder by late 1990, and demonstrate its performance using the (15, 1/4) encoder in Galileo. The decoder is expected to provide 1 to 2 dB improvement in bit SNR, compared to the present (7, 1/2) code and existing Maximum Likelihood Convolutional Decoder (MCD). The decoder will be fully programmable for any code up to constraint length 15, and code rate 1/2 to 1/6. The decoder architecture and top-level design are described.
Information Assurance for Network-Centric Naval Forces
2010-01-01
of engineers are designing , implementing, and vigorously testing malicious codes prior to releasing them, not unlike well-funded commercial software...the likelihood that threats would partially succeed and partially degrade the system. Individual components of Aegis are designed and tested with a...of operations (CONOPS) set that is designed to work well in a low-bandwidth environment must be extensively tested and exercised within that low
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.
2010-05-01
In the paper we show that the biologically motivated conception of time-pulse encoding usage gives a set of advantages (single methodological basis, universality, tuning simplicity, learning and programming et al) at creation and design of sensor systems with parallel input-output and processing for 2D structures hybrid and next generations neuro-fuzzy neurocomputers. We show design principles of programmable relational optoelectronic time-pulse encoded processors on the base of continuous logic, order logic and temporal waves processes. We consider a structure that execute analog signal extraction, analog and time-pulse coded variables sorting. We offer optoelectronic realization of such base relational order logic element, that consists of time-pulse coded photoconverters (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutation blocks. We make technical parameters estimations of devices and processors on such base elements by simulation and experimental research: optical input signals power 0.2 - 20 uW, processing time 1 - 10 us, supply voltage 1 - 3 V, consumption power 10 - 100 uW, extended functional possibilities, learning possibilities. We discuss some aspects of possible rules and principles of learning and programmable tuning on required function, relational operation and realization of hardware blocks for modifications of such processors. We show that it is possible to create sorting machines, neural networks and hybrid data-processing systems with untraditional numerical systems and pictures operands on the basis of such quasiuniversal hardware simple blocks with flexible programmable tuning.
Flexible and evolutionary optical access networks
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li
Passive optical networks (PONs) are promising solutions that will open the first-mile bottleneck. Current PONs employ time division multiplexing (TDM) to share bandwidth among users, leading to low cost but limited capacity. In the future, wavelength division multiplexing (WDM) technologies will be deployed to achieve high performance. This dissertation describes several advanced technologies to enhance PON systems. A spectral shaping line coding scheme is developed to allow a simple and cost-effective overlay of high data-rate services in existing PONs, leaving field-deployed fibers and existing services untouched. Spectral shapes of coded signals can be manipulated to adapt to different systems. For a specific tolerable interference level, the optimal line code can be found which maximizes the data throughput. Experiments are conducted to demonstrate and compare several optimized line codes. A novel PON employing dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs is designed and experimentally demonstrated. Tunable lasers, arrayed waveguide gratings, and coarse/fine filtering combine to create a flexible optical access solution. The network's excellent scalability can bridge the gap between conventional TDM PONs and WDM PONs. Scheduling algorithms with quality of service support are also investigated. Simulation results show that the proposed architecture exhibits significant performance gain over conventional PON systems. Streaming video transmission is demonstrated on the prototype experimental testbed. The powerful architecture is a promising candidate for next-generation optical access networks. A new CDR circuit for receiving the bursty traffic in PONs is designed and analyzed. It detects data transition edges upon arrival of the data burst and quickly selects the best clock phase by a control logic circuit. Then, an analog delay-locked loop (DLL) keeps track of data transitions and removes phase errors throughout the burst. The combination of the fast phase detection mechanism and a feedback loop based on DLL allows both fast response and manageable jitter performance in the burst-mode application. A new efficient numerical algorithm is developed to analyze holey optical fibers. The algorithm has been verified against experimental data, and is exploited to design holey optical fibers optimized for the discrete Raman amplification.
A constrained joint source/channel coder design and vector quantization of nonstationary sources
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.
1993-01-01
The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.
Integrated AUTODIN System Architecture Report. Part 2.
1979-03-01
Link Modes Protocols and end-to- end host protocols Codes ASCII, ITA#2 ASCII, Others (Trans- parent to network) Speeds 45 thru 4800 bps 110 bps thru 56K ...service facilities such as AMPEs, subscriber access lines, modems , multiplexers, concentrators, interface development to include software design and...Protocol) CODES - ASCII and ITA#2 (others transparent) SPEEDS - 45.5bps - 56K bps FORMATS - AUTODIN II Segment Formats, JANAP 128, ACP 126/127, DOI 103
A European mobile satellite system concept exploiting CDMA and OBP
NASA Technical Reports Server (NTRS)
Vernucci, A.; Craig, A. D.
1993-01-01
This paper describes a novel Land Mobile Satellite System (LMSS) concept applicable to networks allowing access to a large number of gateway stations ('Hubs'), utilizing low-cost Very Small Aperture Terminals (VSAT's). Efficient operation of the Forward-Link (FL) repeater can be achieved by adopting a synchronous Code Division Multiple Access (CDMA) technique, whereby inter-code interference (self-noise) is virtually eliminated by synchronizing orthogonal codes. However, with a transparent FL repeater, the requirements imposed by the highly decentralized ground segment can lead to significant efficiency losses. The adoption of a FL On-Board Processing (OBP) repeater is proposed as a means of largely recovering this efficiency impairment. The paper describes the network architecture, the system design and performance, the OBP functions and impact on implementation. The proposed concept, applicable to a future generation of the European LMSS, was developed in the context of a European Space Agency (ESA) study contract.
A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2001-01-01
An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.
A Holistic Approach to Networked Information Systems Design and Analysis
2016-04-15
attain quite substantial savings. 11. Optimal algorithms for energy harvesting in wireless networks. We use a Markov- decision-process (MDP) based...approach to obtain optimal policies for transmissions . The key advantage of our approach is that it holistically considers information and energy in a...Coding technique to minimize delays and the number of transmissions in Wireless Systems. As we approach an era of ubiquitous computing with information
Robust Single Image Super-Resolution via Deep Networks With Sparse Prior.
Liu, Ding; Wang, Zhaowen; Wen, Bihan; Yang, Jianchao; Han, Wei; Huang, Thomas S
2016-07-01
Single image super-resolution (SR) is an ill-posed problem, which tries to recover a high-resolution image from its low-resolution observation. To regularize the solution of the problem, previous methods have focused on designing good priors for natural images, such as sparse representation, or directly learning the priors from a large data set with models, such as deep neural networks. In this paper, we argue that domain expertise from the conventional sparse coding model can be combined with the key ingredients of deep learning to achieve further improved results. We demonstrate that a sparse coding model particularly designed for SR can be incarnated as a neural network with the merit of end-to-end optimization over training data. The network has a cascaded structure, which boosts the SR performance for both fixed and incremental scaling factors. The proposed training and testing schemes can be extended for robust handling of images with additional degradation, such as noise and blurring. A subjective assessment is conducted and analyzed in order to thoroughly evaluate various SR techniques. Our proposed model is tested on a wide range of images, and it significantly outperforms the existing state-of-the-art methods for various scaling factors both quantitatively and perceptually.
TCP throughput adaptation in WiMax networks using replicator dynamics.
Anastasopoulos, Markos P; Petraki, Dionysia K; Kannan, Rajgopal; Vasilakos, Athanasios V
2010-06-01
The high-frequency segment (10-66 GHz) of the IEEE 802.16 standard seems promising for the implementation of wireless backhaul networks carrying large volumes of Internet traffic. In contrast to wireline backbone networks, where channel errors seldom occur, the TCP protocol in IEEE 802.16 Worldwide Interoperability for Microwave Access networks is conditioned exclusively by wireless channel impairments rather than by congestion. This renders a cross-layer design approach between the transport and physical layers more appropriate during fading periods. In this paper, an adaptive coding and modulation (ACM) scheme for TCP throughput maximization is presented. In the current approach, Internet traffic is modulated and coded employing an adaptive scheme that is mathematically equivalent to the replicator dynamics model. The stability of the proposed ACM scheme is proven, and the dependence of the speed of convergence on various physical-layer parameters is investigated. It is also shown that convergence to the strategy that maximizes TCP throughput may be further accelerated by increasing the amount of information from the physical layer.
Coding visual features extracted from video sequences.
Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2014-05-01
Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1985-01-01
Developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data acquisition are discussed. Space communications, radio antennas, the Deep Space Network, antenna design, Project SETI, seismology, coding, very large scale integration, downlinking, and demodulation are among the topics covered.
Applications of Coding in Network Communications
ERIC Educational Resources Information Center
Chang, Christopher SungWook
2012-01-01
This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…
A Wideband Satcom Based Avionics Network with CDMA Uplink and TDM Downlink
NASA Technical Reports Server (NTRS)
Agrawal, D.; Johnson, B. S.; Madhow, U.; Ramchandran, K.; Chun, K. S.
2000-01-01
The purpose of this paper is to describe some key technical ideas behind our vision of a future satcom based digital communication network for avionics applications The key features of our design are as follows: (a) Packetized transmission to permit efficient use of system resources for multimedia traffic; (b) A time division multiplexed (TDM) satellite downlink whose physical layer is designed to operate the satellite link at maximum power efficiency. We show how powerful turbo codes (invented originally for linear modulation) can be used with nonlinear constant envelope modulation, thus permitting the satellite amplifier to operate in a power efficient nonlinear regime; (c) A code division multiple access (CDMA) satellite uplink, which permits efficient access to the satellite from multiple asynchronous users. Closed loop power control is difficult for bursty packetized traffic, especially given the large round trip delay to the satellite. We show how adaptive interference suppression techniques can be used to deal with the ensuing near-far problem; (d) Joint source-channel coding techniques are required both at the physical and the data transport layer to optimize the end-to-end performance. We describe a novel approach to multiple description image encoding at the data transport layer in this paper.
Schmitz, Ulf; Naderi-Meshkin, Hojjat; Gupta, Shailendra K; Wolkenhauer, Olaf; Vera, Julio
2016-05-01
There was evidence that RNAs are a functionally rich class of molecules not only since the arrival of the next-generation sequencing technology. Non-coding RNAs (ncRNA) could be the key to accelerated diagnosis and enhanced prediction of disease and therapy outcomes as well as the design of advanced therapeutic strategies to overcome yet unsatisfactory approaches.In this review, we discuss the state of the art in RNA systems biology with focus on the application in the systems biomedicine field. We propose guidelines for analysing the role of microRNAs and long non-coding RNAs in human pathologies. We introduce RNA expression profiling and network approaches for the identification of stable and effective RNomics-based biomarkers, providing insights into the role of ncRNAs in disease regulation. Towards this, we discuss ways to model the dynamics of gene regulatory networks and signalling pathways that involve ncRNAs. We also describe data resources and computational methods for finding putative mechanisms of action of ncRNAs. Finally, we discuss avenues for the computer-aided design of novel RNA-based therapeutics. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Automatic Implementation of Ttethernet-Based Time-Triggered Avionics Applications
NASA Astrophysics Data System (ADS)
Gorcitz, Raul Adrian; Carle, Thomas; Lesens, David; Monchaux, David; Potop-Butucaruy, Dumitru; Sorel, Yves
2015-09-01
The design of safety-critical embedded systems such as those used in avionics still involves largely manual phases. But in avionics the definition of standard interfaces embodied in standards such as ARINC 653 or TTEthernet should allow the definition of fully automatic code generation flows that reduce the costs while improving the quality of the generated code, much like compilers have done when replacing manual assembly coding. In this paper, we briefly present such a fully automatic implementation tool, called Lopht, for ARINC653-based time-triggered systems, and then explain how it is currently extended to include support for TTEthernet networks.
Introduction of a new opto-electrical phase-locked loop in CMOS technology: the PMD-PLL
NASA Astrophysics Data System (ADS)
Ringbeck, Thorsten; Schwarte, Rudolf; Buxbaum, Bernd
1999-12-01
The huge and increasing need of information in the industrial world demands an enormous potential of bandwidth in telecommunication systems. Optical communication provides all participants with the whole spectrum of digital services like videophone, cable TV, video conferencing and online services. Especially fast and low cost opto-electrical receivers are badly needed in order to expand fiber networks to every home (FTTH--fiber to the home or FTTD--fiber to the desk, respectively). This paper proposes a new receiver structure which is designed to receiver optical data which are encoded by code division multiple access techniques (CDMA). For data recovery in such CDMA networks phase locked loops (PLL) are needed, which synchronize the local oscillator with the incoming clock. In optical code division multiple access networks these PLLs could be realized either with an electrical PLL after opto-electrical converting or directly in the optical path with a pure optical PLL.
2001-02-16
New Center Network Deployment ribbon Cutting: from left to right: Maryland Edwards, Code JT upgrade project deputy task manager; Ed Murphy, foundry networks systems engineer; Bohdan Cmaylo, Code JT upgrade project task manager, Scott Santiago, Division Chief, Code JT; Greg Miller, Raytheon Network engineer and Frank Daras, Raytheon network engineering manager.
Sinha, Shriprakash
2016-12-01
Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid biologists/informaticians in understanding the design of computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian network toolbox. The manuscript elucidates the coding contents of the advance article by Sinha (Integr. Biol. 6:1034-1048, 2014) and takes the reader in a step-by-step process of how (a) the collection and the transformation of the available biological information from literature is done, (b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational framework, and (e) results and inferences drawn using d -connectivity/separability are reported. The manuscript finally ends with a programming assignment to help the readers get hands-on experience of a perturbation project. Description of Matlab files is made available under GNU GPL v3 license at the Google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway and https: //sites.google.com/site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.
Friendly Extensible Transfer Tool Beta Version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, William P.; Gutierrez, Kenneth M.; McRee, Susan R.
2016-04-15
Often data transfer software is designed to meet specific requirements or apply to specific environments. Frequently, this requires source code integration for added functionality. An extensible data transfer framework is needed to more easily incorporate new capabilities, in modular fashion. Using FrETT framework, functionality may be incorporated (in many cases without need of source code) to handle new platform capabilities: I/O methods (e.g., platform specific data access), network transport methods, data processing (e.g., data compression.).
PLAYGROUND: Preparing Students for the Cyber Battleground
ERIC Educational Resources Information Center
Nielson, Seth James
2017-01-01
Attempting to educate practitioners of computer security can be difficult if for no other reason than the breadth of knowledge required today. The security profession includes widely diverse subfields including cryptography, network architectures, programming, programming languages, design, coding practices, software testing, pattern recognition,…
Network Coding in Relay-based Device-to-Device Communications
Huang, Jun; Gharavi, Hamid; Yan, Huifang; Xing, Cong-cong
2018-01-01
Device-to-Device (D2D) communications has been realized as an effective means to improve network throughput, reduce transmission latency, and extend cellular coverage in 5G systems. Network coding is a well-established technique known for its capability to reduce the number of retransmissions. In this article, we review state-of-the-art network coding in relay-based D2D communications, in terms of application scenarios and network coding techniques. We then apply two representative network coding techniques to dual-hop D2D communications and present an efficient relay node selecting mechanism as a case study. We also outline potential future research directions, according to the current research challenges. Our intention is to provide researchers and practitioners with a comprehensive overview of the current research status in this area and hope that this article may motivate more researchers to participate in developing network coding techniques for different relay-based D2D communications scenarios. PMID:29503504
NASA Astrophysics Data System (ADS)
Du, Xiao
2005-02-01
Normal GIGA ETHERNET continuously transmits or receives 8B/10B codes including data codes, idle codes or configuration information. In ETHERNET network, one computer links one port of switch through CAT5 and that is OK. But for EPON, it is different. All ONUs share one fiber in upstream, if we inherit the GIGA ETHERNET PHY, then collision will occur. All ONUs always transmit 8B/10B codes, and the optical signal will overlay. The OLT will receive the fault information. So we need a novel EPON PHY instead of ETHERNET PHY. But its major function is compatible with ETHERNET"s. In this article, first, the function of PCS sub layer is discussed and a novel PCS module is given that can be used in not only EPON system but also in GIGA ETHERNET system. The design of PCS is based on 1000BASE-X PCS technology. And the function of 1000BASE-X PCS should be accomplished first. Next we modify the design in order to meet the requirements of EPON system. In the new design, the auto negotiation and synchronization is the same to the 1000 BASE-X technology.
Preliminary Structural Design - Defining the Design Space
1993-02-01
York, 1949 7. Rosenblatt, R., Prnciples of Neurodynamics , New York, Spartan Books, 1959 8. Swift, R.,"Structural Design Using Neural Networks," Ph.D...Explorations in the Microstructure of Cognition . Vol. 1 Foundations D. E. Rumelhart and J.L. McClelland Editors, MIT Press, 1986 40. Parker, D. B...Processing: Explorations in the Microstructure of Cognition , MIT Press 1986 45. Schittkowski, K., Nonlinear o a gmi codes Lecture Notes in Economics and
Neural Network and Regression Soft Model Extended for PAX-300 Aircraft Engine
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2002-01-01
In fiscal year 2001, the neural network and regression capabilities of NASA Glenn Research Center's COMETBOARDS design optimization testbed were extended to generate approximate models for the PAX-300 aircraft engine. The analytical model of the engine is defined through nine variables: the fan efficiency factor, the low pressure of the compressor, the high pressure of the compressor, the high pressure of the turbine, the low pressure of the turbine, the operating pressure, and three critical temperatures (T(sub 4), T(sub vane), and T(sub metal)). Numerical Propulsion System Simulation (NPSS) calculations of the specific fuel consumption (TSFC), as a function of the variables can become time consuming, and numerical instabilities can occur during these design calculations. "Soft" models can alleviate both deficiencies. These approximate models are generated from a set of high-fidelity input-output pairs obtained from the NPSS code and a design of the experiment strategy. A neural network and a regression model with 45 weight factors were trained for the input/output pairs. Then, the trained models were validated through a comparison with the original NPSS code. Comparisons of TSFC versus the operating pressure and of TSFC versus the three temperatures (T(sub 4), T(sub vane), and T(sub metal)) are depicted in the figures. The overall performance was satisfactory for both the regression and the neural network model. The regression model required fewer calculations than the neural network model, and it produced marginally superior results. Training the approximate methods is time consuming. Once trained, the approximate methods generated the solution with only a trivial computational effort, reducing the solution time from hours to less than a minute.
NASA Astrophysics Data System (ADS)
Kyker, Ronald D.; Berry, Nina; Stark, Doug; Nachtigal, Noel; Kershaw, Chris
2004-08-01
The Hybrid Emergency Radiation Detection (HERD) system is a rapidly deployable ad-hoc wireless sensor network for monitoring the radiation hazard associated with a radiation release. The system is designed for low power, small size, low cost, and rapid deployment in order to provide early notification and minimize exposure. The many design tradeoffs, decisions, and challenges in the implementation of this wireless sensor network design will be presented and compared to the commercial systems available. Our research in a scaleable modular architectural highlights the need and implementation of a system level approach that provides flexibility and adaptability for a variety of applications. This approach seeks to minimize power, provide mission specific specialization, and provide the capability to upgrade the system with the most recent technology advancements by encapsulation and modularity. The implementation of a low power, widely available Real Time Operating System (RTOS) for multitasking with an improvement in code maintenance, portability, and reuse will be presented. Finally future design enhancements technology trends affecting wireless sensor networks will be presented.
A Large Scale Code Resolution Service Network in the Internet of Things
Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan
2012-01-01
In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT's advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS. PMID:23202207
A large scale code resolution service network in the Internet of Things.
Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan
2012-11-07
In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT’s advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS.
Model-based design of RNA hybridization networks implemented in living cells
Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter
2017-01-01
Abstract Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. PMID:28934501
Dynamic-ETL: a hybrid approach for health data extraction, transformation and loading.
