Sample records for network community structure

  1. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  2. Similarity between community structures of different online social networks and its impact on underlying community detection

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  3. Dynamics and control of diseases in networks with community structure.

    PubMed

    Salathé, Marcel; Jones, James H

    2010-04-08

    The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  4. A new hierarchical method to find community structure in networks

    NASA Astrophysics Data System (ADS)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  5. Community Detection Algorithm Combining Stochastic Block Model and Attribute Data Clustering

    NASA Astrophysics Data System (ADS)

    Kataoka, Shun; Kobayashi, Takuto; Yasuda, Muneki; Tanaka, Kazuyuki

    2016-11-01

    We propose a new algorithm to detect the community structure in a network that utilizes both the network structure and vertex attribute data. Suppose we have the network structure together with the vertex attribute data, that is, the information assigned to each vertex associated with the community to which it belongs. The problem addressed this paper is the detection of the community structure from the information of both the network structure and the vertex attribute data. Our approach is based on the Bayesian approach that models the posterior probability distribution of the community labels. The detection of the community structure in our method is achieved by using belief propagation and an EM algorithm. We numerically verified the performance of our method using computer-generated networks and real-world networks.

  6. Epidemic spreading on complex networks with overlapping and non-overlapping community structure

    NASA Astrophysics Data System (ADS)

    Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng

    2015-02-01

    Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.

  7. Followers are not enough: a multifaceted approach to community detection in online social networks.

    PubMed

    Darmon, David; Omodei, Elisa; Garland, Joshua

    2015-01-01

    In online social media networks, individuals often have hundreds or even thousands of connections, which link these users not only to friends, associates, and colleagues, but also to news outlets, celebrities, and organizations. In these complex social networks, a 'community' as studied in the social network literature, can have very different meaning depending on the property of the network under study. Taking into account the multifaceted nature of these networks, we claim that community detection in online social networks should also be multifaceted in order to capture all of the different and valuable viewpoints of 'community.' In this paper we focus on three types of communities beyond follower-based structural communities: activity-based, topic-based, and interaction-based. We analyze a Twitter dataset using three different weightings of the structural network meant to highlight these three community types, and then infer the communities associated with these weightings. We show that interesting insights can be obtained about the complex community structure present in social networks by studying when and how these four community types give rise to similar as well as completely distinct community structure.

  8. A spectral method to detect community structure based on distance modularity matrix

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Xuan; Zhang, Xiao-Dong

    2017-08-01

    There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.

  9. Leveraging disjoint communities for detecting overlapping community structure

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy

    2015-05-01

    Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.

  10. Maximal Neighbor Similarity Reveals Real Communities in Networks

    PubMed Central

    Žalik, Krista Rizman

    2015-01-01

    An important problem in the analysis of network data is the detection of groups of densely interconnected nodes also called modules or communities. Community structure reveals functions and organizations of networks. Currently used algorithms for community detection in large-scale real-world networks are computationally expensive or require a priori information such as the number or sizes of communities or are not able to give the same resulting partition in multiple runs. In this paper we investigate a simple and fast algorithm that uses the network structure alone and requires neither optimization of pre-defined objective function nor information about number of communities. We propose a bottom up community detection algorithm in which starting from communities consisting of adjacent pairs of nodes and their maximal similar neighbors we find real communities. We show that the overall advantage of the proposed algorithm compared to the other community detection algorithms is its simple nature, low computational cost and its very high accuracy in detection communities of different sizes also in networks with blurred modularity structure consisting of poorly separated communities. All communities identified by the proposed method for facebook network and E-Coli transcriptional regulatory network have strong structural and functional coherence. PMID:26680448

  11. Using a two-phase evolutionary framework to select multiple network spreaders based on community structure

    NASA Astrophysics Data System (ADS)

    Fu, Yu-Hsiang; Huang, Chung-Yuan; Sun, Chuen-Tsai

    2016-11-01

    Using network community structures to identify multiple influential spreaders is an appropriate method for analyzing the dissemination of information, ideas and infectious diseases. For example, data on spreaders selected from groups of customers who make similar purchases may be used to advertise products and to optimize limited resource allocation. Other examples include community detection approaches aimed at identifying structures and groups in social or complex networks. However, determining the number of communities in a network remains a challenge. In this paper we describe our proposal for a two-phase evolutionary framework (TPEF) for determining community numbers and maximizing community modularity. Lancichinetti-Fortunato-Radicchi benchmark networks were used to test our proposed method and to analyze execution time, community structure quality, convergence, and the network spreading effect. Results indicate that our proposed TPEF generates satisfactory levels of community quality and convergence. They also suggest a need for an index, mechanism or sampling technique to determine whether a community detection approach should be used for selecting multiple network spreaders.

  12. Covariance, correlation matrix, and the multiscale community structure of networks.

    PubMed

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  13. Followers Are Not Enough: A Multifaceted Approach to Community Detection in Online Social Networks

    PubMed Central

    2015-01-01

    In online social media networks, individuals often have hundreds or even thousands of connections, which link these users not only to friends, associates, and colleagues, but also to news outlets, celebrities, and organizations. In these complex social networks, a ‘community’ as studied in the social network literature, can have very different meaning depending on the property of the network under study. Taking into account the multifaceted nature of these networks, we claim that community detection in online social networks should also be multifaceted in order to capture all of the different and valuable viewpoints of ‘community.’ In this paper we focus on three types of communities beyond follower-based structural communities: activity-based, topic-based, and interaction-based. We analyze a Twitter dataset using three different weightings of the structural network meant to highlight these three community types, and then infer the communities associated with these weightings. We show that interesting insights can be obtained about the complex community structure present in social networks by studying when and how these four community types give rise to similar as well as completely distinct community structure. PMID:26267868

  14. Distributed network management in the flat structured mobile communities

    NASA Astrophysics Data System (ADS)

    Balandina, Elena

    2005-10-01

    Delivering proper management into the flat structured mobile communities is crucial for improving users experience and increase applications diversity in mobile networks. The available P2P applications do application-centric management, but it cannot replace network-wide management, especially when a number of different applications are used simultaneously in the network. The network-wide management is the key element required for a smooth transition from standalone P2P applications to the self-organizing mobile communities that maintain various services with quality and security guaranties. The classical centralized network management solutions are not applicable in the flat structured mobile communities due to the decentralized nature and high mobility of the underlying networks. Also the basic network management tasks have to be revised taking into account specialties of the flat structured mobile communities. The network performance management becomes more dependent on the current nodes' context, which also requires extension of the configuration management functionality. The fault management has to take into account high mobility of the network nodes. The performance and accounting managements are mainly targeted in maintain an efficient and fair access to the resources within the community, however they also allow unbalanced resource use of the nodes that explicitly permit it, e.g. as a voluntary donation to the community or due to the profession (commercial) reasons. The security management must implement the new trust models, which are based on the community feedback, professional authorization, and a mix of both. For fulfilling these and another specialties of the flat structured mobile communities, a new network management solution is demanded. The paper presents a distributed network management solution for flat structured mobile communities. Also the paper points out possible network management roles for the different parties (e.g. operators, service providing hubs/super nodes, etc.) involved in a service providing chain.

  15. Optimal multi-community network modularity for information diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong

    2016-02-01

    Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.

  16. Incorporating profile information in community detection for online social networks

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2014-07-01

    Community structure is an important feature in the study of complex networks. It is because nodes of the same community may have similar properties. In this paper we extend two popular community detection methods to partition online social networks. In our extended methods, the profile information of users is used for partitioning. We apply the extended methods in several sample networks of Facebook. Compared with the original methods, the community structures we obtain have higher modularity. Our results indicate that users' profile information is consistent with the community structure of their friendship network to some extent. To the best of our knowledge, this paper is the first to discuss how profile information can be used to improve community detection in online social networks.

  17. Cascading failures in complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Lin, Guoqiang; di, Zengru; Fan, Ying

    2014-12-01

    Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.

  18. Epidemics in adaptive networks with community structure

    NASA Astrophysics Data System (ADS)

    Shaw, Leah; Tunc, Ilker

    2010-03-01

    Models for epidemic spread on static social networks do not account for changes in individuals' social interactions. Recent studies of adaptive networks have modeled avoidance behavior, as non-infected individuals try to avoid contact with infectives. Such models have not generally included realistic social structure. Here we study epidemic spread on an adaptive network with community structure. We model the effect of heterogeneous communities on infection levels and epidemic extinction. We also show how an epidemic can alter the community structure.

  19. Community Attachment and Satisfaction: The Role of a Community's Social Network Structure

    ERIC Educational Resources Information Center

    Crowe, Jessica

    2010-01-01

    This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…

  20. A novel community detection method in bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan

    2018-02-01

    Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.

  1. Ubiquitousness of link-density and link-pattern communities in real-world networks

    NASA Astrophysics Data System (ADS)

    Šubelj, L.; Bajec, M.

    2012-01-01

    Community structure appears to be an intrinsic property of many complex real-world networks. However, recent work shows that real-world networks reveal even more sophisticated modules than classical cohesive (link-density) communities. In particular, networks can also be naturally partitioned according to similar patterns of connectedness among the nodes, revealing link-pattern communities. We here propose a propagation based algorithm that can extract both link-density and link-pattern communities, without any prior knowledge of the true structure. The algorithm was first validated on different classes of synthetic benchmark networks with community structure, and also on random networks. We have further applied the algorithm to different social, information, technological and biological networks, where it indeed reveals meaningful (composites of) link-density and link-pattern communities. The results thus seem to imply that, similarly as link-density counterparts, link-pattern communities appear ubiquitous in nature and design.

  2. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  3. Finding community structure in very large networks

    NASA Astrophysics Data System (ADS)

    Clauset, Aaron; Newman, M. E. J.; Moore, Cristopher

    2004-12-01

    The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O(mdlogn) where d is the depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with mtilde n and dtilde logn , in which case our algorithm runs in essentially linear time, O(nlog2n) . As an example of the application of this algorithm we use it to analyze a network of items for sale on the web site of a large on-line retailer, items in the network being linked if they are frequently purchased by the same buyer. The network has more than 400 000 vertices and 2×106 edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers.

  4. Mixture models with entropy regularization for community detection in networks

    NASA Astrophysics Data System (ADS)

    Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang

    2018-04-01

    Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.

  5. Efficient discovery of overlapping communities in massive networks

    PubMed Central

    Gopalan, Prem K.; Blei, David M.

    2013-01-01

    Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks. PMID:23950224

  6. Identification of hybrid node and link communities in complex networks

    PubMed Central

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-01-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010

  7. Identification of hybrid node and link communities in complex networks.

    PubMed

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-02

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  8. Identification of hybrid node and link communities in complex networks

    NASA Astrophysics Data System (ADS)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  9. A network function-based definition of communities in complex networks.

    PubMed

    Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward

    2012-09-01

    We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.

  10. The community structure of the global corporate network.

    PubMed

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy.

  11. The Community Structure of the Global Corporate Network

    PubMed Central

    Vitali, Stefania; Battiston, Stefano

    2014-01-01

    We investigate the community structure of the global ownership network of transnational corporations. We find a pronounced organization in communities that cannot be explained by randomness. Despite the global character of this network, communities reflect first of all the geographical location of firms, while the industrial sector plays only a marginal role. We also analyze the meta-network in which the nodes are the communities and the links are obtained by aggregating the links among firms belonging to pairs of communities. We analyze the network centrality of the top 50 communities and we provide a quantitative assessment of the financial sector role in connecting the global economy. PMID:25126722

  12. Surveying traffic congestion based on the concept of community structure of complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Lili; Zhang, Zhanli; Li, Meng

    2016-07-01

    In this paper, taking the traffic of Beijing city as an instance, we study city traffic states, especially traffic congestion, based on the concept of network community structure. Concretely, using the floating car data (FCD) information of vehicles gained from the intelligent transport system (ITS) of the city, we construct a new traffic network model which is with floating cars as network nodes and time-varying. It shows that this traffic network has Gaussian degree distributions at different time points. Furthermore, compared with free traffic situations, our simulations show that the traffic network generally has more obvious community structures with larger values of network fitness for congested traffic situations, and through the GPSspg web page, we show that all of our results are consistent with the reality. Then, it indicates that network community structure should be an available way for investigating city traffic congestion problems.