Ong, Toan C; Kahn, Michael G; Kwan, Bethany M; Yamashita, Traci; Brandt, Elias; Hosokawa, Patrick; Uhrich, Chris; Schilling, Lisa M
2017-09-13
Electronic health records (EHRs) contain detailed clinical data stored in proprietary formats with non-standard codes and structures. Participating in multi-site clinical research networks requires EHR data to be restructured and transformed into a common format and standard terminologies, and optimally linked to other data sources. The expertise and scalable solutions needed to transform data to conform to network requirements are beyond the scope of many health care organizations and there is a need for practical tools that lower the barriers of data contribution to clinical research networks. We designed and implemented a health data transformation and loading approach, which we refer to as Dynamic ETL (Extraction, Transformation and Loading) (D-ETL), that automates part of the process through use of scalable, reusable and customizable code, while retaining manual aspects of the process that requires knowledge of complex coding syntax. This approach provides the flexibility required for the ETL of heterogeneous data, variations in semantic expertise, and transparency of transformation logic that are essential to implement ETL conventions across clinical research sharing networks. Processing workflows are directed by the ETL specifications guideline, developed by ETL designers with extensive knowledge of the structure and semantics of health data (i.e., "health data domain experts") and target common data model. D-ETL was implemented to perform ETL operations that load data from various sources with different database schema structures into the Observational Medical Outcome Partnership (OMOP) common data model. The results showed that ETL rule composition methods and the D-ETL engine offer a scalable solution for health data transformation via automatic query generation to harmonize source datasets. D-ETL supports a flexible and transparent process to transform and load health data into a target data model. This approach offers a solution that lowers technical barriers that prevent data partners from participating in research data networks, and therefore, promotes the advancement of comparative effectiveness research using secondary electronic health data.
Yu, Hua; Jiao, Bingke; Lu, Lu; Wang, Pengfei; Chen, Shuangcheng; Liang, Chengzhi; Liu, Wei
2018-01-01
Accurately reconstructing gene co-expression network is of great importance for uncovering the genetic architecture underlying complex and various phenotypes. The recent availability of high-throughput RNA-seq sequencing has made genome-wide detecting and quantifying of the novel, rare and low-abundance transcripts practical. However, its potential merits in reconstructing gene co-expression network have still not been well explored. Using massive-scale RNA-seq samples, we have designed an ensemble pipeline, called NetMiner, for building genome-scale and high-quality Gene Co-expression Network (GCN) by integrating three frequently used inference algorithms. We constructed a RNA-seq-based GCN in one species of monocot rice. The quality of network obtained by our method was verified and evaluated by the curated gene functional association data sets, which obviously outperformed each single method. In addition, the powerful capability of network for associating genes with functions and agronomic traits was shown by enrichment analysis and case studies. In particular, we demonstrated the potential value of our proposed method to predict the biological roles of unknown protein-coding genes, long non-coding RNA (lncRNA) genes and circular RNA (circRNA) genes. Our results provided a valuable and highly reliable data source to select key candidate genes for subsequent experimental validation. To facilitate identification of novel genes regulating important biological processes and phenotypes in other plants or animals, we have published the source code of NetMiner, making it freely available at https://github.com/czllab/NetMiner.
Extension of analog network coding in wireless information exchange
NASA Astrophysics Data System (ADS)
Chen, Cheng; Huang, Jiaqing
2012-01-01
Ever since the concept of analog network coding(ANC) was put forward by S.Katti, much attention has been focused on how to utilize analog network coding to take advantage of wireless interference, which used to be considered generally harmful, to improve throughput performance. Previously, only the case of two nodes that need to exchange information has been fully discussed while the issue of extending analog network coding to more than three nodes remains undeveloped. In this paper, we propose a practical transmission scheme to extend analog network coding to more than two nodes that need to exchange information among themselves. We start with the case of three nodes that need to exchange information and demonstrate that through utilizing our algorithm, the throughput can achieve 33% and 20% increase compared with that of traditional transmission scheduling and digital network coding, respectively. Then, we generalize the algorithm so that it can fit for occasions with any number of nodes. We also discuss some technical issues and throughput analysis as well as the bit error rate.
NASA Technical Reports Server (NTRS)
Sozen, Mehmet
2003-01-01
In what follows, the model used for combustion of liquid hydrogen (LH2) with liquid oxygen (LOX) using chemical equilibrium assumption, and the novel computational method developed for determining the equilibrium composition and temperature of the combustion products by application of the first and second laws of thermodynamics will be described. The modular FORTRAN code developed as a subroutine that can be incorporated into any flow network code with little effort has been successfully implemented in GFSSP as the preliminary runs indicate. The code provides capability of modeling the heat transfer rate to the coolants for parametric analysis in system design.
Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.
Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing
2017-01-01
Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.
NASA Astrophysics Data System (ADS)
Park, Joon-Sang; Lee, Uichin; Oh, Soon Young; Gerla, Mario; Lun, Desmond Siumen; Ro, Won Woo; Park, Joonseok
Vehicular ad hoc networks (VANET) aims to enhance vehicle navigation safety by providing an early warning system: any chance of accidents is informed through the wireless communication between vehicles. For the warning system to work, it is crucial that safety messages be reliably delivered to the target vehicles in a timely manner and thus reliable and timely data dissemination service is the key building block of VANET. Data mulling technique combined with three strategies, network codeing, erasure coding and repetition coding, is proposed for the reliable and timely data dissemination service. Particularly, vehicles in the opposite direction on a highway are exploited as data mules, mobile nodes physically delivering data to destinations, to overcome intermittent network connectivity cause by sparse vehicle traffic. Using analytic models, we show that in such a highway data mulling scenario the network coding based strategy outperforms erasure coding and repetition based strategies.
Short-Block Protograph-Based LDPC Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher
2010-01-01
Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.
The queueing perspective of asynchronous network coding in two-way relay network
NASA Astrophysics Data System (ADS)
Liang, Yaping; Chang, Qing; Li, Xianxu
2018-04-01
Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.
Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn
2014-11-01
Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.
Single-shot secure quantum network coding on butterfly network with free public communication
NASA Astrophysics Data System (ADS)
Owari, Masaki; Kato, Go; Hayashi, Masahito
2018-01-01
Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.
Coding Skills as a Success Factor for a Society
ERIC Educational Resources Information Center
Tuomi, Pauliina; Multisilta, Jari Antero; Saarikoski, Petri; Suominen, Jaakko
2018-01-01
Digitalization is one of the most promising ways to increase productivity in the public sector and is needed to reform the economy by creating new innovation related jobs. The implementation of digital services requires problem solving, design skills, logical thinking, an understanding of how computers and networks operate, and programming…
The Design of the CCCII and Its Application Considerations in Library Automation.
ERIC Educational Resources Information Center
Huang, Jack Kai-tung; And Others
This paper presents the major characteristics of the Chinese Character Code for Information Interchange (CCCII) and indicates its intended application for the interchange of Chinese information among computer systems and communication facilities, especially in library networks. It is considered sufficient for present day library applications,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-08-09
Sophia Daemon Version 12 contains the code that is exclusively used by the sophiad application. It runs as a service on a Linux host and analyzes network traffic obtained from libpcap and produces a network fingerprint based on hosts and channels. Sophia Daemon Version 12 can, if desired by the user, produce alerts when its fingerprint changes. Sophia Daemon Version 12 can receive data from another Sophia Daemon or raw packet data. It can output data to another Sophia Daemon Version 12, OglNet Version 12 or MySQL. Sophia Daemon Version 12 runs in a passive real-time manner that allows itmore » to be used on a SCADA network. Its network fingerprint is designed to be applicable to SCADA networks rather than general IT networks.« less
2013-11-25
previously considered this proactive approach to combat unintentional, persistent (non- reactive) interference . In this project, we plan on extending our...channel” (or code ) by chance, through public knowledge of the underlying protocol semantics , or by compromising one of the network devices. An alternative...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0142 TR-2013-0142 RENDEZVOUS PROTOCOLS AND DYNAMIC FREQUENCY HOPPING INTERFERENCE DESIGN FOR ANTI-JAMMING
Ground-state coding in partially connected neural networks
NASA Technical Reports Server (NTRS)
Baram, Yoram
1989-01-01
Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.
Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.
2014-01-01
The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083
Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network
Lin, Kai; Wang, Di; Hu, Long
2016-01-01
With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302
Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.
Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime
2016-01-01
It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence.
Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks
NASA Astrophysics Data System (ADS)
Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu
Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.
Model-based design of RNA hybridization networks implemented in living cells.
Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso
2017-09-19
Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Minimal Increase Network Coding for Dynamic Networks.
Zhang, Guoyin; Fan, Xu; Wu, Yanxia
2016-01-01
Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery.
Minimal Increase Network Coding for Dynamic Networks
Wu, Yanxia
2016-01-01
Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery. PMID:26867211
Neural network decoder for quantum error correcting codes
NASA Astrophysics Data System (ADS)
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
In-network Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection
NASA Astrophysics Data System (ADS)
Albano, Michele; Gao, Jie
In a sensor network of n nodes in which k of them have sensed interesting data, we perform in-network erasure coding such that each node stores a linear combination of all the network data with random coefficients. This scheme greatly improves data resilience to node failures: as long as there are k nodes that survive an attack, all the data produced in the sensor network can be recovered with high probability. The in-network coding storage scheme also improves data collection rate by mobile mules and allows for easy scheduling of data mules.
Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
Kim, Deokho; Park, Karam; Ro, Won W.
2011-01-01
While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053
Network perturbation by recurrent regulatory variants in cancer
Cho, Ara; Lee, Insuk; Choi, Jung Kyoon
2017-01-01
Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928
A neutron spectrum unfolding code based on generalized regression artificial neural networks.
Del Rosario Martinez-Blanco, Ma; Ornelas-Vargas, Gerardo; Castañeda-Miranda, Celina Lizeth; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, Jose M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel
2016-11-01
The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Polzien, R. E.; Rodriguez, D.
1981-01-01
Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.
On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.
Amanowicz, Marek; Krygier, Jaroslaw
2018-05-26
In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.
Continuous-variable quantum network coding for coherent states
NASA Astrophysics Data System (ADS)
Shang, Tao; Li, Ke; Liu, Jian-wei
2017-04-01
As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit 4{log _2}N and 2{log _2}N bits of information by a single network use, respectively.
Systems for the Intermodal Routing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Steven K; Liu, Cheng
The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.« less
SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)
2017-10-10
in the Cyber & Communication Technologies Group , but not on the SOUND project, would review the code, design and perform attacks against a live...3.5 Red Team As part of our testing , we planned to conduct Red Team assessments. In these assessments, a group of engineers from BAE who worked...developed under the DARPA CRASH program and SOUND were designed to be companion projects. SAFE focused on the processor and the host, SOUND focused on
Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.
Prakash, R; Balaji Ganesh, A; Sivabalan, Somu
2017-05-01
The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.
Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Ma, Chunli
2009-11-01
In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.
Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.
Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo
2015-08-01
Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.
NASA Astrophysics Data System (ADS)
Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi
This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.
Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coryell, E.W.; Siefken, L.J.; Harvego, E.A.
1997-07-01
The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures.more » The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.« less
jSquid: a Java applet for graphical on-line network exploration.
Klammer, Martin; Roopra, Sanjit; Sonnhammer, Erik L L
2008-06-15
jSquid is a graph visualization tool for exploring graphs from protein-protein interaction or functional coupling networks. The tool was designed for the FunCoup web site, but can be used for any similar network exploring purpose. The program offers various visualization and graph manipulation techniques to increase the utility for the user. jSquid is available for direct usage and download at http://jSquid.sbc.su.se including source code under the GPLv3 license, and input examples. It requires Java version 5 or higher to run properly. erik.sonnhammer@sbc.su.se Supplementary data are available at Bioinformatics online.
Applications and development of communication models for the touchstone GAMMA and DELTA prototypes
NASA Technical Reports Server (NTRS)
Seidel, Steven R.
1993-01-01
The goal of this project was to develop models of the interconnection networks of the Intel iPSC/860 and DELTA multicomputers to guide the design of efficient algorithms for interprocessor communication in problems that commonly occur in CFD codes and other applications. Interprocessor communication costs of codes for message-passing architectures such as the iPSC/860 and DELTA significantly affect the level of performance that can be obtained from those machines. This project addressed several specific problems in the achievement of efficient communication on the Intel iPSC/860 hypercube and DELTA mesh. In particular, an efficient global processor synchronization algorithm was developed for the iPSC/860 and numerous broadcast algorithms were designed for the DELTA.
Error-correcting codes on scale-free networks
NASA Astrophysics Data System (ADS)
Kim, Jung-Hoon; Ko, Young-Jo
2004-06-01
We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.
Predictive and Neural Predictive Control of Uncertain Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.
User's manual for a material transport code on the Octopus Computer Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naymik, T.G.; Mendez, G.D.
1978-09-15
A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-01-01
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-06-29
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.
Digital video technologies and their network requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. P. Tsang; H. Y. Chen; J. M. Brandt
1999-11-01
Coded digital video signals are considered to be one of the most difficult data types to transport due to their real-time requirements and high bit rate variability. In this study, the authors discuss the coding mechanisms incorporated by the major compression standards bodies, i.e., JPEG and MPEG, as well as more advanced coding mechanisms such as wavelet and fractal techniques. The relationship between the applications which use these coding schemes and their network requirements are the major focus of this study. Specifically, the authors relate network latency, channel transmission reliability, random access speed, buffering and network bandwidth with the variousmore » coding techniques as a function of the applications which use them. Such applications include High-Definition Television, Video Conferencing, Computer-Supported Collaborative Work (CSCW), and Medical Imaging.« less
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Harp, D.
2010-12-01
The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.
MAX - An advanced parallel computer for space applications
NASA Technical Reports Server (NTRS)
Lewis, Blair F.; Bunker, Robert L.
1991-01-01
MAX is a fault-tolerant multicomputer hardware and software architecture designed to meet the needs of NASA spacecraft systems. It consists of conventional computing modules (computers) connected via a dual network topology. One network is used to transfer data among the computers and between computers and I/O devices. This network's topology is arbitrary. The second network operates as a broadcast medium for operating system synchronization messages and supports the operating system's Byzantine resilience. A fully distributed operating system supports multitasking in an asynchronous event and data driven environment. A large grain dataflow paradigm is used to coordinate the multitasking and provide easy control of concurrency. It is the basis of the system's fault tolerance and allows both static and dynamical location of tasks. Redundant execution of tasks with software voting of results may be specified for critical tasks. The dataflow paradigm also supports simplified software design, test and maintenance. A unique feature is a method for reliably patching code in an executing dataflow application.
Evolution of a modular software network
Fortuna, Miguel A.; Bonachela, Juan A.; Levin, Simon A.
2011-01-01
“Evolution behaves like a tinkerer” (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed. PMID:22106260
Spike Code Flow in Cultured Neuronal Networks.
Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei
2016-01-01
We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems
Stefanini, Fabio; Neftci, Emre O.; Sheik, Sadique; Indiveri, Giacomo
2014-01-01
Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS. PMID:25232314
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.
Stefanini, Fabio; Neftci, Emre O; Sheik, Sadique; Indiveri, Giacomo
2014-01-01
Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS.
NASA Technical Reports Server (NTRS)
Benedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.
1998-01-01
Soft-input soft-output building blocks (modules) are presented to construct and iteratively decode in a distributed fashion code networks, a new concept that includes, and generalizes, various forms of concatenated coding schemes.
NASA Astrophysics Data System (ADS)
Choudhary, Kuldeep; Kumar, Santosh
2017-05-01
The application of electro-optic effect in lithium-niobate-based Mach-Zehnder interferometer to design a 3-bit optical pseudorandom binary sequence (PRBS) generator has been proposed, which is characterized by its simplicity of generation and stability. The proposed device is optoelectronic in nature. The PBRS generator is immensely applicable for pattern generation, encryption, and coding applications in optical networks. The study is carried out by simulating the proposed device with beam propagation method.
Clustering of neural code words revealed by a first-order phase transition
NASA Astrophysics Data System (ADS)
Huang, Haiping; Toyoizumi, Taro
2016-06-01
A network of neurons in the central nervous system collectively represents information by its spiking activity states. Typically observed states, i.e., code words, occupy only a limited portion of the state space due to constraints imposed by network interactions. Geometrical organization of code words in the state space, critical for neural information processing, is poorly understood due to its high dimensionality. Here, we explore the organization of neural code words using retinal data by computing the entropy of code words as a function of Hamming distance from a particular reference codeword. Specifically, we report that the retinal code words in the state space are divided into multiple distinct clusters separated by entropy-gaps, and that this structure is shared with well-known associative memory networks in a recallable phase. Our analysis also elucidates a special nature of the all-silent state. The all-silent state is surrounded by the densest cluster of code words and located within a reachable distance from most code words. This code-word space structure quantitatively predicts typical deviation of a state-trajectory from its initial state. Altogether, our findings reveal a non-trivial heterogeneous structure of the code-word space that shapes information representation in a biological network.
Incorporation of Condensation Heat Transfer in a Flow Network Code
NASA Technical Reports Server (NTRS)
Anthony, Miranda; Majumdar, Alok; McConnaughey, Paul K. (Technical Monitor)
2001-01-01
In this paper we have investigated the condensation of water vapor in a short tube. A numerical model of condensation heat transfer was incorporated in a flow network code. The flow network code that we have used in this paper is Generalized Fluid System Simulation Program (GFSSP). GFSSP is a finite volume based flow network code. Four different condensation models were presented in the paper. Soliman's correlation has been found to be the most stable in low flow rates which is of particular interest in this application. Another highlight of this investigation is conjugate or coupled heat transfer between solid or fluid. This work was done in support of NASA's International Space Station program.
Systematic network coding for two-hop lossy transmissions
NASA Astrophysics Data System (ADS)
Li, Ye; Blostein, Steven; Chan, Wai-Yip
2015-12-01
In this paper, we consider network transmissions over a single or multiple parallel two-hop lossy paths. These scenarios occur in applications such as sensor networks or WiFi offloading. Random linear network coding (RLNC), where previously received packets are re-encoded at intermediate nodes and forwarded, is known to be a capacity-achieving approach for these networks. However, a major drawback of RLNC is its high encoding and decoding complexity. In this work, a systematic network coding method is proposed. We show through both analysis and simulation that the proposed method achieves higher end-to-end rate as well as lower computational cost than RLNC for finite field sizes and finite-sized packet transmissions.
Adaptive software-defined coded modulation for ultra-high-speed optical transport
NASA Astrophysics Data System (ADS)
Djordjevic, Ivan B.; Zhang, Yequn
2013-10-01
In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.
Lu, Guo-Wei; Qin, Jun; Wang, Hongxiang; Ji, XuYuefeng; Sharif, Gazi Mohammad; Yamaguchi, Shigeru
2016-02-08
Optical logic gate, especially exclusive-or (XOR) gate, plays important role in accomplishing photonic computing and various network functionalities in future optical networks. On the other hand, optical multicast is another indispensable functionality to efficiently deliver information in optical networks. In this paper, for the first time, we propose and experimentally demonstrate a flexible optical three-input XOR gate scheme for multiple input phase-modulated signals with a 1-to-2 multicast functionality for each XOR operation using four-wave mixing (FWM) effect in single piece of highly-nonlinear fiber (HNLF). Through FWM in HNLF, all of the possible XOR operations among input signals could be simultaneously realized by sharing a single piece of HNLF. By selecting the obtained XOR components using a followed wavelength selective component, the number of XOR gates and the participant light in XOR operations could be flexibly configured. The re-configurability of the proposed XOR gate and the function integration of the optical logic gate and multicast in single device offer the flexibility in network design and improve the network efficiency. We experimentally demonstrate flexible 3-input XOR gate for four 10-Gbaud binary phase-shift keying signals with a multicast scale of 2. Error-free operations for the obtained XOR results are achieved. Potential application of the integrated XOR and multicast function in network coding is also discussed.
Technology Infusion of CodeSonar into the Space Network Ground Segment
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2009-01-01
This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.
On Delay and Security in Network Coding
ERIC Educational Resources Information Center
Dikaliotis, Theodoros K.