  13. Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks

    NASA Astrophysics Data System (ADS)

    Cui, Yaozu; Wang, Xingyuan; Eustace, Justine

    2014-12-01

    Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.

  14. Interaction Networks: Generating High Level Hints Based on Network Community Clustering

    ERIC Educational Resources Information Center

    Eagle, Michael; Johnson, Matthew; Barnes, Tiffany

    2012-01-01

    We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…

  15. Evolutionary method for finding communities in bipartite networks.

    PubMed

    Zhan, Weihua; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng

    2011-06-01

    An important step in unveiling the relation between network structure and dynamics defined on networks is to detect communities, and numerous methods have been developed separately to identify community structure in different classes of networks, such as unipartite networks, bipartite networks, and directed networks. Here, we show that the finding of communities in such networks can be unified in a general framework-detection of community structure in bipartite networks. Moreover, we propose an evolutionary method for efficiently identifying communities in bipartite networks. To this end, we show that both unipartite and directed networks can be represented as bipartite networks, and their modularity is completely consistent with that for bipartite networks, the detection of modular structure on which can be reformulated as modularity maximization. To optimize the bipartite modularity, we develop a modified adaptive genetic algorithm (MAGA), which is shown to be especially efficient for community structure detection. The high efficiency of the MAGA is based on the following three improvements we make. First, we introduce a different measure for the informativeness of a locus instead of the standard deviation, which can exactly determine which loci mutate. This measure is the bias between the distribution of a locus over the current population and the uniform distribution of the locus, i.e., the Kullback-Leibler divergence between them. Second, we develop a reassignment technique for differentiating the informative state a locus has attained from the random state in the initial phase. Third, we present a modified mutation rule which by incorporating related operations can guarantee the convergence of the MAGA to the global optimum and can speed up the convergence process. Experimental results show that the MAGA outperforms existing methods in terms of modularity for both bipartite and unipartite networks.

  16. Community Detection in Complex Networks via Clique Conductance.

    PubMed

    Lu, Zhenqi; Wahlström, Johan; Nehorai, Arye

    2018-04-13

    Network science plays a central role in understanding and modeling complex systems in many areas including physics, sociology, biology, computer science, economics, politics, and neuroscience. One of the most important features of networks is community structure, i.e., clustering of nodes that are locally densely interconnected. Communities reveal the hierarchical organization of nodes, and detecting communities is of great importance in the study of complex systems. Most existing community-detection methods consider low-order connection patterns at the level of individual links. But high-order connection patterns, at the level of small subnetworks, are generally not considered. In this paper, we develop a novel community-detection method based on cliques, i.e., local complete subnetworks. The proposed method overcomes the deficiencies of previous similar community-detection methods by considering the mathematical properties of cliques. We apply the proposed method to computer-generated graphs and real-world network datasets. When applied to networks with known community structure, the proposed method detects the structure with high fidelity and sensitivity. When applied to networks with no a priori information regarding community structure, the proposed method yields insightful results revealing the organization of these complex networks. We also show that the proposed method is guaranteed to detect near-optimal clusters in the bipartition case.

  17. Mesoscopic structure conditions the emergence of cooperation on social networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozano, S.; Arenas, A.; Sanchez, A.

    We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement withmore » the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.« less

  18. Think locally, act locally: detection of small, medium-sized, and large communities in large networks.

    PubMed

    Jeub, Lucas G S; Balachandran, Prakash; Porter, Mason A; Mucha, Peter J; Mahoney, Michael W

    2015-01-01

    It is common in the study of networks to investigate intermediate-sized (or "meso-scale") features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify "communities," which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that communities are associated with bottlenecks of locally biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for "size-resolved community structure" that can arise in real (and realistic) networks: (1) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (2) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (3) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify "good" communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally biased methods that focus on communities that are centered around a given seed node (or set of seed nodes) might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate structural properties that are important to consider in the development of better benchmark networks to test methods for community detection.

  19. Think locally, act locally: Detection of small, medium-sized, and large communities in large networks

    NASA Astrophysics Data System (ADS)

    Jeub, Lucas G. S.; Balachandran, Prakash; Porter, Mason A.; Mucha, Peter J.; Mahoney, Michael W.

    2015-01-01

    It is common in the study of networks to investigate intermediate-sized (or "meso-scale") features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify "communities," which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that communities are associated with bottlenecks of locally biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for "size-resolved community structure" that can arise in real (and realistic) networks: (1) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (2) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (3) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify "good" communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally biased methods that focus on communities that are centered around a given seed node (or set of seed nodes) might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate structural properties that are important to consider in the development of better benchmark networks to test methods for community detection.

  20. Energy Spectral Behaviors of Communication Networks of Open-Source Communities

    PubMed Central

    Yang, Jianmei; Yang, Huijie; Liao, Hao; Wang, Jiangtao; Zeng, Jinqun

    2015-01-01

    Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations. PMID:26047331

  1. Distributed learning automata-based algorithm for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza

    2016-03-01

    Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.

  2. Information transfer in community structured multiplex networks

    NASA Astrophysics Data System (ADS)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  3. Adaptive multi-resolution Modularity for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  4. Finding overlapping communities in multilayer networks

    PubMed Central

    Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin

    2018-01-01

    Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks. PMID:29694387

  5. Finding overlapping communities in multilayer networks.

    PubMed

    Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin

    2018-01-01

    Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.

  6. A generalised significance test for individual communities in networks.

    PubMed

    Kojaku, Sadamori; Masuda, Naoki

    2018-05-09

    Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.

  7. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  8. Detecting and evaluating communities in complex human and biological networks

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Mahadevan, L.

    2012-02-01

    We develop a simple method for detecting the community structure in a network can by utilizing a measure of closeness between nodes. This approach readily leads to a method of coarse graining the network, which allows the detection of the natural hierarchy (or hierarchies) of community structure without appealing to an unknown resolution parameter. The closeness measure can also be used to evaluate the robustness of an individual node's assignment to its community (rather than evaluating only the quality of the global structure). Each of these methods in community detection and evaluation are illustrated using a variety of real world networks of either biological or sociological importance and illustrate the power and flexibility of the approach.

  9. Locating Structural Centers: A Density-Based Clustering Method for Community Detection

    PubMed Central

    Liu, Gongshen; Li, Jianhua; Nees, Jan P.

    2017-01-01

    Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030

  10. Community detection in sequence similarity networks based on attribute clustering

    DOE PAGES

    Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.

    2017-07-24

    Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less

  11. Community detection in sequence similarity networks based on attribute clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.

    Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less

  12. Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia.

    PubMed

    Robinson, Lucy F; Atlas, Lauren Y; Wager, Tor D

    2015-03-01

    We present a new method, State-based Dynamic Community Structure, that detects time-dependent community structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is static in time, or differs between task conditions with known timing. Our goal is to determine whether brain network topology remains stationary over time, or if changes in network organization occur at unknown time points. Changes in network organization may be related to shifts in neurological state, such as those associated with learning, drug uptake or experimental conditions. Using a hidden Markov stochastic blockmodel, we define a time-dependent community structure. We apply this approach to data from a functional magnetic resonance imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that networks involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Taxonomies of networks from community structure

    PubMed Central

    Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2014-01-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. PMID:23030977

  14. Taxonomies of networks from community structure

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  15. A model for evolution of overlapping community networks

    NASA Astrophysics Data System (ADS)

    Karan, Rituraj; Biswal, Bibhu

    2017-05-01

    A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.

  16. Effect of livestock grazing in the partitions of a semiarid plant-plant spatial signed network

    NASA Astrophysics Data System (ADS)

    Saiz, Hugo; Alados, Concepción L.

    2014-08-01

    In recent times, network theory has become a useful tool to study the structure of the interactions in ecological communities. However, typically, these approaches focus on a particular kind of interaction while neglecting other possible interactions present in the ecosystem. Here, we present an ecological network for plant communities that consider simultaneously positive and negative interactions, which were derived from the spatial association and segregation between plant species. We employed this network to study the structure and the association strategies in a semiarid plant community of Cabo de Gata-Níjar Natural Park, SE Spain, and how they changed in 4 sites that differed in stocking rate. Association strategies were obtained from the partitions of the network, built based on a relaxed structural balance criterion. We found that grazing simplified the structure of the plant community. With increasing stocking rate species with no significant associations became dominant and the number of partitions decreased in the plant community. Independently of stocking rate, many species presented an associative strategy in the plant community because they benefit from the association to certain ‘nurse’ plants. These ‘nurses’ together with species that developed a segregating strategy, intervened in most of the interactions in the community. Ecological networks that combine links with different signs provide a new insight to analyze the structure of natural communities and identify the species which play a central role in them.

  17. Investigating brain community structure abnormalities in bipolar disorder using path length associated community estimation.

    PubMed

    Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D

    2014-05-01

    In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling. Copyright © 2013 Wiley Periodicals, Inc.

  18. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    NASA Astrophysics Data System (ADS)

    Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido

    2015-12-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.

  19. Overlapping communities detection based on spectral analysis of line graphs

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  20. Identifying and characterizing key nodes among communities based on electrical-circuit networks.

    PubMed

    Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying

    2014-01-01

    Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.

  1. Community structure in traffic zones based on travel demand

    NASA Astrophysics Data System (ADS)

    Sun, Li; Ling, Ximan; He, Kun; Tan, Qian

    2016-09-01

    Large structure in complex networks can be studied by dividing it into communities or modules. Urban traffic system is one of the most critical infrastructures. It can be abstracted into a complex network composed of tightly connected groups. Here, we analyze community structure in urban traffic zones based on the community detection method in network science. Spectral algorithm using the eigenvectors of matrices is employed. Our empirical results indicate that the traffic communities are variant with the travel demand distribution, since in the morning the majority of the passengers are traveling from home to work and in the evening they are traveling a contrary direction. Meanwhile, the origin-destination pairs with large number of trips play a significant role in urban traffic network's community division. The layout of traffic community in a city also depends on the residents' trajectories.

  2. Community structure in networks

    NASA Astrophysics Data System (ADS)

    Newman, Mark

    2004-03-01

    Many networked systems, including physical, biological, social, and technological networks, appear to contain ``communities'' -- groups of nodes within which connections are dense, but between which they are sparser. The ability to find such communities in an automated fashion could be of considerable use. Communities in a web graph for instance might correspond to sets of web sites dealing with related topics, while communities in a biochemical network or an electronic circuit might correspond to functional units of some kind. We present a number of new methods for community discovery, including methods based on ``betweenness'' measures and methods based on modularity optimization. We also give examples of applications of these methods to both computer-generated and real-world network data, and show how our techniques can be used to shed light on the sometimes dauntingly complex structure of networked systems.

  3. Community Detection in Signed Networks: the Role of Negative ties in Different Scales

    PubMed Central

    Esmailian, Pouya; Jalili, Mahdi

    2015-01-01

    Extracting community structure of complex network systems has many applications from engineering to biology and social sciences. There exist many algorithms to discover community structure of networks. However, it has been significantly under-explored for networks with positive and negative links as compared to unsigned ones. Trying to fill this gap, we measured the quality of partitions by introducing a Map Equation for signed networks. It is based on the assumption that negative relations weaken positive flow from a node towards a community, and thus, external (internal) negative ties increase the probability of staying inside (escaping from) a community. We further extended the Constant Potts Model, providing a map spectrum for signed networks. Accordingly, a partition is selected through balancing between abridgment and expatiation of a signed network. Most importantly, multi-scale spectrum of signed networks revealed how informative are negative ties in different scales, and quantified the topological placement of negative ties between dense positive ones. Moreover, an inconsistency was found in the signed Modularity: as the number of negative ties increases, the density of positive ties is neglected more. These results shed lights on the community structure of signed networks. PMID:26395815

  4. Dynamic social community detection and its applications.

    PubMed

    Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  5. Dynamic Social Community Detection and Its Applications

    PubMed Central

    Nguyen, Nam P.; Dinh, Thang N.; Shen, Yilin; Thai, My T.

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods. PMID:24722164

  6. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    PubMed Central

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  7. Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks.

    PubMed

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  8. Community structure from spectral properties in complex networks

    NASA Astrophysics Data System (ADS)

    Servedio, V. D. P.; Colaiori, F.; Capocci, A.; Caldarelli, G.