2013-01-01
In this thesis, delay and security issues in network coding are considered. First, we study the delay incurred in the transmission of a fixed number of packets through acyclic networks comprised of erasure links. The two transmission schemes studied are routing with hop-by-hop retransmissions, where every node in the network simply stores and…
Implementing MANETS in Android based environment using Wi-Fi direct
NASA Astrophysics Data System (ADS)
Waqas, Muhammad; Babar, Mohammad Inayatullah Khan; Zafar, Mohammad Haseeb
2015-05-01
Packet loss occurs in real-time voice transmission over wireless broadcast Ad-hoc network which creates disruptions in sound. Basic objective of this research is to design a wireless Ad-hoc network based on two Android devices by using the Wireless Fidelity (WIFI) Direct Application Programming Interface (API) and apply the Network Codec, Reed Solomon Code. The network codec is used to encode the data of a music wav file and recover the lost packets if any, packets are dropped using a loss module at the transmitter device to analyze the performance with the objective of retrieving the original file at the receiver device using the network codec. This resulted in faster transmission of the files despite dropped packets. In the end both files had the original formatted music files with complete performance analysis based on the transmission delay.
Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J
2011-07-04
In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster.
Future capabilities for the Deep Space Network
NASA Technical Reports Server (NTRS)
Berner, J. B.; Bryant, S. H.; Andrews, K. S.
2004-01-01
This paper will look at three new capabilities that are in different stages of development. First, turbo decoding, which provides improved telemetry performance for data rates up to about 1 Mbps, will be discussed. Next, pseudo-noise ranging will be presented. Pseudo-noise ranging has several advantages over the current sequential ranging, anmely easier operations, improved performance, and the capability to be used in a regenerative implementation on a spacecraft. Finally, Low Density Parity Check decoding will be discussed. LDPC codes can provide performance that matches or slightly exceed turbo codes, but are designed for use in the 10 Mbps range.
MOSES: A Matlab-based open-source stochastic epidemic simulator.
Varol, Huseyin Atakan
2016-08-01
This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.
Decoding small surface codes with feedforward neural networks
NASA Astrophysics Data System (ADS)
Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen
2018-01-01
Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.
A new brain-computer interface design using fuzzy ARTMAP.
Palaniappan, Ramaswamy; Paramesran, Raveendran; Nishida, Shogo; Saiwaki, Naoki
2002-09-01
This paper proposes a new brain-computer interface (BCI) design using fuzzy ARTMAP (FA) neural network, as well as an application of the design. The objective of this BCI-FA design is to classify the best three of the five available mental tasks for each subject using power spectral density (PSD) values of electroencephalogram (EEG) signals. These PSD values are extracted using the Wiener-Khinchine and autoregressive methods. Ten experiments employing different triplets of mental tasks are studied for each subject. The findings show that the average BCI-FA outputs for four subjects gave less than 6% of error using the best triplets of mental tasks identified from the classification performances of FA. This implies that the BCI-FA can be successfully used with a tri-state switching device. As an application, a proposed tri-state Morse code scheme could be utilized to translate the outputs of this BCI-FA design into English letters. In this scheme, the three BCI-FA outputs correspond to a dot and a dash, which are the two basic Morse code alphabets and a space to denote the end (or beginning) of a dot or a dash. The construction of English letters using this tri-state Morse code scheme is determined only by the sequence of mental tasks and is independent of the time duration of each mental task. This is especially useful for constructing letters that are represented as multiple dots or dashes. This combination of BCI-FA design and the tri-state Morse code scheme could be developed as a communication system for paralyzed patients.
NASA Astrophysics Data System (ADS)
Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens
2017-11-01
This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.
Construction of a pulse-coupled dipole network capable of fear-like and relief-like responses
NASA Astrophysics Data System (ADS)
Lungsi Sharma, B.
2016-07-01
The challenge for neuroscience as an interdisciplinary programme is the integration of ideas among the disciplines to achieve a common goal. This paper deals with the problem of deriving a pulse-coupled neural network that is capable of demonstrating behavioural responses (fear-like and relief-like). Current pulse-coupled neural networks are designed mostly for engineering applications, particularly image processing. The discovered neural network was constructed using the method of minimal anatomies approach. The behavioural response of a level-coded activity-based model was used as a reference. Although the spiking-based model and the activity-based model are of different scales, the use of model-reference principle means that the characteristics that is referenced is its functional properties. It is demonstrated that this strategy of dissection and systematic construction is effective in the functional design of pulse-coupled neural network system with nonlinear signalling. The differential equations for the elastic weights in the reference model are replicated in the pulse-coupled network geometrically. The network reflects a possible solution to the problem of punishment and avoidance. The network developed in this work is a new network topology for pulse-coupled neural networks. Therefore, the model-reference principle is a powerful tool in connecting neuroscience disciplines. The continuity of concepts and phenomena is further maintained by systematic construction using methods like the method of minimal anatomies.
2011-09-01
LAI Location Area Identity MANET Mobile Ad - hoc Network MCC Mobile Country Code MCD Mobile Communications Device MNC Mobile Network Code ...tower or present within a geographical area. These conditions relate directly to users who often operate with mobile ad - hoc networks. These types of...infrastructures. First responders can use these mobile base stations to set up their own networks on the fly, similar to mobile ad - hoc networks
Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying
2015-05-28
Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.
Bearing performance degradation assessment based on time-frequency code features and SOM network
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei
2017-04-01
Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.
Dossani, Rimal H; Kalakoti, Piyush; Nanda, Anil; Guthikonda, Bharat; Tumialán, Luis M
2018-02-06
The main objective of the Affordable Care Act (ACA) was to make health insurance affordable to all Americans while addressing the lack of coverage for 48 million people. In the face of rapidly increasing enrollment and rising demand for inexpensive plans, insurance providers are limiting in-network physicians. Provider networks offering plans with limited in-network physicians have become known as "narrow networks." To assesses the adequacy of ACA marketplace plans for outpatient neurosurgery in Louisiana. The Marketplace Public Use Files were searched for all "silver" plans. A total of 7 silver plans were identified in Louisiana. Using the plans' online directories, a search of in-network neurosurgeons in Louisiana parishes with >100 000 population was performed. The primary outcome was lack of in-network neurosurgeon(s) in silver plans within 50 miles of selected zip code for each parish with >100 000 population. Plans without in-network neurosurgeon(s) are labeled as neurosurgeon-deficient plans. Several plans in Louisiana are neurosurgeon deficient, ie no in-network neurosurgeon within 50 miles of the designated parish zip code. Company A's plan 3 is deficient in all 5 parishes, while company C and company D silver plans are deficient in 4 out of 14 (29%). Combined results from all counties and plans demonstrate that 43% (3 out of 7) of all silver plans in Louisiana are neurosurgeon deficient in at least 4 parishes with population >100 000. In Louisiana, narrow networks have limited access to neurosurgical care for those patients with ACA silver plans. Copyright © 2018 by the Congress of Neurological Surgeons
Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor
2013-01-01
Unhealthy behaviors increase individual health risks and are a socioeconomic burden. Harnessing social influence is perceived as fundamental for interventions to influence health-related behaviors. However, the mechanisms through which social influence occurs are poorly understood. Online social networks provide the opportunity to understand these mechanisms as they digitally archive communication between members. In this paper, we present a methodology for content-based social network analysis, combining qualitative coding, automated text analysis, and formal network analysis such that network structure is determined by the content of messages exchanged between members. We apply this approach to characterize the communication between members of QuitNet, an online social network for smoking cessation. Results indicate that the method identifies meaningful theme-based social sub-networks. Modeling social network data using this method can provide us with theme-specific insights such as the identities of opinion leaders and sub-community clusters. Implications for design of targeted social interventions are discussed.
Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles
NASA Technical Reports Server (NTRS)
Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.
2011-01-01
The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS configuration; 6) integrating the RANS solver with the FEAP code for coupled fluid-structure-thermal capability; and 7) integrating the existing NASA SRGULL propulsion flow path prediction software with the FEFLO software for quasi-3D propulsion flow path predictions, 8) improving and integrating into the network, an existing adjoint-based design optimization code.
OPTIMAL NETWORK TOPOLOGY DESIGN
NASA Technical Reports Server (NTRS)
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
New transmission scheme to enhance throughput of DF relay network using rate and power adaptation
NASA Astrophysics Data System (ADS)
Taki, Mehrdad; Heshmati, Milad
2017-09-01
This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.
Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.
Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing
2017-04-20
The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.
All-optical OFDM network coding scheme for all-optical virtual private communication in PON
NASA Astrophysics Data System (ADS)
Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong
2014-03-01
A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.
QOS-aware error recovery in wireless body sensor networks using adaptive network coding.
Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah
2014-12-29
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
Population coding in sparsely connected networks of noisy neurons.
Tripp, Bryan P; Orchard, Jeff
2012-01-01
This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.
14 CFR 1215.108 - Defining user service requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to NASA Headquarters, Code OX, Space Network Division, Washington, DC 20546. Upon review and... submitted in writing to both NASA Headquarters, Code OX, Space Network Division, and GSFC, Code 501.... Request for services within priority groups shall be negotiated with non-NASA users on a first come, first...
A New Network Modeling Tool for the Ground-based Nuclear Explosion Monitoring Community
NASA Astrophysics Data System (ADS)
Merchant, B. J.; Chael, E. P.; Young, C. J.
2013-12-01
Network simulations have long been used to assess the performance of monitoring networks to detect events for such purposes as planning station deployments and network resilience to outages. The standard tool has been the SAIC-developed NetSim package. With correct parameters, NetSim can produce useful simulations; however, the package has several shortcomings: an older language (FORTRAN), an emphasis on seismic monitoring with limited support for other technologies, limited documentation, and a limited parameter set. Thus, we are developing NetMOD (Network Monitoring for Optimal Detection), a Java-based tool designed to assess the performance of ground-based networks. NetMOD's advantages include: coded in a modern language that is multi-platform, utilizes modern computing performance (e.g. multi-core processors), incorporates monitoring technologies other than seismic, and includes a well-validated default parameter set for the IMS stations. NetMOD is designed to be extendable through a plugin infrastructure, so new phenomenological models can be added. Development of the Seismic Detection Plugin is being pursued first. Seismic location and infrasound and hydroacoustic detection plugins will follow. By making NetMOD an open-release package, it can hopefully provide a common tool that the monitoring community can use to produce assessments of monitoring networks and to verify assessments made by others.
Knowledge extraction from evolving spiking neural networks with rank order population coding.
Soltic, Snjezana; Kasabov, Nikola
2010-12-01
This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.
Coding and transmission of subband coded images on the Internet
NASA Astrophysics Data System (ADS)
Wah, Benjamin W.; Su, Xiao
2001-09-01
Subband-coded images can be transmitted in the Internet using either the TCP or the UDP protocol. Delivery by TCP gives superior decoding quality but with very long delays when the network is unreliable, whereas delivery by UDP has negligible delays but with degraded quality when packets are lost. Although images are delivered currently over the Internet by TCP, we study in this paper the use of UDP to deliver multi-description reconstruction-based subband-coded images. First, in order to facilitate recovery from UDP packet losses, we propose a joint sender-receiver approach for designing optimized reconstruction-based subband transform (ORB-ST) in multi-description coding (MDC). Second, we carefully evaluate the delay-quality trade-offs between the TCP delivery of SDC images and the UDP and combined TCP/UDP delivery of MDC images. Experimental results show that our proposed ORB-ST performs well in real Internet tests, and UDP and combined TCP/UDP delivery of MDC images provide a range of attractive alternatives to TCP delivery.
Grison, Claire M; Robin, Sylvie; Aitken, David J
2015-11-21
The de novo design of a β/γ-peptidic foldamer motif has led to the discovery of an unprecedented 9/8-ribbon featuring an uninterrupted alternating C9/C8 hydrogen-bonding network. The ribbons adopt partially curved topologies determined synchronistically by the β-residue configuration and the γ-residue conformation sets.
Random sampling of elementary flux modes in large-scale metabolic networks.
Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel
2012-09-15
The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.
Raju, Hemalatha B.; Tsinoremas, Nicholas F.; Capobianco, Enrico
2016-01-01
Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein–protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches. PMID:27803687
Raju, Hemalatha B; Tsinoremas, Nicholas F; Capobianco, Enrico
2016-01-01
Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein-protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches.
Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.
Carpenter, Gail A.
1997-11-01
A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.
Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks
ERIC Educational Resources Information Center
Yu, Chao
2013-01-01
In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…
An introduction to deep learning on biological sequence data: examples and solutions.
Jurtz, Vanessa Isabell; Johansen, Alexander Rosenberg; Nielsen, Morten; Almagro Armenteros, Jose Juan; Nielsen, Henrik; Sønderby, Casper Kaae; Winther, Ole; Sønderby, Søren Kaae
2017-11-15
Deep neural network architectures such as convolutional and long short-term memory networks have become increasingly popular as machine learning tools during the recent years. The availability of greater computational resources, more data, new algorithms for training deep models and easy to use libraries for implementation and training of neural networks are the drivers of this development. The use of deep learning has been especially successful in image recognition; and the development of tools, applications and code examples are in most cases centered within this field rather than within biology. Here, we aim to further the development of deep learning methods within biology by providing application examples and ready to apply and adapt code templates. Given such examples, we illustrate how architectures consisting of convolutional and long short-term memory neural networks can relatively easily be designed and trained to state-of-the-art performance on three biological sequence problems: prediction of subcellular localization, protein secondary structure and the binding of peptides to MHC Class II molecules. All implementations and datasets are available online to the scientific community at https://github.com/vanessajurtz/lasagne4bio. skaaesonderby@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The solvability of quantum k-pair network in a measurement-based way.
Li, Jing; Xu, Gang; Chen, Xiu-Bo; Qu, Zhiguo; Niu, Xin-Xin; Yang, Yi-Xian
2017-12-01
Network coding is an effective means to enhance the communication efficiency. The characterization of network solvability is one of the most important topic in this field. However, for general network, the solvability conditions are still a challenge. In this paper, we consider the solvability of general quantum k-pair network in measurement-based framework. For the first time, a detailed account of measurement-based quantum network coding(MB-QNC) is specified systematically. Differing from existing coding schemes, single qubit measurements on a pre-shared graph state are the only allowed coding operations. Since no control operations are concluded, it makes MB-QNC schemes more feasible. Further, the sufficient conditions formulating by eigenvalue equations and stabilizer matrix are presented, which build an unambiguous relation among the solvability and the general network. And this result can also analyze the feasibility of sharing k EPR pairs task in large-scale networks. Finally, in the presence of noise, we analyze the advantage of MB-QNC in contrast to gate-based way. By an instance network [Formula: see text], we show that MB-QNC allows higher error thresholds. Specially, for X error, the error threshold is about 30% higher than 10% in gate-based way. In addition, the specific expressions of fidelity subject to some constraint conditions are given.
Optimal Near-Hitless Network Failure Recovery Using Diversity Coding
ERIC Educational Resources Information Center
Avci, Serhat Nazim
2013-01-01
Link failures in wide area networks are common and cause significant data losses. Mesh-based protection schemes offer high capacity efficiency but they are slow, require complex signaling, and instable. Diversity coding is a proactive coding-based recovery technique which offers near-hitless (sub-ms) restoration with a competitive spare capacity…
Network analysis of human diseases using Korean nationwide claims data.
Kim, Jin Hee; Son, Ki Young; Shin, Dong Wook; Kim, Sang Hyuk; Yun, Jae Won; Shin, Jung Hyun; Kang, Mi So; Chung, Eui Heon; Yoo, Kyoung Hun; Yun, Jae Moon
2016-06-01
To investigate disease-disease associations by conducting a network analysis using Korean nationwide claims data. We used the claims data from the Health Insurance Review and Assessment Service-National Patient Sample for the year 2011. Among the 2049 disease codes in the claims data, 1154 specific disease codes were used and combined into 795 representative disease codes. We analyzed for 381 representative codes, which had a prevalence of >0.1%. For disease code pairs of a combination of 381 representative disease codes, P values were calculated by using the χ(2) test and the degrees of associations were expressed as odds ratios (ORs). For 5515 (7.62%) statistically significant disease-disease associations with a large effect size (OR>5), we constructed a human disease network consisting of 369 nodes and 5515 edges. The human disease network shows the distribution of diseases in the disease network and the relationships between diseases or disease groups, demonstrating that diseases are associated with each other, forming a complex disease network. We reviewed 5515 disease-disease associations and classified them according to underlying mechanisms. Several disease-disease associations were identified, but the evidence of these associations is not sufficient and the mechanisms underlying these associations have not been clarified yet. Further research studies are needed to investigate these associations and their underlying mechanisms. Human disease network analysis using claims data enriches the understanding of human diseases and provides new insights into disease-disease associations that can be useful in future research. Copyright © 2016 Elsevier Inc. All rights reserved.
Design of Accelerator Online Simulator Server Using Structured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guobao; /Brookhaven; Chu, Chungming
2012-07-06
Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describesmore » the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.« less
NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACINTOSH VERSION)
NASA Technical Reports Server (NTRS)
Phillips, T. A.
1994-01-01
NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS allows the user to generate C code to implement the network loaded into the system. This permits the placement of networks as components, or subroutines, in other systems. In short, once a network performs satisfactorily, the Generate C Code option provides the means for creating a program separate from NETS to run the network. Other features: files may be stored in binary or ASCII format; multiple input propagation is permitted; bias values may be included; capability to scale data without writing scaling code; quick interactive testing of network from the main menu; and several options that allow the user to manipulate learning efficiency. NETS is written in ANSI standard C language to be machine independent. The Macintosh version (MSC-22108) includes code for both a graphical user interface version and a command line interface version. The machine independent version (MSC-21588) only includes code for the command line interface version of NETS 3.0. The Macintosh version requires a Macintosh II series computer and has been successfully implemented under System 7. Four executables are included on these diskettes, two for floating point operations and two for integer arithmetic. It requires Think C 5.0 to compile. A minimum of 1Mb of RAM is required for execution. Sample input files and executables for both the command line version and the Macintosh user interface version are provided on the distribution medium. The Macintosh version is available on a set of three 3.5 inch 800K Macintosh format diskettes. The machine independent version has been successfully implemented on an IBM PC series compatible running MS-DOS, a DEC VAX running VMS, a SunIPC running SunOS, and a CRAY Y-MP running UNICOS. Two executables for the IBM PC version are included on the MS-DOS distribution media, one compiled for floating point operations and one for integer arithmetic. The machine independent version is available on a set of three 5.25 inch 360K MS-DOS format diskettes (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. NETS was developed in 1989 and updated in 1992. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. SunIPC and SunOS are trademarks of Sun Microsystems, Inc. CRAY Y-MP and UNICOS are trademarks of Cray Research, Inc.
NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)
NASA Technical Reports Server (NTRS)
Baffes, P. T.
1994-01-01
NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS allows the user to generate C code to implement the network loaded into the system. This permits the placement of networks as components, or subroutines, in other systems. In short, once a network performs satisfactorily, the Generate C Code option provides the means for creating a program separate from NETS to run the network. Other features: files may be stored in binary or ASCII format; multiple input propagation is permitted; bias values may be included; capability to scale data without writing scaling code; quick interactive testing of network from the main menu; and several options that allow the user to manipulate learning efficiency. NETS is written in ANSI standard C language to be machine independent. The Macintosh version (MSC-22108) includes code for both a graphical user interface version and a command line interface version. The machine independent version (MSC-21588) only includes code for the command line interface version of NETS 3.0. The Macintosh version requires a Macintosh II series computer and has been successfully implemented under System 7. Four executables are included on these diskettes, two for floating point operations and two for integer arithmetic. It requires Think C 5.0 to compile. A minimum of 1Mb of RAM is required for execution. Sample input files and executables for both the command line version and the Macintosh user interface version are provided on the distribution medium. The Macintosh version is available on a set of three 3.5 inch 800K Macintosh format diskettes. The machine independent version has been successfully implemented on an IBM PC series compatible running MS-DOS, a DEC VAX running VMS, a SunIPC running SunOS, and a CRAY Y-MP running UNICOS. Two executables for the IBM PC version are included on the MS-DOS distribution media, one compiled for floating point operations and one for integer arithmetic. The machine independent version is available on a set of three 5.25 inch 360K MS-DOS format diskettes (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. NETS was developed in 1989 and updated in 1992. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. SunIPC and SunOS are trademarks of Sun Microsystems, Inc. CRAY Y-MP and UNICOS are trademarks of Cray Research, Inc.
NASA Technical Reports Server (NTRS)
Stoenescu, Tudor M.; Woo, Simon S.
2009-01-01
In this work, we consider information dissemination and sharing in a distributed peer-to-peer (P2P highly dynamic communication network. In particular, we explore a network coding technique for transmission and a rank based peer selection method for network formation. The combined approach has been shown to improve information sharing and delivery to all users when considering the challenges imposed by the space network environments.
Guo, Z.; Zweibaum, N.; Shao, M.; ...
2016-04-19
The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less
Network Coding Opportunities for Wireless Grids Formed by Mobile Devices
NASA Astrophysics Data System (ADS)
Nielsen, Karsten Fyhn; Madsen, Tatiana K.; Fitzek, Frank H. P.
Wireless grids have potential in sharing communication, computa-tional and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices.
Implementing the UCSD PASCAL system on the MODCOMP computer. [deep space network
NASA Technical Reports Server (NTRS)
Wolfe, T.
1980-01-01
The implementation of an interactive software development system (UCSD PASCAL) on the MODCOMP computer is discussed. The development of an interpreter for the MODCOMP II and the MODCOMP IV computers, written in MODCOMP II assembly language, is described. The complete Pascal programming system was run successfully on a MODCOMP II and MODCOMP IV under both the MAX II/III and MAX IV operating systems. The source code for an 8080 microcomputer version of the interpreter was used as the design for the MODCOMP interpreter. A mapping of the functions within the 8080 interpreter into MODCOMP II assembly language was the method used to code the interpreter.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun
2008-05-01
This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun
2007-11-01
A coherent optical en/decoder based on photonic crystal (PhC) for optical code-division-multiple (OCDM)-based optical label (OCDM-OL) optical packets switching (OPS) networks is proposed in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by the photonic crystal phase shifter and delayer using the appropriate design of fabrication. In this design, the combination calculation of the impurity and normal period layers is applied, according to the PhC transmission matrix theorem. The design and theoretical analysis of the PhC-based optical coherent en/decoder is mainly focused. In addition, the performances of the PhC-based optical en/decoders are analyzed in detail. The reflection, the transmission, delay characteristic and the optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by the numerical calculation, taking into account 1-Dimension (1D) PhC. Theoretical analysis and numerical results show that optical pulse is achieved to properly phase modulation and time delay by the proposed scheme, optical label based on OCDM is rewrote successfully by new code for OCDM-based OPS (OCDM-OPS), and an over 8.5 dB ration of auto- and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.
Modularity and design principles in the sea urchin embryo gene regulatory network
Peter, Isabelle S.; Davidson, Eric H.
2010-01-01
The gene regulatory network (GRN) established experimentally for the pre-gastrular sea urchin embryo provides causal explanations of the biological functions required for spatial specification of embryonic regulatory states. Here we focus on the structure of the GRN which controls the progressive increase in complexity of territorial regulatory states during embryogenesis; and on the types of modular subcircuits of which the GRN is composed. Each of these subcircuit topologies executes a particular operation of spatial information processing. The GRN architecture reflects the particular mode of embryogenesis represented by sea urchin development. Network structure not only specifies the linkages constituting the genomic regulatory code for development, but also indicates the various regulatory requirements of regional developmental processes. PMID:19932099
A large scale software system for simulation and design optimization of mechanical systems
NASA Technical Reports Server (NTRS)
Dopker, Bernhard; Haug, Edward J.
1989-01-01
The concept of an advanced integrated, networked simulation and design system is outlined. Such an advanced system can be developed utilizing existing codes without compromising the integrity and functionality of the system. An example has been used to demonstrate the applicability of the concept of the integrated system outlined here. The development of an integrated system can be done incrementally. Initial capabilities can be developed and implemented without having a detailed design of the global system. Only a conceptual global system must exist. For a fully integrated, user friendly design system, further research is needed in the areas of engineering data bases, distributed data bases, and advanced user interface design.
Cross-layer model design in wireless ad hoc networks for the Internet of Things.
Yang, Xin; Wang, Ling; Xie, Jian; Zhang, Zhaolin
2018-01-01
Wireless ad hoc networks can experience extreme fluctuations in transmission traffic in the Internet of Things, which is widely used today. Currently, the most crucial issues requiring attention for wireless ad hoc networks are making the best use of low traffic periods, reducing congestion during high traffic periods, and improving transmission performance. To solve these problems, the present paper proposes a novel cross-layer transmission model based on decentralized coded caching in the physical layer and a content division multiplexing scheme in the media access control layer. Simulation results demonstrate that the proposed model effectively addresses these issues by substantially increasing the throughput and successful transmission rate compared to existing protocols without a negative influence on delay, particularly for large scale networks under conditions of highly contrasting high and low traffic periods.
Cross-layer model design in wireless ad hoc networks for the Internet of Things
Wang, Ling; Xie, Jian; Zhang, Zhaolin
2018-01-01
Wireless ad hoc networks can experience extreme fluctuations in transmission traffic in the Internet of Things, which is widely used today. Currently, the most crucial issues requiring attention for wireless ad hoc networks are making the best use of low traffic periods, reducing congestion during high traffic periods, and improving transmission performance. To solve these problems, the present paper proposes a novel cross-layer transmission model based on decentralized coded caching in the physical layer and a content division multiplexing scheme in the media access control layer. Simulation results demonstrate that the proposed model effectively addresses these issues by substantially increasing the throughput and successful transmission rate compared to existing protocols without a negative influence on delay, particularly for large scale networks under conditions of highly contrasting high and low traffic periods. PMID:29734355
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.
2007-04-01
In the paper we show that the biologically motivated conception of the use of time-pulse encoding gives the row of advantages (single methodological basis, universality, simplicity of tuning, training and programming et al) at creation and designing of sensor systems with parallel input-output and processing, 2D-structures of hybrid and neuro-fuzzy neurocomputers of next generations. We show principles of construction of programmable relational optoelectronic time-pulse coded processors, continuous logic, order logic and temporal waves processes, that lie in basis of the creation. We consider structure that executes extraction of analog signal of the set grade (order), sorting of analog and time-pulse coded variables. We offer optoelectronic realization of such base relational elements of order logic, which consists of time-pulse coded phototransformers (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutations blocks. We make estimations of basic technical parameters of such base devices and processors on their basis by simulation and experimental research: power of optical input signals - 0.200-20 μW, processing time - microseconds, supply voltage - 1.5-10 V, consumption power - hundreds of microwatts per element, extended functional possibilities, training possibilities. We discuss some aspects of possible rules and principles of training and programmable tuning on the required function, relational operation and realization of hardware blocks for modifications of such processors. We show as on the basis of such quasiuniversal hardware simple block and flexible programmable tuning it is possible to create sorting machines, neural networks and hybrid data-processing systems with the untraditional numerical systems and pictures operands.
In-Space Networking on NASA's SCAN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.
NASA Astrophysics Data System (ADS)
Wei, Pei; Gu, Rentao; Ji, Yuefeng
2014-06-01
As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.
Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.
Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M
2009-10-01
Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.
Implementing controlled-unitary operations over the butterfly network
NASA Astrophysics Data System (ADS)
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio
2014-12-01
We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.
NASA Astrophysics Data System (ADS)
Ren, Danping; Wu, Shanshan; Zhang, Lijing
2016-09-01
In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.
Implementing controlled-unitary operations over the butterfly network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.
2014-12-04
We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.
Validation of the SINDA/FLUINT code using several analytical solutions
NASA Technical Reports Server (NTRS)
Keller, John R.
1995-01-01
The Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) code has often been used to determine the transient and steady-state response of various thermal and fluid flow networks. While this code is an often used design and analysis tool, the validation of this program has been limited to a few simple studies. For the current study, the SINDA/FLUINT code was compared to four different analytical solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first compared to two separate solutions. The first comparison examined a semi-infinite slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the code (FLUINT) was also compared to two different analytical solutions. The first study examined a tank filling process by an ideal gas in which there is both control volume work and heat transfer. The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results of all these studies showed that for the situations examined here, the SINDA/FLUINT code was able to match the results of the analytical solutions.
Physical-Layer Network Coding for VPN in TDM-PON
NASA Astrophysics Data System (ADS)
Wang, Qike; Tse, Kam-Hon; Chen, Lian-Kuan; Liew, Soung-Chang
2012-12-01
We experimentally demonstrate a novel optical physical-layer network coding (PNC) scheme over time-division multiplexing (TDM) passive optical network (PON). Full-duplex error-free communications between optical network units (ONUs) at 2.5 Gb/s are shown for all-optical virtual private network (VPN) applications. Compared to the conventional half-duplex communications set-up, our scheme can increase the capacity by 100% with power penalty smaller than 3 dB. Synchronization of two ONUs is not required for the proposed VPN scheme
Integrating non-coding RNAs in JAK-STAT regulatory networks
Witte, Steven; Muljo, Stefan A
2014-01-01
Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925
A reaction-diffusion-based coding rate control mechanism for camera sensor networks.
Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki
2010-01-01
A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.
Pérez, Cristina Díaz-Agero; Rodela, Ana Robustillo; Monge Jodrá, Vincente
2009-12-01
In 1997, a national standardized surveillance system (designated INCLIMECC [Indicadores Clínicos de Mejora Continua de la Calidad]) was established in Spain for health care-associated infection (HAI) in surgery patients, based on the National Nosocomial Infection Surveillance (NNIS) system. In 2005, in its procedure-associated module, the National Healthcare Safety Network (NHSN) inherited the NNIS program for surveillance of HAI in surgery patients and reorganized all surgical procedures. INCLIMECC actively monitors all patients referred to the surgical ward of each participating hospital. We present a summary of the data collected from January 1997 to December 2006 adapted to the new NHSN procedures. Surgical site infection (SSI) rates are provided by operative procedure and NNIS risk index category. Further quality indicators reported are surgical complications, length of stay, antimicrobial prophylaxis, mortality, readmission because of infection or other complication, and revision surgery. Because the ICD-9-CM surgery procedure code is included in each patient's record, we were able to reorganize our database avoiding the loss of extensive information, as has occurred with other systems.
2011-03-01
Karystinos and D. A. Pados, “New bounds on the total squared correlation and optimum design of DS - CDMA binary signature sets,” IEEE Trans. Commun...vol. 51, pp. 48-51, Jan. 2003. [99] C. Ding, M. Golin, and T. Klφve, “Meeting the Welch and Karystinos-Pados bounds on DS - CDMA binary signature sets...Designs, Codes and Cryptography, vol. 30, pp. 73-84, Aug. 2003. [100] V. P. Ipatov, “On the Karystinos-Pados bounds and optimal binary DS - CDMA
Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey
NASA Astrophysics Data System (ADS)
Guillemot, Christine; Siohan, Pierre
2005-12-01
Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.
The Modern Research Data Portal: A Design Pattern for Networked, Data-Intensive Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chard, Kyle; Dart, Eli; Foster, Ian
Here we describe best practices for providing convenient, high-speed, secure access to large data via research data portals. We capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance Science DMZs and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe howmore » to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.« less
The Modern Research Data Portal: a design pattern for networked, data-intensive science
Chard, Kyle; Dart, Eli; Foster, Ian; ...
2018-01-15
We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. Here, we capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance data enclaves and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe howmore » to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site,https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.« less
The Modern Research Data Portal: a design pattern for networked, data-intensive science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chard, Kyle; Dart, Eli; Foster, Ian
We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. Here, we capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance data enclaves and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe howmore » to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site,https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.« less
NASA Astrophysics Data System (ADS)
Pei, Yong; Modestino, James W.
2004-12-01
Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evaluated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC) coding scheme employing Reed-Solomon (RS) codes and rate-compatible punctured convolutional (RCPC) codes to protect the video data from packet loss and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC) approach employing this concatenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.
Characterizing a four-qubit planar lattice for arbitrary error detection
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias
2015-05-01
Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].
Avatar DNA Nanohybrid System in Chip-on-a-Phone
NASA Astrophysics Data System (ADS)
Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho
2014-05-01
Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.
Avatar DNA Nanohybrid System in Chip-on-a-Phone
Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho
2014-01-01
Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording. PMID:24824876
Gabius, H-J
2017-01-01
The known ubiquitous presence of glycans fulfils an essential prerequisite for fundamental roles in cell sociology. Since carbohydrates are chemically predestined to form biochemical messages of a maximum of structural diversity in a minimum of space, coding of biological information by sugars is the reason for the broad occurrence of cellular glycoconjugates. Their glycans originate from sophisticated enzymatic assembly and dynamically adaptable remodelling. These signals are read and translated into effects by receptors (lectins). The functional pairing between lectins and their counterreceptor(s) is highly specific, often orchestrated by intimate co-regulation of the receptor, the cognate glycan and the bioactive scaffold (e.g., an integrin). Bottom-up approaches, teaming up synthetic and supramolecular chemistry to prepare fully programmable nanoparticles as binding partners with systematic network analysis of lectins and rational design of variants, enable us to delineate the rules of the sugar code.
Neural Decoder for Topological Codes
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Melko, Roger G.
2017-07-01
We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.
Herrera-Ibatá, Diana María; Pazos, Alejandro; Orbegozo-Medina, Ricardo Alfredo; Romero-Durán, Francisco Javier; González-Díaz, Humberto
2015-06-01
Using computational algorithms to design tailored drug cocktails for highly active antiretroviral therapy (HAART) on specific populations is a goal of major importance for both pharmaceutical industry and public health policy institutions. New combinations of compounds need to be predicted in order to design HAART cocktails. On the one hand, there are the biomolecular factors related to the drugs in the cocktail (experimental measure, chemical structure, drug target, assay organisms, etc.); on the other hand, there are the socioeconomic factors of the specific population (income inequalities, employment levels, fiscal pressure, education, migration, population structure, etc.) to study the relationship between the socioeconomic status and the disease. In this context, machine learning algorithms, able to seek models for problems with multi-source data, have to be used. In this work, the first artificial neural network (ANN) model is proposed for the prediction of HAART cocktails, to halt AIDS on epidemic networks of U.S. counties using information indices that codify both biomolecular and several socioeconomic factors. The data was obtained from at least three major sources. The first dataset included assays of anti-HIV chemical compounds released to ChEMBL. The second dataset is the AIDSVu database of Emory University. AIDSVu compiled AIDS prevalence for >2300 U.S. counties. The third data set included socioeconomic data from the U.S. Census Bureau. Three scales or levels were employed to group the counties according to the location or population structure codes: state, rural urban continuum code (RUCC) and urban influence code (UIC). An analysis of >130,000 pairs (network links) was performed, corresponding to AIDS prevalence in 2310 counties in U.S. vs. drug cocktails made up of combinations of ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4856 protocols, and 10 possible experimental measures. The best model found with the original data was a linear neural network (LNN) with AUROC>0.80 and accuracy, specificity, and sensitivity≈77% in training and external validation series. The change of the spatial and population structure scale (State, UIC, or RUCC codes) does not affect the quality of the model. Unbalance was detected in all the models found comparing positive/negative cases and linear/non-linear model accuracy ratios. Using synthetic minority over-sampling technique (SMOTE), data pre-processing and machine-learning algorithms implemented into the WEKA software, more balanced models were found. In particular, a multilayer perceptron (MLP) with AUROC=97.4% and precision, recall, and F-measure >90% was found. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Design of verification platform for wireless vision sensor networks
NASA Astrophysics Data System (ADS)
Ye, Juanjuan; Shang, Fei; Yu, Chuang
2017-08-01
At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.
Fluid Transient Analysis during Priming of Evacuated Line
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok K.; Holt, Kimberley
2017-01-01
Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.
Veinot, Tiffany C; Campbell, Terrance R; Kruger, Daniel J; Grodzinski, Alison
2013-01-01
We investigated the user requirements of African-American youth (aged 14-24 years) to inform the design of a culturally appropriate, network-based informatics intervention for the prevention of HIV and other sexually transmitted infections (STI). We conducted 10 focus groups with 75 African-American youth from a city with high HIV/STI prevalence. Data analyses involved coding using qualitative content analysis procedures and memo writing. Unexpectedly, the majority of participants' design recommendations concerned trust. Youth expressed distrust towards people and groups, which was amplified within the context of information technology-mediated interactions about HIV/STI. Participants expressed distrust in the reliability of condoms and the accuracy of HIV tests. They questioned the benevolence of many institutions, and some rejected authoritative HIV/STI information. Therefore, reputational information, including rumor, influenced HIV/STI-related decision making. Participants' design requirements also focused on trust-related concerns. Accordingly, we developed a novel trust-centered design framework to guide intervention design. Current approaches to online trust for health informatics do not consider group-level trusting patterns. Yet, trust was the central intervention-relevant issue among African-American youth, suggesting an important focus for culturally informed design. Our design framework incorporates: intervention objectives (eg, network embeddedness, participation); functional specifications (eg, decision support, collective action, credible question and answer services); and interaction design (eg, member control, offline network linkages, optional anonymity). Trust is a critical focus for HIV/STI informatics interventions for young African Americans. Our design framework offers practical, culturally relevant, and systematic guidance to designers to reach this underserved group better.
Mixture block coding with progressive transmission in packet video. Appendix 1: Item 2. M.S. Thesis
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung
1989-01-01
Video transmission will become an important part of future multimedia communication because of dramatically increasing user demand for video, and rapid evolution of coding algorithm and VLSI technology. Video transmission will be part of the broadband-integrated services digital network (B-ISDN). Asynchronous transfer mode (ATM) is a viable candidate for implementation of B-ISDN due to its inherent flexibility, service independency, and high performance. According to the characteristics of ATM, the information has to be coded into discrete cells which travel independently in the packet switching network. A practical realization of an ATM video codec called Mixture Block Coding with Progressive Transmission (MBCPT) is presented. This variable bit rate coding algorithm shows how a constant quality performance can be obtained according to user demand. Interactions between codec and network are emphasized including packetization, service synchronization, flow control, and error recovery. Finally, some simulation results based on MBCPT coding with error recovery are presented.
Physical-layer network coding for passive optical interconnect in datacenter networks.
Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia
2017-07-24
We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.
Study of the OCDMA Transmission Characteristics in FSO-FTTH at Various Distances, Outdoor
NASA Astrophysics Data System (ADS)
Aldouri, Muthana Y.; Aljunid, S. A.; Fadhil, Hilal A.
2013-06-01
It is important to apply the field Programmable Gate Array (FPGA), and Optical Switch technology as an encoder and decoder for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) Free Space Optic Fiber to the Home (FSO-FTTH) transmitter and receiver system design. The encoder and decoder module will be using FPGA as a code generator, optical switch using as encode and decode of optical source. This module was tested by using the Modified Double Weight (MDW) code, which is selected as an excellent candidate because it had shown superior performance were by the total noise is reduced. It is also easy to construct and can reduce the number of filters required at a receiver by a newly proposed detection scheme known as AND Subtraction technique. MDW code is presented here to support Fiber-To-The-Home (FTTH) access network in Point-To-Multi-Point (P2MP) application. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. The performances are characterized through BER and bit rate (BR), also, the received power at a variety of bit rates.