    2005-06-01

    We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.

  9. Attack tolerance of correlated time-varying social networks with well-defined communities

    NASA Astrophysics Data System (ADS)

    Sur, Souvik; Ganguly, Niloy; Mukherjee, Animesh

    2015-02-01

    In this paper, we investigate the efficiency and the robustness of information transmission for real-world social networks, modeled as time-varying instances, under targeted attack in shorter time spans. We observe that these quantities are markedly higher than that of the randomized versions of the considered networks. An important factor that drives this efficiency or robustness is the presence of short-time correlations across the network instances which we quantify by a novel metric the-edge emergence factor, denoted as ξ. We find that standard targeted attacks are not effective in collapsing this network structure. Remarkably, if the hourly community structures of the temporal network instances are attacked with the largest size community attacked first, the second largest next and so on, the network soon collapses. This behavior, we show is an outcome of the fact that the edge emergence factor bears a strong positive correlation with the size ordered community structures.

  10. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  11. The ground truth about metadata and community detection in networks.

    PubMed

    Peel, Leto; Larremore, Daniel B; Clauset, Aaron

    2017-05-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

  12. Clustering network layers with the strata multilayer stochastic block model.

    PubMed

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.

  13. Clustering network layers with the strata multilayer stochastic block model

    PubMed Central

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J.

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the “strata multilayer stochastic block model” (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called “strata”, which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project. PMID:28435844

  14. Think Locally, Act Locally: The Detection of Small, Medium-Sized, and Large Communities in Large Networks

    PubMed Central

    Jeub, Lucas G. S.; Balachandran, Prakash; Porter, Mason A.; Mucha, Peter J.; Mahoney, Michael W.

    2016-01-01

    It is common in the study of networks to investigate intermediate-sized (or “meso-scale”) features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify “communities,” which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that “communities” are associated with bottlenecks of locally-biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for “size-resolved community structure” that can arise in real (and realistic) networks: (i) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (ii) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (iii) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify “good” communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally-biased methods that focus on communities that are centered around a given seed node might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate subtler structural properties that are important to consider in the development of better benchmark networks to test methods for community detection. PMID:25679670

  15. Evidence of community structure in biomedical research grant collaborations.

    PubMed

    Nagarajan, Radhakrishnan; Kalinka, Alex T; Hogan, William R

    2013-02-01

    Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS). Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the modularity index and the maximum partition density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs. Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate generative mechanisms of the community-structure in the BRGC networks. The discrepancy in the community-structure between the BRGC networks and the random graph surrogates was especially pronounced at 2009 as opposed to 2006 indicating a possible shift towards team-science and formation of non-trivial modular patterns with time. The results also clearly demonstrate presence of inter-departmental and multi-disciplinary collaborations in BRGC networks. While the results are presented on BRGC networks as a part of the CTSA baseline study at UAMS, the proposed methodologies are as such generic with potential to be extended across other CTSA organizations. Understanding the presence of community-structure can supplement more traditional network analysis as they're useful in identifying research teams and their inter-connections as opposed to the role of individual nodes in the network. Such an understanding can be a critical step prior to devising meaningful interventions for promoting team-science, multi-disciplinary collaborations, cross-fertilization of ideas across research teams and identifying suitable mentors. Understanding the temporal evolution of these communities may also be useful in CTSA evaluation. Copyright © 2012. Published by Elsevier Inc.

  16. Constructing financial network based on PMFG and threshold method

    NASA Astrophysics Data System (ADS)

    Nie, Chun-Xiao; Song, Fu-Tie

    2018-04-01

    Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.

  17. Finding Statistically Significant Communities in Networks

    PubMed Central

    Lancichinetti, Andrea; Radicchi, Filippo; Ramasco, José J.; Fortunato, Santo

    2011-01-01

    Community structure is one of the main structural features of networks, revealing both their internal organization and the similarity of their elementary units. Despite the large variety of methods proposed to detect communities in graphs, there is a big need for multi-purpose techniques, able to handle different types of datasets and the subtleties of community structure. In this paper we present OSLOM (Order Statistics Local Optimization Method), the first method capable to detect clusters in networks accounting for edge directions, edge weights, overlapping communities, hierarchies and community dynamics. It is based on the local optimization of a fitness function expressing the statistical significance of clusters with respect to random fluctuations, which is estimated with tools of Extreme and Order Statistics. OSLOM can be used alone or as a refinement procedure of partitions/covers delivered by other techniques. We have also implemented sequential algorithms combining OSLOM with other fast techniques, so that the community structure of very large networks can be uncovered. Our method has a comparable performance as the best existing algorithms on artificial benchmark graphs. Several applications on real networks are shown as well. OSLOM is implemented in a freely available software (http://www.oslom.org), and we believe it will be a valuable tool in the analysis of networks. PMID:21559480

  18. Improvement of the SEP protocol based on community structure of node degree

    NASA Astrophysics Data System (ADS)

    Li, Donglin; Wei, Suyuan

    2017-05-01

    Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.

  19. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    PubMed

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  20. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network.

    PubMed

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-04-07

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.

  1. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network

    PubMed Central

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-01-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  2. Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit

    PubMed Central

    Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio

    2012-01-01

    In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed. PMID:22384178

  3. Game theory and extremal optimization for community detection in complex dynamic networks.

    PubMed

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  4. Structure and inference in annotated networks

    PubMed Central

    Newman, M. E. J.; Clauset, Aaron

    2016-01-01

    For many networks of scientific interest we know both the connections of the network and information about the network nodes, such as the age or gender of individuals in a social network. Here we demonstrate how this ‘metadata' can be used to improve our understanding of network structure. We focus in particular on the problem of community detection in networks and develop a mathematically principled approach that combines a network and its metadata to detect communities more accurately than can be done with either alone. Crucially, the method does not assume that the metadata are correlated with the communities we are trying to find. Instead, the method learns whether a correlation exists and correctly uses or ignores the metadata depending on whether they contain useful information. We demonstrate our method on synthetic networks with known structure and on real-world networks, large and small, drawn from social, biological and technological domains. PMID:27306566

  5. Structure and inference in annotated networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.; Clauset, Aaron

    2016-06-01

    For many networks of scientific interest we know both the connections of the network and information about the network nodes, such as the age or gender of individuals in a social network. Here we demonstrate how this `metadata' can be used to improve our understanding of network structure. We focus in particular on the problem of community detection in networks and develop a mathematically principled approach that combines a network and its metadata to detect communities more accurately than can be done with either alone. Crucially, the method does not assume that the metadata are correlated with the communities we are trying to find. Instead, the method learns whether a correlation exists and correctly uses or ignores the metadata depending on whether they contain useful information. We demonstrate our method on synthetic networks with known structure and on real-world networks, large and small, drawn from social, biological and technological domains.