Site characterization of the national seismic network of Italy
NASA Astrophysics Data System (ADS)
Bordoni, Paola; Pacor, Francesca; Cultrera, Giovanna; Casale, Paolo; Cara, Fabrizio; Di Giulio, Giuseppe; Famiani, Daniela; Ladina, Chiara; PIschiutta, Marta; Quintiliani, Matteo
2017-04-01
The national seismic network of Italy (Rete Sismica Nazionale, RSN) run by Istituto Nazionale di Geofisica e Vulcanologia (INGV) consists of more than 400 seismic stations connected in real time to the institute data center in order to locate earthquakes for civil defense purposes. A critical issue in the performance of a network is the characterization of site condition at the recording stations. Recently INGV has started addressing this subject through the revision of all available geological and geophysical data, the acquisition of new information by means of ad-hoc field measurements and the analysis of seismic waveforms. The main effort is towards building a database, integrated with the other INGV infrastructures, designed to archive homogeneous parameters through the seismic network useful for a complete site characterization, including housing, geological, seismological and geotechnical features as well as the site class according to the European and Italian building codes. Here we present the ongoing INGV activities.
Enabling Optical Network Test Bed for 5G Tests
NASA Astrophysics Data System (ADS)
Giuntini, Marco; Grazioso, Paolo; Matera, Francesco; Valenti, Alessandro; Attanasio, Vincenzo; Di Bartolo, Silvia; Nastri, Emanuele
2017-03-01
In this work, we show some experimental approaches concerning optical network design dedicated to 5G infrastructures. In particular, we show some implementations of network slicing based on Carrier Ethernet forwarding, which will be very suitable in the context of 5G heterogeneous networks, especially looking at services for vertical enterprises. We also show how to adopt a central unit (orchestrator) to automatically manage such logical paths according to quality-of-service requirements, which can be monitored at the user location. We also illustrate how novel all-optical processes, such as the ones based on all-optical wavelength conversion, can be used for multicasting, enabling development of TV broadcasting based on 4G-5G terminals. These managing and forwarding techniques, operating on optical links, are tested in a wireless environment on Wi-Fi cells and emulating LTE and WiMAX systems by means of the NS-3 code.
Wireless Multimedia Sensor Networks: Current Trends and Future Directions
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian
2010-01-01
Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, C. V.; Mendez, A. J.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Mendez R & D Associates (MRDA) to develop and demonstrate a reconfigurable and cost effective design for optical code division multiplexing (O-CDM) with high spectral efficiency and throughput, as applied to the field of distributed computing, including multiple accessing (sharing of communication resources) and bidirectional data distribution in fiber-to-the-premise (FTTx) networks.
Real-time distributed video coding for 1K-pixel visual sensor networks
NASA Astrophysics Data System (ADS)
Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian
2016-07-01
Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.
A thesaurus for a neural population code
Ganmor, Elad; Segev, Ronen; Schneidman, Elad
2015-01-01
Information is carried in the brain by the joint spiking patterns of large groups of noisy, unreliable neurons. This noise limits the capacity of the neural code and determines how information can be transmitted and read-out. To accurately decode, the brain must overcome this noise and identify which patterns are semantically similar. We use models of network encoding noise to learn a thesaurus for populations of neurons in the vertebrate retina responding to artificial and natural videos, measuring the similarity between population responses to visual stimuli based on the information they carry. This thesaurus reveals that the code is organized in clusters of synonymous activity patterns that are similar in meaning but may differ considerably in their structure. This organization is highly reminiscent of the design of engineered codes. We suggest that the brain may use this structure and show how it allows accurate decoding of novel stimuli from novel spiking patterns. DOI: http://dx.doi.org/10.7554/eLife.06134.001 PMID:26347983
Distributed reservation-based code division multiple access
NASA Astrophysics Data System (ADS)
Wieselthier, J. E.; Ephremides, A.
1984-11-01
The use of spread spectrum signaling, motivated primarily by its antijamming capabilities in military applications, leads naturally to the use of Code Division Multiple Access (CDMA) techniques that permit the successful simultaneous transmission by a number of users over a wideband channel. In this paper we address some of the major issues that are associated with the design of multiple access protocols for spread spectrum networks. We then propose, analyze, and evaluate a distributed reservation-based multiple access protocol that does in fact exploit CDMA properties. Especially significant is the fact that no acknowledgment or feedback information from the destination is required (thus facilitating communication with a radio-silent mode), nor is any form of coordination among the users necessary.
Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian
2018-05-10
Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%.
An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks
Yu, Shidi; Liu, Xiao; Cai, Zhiping; Wang, Tian
2018-01-01
Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%. PMID:29748525
Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih
2016-04-21
Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.
Phylogenetic Network for European mtDNA
Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari
2001-01-01
The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229
Buttles, John W [Idaho Falls, ID
2011-12-20
Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
A Community "Hub" Network Intervention for HIV Stigma Reduction: A Case Study.
Prinsloo, Catharina D; Greeff, Minrie
2016-01-01
We describe the implementation of a community "hub" network intervention to reduce HIV stigma in the Tlokwe Municipality, North West Province, South Africa. A holistic case study design was used, focusing on community members with no differentiation by HIV status. Participants were recruited through accessibility sampling. Data analyses used open coding and document analysis. Findings showed that the HIV stigma-reduction community hub network intervention successfully activated mobilizers to initiate change; lessened the stigma experience for people living with HIV; and addressed HIV stigma in a whole community using a combination of strategies including individual and interpersonal levels, social networks, and the public. Further research is recommended to replicate and enhance the intervention. In particular, the hub network system should be extended, the intervention period should be longer, there should be a stronger support system for mobilizers, and the multiple strategy approach should be continued on individual and social levels. Copyright © 2016 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
System for loading executable code into volatile memory in a downhole tool
Hall, David R.; Bartholomew, David B.; Johnson, Monte L.
2007-09-25
A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.
Pervasive surveillance-agent system based on wireless sensor networks: design and deployment
NASA Astrophysics Data System (ADS)
Martínez, José F.; Bravo, Sury; García, Ana B.; Corredor, Iván; Familiar, Miguel S.; López, Lourdes; Hernández, Vicente; Da Silva, Antonio
2010-12-01
Nowadays, proliferation of embedded systems is enhancing the possibilities of gathering information by using wireless sensor networks (WSNs). Flexibility and ease of installation make these kinds of pervasive networks suitable for security and surveillance environments. Moreover, the risk for humans to be exposed to these functions is minimized when using these networks. In this paper, a virtual perimeter surveillance agent, which has been designed to detect any person crossing an invisible barrier around a marked perimeter and send an alarm notification to the security staff, is presented. This agent works in a state of 'low power consumption' until there is a crossing on the perimeter. In our approach, the 'intelligence' of the agent has been distributed by using mobile nodes in order to discern the cause of the event of presence. This feature contributes to saving both processing resources and power consumption since the required code that detects presence is the only system installed. The research work described in this paper illustrates our experience in the development of a surveillance system using WNSs for a practical application as well as its evaluation in real-world deployments. This mechanism plays an important role in providing confidence in ensuring safety to our environment.
Statistical mechanics of broadcast channels using low-density parity-check codes.
Nakamura, Kazutaka; Kabashima, Yoshiyuki; Morelos-Zaragoza, Robert; Saad, David
2003-03-01
We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.
Regular Topologies for Gigabit Wide-Area Networks. Volume 1
NASA Technical Reports Server (NTRS)
Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul
1994-01-01
In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source code of all software developed under CATE.
FPGA implementation of advanced FEC schemes for intelligent aggregation networks
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.
Sollie, Annet; Sijmons, Rolf H; Helsper, Charles; Numans, Mattijs E
2017-03-01
To assess quality and reusability of coded cancer diagnoses in routine primary care data. To identify factors that influence data quality and areas for improvement. A dynamic cohort study in a Dutch network database containing 250,000 anonymized electronic medical records (EMRs) from 52 general practices was performed. Coded data from 2000 to 2011 for the three most common cancer types (breast, colon and prostate cancer) was compared to the Netherlands Cancer Registry. Data quality is expressed in Standard Incidence Ratios (SIRs): the ratio between the number of coded cases observed in the primary care network database and the expected number of cases based on the Netherlands Cancer Registry. Ratios were multiplied by 100% for readability. The overall SIR was 91.5% (95%CI 88.5-94.5) and showed improvement over the years. SIRs differ between cancer types: from 71.5% for colon cancer in males to 103.9% for breast cancer. There are differences in data quality (SIRs 76.2% - 99.7%) depending on the EMR system used, with SIRs up to 232.9% for breast cancer. Frequently observed errors in routine healthcare data can be classified as: lack of integrity checks, inaccurate use and/or lack of codes, and lack of EMR system functionality. Re-users of coded routine primary care Electronic Medical Record data should be aware that 30% of cancer cases can be missed. Up to 130% of cancer cases found in the EMR data can be false-positive. The type of EMR system and the type of cancer influence the quality of coded diagnosis registry. While data quality can be improved (e.g. through improving system design and by training EMR system users), re-use should only be taken care of by appropriately trained experts. Copyright © 2016. Published by Elsevier B.V.
Mass-storage management for distributed image/video archives
NASA Astrophysics Data System (ADS)
Franchi, Santina; Guarda, Roberto; Prampolini, Franco
1993-04-01
The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji
A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including sensor networks and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Effect of synapse dilution on the memory retrieval in structured attractor neural networks
NASA Astrophysics Data System (ADS)
Brunel, N.
1993-08-01
We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.
Hierarchical surface code for network quantum computing with modules of arbitrary size
NASA Astrophysics Data System (ADS)
Li, Ying; Benjamin, Simon C.
2016-10-01
The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a hierarchical generalization of the surface code: a small "patch" of the code exists within each module and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can exceed ˜10 % even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking, a "fine-grained" network of small modules containing only about eight qubits is competitive in total qubit count versus a "course" network with modules containing many hundreds of qubits.
Woodman, Jenny; Allister, Janice; Rafi, Imran; de Lusignan, Simon; Belsey, Jonathan; Petersen, Irene; Gilbert, Ruth
2012-01-01
Background Information is lacking on how concerns about child maltreatment are recorded in primary care records. Aim To determine how the recording of child maltreatment concerns can be improved. Design and setting Development of a quality improvement intervention involving: clinical audit, a descriptive survey, telephone interviews, a workshop, database analyses, and consensus development in UK general practice. Method Descriptive analyses and incidence estimates were carried out based on 11 study practices and 442 practices in The Health Improvement Network (THIN). Telephone interviews, a workshop, and a consensus development meeting were conducted with lead GPs from 11 study practices. Results The rate of children with at least one maltreatment-related code was 8.4/1000 child years (11 study practices, 2009–2010), and 8.0/1000 child years (THIN, 2009–2010). Of 25 patients with known maltreatment, six had no maltreatment-related codes recorded, but all had relevant free text, scanned documents, or codes. When stating their reasons for undercoding maltreatment concerns, GPs cited damage to the patient relationship, uncertainty about which codes to use, and having concerns about recording information on other family members in the child’s records. Consensus recommendations are to record the code ‘child is cause for concern’ as a red flag whenever maltreatment is considered, and to use a list of codes arranged around four clinical concepts, with an option for a templated short data entry form. Conclusion GPs under-record maltreatment-related concerns in children’s electronic medical records. As failure to use codes makes it impossible to search or audit these cases, an approach designed to be simple and feasible to implement in UK general practice was recommended. PMID:22781996
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.
Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.
NASA Astrophysics Data System (ADS)
Mense, Mario; Schindelhauer, Christian
We introduce the Read-Write-Coding-System (RWC) - a very flexible class of linear block codes that generate efficient and flexible erasure codes for storage networks. In particular, given a message x of k symbols and a codeword y of n symbols, an RW code defines additional parameters k ≤ r,w ≤ n that offer enhanced possibilities to adjust the fault-tolerance capability of the code. More precisely, an RWC provides linear left(n,k,dright)-codes that have (a) minimum distance d = n - r + 1 for any two codewords, and (b) for each codeword there exists a codeword for each other message with distance of at most w. Furthermore, depending on the values r,w and the code alphabet, different block codes such as parity codes (e.g. RAID 4/5) or Reed-Solomon (RS) codes (if r = k and thus, w = n) can be generated. In storage networks in which I/O accesses are very costly and redundancy is crucial, this flexibility has considerable advantages as r and w can optimally be adapted to read or write intensive applications; only w symbols must be updated if the message x changes completely, what is different from other codes which always need to rewrite y completely as x changes. In this paper, we first state a tight lower bound and basic conditions for all RW codes. Furthermore, we introduce special RW codes in which all mentioned parameters are adjustable even online, that is, those RW codes are adaptive to changing demands. At last, we point out some useful properties regarding safety and security of the stored data.
The Study on Network Examinational Database based on ASP Technology
NASA Astrophysics Data System (ADS)
Zhang, Yanfu; Han, Yuexiao; Zhou, Yanshuang
This article introduces the structure of the general test base system based on .NET technology, discussing the design of the function modules and its implementation methods. It focuses on key technology of the system, proposing utilizing the WEB online editor control to solve the input problem and regular expression to solve the problem HTML code, making use of genetic algorithm to optimize test paper and the automated tools of WORD to solve the problem of exporting papers and others. Practical effective design and implementation technology can be used as reference for the development of similar systems.
A method of non-contact reading code based on computer vision
NASA Astrophysics Data System (ADS)
Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan
2018-03-01
With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.
Advanced Wireless Integrated Navy Network (AWINN)
2005-12-31
handle high data rates using COTS FPGAs . The effort of the Cross-Layer Optimization group is focused on cross-layer design of UWB for position location...From Transmitter Boar1 To Receiver BoardTransmittedl Receiver i i.. Switch Lowpass -20 dB FPGA -2dB Filter Gain Controlled Gain Variable Attenuator... FPGA Code * April - June 2006 "o Demonstrate Transceiver Operation "o Integrate Transceiver with Other AWINN Activities Personnel: Chris R. Anderson
2017-11-01
7 Fig. 10 Build executable code ........................................................................... 8 Fig. 11 3DWF GUI’s main web ...can be designed in any Windows operating system with internet access via Microsoft’s Internet Explorer (IE) web browser. For this particular project...Therefore, it is advised to have network security safeguards in place and operate only in a trusted PC. The GUI’s Hypertext Markup Language (HTML) web
Design and Development of Basic Physical Layer WiMAX Network Simulation Models
2009-01-01
Wide Web . The third software version was developed during the period of 22 August to 4 November, 2008. The software version developed during the...researched on the Web . The mathematics of some fundamental concepts such as Fourier transforms, convolutional coding techniques were also reviewed...Mathworks Matlab users’ website. A simulation model was found, entitled Estudio y Simulacion de la capa Jisica de la norma 802.16 ( Sistema WiMAX) developed
Fade Mitigation Techniques at Ka-Band
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
NASA Technical Reports Server (NTRS)
1991-01-01
Various papers on supercomputing are presented. The general topics addressed include: program analysis/data dependence, memory access, distributed memory code generation, numerical algorithms, supercomputer benchmarks, latency tolerance, parallel programming, applications, processor design, networks, performance tools, mapping and scheduling, characterization affecting performance, parallelism packaging, computing climate change, combinatorial algorithms, hardware and software performance issues, system issues. (No individual items are abstracted in this volume)
Fractal Point Process and Queueing Theory and Application to Communication Networks
1999-12-31
use of nonlinear dynamics and chaos in the design of innovative analog error-protection codes for com- munications applications. In the chaos...the fol- lowing theses, patent, and papers. 1. A. Narula, M. D. Trott , and G. W. Wornell, "Information-Theoretic Analysis of Multiple-Antenna...Bounds," in Proc. Int. Conf. Dec. Control, (Japan), Dec. 1996. 5. G. W. Wornell and M. D. Trott , "Efficient Signal Processing Tech- niques for
CyberTerrorism: Cyber Prevention vs Cyber Recovery
2007-12-01
appropriate available security measures (i.e. appropriate level of spy ware, IDS, and antivirus protection software installed) are unaffected by worm attacks...a worm is a form of a virus designed to copy itself by utilizing e-mail or other software applications. The main goal of using this technique is...to permeate the network or portions of the Internet with malicious code that will affect the performance of certain software applications or will
Applying a rateless code in content delivery networks
NASA Astrophysics Data System (ADS)
Suherman; Zarlis, Muhammad; Parulian Sitorus, Sahat; Al-Akaidi, Marwan
2017-09-01
Content delivery network (CDN) allows internet providers to locate their services, to map their coverage into networks without necessarily to own them. CDN is part of the current internet infrastructures, supporting multi server applications especially social media. Various works have been proposed to improve CDN performances. Since accesses on social media servers tend to be short but frequent, providing redundant to the transmitted packets to ensure lost packets not degrade the information integrity may improve service performances. This paper examines the implementation of rateless code in the CDN infrastructure. The NS-2 evaluations show that rateless code is able to reduce packet loss up to 50%.
Cui, Laizhong; Lu, Nan; Chen, Fu
2014-01-01
Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968
Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments
NASA Astrophysics Data System (ADS)
Sklivanitis, Georgios
The objective of this dissertation is the design, development, and experimental evaluation of novel algorithms and reconfigurable radio architectures for spectrally efficient cognitive networking in terrestrial, airborne, and underwater environments. Next-generation wireless communication architectures and networking protocols that maximize spectrum utilization efficiency in congested/contested or low-spectral availability (extreme) communication environments can enable a rich body of applications with unprecedented societal impact. In recent years, underwater wireless networks have attracted significant attention for military and commercial applications including oceanographic data collection, disaster prevention, tactical surveillance, offshore exploration, and pollution monitoring. Unmanned aerial systems that are autonomously networked and fully mobile can assist humans in extreme or difficult-to-reach environments and provide cost-effective wireless connectivity for devices without infrastructure coverage. Cognitive radio (CR) has emerged as a promising technology to maximize spectral efficiency in dynamically changing communication environments by adaptively reconfiguring radio communication parameters. At the same time, the fast developing technology of software-defined radio (SDR) platforms has enabled hardware realization of cognitive radio algorithms for opportunistic spectrum access. However, existing algorithmic designs and protocols for shared spectrum access do not effectively capture the interdependencies between radio parameters at the physical (PHY), medium-access control (MAC), and network (NET) layers of the network protocol stack. In addition, existing off-the-shelf radio platforms and SDR programmable architectures are far from fulfilling runtime adaptation and reconfiguration across PHY, MAC, and NET layers. Spectrum allocation in cognitive networks with multi-hop communication requirements depends on the location, network traffic load, and interference profile at each network node. As a result, the development and implementation of algorithms and cross-layer reconfigurable radio platforms that can jointly treat space, time, and frequency as a unified resource to be dynamically optimized according to inter- and intra-network interference constraints is of fundamental importance. In the next chapters, we present novel algorithmic and software/hardware implementation developments toward the deployment of spectrally efficient terrestrial, airborne, and underwater wireless networks. In Chapter 1 we review the state-of-art in commercially available SDR platforms, describe their software and hardware capabilities, and classify them based on their ability to enable rapid prototyping and advance experimental research in wireless networks. Chapter 2 discusses system design and implementation details toward real-time evaluation of a software-radio platform for all-spectrum cognitive channelization in the presence of narrowband or wideband primary stations. All-spectrum channelization is achieved by designing maximum signal-to-interference-plus-noise ratio (SINR) waveforms that span the whole continuum of the device-accessible spectrum, while satisfying peak power and interference temperature (IT) constraints for the secondary and primary users, respectively. In Chapter 3, we introduce the concept of all-spectrum channelization based on max-SINR optimized sparse-binary waveforms, we propose optimal and suboptimal waveform design algorithms, and evaluate their SINR and bit-error-rate (BER) performance in an SDR testbed. Chapter 4 considers the problem of channel estimation with minimal pilot signaling in multi-cell multi-user multi-input multi-output (MIMO) systems with very large antenna arrays at the base station, and proposes a least-squares (LS)-type algorithm that iteratively extracts channel and data estimates from a short record of data measurements. Our algorithmic developments toward spectrally-efficient cognitive networking through joint optimization of channel access code-waveforms and routes in a multi-hop network are described in Chapter 5. Algorithmic designs are software optimized on heterogeneous multi-core general-purpose processor (GPP)-based SDR architectures by leveraging a novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the PHY, MAC, and NET layers of the network protocol stack. Our system design approach is experimentally validated under realistic conditions in a large-scale hybrid ground-air testbed deployment. Chapter 6 reviews the state-of-art in software and hardware platforms for underwater wireless networking and proposes a software-defined acoustic modem prototype that enables (i) cognitive reconfiguration of PHY/MAC parameters, and (ii) cross-technology communication adaptation. The proposed modem design is evaluated in terms of effective communication data rate in both water tank and lake testbed setups. In Chapter 7, we present a novel receiver configuration for code-waveform-based multiple-access underwater communications. The proposed receiver is fully reconfigurable and executes (i) all-spectrum cognitive channelization, and (ii) combined synchronization, channel estimation, and demodulation. Experimental evaluation in terms of SINR and BER show that all-spectrum channelization is a powerful proposition for underwater communications. At the same time, the proposed receiver design can significantly enhance bandwidth utilization. Finally, in Chapter 8, we focus on challenging practical issues that arise in underwater acoustic sensor network setups where co-located multi-antenna sensor deployment is not feasible due to power, computation, and hardware limitations, and design, implement, and evaluate an underwater receiver structure that accounts for multiple carrier frequency and timing offsets in virtual (distributed) MIMO underwater systems.