  6. A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure

    PubMed Central

    Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao

    2015-01-01

    Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148

  7. Fragmenting networks by targeting collective influencers at a mesoscopic level.

    PubMed

    Kobayashi, Teruyoshi; Masuda, Naoki

    2016-11-25

    A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure.

  8. Fragmenting networks by targeting collective influencers at a mesoscopic level

    NASA Astrophysics Data System (ADS)

    Kobayashi, Teruyoshi; Masuda, Naoki

    2016-11-01

    A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure.

  9. Fragmenting networks by targeting collective influencers at a mesoscopic level

    PubMed Central

    Kobayashi, Teruyoshi; Masuda, Naoki

    2016-01-01

    A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure. PMID:27886251

  10. Parameterized centrality metric for network analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Rumi; Lerman, Kristina

    2011-06-01

    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [P. Bonacich, Am. J. Sociol.0002-960210.1086/228631 92, 1170 (1987)], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, for example, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. Studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed metric to several benchmark networks and show that it leads to better insights into network structure than alternative metrics.

  11. Paradoxes of Social Networking in a Structured Web 2.0 Language Learning Community

    ERIC Educational Resources Information Center

    Loiseau, Mathieu; Zourou, Katerina

    2012-01-01

    This paper critically inquires into social networking as a set of mechanisms and associated practices developed in a structured Web 2.0 language learning community. This type of community can be roughly described as learning spaces featuring (more or less) structured language learning resources displaying at least some notions of language learning…

  12. LP-LPA: A link influence-based label propagation algorithm for discovering community structures in networks

    NASA Astrophysics Data System (ADS)

    Berahmand, Kamal; Bouyer, Asgarali

    2018-03-01

    Community detection is an essential approach for analyzing the structural and functional properties of complex networks. Although many community detection algorithms have been recently presented, most of them are weak and limited in different ways. Label Propagation Algorithm (LPA) is a well-known and efficient community detection technique which is characterized by the merits of nearly-linear running time and easy implementation. However, LPA has some significant problems such as instability, randomness, and monster community detection. In this paper, an algorithm, namely node’s label influence policy for label propagation algorithm (LP-LPA) was proposed for detecting efficient community structures. LP-LPA measures link strength value for edges and nodes’ label influence value for nodes in a new label propagation strategy with preference on link strength and for initial nodes selection, avoid of random behavior in tiebreak states, and efficient updating order and rule update. These procedures can sort out the randomness issue in an original LPA and stabilize the discovered communities in all runs of the same network. Experiments on synthetic networks and a wide range of real-world social networks indicated that the proposed method achieves significant accuracy and high stability. Indeed, it can obviously solve monster community problem with regard to detecting communities in networks.

  13. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  14. Social significance of community structure: Statistical view

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Daniels, Jasmine J.

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  15. A clustering algorithm for determining community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  16. A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities

    NASA Astrophysics Data System (ADS)

    Muscoloni, Alessandro; Vittorio Cannistraci, Carlo

    2018-05-01

    The investigation of the hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The popularity-similarity-optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, generating realistic networks with clustering, small-worldness, scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real complex networks, which is the community organization. The geometrical-preferential-attachment (GPA) model was recently developed in order to confer to the PSO also a soft community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have a variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model. Differently from GPA, the nPSO generates synthetic networks in the hyperbolic space where heterogeneous angular node attractiveness is forced by sampling the angular coordinates from a tailored nonuniform probability distribution (for instance a mixture of Gaussians). The nPSO differs from GPA in other three aspects: it allows one to explicitly fix the number and size of communities; it allows one to tune their mixing property by means of the network temperature; it is efficient to generate networks with high clustering. Several tests on the detectability of the community structure in nPSO synthetic networks and wide investigations on their structural properties confirm that the nPSO is a valid and efficient model to generate realistic complex networks with communities.

  17. Combining a popularity-productivity stochastic block model with a discriminative-content model for general structure detection.

    PubMed

    Chai, Bian-fang; Yu, Jian; Jia, Cai-Yan; Yang, Tian-bao; Jiang, Ya-wen

    2013-07-01

    Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.

  18. Combining a popularity-productivity stochastic block model with a discriminative-content model for general structure detection

    NASA Astrophysics Data System (ADS)

    Chai, Bian-fang; Yu, Jian; Jia, Cai-yan; Yang, Tian-bao; Jiang, Ya-wen

    2013-07-01

    Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.

  19. Emergence of Soft Communities from Geometric Preferential Attachment

    PubMed Central

    Zuev, Konstantin; Boguñá, Marián; Bianconi, Ginestra; Krioukov, Dmitri

    2015-01-01

    All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed. PMID:25923110

  20. Modeling online social signed networks

    NASA Astrophysics Data System (ADS)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  1. A Social Network Analysis of Teaching and Research Collaboration in a Teachers' Virtual Learning Community

    ERIC Educational Resources Information Center

    Lin, Xiaofan; Hu, Xiaoyong; Hu, Qintai; Liu, Zhichun

    2016-01-01

    Analysing the structure of a social network can help us understand the key factors influencing interaction and collaboration in a virtual learning community (VLC). Here, we describe the mechanisms used in social network analysis (SNA) to analyse the social network structure of a VLC for teachers and discuss the relationship between face-to-face…

  2. Exploratory Visualization of Graphs Based on Community Structure

    ERIC Educational Resources Information Center

    Liu, Yujie

    2013-01-01

    Communities, also called clusters or modules, are groups of nodes which probably share common properties and/or play similar roles within a graph. They widely exist in real networks such as biological, social, and information networks. Allowing users to interactively browse and explore the community structure, which is essential for understanding…

  3. Exploring anti-community structure in networks with application to incompatibility of traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajing; Liu, Yongguo; Zhang, Yun; Liu, Xiaofeng; Xiao, Yonghua; Wang, Shidong; Wu, Xindong

    2017-11-01

    Community structure is one of the most important properties in networks, in which a node shares its most connections with the others in the same community. On the contrary, the anti-community structure means the nodes in the same group have few or no connections with each other. In Traditional Chinese Medicine (TCM), the incompatibility problem of herbs is a challenge to the clinical medication safety. In this paper, we propose a new anti-community detection algorithm, Random non-nEighboring nOde expansioN (REON), to find anti-communities in networks, in which a new evaluation criterion, anti-modularity, is designed to measure the quality of the obtained anti-community structure. In order to establish anti-communities in REON, we expand the node set by non-neighboring node expansion and regard the node set with the highest anti-modularity as an anti-community. Inspired by the phenomenon that the node with higher degree has greater contribution to the anti-modularity, an improved algorithm called REONI is developed by expanding node set by the non-neighboring node with the maximum degree, which greatly enhances the efficiency of REON. Experiments on synthetic and real-world networks demonstrate the superiority of the proposed algorithms over the existing methods. In addition, by applying REONI to the herb network, we find that it can discover incompatible herb combinations.

  4. Community Evolution in International Migration Top1 Networks.

    PubMed

    Peres, Mihaela; Xu, Helian; Wu, Gang

    2016-01-01

    Focusing on each country's topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both.

  5. Community Evolution in International Migration Top1 Networks

    PubMed Central

    Xu, Helian

    2016-01-01

    Focusing on each country’s topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both. PMID:26859406

  6. Correlations between Community Structure and Link Formation in Complex Networks

    PubMed Central

    Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep

    2013-01-01

    Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818

  7. Impacts of clustering on interacting epidemics.

    PubMed

    Wang, Bing; Cao, Lang; Suzuki, Hideyuki; Aihara, Kazuyuki

    2012-07-07

    Since community structures in real networks play a major role for the epidemic spread, we therefore explore two interacting diseases spreading in networks with community structures. As a network model with community structures, we propose a random clique network model composed of different orders of cliques. We further assume that each disease spreads only through one type of cliques; this assumption corresponds to the issue that two diseases spread inside communities and outside them. Considering the relationship between the susceptible-infected-recovered (SIR) model and the bond percolation theory, we apply this theory to clique random networks under the assumption that the occupation probability is clique-type dependent, which is consistent with the observation that infection rates inside a community and outside it are different, and obtain a number of statistical properties for this model. Two interacting diseases that compete the same hosts are also investigated, which leads to a natural generalization of analyzing an arbitrary number of infectious diseases. For two-disease dynamics, the clustering effect is hypersensitive to the cohesiveness and concentration of cliques; this illustrates the impacts of clustering and the composition of subgraphs in networks on epidemic behavior. The analysis of coexistence/bistability regions provides significant insight into the relationship between the network structure and the potential epidemic prevalence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Capturing the Interplay of Dynamics and Networks through Parameterizations of Laplacian Operators

    DTIC Science & Technology

    2016-08-24

    important vertices and communities in the network. Specifically, for each dynamical process in this framework, we define a centrality measure that...vertices as a potential cluster (or community ) with respect to this process. We show that the subset-quality function generalizes the traditional conductance...compare the different perspectives they create on network structure. Subjects Network Science and Online Social Networks Keywords Network, Community

  9. Community detection for networks with unipartite and bipartite structure

    NASA Astrophysics Data System (ADS)

    Chang, Chang; Tang, Chao

    2014-09-01

    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.

  10. Friendship Concept and Community Network Structure among Elementary School and University Students.

    PubMed

    Hernández-Hernández, Ana María; Viga-de Alva, Dolores; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain; Laviada-Molina, Hugo; Molina-Segui, Fernanda

    2016-01-01

    We use complex network theory to study the differences between the friendship concepts in elementary school and university students. Four friendship networks were identified from surveys. Three of these networks are from elementary schools; two are located in the rural area of Yucatán and the other is in the urban area of Mérida, Yucatán. We analyzed the structure and the communities of these friendship networks and found significant differences among those at the elementary schools compared with those at the university. In elementary schools, the students make friends mainly in the same classroom, but there are also links among different classrooms because of the presence of siblings and relatives in the schools. These kinds of links (sibling-friend or relative-friend) are called, in this work, "mixed links". The classification of the communities is based on their similarity with the classroom composition. If the community is composed principally of students in different classrooms, the community is classified as heterogeneous. These kinds of communities appear in the elementary school friendship networks mainly because of the presence of relatives and siblings. Once the links between siblings and relatives are removed, the communities resembled the classroom composition. On the other hand, the university students are more selective in choosing friends and therefore, even when they have friends in the same classroom, those communities are quite different to the classroom composition. Also, in the university network, we found heterogeneous communities even when the presence of sibling and relatives is negligible. These differences made up a topological structure quite different at different academic levels. We also found differences in the network characteristics. Once these differences are understood, the topological structure of the friendship network and the communities shaped in an elementary school could be predicted if we know the total number of students and the ties between siblings and relatives. However, at the university, we cannot do the same. This discovery implies that friendship is a dynamic concept that produces several changes in the friendship network structure and the way that people make groups of friends; it provides the opportunity to give analytic support to observational studies. Communities were also studied by gender and we found that when the links among relatives and siblings were removed, the number of communities formed by one gender alone increased. At the university, many communities formed by students of the same gender were also found.