Clique-Based Neural Associative Memories with Local Coding and Precoding.
Mofrad, Asieh Abolpour; Parker, Matthew G; Ferdosi, Zahra; Tadayon, Mohammad H
2016-08-01
Techniques from coding theory are able to improve the efficiency of neuroinspired and neural associative memories by forcing some construction and constraints on the network. In this letter, the approach is to embed coding techniques into neural associative memory in order to increase their performance in the presence of partial erasures. The motivation comes from recent work by Gripon, Berrou, and coauthors, which revisited Willshaw networks and presented a neural network with interacting neurons that partitioned into clusters. The model introduced stores patterns as small-size cliques that can be retrieved in spite of partial error. We focus on improving the success of retrieval by applying two techniques: doing a local coding in each cluster and then applying a precoding step. We use a slightly different decoding scheme, which is appropriate for partial erasures and converges faster. Although the ideas of local coding and precoding are not new, the way we apply them is different. Simulations show an increase in the pattern retrieval capacity for both techniques. Moreover, we use self-dual additive codes over field [Formula: see text], which have very interesting properties and a simple-graph representation.
Fractal Viscous Fingering in Fracture Networks
NASA Astrophysics Data System (ADS)
Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.
2007-12-01
We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.
Using computer algebra and SMT solvers in algebraic biology
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-05-01
Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.
Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J
1997-01-01
Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.
NASA Astrophysics Data System (ADS)
Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix
2017-07-01
We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.
NASA Astrophysics Data System (ADS)
Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn
2017-12-01
This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.
Trading Speed and Accuracy by Coding Time: A Coupled-circuit Cortical Model
Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.
2013-01-01
Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification. PMID:23592967
Low-complex energy-aware image communication in visual sensor networks
NASA Astrophysics Data System (ADS)
Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran
2013-10-01
A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Z.; Zweibaum, N.; Shao, M.
The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less
Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.
Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W
2017-10-01
The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Rectified factor networks for biclustering of omics data.
Clevert, Djork-Arné; Unterthiner, Thomas; Povysil, Gundula; Hochreiter, Sepp
2017-07-15
Biclustering has become a major tool for analyzing large datasets given as matrix of samples times features and has been successfully applied in life sciences and e-commerce for drug design and recommender systems, respectively. actor nalysis for cluster cquisition (FABIA), one of the most successful biclustering methods, is a generative model that represents each bicluster by two sparse membership vectors: one for the samples and one for the features. However, FABIA is restricted to about 20 code units because of the high computational complexity of computing the posterior. Furthermore, code units are sometimes insufficiently decorrelated and sample membership is difficult to determine. We propose to use the recently introduced unsupervised Deep Learning approach Rectified Factor Networks (RFNs) to overcome the drawbacks of existing biclustering methods. RFNs efficiently construct very sparse, non-linear, high-dimensional representations of the input via their posterior means. RFN learning is a generalized alternating minimization algorithm based on the posterior regularization method which enforces non-negative and normalized posterior means. Each code unit represents a bicluster, where samples for which the code unit is active belong to the bicluster and features that have activating weights to the code unit belong to the bicluster. On 400 benchmark datasets and on three gene expression datasets with known clusters, RFN outperformed 13 other biclustering methods including FABIA. On data of the 1000 Genomes Project, RFN could identify DNA segments which indicate, that interbreeding with other hominins starting already before ancestors of modern humans left Africa. https://github.com/bioinf-jku/librfn. djork-arne.clevert@bayer.com or hochreit@bioinf.jku.at. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Veinot, Tiffany C; Campbell, Terrance R; Kruger, Daniel J; Grodzinski, Alison
2013-01-01
Objective We investigated the user requirements of African-American youth (aged 14–24 years) to inform the design of a culturally appropriate, network-based informatics intervention for the prevention of HIV and other sexually transmitted infections (STI). Materials and Methods We conducted 10 focus groups with 75 African-American youth from a city with high HIV/STI prevalence. Data analyses involved coding using qualitative content analysis procedures and memo writing. Results Unexpectedly, the majority of participants’ design recommendations concerned trust. Youth expressed distrust towards people and groups, which was amplified within the context of information technology-mediated interactions about HIV/STI. Participants expressed distrust in the reliability of condoms and the accuracy of HIV tests. They questioned the benevolence of many institutions, and some rejected authoritative HIV/STI information. Therefore, reputational information, including rumor, influenced HIV/STI-related decision making. Participants’ design requirements also focused on trust-related concerns. Accordingly, we developed a novel trust-centered design framework to guide intervention design. Discussion Current approaches to online trust for health informatics do not consider group-level trusting patterns. Yet, trust was the central intervention-relevant issue among African-American youth, suggesting an important focus for culturally informed design. Our design framework incorporates: intervention objectives (eg, network embeddedness, participation); functional specifications (eg, decision support, collective action, credible question and answer services); and interaction design (eg, member control, offline network linkages, optional anonymity). Conclusions Trust is a critical focus for HIV/STI informatics interventions for young African Americans. Our design framework offers practical, culturally relevant, and systematic guidance to designers to reach this underserved group better. PMID:23512830
Maestro and Castro: Simulation Codes for Astrophysical Flows
NASA Astrophysics Data System (ADS)
Zingale, Michael; Almgren, Ann; Beckner, Vince; Bell, John; Friesen, Brian; Jacobs, Adam; Katz, Maximilian P.; Malone, Christopher; Nonaka, Andrew; Zhang, Weiqun
2017-01-01
Stellar explosions are multiphysics problems—modeling them requires the coordinated input of gravity solvers, reaction networks, radiation transport, and hydrodynamics together with microphysics recipes to describe the physics of matter under extreme conditions. Furthermore, these models involve following a wide range of spatial and temporal scales, which puts tough demands on simulation codes. We developed the codes Maestro and Castro to meet the computational challenges of these problems. Maestro uses a low Mach number formulation of the hydrodynamics to efficiently model convection. Castro solves the fully compressible radiation hydrodynamics equations to capture the explosive phases of stellar phenomena. Both codes are built upon the BoxLib adaptive mesh refinement library, which prepares them for next-generation exascale computers. Common microphysics shared between the codes allows us to transfer a problem from the low Mach number regime in Maestro to the explosive regime in Castro. Importantly, both codes are freely available (https://github.com/BoxLib-Codes). We will describe the design of the codes and some of their science applications, as well as future development directions.Support for development was provided by NSF award AST-1211563 and DOE/Office of Nuclear Physics grant DE-FG02-87ER40317 to Stony Brook and by the Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under US DOE contract DE-AC02-05CH11231 to LBNL.
Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop
NASA Technical Reports Server (NTRS)
Dessouky, Khaled
1989-01-01
The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included.
Range Measurement as Practiced in the Deep Space Network
NASA Technical Reports Server (NTRS)
Berner, Jeff B.; Bryant, Scott H.; Kinman, Peter W.
2007-01-01
Range measurements are used to improve the trajectory models of spacecraft tracked by the Deep Space Network. The unique challenge of deep-space ranging is that the two-way delay is long, typically many minutes, and the signal-to-noise ratio is small. Accurate measurements are made under these circumstances by means of long correlations that incorporate Doppler rate-aiding. This processing is done with commercial digital signal processors, providing a flexibility in signal design that can accommodate both the traditional sequential ranging signal and pseudonoise range codes. Accurate range determination requires the calibration of the delay within the tracking station. Measurements with a standard deviation of 1 m have been made.
Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya
2003-01-01
The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic analysis, engine cycle analysis, propulsion data interpolation, mission performance, airfield length for landing and takeoff, noise footprint, and others.
NASA Technical Reports Server (NTRS)
1976-01-01
Wind turbine configurations that would lead to generation of electrical power in a cost effective manner were considered. All possible overall system configurationss, operating modes, and sybsystem concepts were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The rationale employed and the key findings are summarized.
Imran, Noreen; Seet, Boon-Chong; Fong, A C M
2015-01-01
Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian-Wolf and Wyner-Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs.
Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2011-01-01
In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.
Building Interactive Simulations in Web Pages without Programming.
Mailen Kootsey, J; McAuley, Grant; Bernal, Julie
2005-01-01
A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.
Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2011-01-01
An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.
A contourlet transform based algorithm for real-time video encoding
NASA Astrophysics Data System (ADS)
Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris
2012-06-01
In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.
Opportunistic quantum network coding based on quantum teleportation
NASA Astrophysics Data System (ADS)
Shang, Tao; Du, Gang; Liu, Jian-wei
2016-04-01
It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis
Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233
ERIC Educational Resources Information Center
Doss, Martha Merrill, Ed.
This directory is designed to be a source for research and help to women preparing for careers or for entry or reentry into the work force. Section One is an alphabetical listing of national organizations, associations, programs, and government agencies. Section Two is divided by State; resources cited here are listed numerically by zip code so…
ATLAS Test Program Generator II (AGEN II). Volume I. Executive Software System.
1980-08-01
features. l-1 C. To provide detailed descriptions of each of the system components and modules and their corresponding flowcharts. D. To describe methods of...contains the FORTRAN source code listings to enable programmer to do the expansions and modifications. The methods and details of adding another...characteristics of the network. The top-down implementa- tion method is therefore suggested. This method starts at the top by designing the IVT modules in
Formal System Verification for Trustworthy Embedded Systems
2011-04-19
microkernel basis. We had previously achieved code- level formal verification of the seL4 microkernel [3]. In the present project, over 12 months with 0.6 FTE...project, we designed and implemented a secure network access device (SAC) on top of the verified seL4 microkernel. The device allows a trusted front...Engelhardt, Rafal Kolan- ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4 : Formal verification of an OS kernel. CACM, 53(6):107
Connection anonymity analysis in coded-WDM PONs
NASA Astrophysics Data System (ADS)
Sue, Chuan-Ching
2008-04-01
A coded wavelength division multiplexing passive optical network (WDM PON) is presented for fiber to the home (FTTH) systems to protect against eavesdropping. The proposed scheme applies spectral amplitude coding (SAC) with a unipolar maximal-length sequence (M-sequence) code matrix to generate a specific signature address (coding) and to retrieve its matching address codeword (decoding) by exploiting the cyclic properties inherent in array waveguide grating (AWG) routers. In addition to ensuring the confidentiality of user data, the proposed coded-WDM scheme is also a suitable candidate for the physical layer with connection anonymity. Under the assumption that the eavesdropper applies a photo-detection strategy, it is shown that the coded WDM PON outperforms the conventional TDM PON and WDM PON schemes in terms of a higher degree of connection anonymity. Additionally, the proposed scheme allows the system operator to partition the optical network units (ONUs) into appropriate groups so as to achieve a better degree of anonymity.
Energy coding in biological neural networks
Zhang, Zhikang
2007-01-01
According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513
Quality of service policy control in virtual private networks
NASA Astrophysics Data System (ADS)
Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru
2004-04-01
This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.
Nodal network generator for CAVE3
NASA Technical Reports Server (NTRS)
Palmieri, J. V.; Rathjen, K. A.
1982-01-01
A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.
IMC/RMC Network Professional Film Collection.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Special Education Instructional Materials Center.
The compilation is a comprehensive listing of films available from the centers in the Instructional Materials Centers/Regional Media Centers (IMC/RMC) Network. Each IMC/RMC location is given a numerical code in a preliminary listing. These numerical codes are used within the film listing, which is arranged alphabetically according to film titles,…
Physical-layer network coding in coherent optical OFDM systems.
Guan, Xun; Chan, Chun-Kit
2015-04-20
We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.
Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity
2010-12-10
Armen Babikyan, Nathaniel M. Jones, Thomas H. Shake, and Andrew P. Worthen MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 DDRE, 1777...delay U U U U SAR 11 Zach Sweet 781-981-5997 1 Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity Brooke Shrader, Armen
Anisotropic connectivity implements motion-based prediction in a spiking neural network.
Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U
2013-01-01
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.
Distributed intelligent control and status networking
NASA Technical Reports Server (NTRS)
Fortin, Andre; Patel, Manoj
1993-01-01
Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.
Low-rate image coding using vector quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makur, A.
1990-01-01
This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less
STDP-based spiking deep convolutional neural networks for object recognition.
Kheradpisheh, Saeed Reza; Ganjtabesh, Mohammad; Thorpe, Simon J; Masquelier, Timothée
2018-03-01
Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated - using rate-based neural networks trained with back-propagation - that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distributed Joint Source-Channel Coding in Wireless Sensor Networks
Zhu, Xuqi; Liu, Yu; Zhang, Lin
2009-01-01
Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560
NASA Astrophysics Data System (ADS)
Qiu, Kun; Zhang, Chongfu; Ling, Yun; Wang, Yibo
2007-11-01
This paper proposes an all-optical label processing scheme using multiple optical orthogonal codes sequences (MOOCS) for optical packet switching (OPS) (MOOCS-OPS) networks, for the first time to the best of our knowledge. In this scheme, the multiple optical orthogonal codes (MOOC) from multiple-groups optical orthogonal codes (MGOOC) are permuted and combined to obtain the MOOCS for the optical labels, which are used to effectively enlarge the capacity of available optical codes for optical labels. The optical label processing (OLP) schemes are reviewed and analyzed, the principles of MOOCS-based optical labels for OPS networks are given, and analyzed, then the MOOCS-OPS topology and the key realization units of the MOOCS-based optical label packets are studied in detail, respectively. The performances of this novel all-optical label processing technology are analyzed, the corresponding simulation is performed. These analysis and results show that the proposed scheme can overcome the lack of available optical orthogonal codes (OOC)-based optical labels due to the limited number of single OOC for optical label with the short code length, and indicate that the MOOCS-OPS scheme is feasible.
Green, Nancy
2005-04-01
We developed a Bayesian network coding scheme for annotating biomedical content in layperson-oriented clinical genetics documents. The coding scheme supports the representation of probabilistic and causal relationships among concepts in this domain, at a high enough level of abstraction to capture commonalities among genetic processes and their relationship to health. We are using the coding scheme to annotate a corpus of genetic counseling patient letters as part of the requirements analysis and knowledge acquisition phase of a natural language generation project. This paper describes the coding scheme and presents an evaluation of intercoder reliability for its tag set. In addition to giving examples of use of the coding scheme for analysis of discourse and linguistic features in this genre, we suggest other uses for it in analysis of layperson-oriented text and dialogue in medical communication.
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.
2005-09-01
A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Layered Wyner-Ziv video coding.
Xu, Qian; Xiong, Zixiang
2006-12-01
Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks.
Neural network for image compression
NASA Astrophysics Data System (ADS)
Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.
1992-09-01
In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.
Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo
2012-12-01
In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.
APINetworks Java. A Java approach to the efficient treatment of large-scale complex networks
NASA Astrophysics Data System (ADS)
Muñoz-Caro, Camelia; Niño, Alfonso; Reyes, Sebastián; Castillo, Miriam
2016-10-01
We present a new version of the core structural package of our Application Programming Interface, APINetworks, for the treatment of complex networks in arbitrary computational environments. The new version is written in Java and presents several advantages over the previous C++ version: the portability of the Java code, the easiness of object-oriented design implementations, and the simplicity of memory management. In addition, some additional data structures are introduced for storing the sets of nodes and edges. Also, by resorting to the different garbage collectors currently available in the JVM the Java version is much more efficient than the C++ one with respect to memory management. In particular, the G1 collector is the most efficient one because of the parallel execution of G1 and the Java application. Using G1, APINetworks Java outperforms the C++ version and the well-known NetworkX and JGraphT packages in the building and BFS traversal of linear and complete networks. The better memory management of the present version allows for the modeling of much larger networks.
Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness
Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.
2015-01-01
A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057
A precise clock distribution network for MRPC-based experiments
NASA Astrophysics Data System (ADS)
Wang, S.; Cao, P.; Shang, L.; An, Q.
2016-06-01
In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.
Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron
2017-01-01
Abstract Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. PMID:28814063
Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H
2017-08-01
Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.
ERIC Educational Resources Information Center
Salisbury, Amy L.; Fallone, Melissa Duncan; Lester, Barry
2005-01-01
This review provides an overview and definition of the concept of neurobehavior in human development. Two neurobehavioral assessments used by the authors in current fetal and infant research are discussed: the NICU Network Neurobehavioral Assessment Scale and the Fetal Neurobehavior Coding System. This review will present how the two assessments…
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Technical Reports Server (NTRS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
1987-01-01
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Astrophysics Data System (ADS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Trace Replay and Network Simulation Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acun, Bilge; Jain, Nikhil; Bhatele, Abhinav
2015-03-23
TraceR is a trace reply tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performances and understanding network behavior by simulating messaging in High Performance Computing applications on interconnection networks.
Trace Replay and Network Simulation Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Bhatele, Abhinav; Acun, Bilge
TraceR Is a trace replay tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performance and understanding network behavior by simulating messaging In High Performance Computing applications on interconnection networks.
Wireless visual sensor network resource allocation using cross-layer optimization
NASA Astrophysics Data System (ADS)
Bentley, Elizabeth S.; Matyjas, John D.; Medley, Michael J.; Kondi, Lisimachos P.
2009-01-01
In this paper, we propose an approach to manage network resources for a Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network where nodes monitor scenes with varying levels of motion. It uses cross-layer optimization across the physical layer, the link layer and the application layer. Our technique simultaneously assigns a source coding rate, a channel coding rate, and a power level to all nodes in the network based on one of two criteria that maximize the quality of video of the entire network as a whole, subject to a constraint on the total chip rate. One criterion results in the minimal average end-to-end distortion amongst all nodes, while the other criterion minimizes the maximum distortion of the network. Our approach allows one to determine the capacity of the visual sensor network based on the number of nodes and the quality of video that must be transmitted. For bandwidth-limited applications, one can also determine the minimum bandwidth needed to accommodate a number of nodes with a specific target chip rate. Video captured by a sensor node camera is encoded and decoded using the H.264 video codec by a centralized control unit at the network layer. To reduce the computational complexity of the solution, Universal Rate-Distortion Characteristics (URDCs) are obtained experimentally to relate bit error probabilities to the distortion of corrupted video. Bit error rates are found first by using Viterbi's upper bounds on the bit error probability and second, by simulating nodes transmitting data spread by Total Square Correlation (TSC) codes over a Rayleigh-faded DS-CDMA channel and receiving that data using Auxiliary Vector (AV) filtering.
The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.
Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun
2018-01-01
Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.
Maki, Brian E; Sibley, Katherine M; Jaglal, Susan B; Bayley, Mark; Brooks, Dina; Fernie, Geoff R; Flint, Alastair J; Gage, William; Liu, Barbara A; McIlroy, William E; Mihailidis, Alex; Perry, Stephen D; Popovic, Milos R; Pratt, Jay; Zettel, John L
2011-12-01
Falling is a leading cause of serious injury, loss of independence, and nursing-home admission in older adults. Impaired balance control is a major contributing factor. Results from our balance-control studies have been applied in the development of new and improved interventions and assessment tools. Initiatives to facilitate knowledge-translation of this work include setting up a new network of balance clinics, a research-user network and a research-user advisory board. Our findings support the efficacy of the developed balance-training methods, balance-enhancing footwear, neuro-prosthesis, walker design, handrail-cueing system, and handrail-design recommendations in improving specific aspects of balance control. IMPACT ON KNOWLEDGE USERS: A new balance-assessment tool has been implemented in the first new balance clinic, a new balance-enhancing insole is available through pharmacies and other commercial outlets, and handrail design recommendations have been incorporated into 10 Canadian and American building codes. Work in progress is expected to have further impact. Copyright © 2011 National Safety Council and Elsevier Ltd. All rights reserved.
Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization
2009-01-01
Rate Compatible Punctured Convolutional (RCPC) codes for channel...vol. 44, pp. 2943–2959, November 1998. [22] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE... coding rate for H.264/AVC video compression is determined. At the data link layer, the Rate - Compatible Puctured Convolutional (RCPC) channel coding
Tsapatsoulis, Nicolas; Loizou, Christos; Pattichis, Constantinos
2007-01-01
Efficient medical video transmission over 3G wireless is of great importance for fast diagnosis and on site medical staff training purposes. In this paper we present a region of interest based ultrasound video compression study which shows that significant reduction of the required, for transmission, bit rate can be achieved without altering the design of existing video codecs. Simple preprocessing of the original videos to define visually and clinically important areas is the only requirement.
Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E
2017-04-15
Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.
Signal Detection and Frame Synchronization of Multiple Wireless Networking Waveforms
2007-09-01
punctured to obtain coding rates of 2 3 and 3 4 . Convolutional forward error correction coding is used to detect and correct bit...likely to be isolated and be correctable by the convolutional decoder. 44 Data rate (Mbps) Modulation Coding Rate Coded bits per subcarrier...binary convolutional code . A shortened Reed-Solomon technique is employed first. The code is shortened depending upon the data
The Role of Margin in Link Design and Optimization
NASA Technical Reports Server (NTRS)
Cheung, K.
2015-01-01
Link analysis is a system engineering process in the design, development, and operation of communication systems and networks. Link models that are mathematical abstractions representing the useful signal power and the undesirable noise and attenuation effects (including weather effects if the signal path transverses through the atmosphere) that are integrated into the link budget calculation that provides the estimates of signal power and noise power at the receiver. Then the link margin is applied which attempts to counteract the fluctuations of the signal and noise power to ensure reliable data delivery from transmitter to receiver. (Link margin is dictated by the link margin policy or requirements.) A simple link budgeting approach assumes link parameters to be deterministic values typically adopted a rule-of-thumb policy of 3 dB link margin. This policy works for most S- and X-band links due to their insensitivity to weather effects. But for higher frequency links like Ka-band, Ku-band, and optical communication links, it is unclear if a 3 dB link margin would guarantee link closure. Statistical link analysis that adopted the 2-sigma or 3-sigma link margin incorporates link uncertainties in the sigma calculation. (The Deep Space Network (DSN) link margin policies are 2-sigma for downlink and 3-sigma for uplink.) The link reliability can therefore be quantified statistically even for higher frequency links. However in the current statistical link analysis approach, link reliability is only expressed as the likelihood of exceeding the signal-to-noise ratio (SNR) threshold that corresponds to a given bit-error-rate (BER) or frame-error-rate (FER) requirement. The method does not provide the true BER or FER estimate of the link with margin, or the required signalto-noise ratio (SNR) that would meet the BER or FER requirement in the statistical sense. In this paper, we perform in-depth analysis on the relationship between BER/FER requirement, operating SNR, and coding performance curve, in the case when the channel coherence time of link fluctuation is comparable or larger than the time duration of a codeword. We compute the "true" SNR design point that would meet the BER/FER requirement by taking into account the fluctuation of signal power and noise power at the receiver, and the shape of the coding performance curve. This analysis yields a number of valuable insights on the design choices of coding scheme and link margin for the reliable data delivery of a communication system - space and ground. We illustrate the aforementioned analysis using a number of standard NASA error-correcting codes.
A robust low-rate coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Sayood, Khalid; Nelson, D. J.; Arikan, E. (Editor)
1991-01-01
Due to the rapidly evolving field of image processing and networking, video information promises to be an important part of telecommunication systems. Although up to now video transmission has been transported mainly over circuit-switched networks, it is likely that packet-switched networks will dominate the communication world in the near future. Asynchronous transfer mode (ATM) techniques in broadband-ISDN can provide a flexible, independent and high performance environment for video communication. For this paper, the network simulator was used only as a channel in this simulation. Mixture blocking coding with progressive transmission (MBCPT) has been investigated for use over packet networks and has been found to provide high compression rate with good visual performance, robustness to packet loss, tractable integration with network mechanics and simplicity in parallel implementation.
Constructing Neuronal Network Models in Massively Parallel Environments.
Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.
Constructing Neuronal Network Models in Massively Parallel Environments
Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808
Park, Seong C; Finnell, John T
2012-01-01
In 2009, Indianapolis launched an electronic medical record system within their ambulances1 and started to exchange patient data with the Indiana Network for Patient Care (INPC) This unique system allows EMS personnel to get important information prior to the patient's arrival to the hospital. In this descriptive study, we found EMS personnel requested patient data on 14% of all transports, with a "success" match rate of 46%, and a match "failure" rate of 17%. The three major factors for causing match "failure" were ZIP code 55%, Patient Name 22%, and Birth date 12%. We conclude that the ZIP code matching process needs to be improved by applying a limitation of 5 digits in ZIP code instead of using ZIP+4 code. Non-ZIP code identifiers may be a better choice due to inaccuracies and changes of the ZIP code in a patient's record.
What the success of brain imaging implies about the neural code.
Guest, Olivia; Love, Bradley C
2017-01-19
The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
Theta phase precession and phase selectivity: a cognitive device description of neural coding
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Bardakjian, Berj L.
2009-06-01
Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.
Neural coding in graphs of bidirectional associative memories.
Bouchain, A David; Palm, Günther
2012-01-24
In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including distributed software systems, sensor networks, robot operation, complex scripts for spacecraft integration and testing, and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including distributed software systems, sensor networks, robot operation, complex scripts for spacecraft integration and testing, and autonomous systems. Currently available tools and methods that start with a formal model of a: system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The "gap" that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the ciasses of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Bidirectional automatic release of reserve for low voltage network made with low capacity PLCs
NASA Astrophysics Data System (ADS)
Popa, I.; Popa, G. N.; Diniş, C. M.; Deaconu, S. I.
2018-01-01
The article presents the design of a bidirectional automatic release of reserve made on two types low capacity programmable logic controllers: PS-3 from Klöckner-Moeller and Zelio from Schneider. It analyses the electronic timing circuits that can be used for making the bidirectional automatic release of reserve: time-on delay circuit and time-off delay circuit (two types). In the paper are present the sequences code for timing performed on the PS-3 PLC, the logical functions for the bidirectional automatic release of reserve, the classical control electrical diagram (with contacts, relays, and time relays), the electronic control diagram (with logical gates and timing circuits), the code (in IL language) made for the PS-3 PLC, and the code (in FBD language) made for Zelio PLC. A comparative analysis will be carried out on the use of the two types of PLC and will be present the advantages of using PLCs.
Performance Analysis of Hybrid ARQ Protocols in a Slotted Code Division Multiple-Access Network
1989-08-01
Convolutional Codes . in Proc Int. Conf. Commun., 21.4.1-21.4.5, 1987. [27] J. Hagenauer. Rate Compatible Punctured Convolutional Codes . in Proc Int. Conf...achieved by using a low rate (r = 0.5), high constraint length (e.g., 32) punctured convolutional code . Code puncturing provides for a variable rate code ...investigated the use of convolutional codes in Type II Hybrid ARQ protocols. The error
Dynamic quality of service differentiation using fixed code weight in optical CDMA networks
NASA Astrophysics Data System (ADS)
Kakaee, Majid H.; Essa, Shawnim I.; Abd, Thanaa H.; Seyedzadeh, Saleh
2015-11-01
The emergence of network-driven applications, such as internet, video conferencing, and online gaming, brings in the need for a network the environments with capability of providing diverse Quality of Services (QoS). In this paper, a new code family of novel spreading sequences, called a Multi-Service (MS) code, has been constructed to support multiple services in Optical- Code Division Multiple Access (CDMA) system. The proposed method uses fixed weight for all services, however reducing the interfering codewords for the users requiring higher QoS. The performance of the proposed code is demonstrated using mathematical analysis. It shown that the total number of served users with satisfactory BER of 10-9 using NB=2 is 82, while they are only 36 and 10 when NB=3 and 4 respectively. The developed MS code is compared with variable-weight codes such as Variable Weight-Khazani Syed (VW-KS) and Multi-Weight-Random Diagonal (MW-RD). Different numbers of basic users (NB) are used to support triple-play services (audio, data and video) with different QoS requirements. Furthermore, reference to the BER of 10-12, 10-9, and 10-3 for video, data and audio, respectively, the system can support up to 45 total users. Hence, results show that the technique can clearly provide a relative QoS differentiation with lower value of basic users can support larger number of subscribers as well as better performance in terms of acceptable BER of 10-9 at fixed code weight.
Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B
2012-04-09
Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.
Poli, Daniele; Thiagarajan, Srikanth; DeMarse, Thomas B.; Wheeler, Bruce C.; Brewer, Gregory J.
2017-01-01
To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the trials, significantly higher than the reverse, i.e., how well-recording in DG could predict the stimulation site in CA3. In conclusion, our co-cultured model for the in vivo DG-CA3 hippocampal network showed sparse and specific responses in CA3, selectively evoked by each stimulation site in DG. PMID:28321182
Xu, Guoai; Li, Qi; Guo, Yanhui; Zhang, Miao
2017-01-01
Authorship attribution is to identify the most likely author of a given sample among a set of candidate known authors. It can be not only applied to discover the original author of plain text, such as novels, blogs, emails, posts etc., but also used to identify source code programmers. Authorship attribution of source code is required in diverse applications, ranging from malicious code tracking to solving authorship dispute or software plagiarism detection. This paper aims to propose a new method to identify the programmer of Java source code samples with a higher accuracy. To this end, it first introduces back propagation (BP) neural network based on particle swarm optimization (PSO) into authorship attribution of source code. It begins by computing a set of defined feature metrics, including lexical and layout metrics, structure and syntax metrics, totally 19 dimensions. Then these metrics are input to neural network for supervised learning, the weights of which are output by PSO and BP hybrid algorithm. The effectiveness of the proposed method is evaluated on a collected dataset with 3,022 Java files belong to 40 authors. Experiment results show that the proposed method achieves 91.060% accuracy. And a comparison with previous work on authorship attribution of source code for Java language illustrates that this proposed method outperforms others overall, also with an acceptable overhead. PMID:29095934
Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III
1996-01-01
Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.
Automated Run-Time Mission and Dialog Generation
2007-03-01
Processing, Social Network Analysis, Simulation, Automated Scenario Generation 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified...9 D. SOCIAL NETWORKS...13 B. MISSION AND DIALOG GENERATION.................................................13 C. SOCIAL NETWORKS
Protection of HEVC Video Delivery in Vehicular Networks with RaptorQ Codes
Martínez-Rach, Miguel; López, Otoniel; Malumbres, Manuel Pérez
2014-01-01
With future vehicles equipped with processing capability, storage, and communications, vehicular networks will become a reality. A vast number of applications will arise that will make use of this connectivity. Some of them will be based on video streaming. In this paper we focus on HEVC video coding standard streaming in vehicular networks and how it deals with packet losses with the aid of RaptorQ, a Forward Error Correction scheme. As vehicular networks are packet loss prone networks, protection mechanisms are necessary if we want to guarantee a minimum level of quality of experience to the final user. We have run simulations to evaluate which configurations fit better in this type of scenarios. PMID:25136675
Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie
2017-01-01
Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820
Container-code recognition system based on computer vision and deep neural networks
NASA Astrophysics Data System (ADS)
Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao
2018-04-01
Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.
The origins and evolutionary history of human non-coding RNA regulatory networks.
Sherafatian, Masih; Mowla, Seyed Javad
2017-04-01
The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.
Recent research in network problems with applications
NASA Technical Reports Server (NTRS)
Thompson, G. L.
1980-01-01
The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.
ANNA: A Convolutional Neural Network Code for Spectroscopic Analysis
NASA Astrophysics Data System (ADS)
Lee-Brown, Donald; Anthony-Twarog, Barbara J.; Twarog, Bruce A.
2018-01-01
We present ANNA, a Python-based convolutional neural network code for the automated analysis of stellar spectra. ANNA provides a flexible framework that allows atmospheric parameters such as temperature and metallicity to be determined with accuracies comparable to those of established but less efficient techniques. ANNA performs its parameterization extremely quickly; typically several thousand spectra can be analyzed in less than a second. Additionally, the code incorporates features which greatly speed up the training process necessary for the neural network to measure spectra accurately, resulting in a tool that can easily be run on a single desktop or laptop computer. Thus, ANNA is useful in an era when spectrographs increasingly have the capability to collect dozens to hundreds of spectra each night. This talk will cover the basic features included in ANNA and demonstrate its performance in two use cases: an open cluster abundance analysis involving several hundred spectra, and a metal-rich field star study. Applicability of the code to large survey datasets will also be discussed.
Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.
2016-01-01
A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865
a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-05-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.
NASA Astrophysics Data System (ADS)
Leukhin, R. I.; Shaykhutdinov, D. V.; Shirokov, K. M.; Narakidze, N. D.; Vlasov, A. S.
2017-02-01
Developing the experimental design of new electromagnetic constructions types in engineering industry enterprises requires solutions of two major problems: regulator’s parameters setup and comprehensive testing of electromagnets. A weber-ampere characteristic as a data source for electromagnet condition identification was selected. Present article focuses on development and implementation of the software for electromagnetic drive control system based on the weber-ampere characteristic measuring. The software for weber-ampere characteristic data processing based on artificial neural network is developed. Results of the design have been integrated into the program code in LabVIEW environment. The license package of LabVIEW graphic programming was used. The hardware is chosen and possibility of its use for control system implementation was proved. The trained artificial neural network defines electromagnetic drive effector position with minimal error. Developed system allows to control the electromagnetic drive powered by the voltage source, the current source and hybrid sources.
Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding
NASA Astrophysics Data System (ADS)
Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.
2016-03-01
In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.
Interplanetary Overlay Network Bundle Protocol Implementation
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.
Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2013-02-01
The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the highest priority followed by NAL units containing pictures used as reference pictures from which others can be predicted. The second method assigned a priority to each NAL unit based on the rate-distortion cost of the VCL coding units contained in the NAL unit. The sum of the rate-distortion costs of each coding unit contained in a NAL unit was used as the priority weighting. The preliminary results of extensive experiments have shown that all three schemes offered an improvement in PSNR, when comparing original and decoded received streams, over uncontrolled packet loss. Using the first method consistently delivered a significant average improvement of 0.97dB over the uncontrolled scenario while the second method provided a measurable, but less consistent, improvement across the range of testing conditions and encoder configurations.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2016-10-06
Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .
Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah
As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the modelmore » size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.« less
Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco
2017-01-01
The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.
Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco
2017-01-01
The recent “deep learning revolution” in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems. PMID:28377709
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
Neural networks for data compression and invariant image recognition
NASA Technical Reports Server (NTRS)
Gardner, Sheldon
1989-01-01
An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.
NASA Technical Reports Server (NTRS)
Burkhardt, Z.; Ramachandran, N.; Majumdar, A.
2017-01-01
Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.
Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.
Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang
2018-09-01
Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.
Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.
Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael
2010-07-01
The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.
The effect of an exogenous magnetic field on neural coding in deep spiking neural networks.
Guo, Lei; Zhang, Wei; Zhang, Jialei
2018-01-01
A ten-layer feed forward network is constructed in the presence of an exogenous alternating magnetic field. Specifically, our results indicate that for rate coding, the firing rate is significantly increased in the presence of an exogenous alternating magnetic field and particularly with increasing enhancement of the alternating magnetic field amplitude. For temporal coding, the interspike intervals of the spiking sequence are decreased and the distribution of the interspike intervals of the spiking sequence tends to be uniform in the presence of alternating magnetic field.
Braiding by Majorana tracking and long-range CNOT gates with color codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2017-11-01
Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.
Deconvolution using a neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Method and system for pattern analysis using a coarse-coded neural network
NASA Technical Reports Server (NTRS)
Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)
1994-01-01
A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.
Rossi, L; Materia, E; Hourani, A; Yousef, H; Racalbuto, V; Venier, C; Osman, M
2009-01-01
A case-mix hospital information system was designed and implemented in Palestine Red Crescent Society hospitals in order to support the network of Palestinian hospitals in Lebanon and to improve the health of refugees in the country. The system is based on routine collection of essential administrative and clinical data for each episode of hospitalization, relying on internationally accepted diagnostic codes. It is a computerized, user-friendly information system that is a stepping-stone towards better hospital management and evaluation of quality of care. It is also a useful model for the development of hospital information systems in Lebanon and in the Near East.
Design and Implementation of a Distributed Version of the NASA Engine Performance Program
NASA Technical Reports Server (NTRS)
Cours, Jeffrey T.
1994-01-01
Distributed NEPP is a new version of the NASA Engine Performance Program that runs in parallel on a collection of Unix workstations connected through a network. The program is fault-tolerant, efficient, and shows significant speed-up in a multi-user, heterogeneous environment. This report describes the issues involved in designing distributed NEPP, the algorithms the program uses, and the performance distributed NEPP achieves. It develops an analytical model to predict and measure the performance of the simple distribution, multiple distribution, and fault-tolerant distribution algorithms that distributed NEPP incorporates. Finally, the appendices explain how to use distributed NEPP and document the organization of the program's source code.
Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S
2015-10-30
Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.
Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-10-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus
Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-01-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072
The transfer and transformation of collective network information in gene-matched networks.
Kitsukawa, Takashi; Yagi, Takeshi
2015-10-09
Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.
Supervised Learning Based on Temporal Coding in Spiking Neural Networks.
Mostafa, Hesham
2017-08-01
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.
Data Delivery Method Based on Neighbor Nodes' Information in a Mobile Ad Hoc Network
Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru
2014-01-01
This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow. PMID:24672371
Data delivery method based on neighbor nodes' information in a mobile ad hoc network.
Kashihara, Shigeru; Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru
2014-01-01
This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow.
NASA Technical Reports Server (NTRS)
1976-01-01
All possible overall system configurations, operating modes, and subsystem concepts for a wind turbine configuration for cost effective generation of electrical power were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The various design features and components evaluated are described, and the rationale employed to select the final design configuration is given. All pertinent technical performance data and component cost data is included. The costs of all major subassemblies are estimated and the resultant energy costs for both the 500 kW and 1500 kW units are calculated.
Solving Problems With SINDA/FLUINT
NASA Technical Reports Server (NTRS)
2002-01-01
SINDA/FLUINT, the NASA standard software system for thermohydraulic analysis, provides computational simulation of interacting thermal and fluid effects in designs modeled as heat transfer and fluid flow networks. The product saves time and money by making the user's design process faster and easier, and allowing the user to gain a better understanding of complex systems. The code is completely extensible, allowing the user to choose the features, accuracy and approximation levels, and outputs. Users can also add their own customizations as needed to handle unique design tasks or to automate repetitive tasks. Applications for SINDA/FLUINT include the pharmaceutical, petrochemical, biomedical, electronics, and energy industries. The system has been used to simulate nuclear reactors, windshield wipers, and human windpipes. In the automotive industry, it simulates the transient liquid/vapor flows within air conditioning systems.
NASA Technical Reports Server (NTRS)
Sanz, J.; Pischel, K.; Hubler, D.
1992-01-01
An application for parallel computation on a combined cluster of powerful workstations and supercomputers was developed. A Parallel Virtual Machine (PVM) is used as message passage language on a macro-tasking parallelization of the Aerodynamic Inverse Design and Analysis for a Full Engine computer code. The heterogeneous nature of the cluster is perfectly handled by the controlling host machine. Communication is established via Ethernet with the TCP/IP protocol over an open network. A reasonable overhead is imposed for internode communication, rendering an efficient utilization of the engaged processors. Perhaps one of the most interesting features of the system is its versatile nature, that permits the usage of the computational resources available that are experiencing less use at a given point in time.
Engineering large-scale agent-based systems with consensus
NASA Technical Reports Server (NTRS)
Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.
1994-01-01
The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.
Phase synchronization motion and neural coding in dynamic transmission of neural information.
Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting
2011-07-01
In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.
Deng, Lei; Wu, Hongjie; Liu, Chuyao; Zhan, Weihua; Zhang, Jingpu
2018-06-01
Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as immune response, development, differentiation and gene imprinting and are associated with diseases and cancers. But the functions of the vast majority of lncRNAs are still unknown. Predicting the biological functions of lncRNAs is one of the key challenges in the post-genomic era. In our work, We first build a global network including a lncRNA similarity network, a lncRNA-protein association network and a protein-protein interaction network according to the expressions and interactions, then extract the topological feature vectors of the global network. Using these features, we present an SVM-based machine learning approach, PLNRGO, to annotate human lncRNAs. In PLNRGO, we construct a training data set according to the proteins with GO annotations and train a binary classifier for each GO term. We assess the performance of PLNRGO on our manually annotated lncRNA benchmark and a protein-coding gene benchmark with known functional annotations. As a result, the performance of our method is significantly better than that of other state-of-the-art methods in terms of maximum F-measure and coverage. Copyright © 2018 Elsevier Ltd. All rights reserved.
What the success of brain imaging implies about the neural code
Guest, Olivia; Love, Bradley C
2017-01-01
The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI. DOI: http://dx.doi.org/10.7554/eLife.21397.001 PMID:28103186
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-07-09
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-01-01
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616
Code 672 observational science branch computer networks
NASA Technical Reports Server (NTRS)
Hancock, D. W.; Shirk, H. G.
1988-01-01
In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.
2010-08-01
between east and west. In 330 AD, the emperor Constantine I moved the capital of the eastern part to Byzantium, and renamed the city Constantinople . In...Byzantium was renamed. Long after the empire collapsed after Constantinople fell to the Ottomans in 1453, the Byzantine Empire became known for being...It was shown in [19] that standard network coding problems fall into three categories: (1) coding is un- necessary, and routing is enough to achieve
2011-09-30
channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1
2013-09-30
underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at
Yang, Xiaofei; Gao, Lin; Guo, Xingli; Shi, Xinghua; Wu, Hao; Song, Fei; Wang, Bingbo
2014-01-01
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193 diseases. Furthermore, our results for Alzheimer's disease, pancreatic cancer, and gastric cancer were verified by other independent studies. PMID:24498199
Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI
NASA Astrophysics Data System (ADS)
Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre
2013-12-01
In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.
NASA Astrophysics Data System (ADS)
Musa, Ahmed
2016-06-01
Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.
Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns
NASA Astrophysics Data System (ADS)
Aoyagi, Toshio; Nomura, Masaki
1999-08-01
Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.
13 CFR 121.1103 - What are the procedures for appealing a NAICS code designation?
Code of Federal Regulations, 2010 CFR
2010-01-01
... appealing a NAICS code designation? 121.1103 Section 121.1103 Business Credit and Assistance SMALL BUSINESS... Determinations and Naics Code Designations § 121.1103 What are the procedures for appealing a NAICS code... code designation and applicable size standard must be served and filed within 10 calendar days after...
Whittington, James C. R.; Bogacz, Rafal
2017-01-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583
Whittington, James C R; Bogacz, Rafal
2017-05-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.
A microkernel design for component-based parallel numerical software systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.
1999-01-13
What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less
The Design and Analysis of a Network Interface for the Multi-Lingual Database System.
1985-12-01
IDENTIF:CATION NUMBER 0 ORGANIZATION (If applicable) 8c. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT...APPFNlDIX - THE~ KMS PROGRAM SPECIFICATI~bS ........ 94 I4 XST O)F REFEFRENCFS*O*IOebqBS~*OBS 124 Il LIST OF FIrURPS F’igure 1: The multi-Linqual Database...bacKend Database System *CABO0S). In this section, we Provide an overviev of Doti tne MLLS an tne 4B0S to enhance the readers understandin- of the
The WorkPlace distributed processing environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Henderson, Scott
1993-01-01
Real time control problems require robust, high performance solutions. Distributed computing can offer high performance through parallelism and robustness through redundancy. Unfortunately, implementing distributed systems with these characteristics places a significant burden on the applications programmers. Goddard Code 522 has developed WorkPlace to alleviate this burden. WorkPlace is a small, portable, embeddable network interface which automates message routing, failure detection, and re-configuration in response to failures in distributed systems. This paper describes the design and use of WorkPlace, and its application in the construction of a distributed blackboard system.
SCaN Network Ground Station Receiver Performance for Future Service Support
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung
2012-01-01
Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.
Network Coding for Function Computation
ERIC Educational Resources Information Center
Appuswamy, Rathinakumar
2011-01-01
In this dissertation, the following "network computing problem" is considered. Source nodes in a directed acyclic network generate independent messages and a single receiver node computes a target function f of the messages. The objective is to maximize the average number of times f can be computed per network usage, i.e., the "computing…
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G
2016-08-22
A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.
Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks.
Scarpetta, Silvia; Giacco, Ferdinando
2013-04-01
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.
Regulating Cortical Oscillations in an Inhibition-Stabilized Network.
Jadi, Monika P; Sejnowski, Terrence J
2014-04-21
Understanding the anatomical and functional architecture of the brain is essential for designing neurally inspired intelligent systems. Theoretical and empirical studies suggest a role for narrowband oscillations in shaping the functional architecture of the brain through their role in coding and communication of information. Such oscillations are ubiquitous signals in the electrical activity recorded from the brain. In the cortex, oscillations detected in the gamma range (30-80 Hz) are modulated by behavioral states and sensory features in complex ways. How is this regulation achieved? Although several underlying principles for the genesis of these oscillations have been proposed, a unifying account for their regulation has remained elusive. In a network of excitatory and inhibitory neurons operating in an inhibition-stabilized regime, we show that strongly superlinear responses of inhibitory neurons facilitate bidirectional regulation of oscillation frequency and power. In such a network, the balance of drives to the excitatory and inhibitory populations determines how the power and frequency of oscillations are modulated. The model accounts for the puzzling increase in their frequency with the salience of visual stimuli, and a decrease with their size. Oscillations in our model grow stronger as the mean firing level is reduced, accounting for the size dependence of visually evoked gamma rhythms, and suggesting a role for oscillations in improving the signal-to-noise ratio (SNR) of signals in the brain. Empirically testing such predictions is still challenging, and implementing the proposed coding and communication strategies in neuromorphic systems could assist in our understanding of the biological system.
Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system
NASA Astrophysics Data System (ADS)
Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.
2016-12-01
The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters. The field experimental results show the presented method is effective. The echoes are obvious and distinguishable both in co-located MIMO mode and widely distributed MIMO mode. Key words: sky-surface wave hybrid networking; sea-state radar; MIMO; phase-coded
Multi-agent modelling framework for water, energy and other resource networks
NASA Astrophysics Data System (ADS)
Knox, S.; Selby, P. D.; Meier, P.; Harou, J. J.; Yoon, J.; Lachaut, T.; Klassert, C. J. A.; Avisse, N.; Mohamed, K.; Tomlinson, J.; Khadem, M.; Tilmant, A.; Gorelick, S.
2015-12-01
Bespoke modelling tools are often needed when planning future engineered interventions in the context of various climate, socio-economic and geopolitical futures. Such tools can help improve system operating policies or assess infrastructure upgrades and their risks. A frequently used approach is to simulate and/or optimise the impact of interventions in engineered systems. Modelling complex infrastructure systems can involve incorporating multiple aspects into a single model, for example physical, economic and political. This presents the challenge of combining research from diverse areas into a single system effectively. We present the Pynsim 'Python Network Simulator' framework, a library for building simulation models capable of representing, the physical, institutional and economic aspects of an engineered resources system. Pynsim is an open source, object oriented code aiming to promote integration of different modelling processes through a single code library. We present two case studies that demonstrate important features of Pynsim's design. The first is a large interdisciplinary project of a national water system in the Middle East with modellers from fields including water resources, economics, hydrology and geography each considering different facets of a multi agent system. It includes: modelling water supply and demand for households and farms; a water tanker market with transfer of water between farms and households, and policy decisions made by government institutions at district, national and international level. This study demonstrates that a well-structured library of code can provide a hub for development and act as a catalyst for integrating models. The second focuses on optimising the location of new run-of-river hydropower plants. Using a multi-objective evolutionary algorithm, this study analyses different network configurations to identify the optimal placement of new power plants within a river network. This demonstrates that Pynsim can be used to evaluate a multitude of topologies for identifying the optimal location of infrastructure investments. Pynsim is available on GitHub or via standard python installer packages such as pip. It comes with several examples and online documentation, making it attractive for those less experienced in software engineering.
NASA Technical Reports Server (NTRS)
Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III
2011-01-01
The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.
NASA Technical Reports Server (NTRS)
Villarreal, James A.
1991-01-01
A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.
Accuracy comparison among different machine learning techniques for detecting malicious codes
NASA Astrophysics Data System (ADS)
Narang, Komal
2016-03-01
In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.
Rotationally Adaptive Flight Test Surface
NASA Technical Reports Server (NTRS)
Barrett, Ron
1999-01-01
Research on a new design of flutter exciter vane using adaptive materials was conducted. This novel design is based on all-moving aerodynamic surface technology and consists of a structurally stiff main spar, a series of piezoelectric actuator elements and an aerodynamic shell which is pivoted around the main spar. The work was built upon the current missile-type all-moving surface designs and change them so they are better suited for flutter excitation through the transonic flight regime. The first portion of research will be centered on aerodynamic and structural modeling of the system. USAF DatCom and vortex lattice codes was used to capture the fundamental aerodynamics of the vane. Finite element codes and laminated plate theory and virtual work analyses will be used to structurally model the aerodynamic vane and wing tip. Following the basic modeling, a flutter test vane was designed. Each component within the structure was designed to meet the design loads. After the design loads are met, then the deflections will be maximized and the internal structure will be laid out. In addition to the structure, a basic electrical control network will be designed which will be capable of driving a scaled exciter vane. The third and final stage of main investigation involved the fabrication of a 1/4 scale vane. This scaled vane was used to verify kinematics and structural mechanics theories on all-moving actuation. Following assembly, a series of bench tests was conducted to determine frequency response, electrical characteristics, mechanical and kinematic properties. Test results indicate peak-to-peak deflections of 1.1 deg with a corner frequency of just over 130 Hz.
Learning and coding in biological neural networks
NASA Astrophysics Data System (ADS)
Fiete, Ila Rani
How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.
Optimal sparse approximation with integrate and fire neurons.
Shapero, Samuel; Zhu, Mengchen; Hasler, Jennifer; Rozell, Christopher
2014-08-01
Sparse approximation is a hypothesized coding strategy where a population of sensory neurons (e.g. V1) encodes a stimulus using as few active neurons as possible. We present the Spiking LCA (locally competitive algorithm), a rate encoded Spiking Neural Network (SNN) of integrate and fire neurons that calculate sparse approximations. The Spiking LCA is designed to be equivalent to the nonspiking LCA, an analog dynamical system that converges on a ℓ(1)-norm sparse approximations exponentially. We show that the firing rate of the Spiking LCA converges on the same solution as the analog LCA, with an error inversely proportional to the sampling time. We simulate in NEURON a network of 128 neuron pairs that encode 8 × 8 pixel image patches, demonstrating that the network converges to nearly optimal encodings within 20 ms of biological time. We also show that when using more biophysically realistic parameters in the neurons, the gain function encourages additional ℓ(0)-norm sparsity in the encoding, relative both to ideal neurons and digital solvers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-21
Recent advancements in technology scaling have shown a trend towards greater integration with large-scale chips containing thousands of processors connected to memories and other I/O devices using non-trivial network topologies. Software simulation proves insufficient to study the tradeoffs in such complex systems due to slow execution time, whereas hardware RTL development is too time-consuming. We present OpenSoC Fabric, an on-chip network generation infrastructure which aims to provide a parameterizable and powerful on-chip network generator for evaluating future high performance computing architectures based on SoC technology. OpenSoC Fabric leverages a new hardware DSL, Chisel, which contains powerful abstractions provided by itsmore » base language, Scala, and generates both software (C++) and hardware (Verilog) models from a single code base. The OpenSoC Fabric2 infrastructure is modeled after existing state-of-the-art simulators, offers large and powerful collections of configuration options, and follows object-oriented design and functional programming to make functionality extension as easy as possible.« less
Le, Duc-Hau; Dao, Lan T M
2018-05-23
Recently, many long non-coding RNAs (lncRNAs) have been identified and their biological function has been characterized; however, our understanding of their underlying molecular mechanisms related to disease is still limited. To overcome the limitation in experimentally identifying disease-lncRNA associations, computational methods have been proposed as a powerful tool to predict such associations. These methods are usually based on the similarities between diseases or lncRNAs since it was reported that similar diseases are associated with functionally similar lncRNAs. Therefore, prediction performance is highly dependent on how well the similarities can be captured. Previous studies have calculated the similarity between two diseases by mapping exactly each disease to a single Disease Ontology (DO) term, and then use a semantic similarity measure to calculate the similarity between them. However, the problem of this approach is that a disease can be described by more than one DO terms. Until now, there is no annotation database of DO terms for diseases except for genes. In contrast, Human Phenotype Ontology (HPO) is designed to fully annotate human disease phenotypes. Therefore, in this study, we constructed disease similarity networks/matrices using HPO instead of DO. Then, we used these networks/matrices as inputs of two representative machine learning-based and network-based ranking algorithms, that is, regularized least square and heterogeneous graph-based inference, respectively. The results showed that the prediction performance of the two algorithms on HPO-based is better than that on DO-based networks/matrices. In addition, our method can predict 11 novel cancer-associated lncRNAs, which are supported by literature evidence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks
2014-03-27
intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File
RBind: computational network method to predict RNA binding sites.
Wang, Kaili; Jian, Yiren; Wang, Huiwen; Zeng, Chen; Zhao, Yunjie
2018-04-26
Non-coding RNA molecules play essential roles by interacting with other molecules to perform various biological functions. However, it is difficult to determine RNA structures due to their flexibility. At present, the number of experimentally solved RNA-ligand and RNA-protein structures is still insufficient. Therefore, binding sites prediction of non-coding RNA is required to understand their functions. Current RNA binding site prediction algorithms produce many false positive nucleotides that are distance away from the binding sites. Here, we present a network approach, RBind, to predict the RNA binding sites. We benchmarked RBind in RNA-ligand and RNA-protein datasets. The average accuracy of 0.82 in RNA-ligand and 0.63 in RNA-protein testing showed that this network strategy has a reliable accuracy for binding sites prediction. The codes and datasets are available at https://zhaolab.com.cn/RBind. yjzhaowh@mail.ccnu.edu.cn. Supplementary data are available at Bioinformatics online.
Decoding the non-coding RNAs in Alzheimer's disease.
Schonrock, Nicole; Götz, Jürgen
2012-11-01
Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.
NASA Technical Reports Server (NTRS)
Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.
1987-01-01
Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.
GeNN: a code generation framework for accelerated brain simulations
NASA Astrophysics Data System (ADS)
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations.
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-07
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369
Deep neural models for ICD-10 coding of death certificates and autopsy reports in free-text.
Duarte, Francisco; Martins, Bruno; Pinto, Cátia Sousa; Silva, Mário J
2018-04-01
We address the assignment of ICD-10 codes for causes of death by analyzing free-text descriptions in death certificates, together with the associated autopsy reports and clinical bulletins, from the Portuguese Ministry of Health. We leverage a deep neural network that combines word embeddings, recurrent units, and neural attention, for the generation of intermediate representations of the textual contents. The neural network also explores the hierarchical nature of the input data, by building representations from the sequences of words within individual fields, which are then combined according to the sequences of fields that compose the inputs. Moreover, we explore innovative mechanisms for initializing the weights of the final nodes of the network, leveraging co-occurrences between classes together with the hierarchical structure of ICD-10. Experimental results attest to the contribution of the different neural network components. Our best model achieves accuracy scores over 89%, 81%, and 76%, respectively for ICD-10 chapters, blocks, and full-codes. Through examples, we also show that our method can produce interpretable results, useful for public health surveillance. Copyright © 2018 Elsevier Inc. All rights reserved.
Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kourosh Salehi-Ashtiani; Jason A. Papin
Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnectedmore » metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and can be readily expanded to other microbial systems as well as higher plants and animals.« less
National Underground Mines Inventory
1983-10-01
system is well designed to minimize water accumulation on the drift levels. In many areas, sufficient water has accumulated to make the use of boots a...four characters designate Field office. 17-18 State Code Pic 99 FIPS code for state in which minets located. 19-21 County Code Plc 999 FIPS code for... Designate a general product class based onSIC code. 28-29 Nine Type Plc 99 Natal/Nonmetal mine type code. Based on subunit operations code and canvass code
Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1993-01-01
Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.
Robust pattern decoding in shape-coded structured light
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
Finding collaborators: toward interactive discovery tools for research network systems.
Borromeo, Charles D; Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry
2014-11-04
Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows.
Finding Collaborators: Toward Interactive Discovery Tools for Research Network Systems
Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry
2014-01-01
Background Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. Objective The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Methods Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Results Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Conclusions Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows. PMID:25370463
Schmuker, Michael; Yamagata, Nobuhiro; Nawrot, Martin Paul; Menzel, Randolf
2011-01-01
The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee's olfactory system, sensory input is first processed in the antennal lobe (AL) network. Uniglomerular projection neurons (PNs) convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT). Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.
ERIC Educational Resources Information Center
Xiang, Qiao
2014-01-01
As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while…
Analysis of bHLH coding genes using gene co-expression network approach.
Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok
2016-07-01
Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
The future of 3D and video coding in mobile and the internet
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2013-09-01
The current Internet success has already changed our social and economic world and is still continuing to revolutionize the information exchange. The exponential increase of amount and types of data that is currently exchanged on the Internet represents significant challenge for the design of future architectures and solutions. This paper reviews the current status and trends in the design of solutions and research activities in the future Internet from point of view of managing the growth of bandwidth requirements and complexity of the multimedia that is being created and shared. Outlines the challenges that are present before the video coding and approaches to the design of standardized media formats and protocols while considering the expected convergence of multimedia formats and exchange interfaces. The rapid growth of connected mobile devices adds to the current and the future challenges in combination with the expected, in near future, arrival of multitude of connected devices. The new Internet technologies connecting the Internet of Things with wireless visual sensor networks and 3D virtual worlds requires conceptually new approaches of media content handling from acquisition to presentation in the 3D Media Internet. Accounting for the entire transmission system properties and enabling adaptation in real-time to context and content throughout the media proceeding path will be paramount in enabling the new media architectures as well as the new applications and services. The common video coding formats will need to be conceptually redesigned to allow for the implementation of the necessary 3D Media Internet features.
Comparative analysis of design codes for timber bridges in Canada, the United States, and Europe
James Wacker; James (Scott) Groenier
2010-01-01
The United States recently completed its transition from the allowable stress design code to the load and resistance factor design (LRFD) reliability-based code for the design of most highway bridges. For an international perspective on the LRFD-based bridge codes, a comparative analysis is presented: a study addressed national codes of the United States, Canada, and...
Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding
NASA Astrophysics Data System (ADS)
Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang
2009-12-01
Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.