  11. Towards Online Multiresolution Community Detection in Large-Scale Networks

    PubMed Central

    Huang, Jianbin; Sun, Heli; Liu, Yaguang; Song, Qinbao; Weninger, Tim

    2011-01-01

    The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the challenges is to find local communities from a starting vertex in a network without global information about the entire network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect multiresolution community from a source vertex or communities covering the whole network. Experimental results show that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks. PMID:21887325

  12. Online Community Detection for Large Complex Networks

    PubMed Central

    Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian

    2014-01-01

    Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683

  13. Terrestrial origin of bacterial communities in complex boreal freshwater networks.

    PubMed

    Ruiz-González, Clara; Niño-García, Juan Pablo; Del Giorgio, Paul A

    2015-08-25

    Bacteria inhabiting boreal freshwaters are part of metacommunities where local assemblages are often linked by the flow of water in the landscape, yet the resulting spatial structure and the boundaries of the network metacommunity have never been explored. Here, we reconstruct the spatial structure of the bacterial metacommunity in a complex boreal aquatic network by determining the taxonomic composition of bacterial communities along the entire terrestrial/aquatic continuum, including soil and soilwaters, headwater streams, large rivers and lakes. We show that the network metacommunity has a directional spatial structure driven by a common terrestrial origin of aquatic communities, which are numerically dominated by taxa recruited from soils. Local community assembly is driven by variations along the hydrological continuum in the balance between mass effects and species sorting of terrestrial taxa, and seems further influenced by priority effects related to the spatial sequence of entry of soil bacteria into the network. © 2015 John Wiley & Sons Ltd/CNRS.

  14. From calls to communities: a model for time-varying social networks

    NASA Astrophysics Data System (ADS)

    Laurent, Guillaume; Saramäki, Jari; Karsai, Márton

    2015-11-01

    Social interactions vary in time and appear to be driven by intrinsic mechanisms that shape the emergent structure of social networks. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model integrates key mechanisms that drive the formation of social ties - social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and small-world connectedness in social networks. We compare the proposed model with a real-world time-varying network of mobile phone communication, and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, including the role of weak ties.

  15. Structural Preferential Attachment: Network Organization beyond the Link

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.

    2011-10-01

    We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.

  16. Overlapping community detection based on link graph using distance dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Jing; Cai, Li-Jun

    2018-01-01

    The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.

  17. The ground truth about metadata and community detection in networks

    PubMed Central

    Peel, Leto; Larremore, Daniel B.; Clauset, Aaron

    2017-01-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system’s components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks’ links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures. PMID:28508065

  18. Enabling Community Through Social Media

    PubMed Central

    Haythornthwaite, Caroline

    2013-01-01

    Background Social network analysis provides a perspective and method for inquiring into the structures that comprise online groups and communities. Traces from interaction via social media provide the opportunity for understanding how a community is formed and maintained online. Objective The paper aims to demonstrate how social network analysis provides a vocabulary and set of techniques for examining interaction patterns via social media. Using the case of the #hcsmca online discussion forum, this paper highlights what has been and can be gained by approaching online community from a social network perspective, as well as providing an inside look at the structure of the #hcsmca community. Methods Social network analysis was used to examine structures in a 1-month sample of Twitter messages with the hashtag #hcsmca (3871 tweets, 486 unique posters), which is the tag associated with the social media–supported group Health Care Social Media Canada. Network connections were considered present if the individual was mentioned, replied to, or had a post retweeted. Results Network analyses revealed patterns of interaction that characterized the community as comprising one component, with a set of core participants prominent in the network due to their connections with others. Analysis showed the social media health content providers were the most influential group based on in-degree centrality. However, there was no preferential attachment among people in the same professional group, indicating that the formation of connections among community members was not constrained by professional status. Conclusions Network analysis and visualizations provide techniques and a vocabulary for understanding online interaction, as well as insights that can help in understanding what, and who, comprises and sustains a network, and whether community emerges from a network of online interactions. PMID:24176835

  19. Discrete particle swarm optimization for identifying community structures in signed social networks.

    PubMed

    Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng

    2014-10-01

    Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of multiple spreaders in community networks

    NASA Astrophysics Data System (ADS)

    Hu, Zhao-Long; Ren, Zhuo-Ming; Yang, Guang-Yong; Liu, Jian-Guo

    2014-12-01

    Human contact networks exhibit the community structure. Understanding how such community structure affects the epidemic spreading could provide insights for preventing the spreading of epidemics between communities. In this paper, we explore the spreading of multiple spreaders in community networks. A network based on the clustering preferential mechanism is evolved, whose communities are detected by the Girvan-Newman (GN) algorithm. We investigate the spreading effectiveness by selecting the nodes as spreaders in the following ways: nodes with the largest degree in each community (community hubs), the same number of nodes with the largest degree from the global network (global large-degree) and randomly selected one node within each community (community random). The experimental results on the SIR model show that the spreading effectiveness based on the global large-degree and community hubs methods is the same in the early stage of the infection and the method of community random is the worst. However, when the infection rate exceeds the critical value, the global large-degree method embodies the worst spreading effectiveness. Furthermore, the discrepancy of effectiveness for the three methods will decrease as the infection rate increases. Therefore, we should immunize the hubs in each community rather than those hubs in the global network to prevent the outbreak of epidemics.

  1. Research on energy stock market associated network structure based on financial indicators

    NASA Astrophysics Data System (ADS)

    Xi, Xian; An, Haizhong

    2018-01-01

    A financial market is a complex system consisting of many interacting units. In general, due to the various types of information exchange within the industry, there is a relationship between the stocks that can reveal their clear structural characteristics. Complex network methods are powerful tools for studying the internal structure and function of the stock market, which allows us to better understand the stock market. Applying complex network methodology, a stock associated network model based on financial indicators is created. Accordingly, we set threshold value and use modularity to detect the community network, and we analyze the network structure and community cluster characteristics of different threshold situations. The study finds that the threshold value of 0.7 is the abrupt change point of the network. At the same time, as the threshold value increases, the independence of the community strengthens. This study provides a method of researching stock market based on the financial indicators, exploring the structural similarity of financial indicators of stocks. Also, it provides guidance for investment and corporate financial management.

  2. Community coalitions as a system: effects of network change on adoption of evidence-based substance abuse prevention.

    PubMed

    Valente, Thomas W; Chou, Chich Ping; Pentz, Mary Ann

    2007-05-01

    We examined the effect of community coalition network structure on the effectiveness of an intervention designed to accelerate the adoption of evidence-based substance abuse prevention programs. At baseline, 24 cities were matched and randomly assigned to 3 conditions (control, satellite TV training, and training plus technical assistance). We surveyed 415 community leaders at baseline and 406 at 18-month follow-up about their attitudes and practices toward substance abuse prevention programs. Network structure was measured by asking leaders whom in their coalition they turned to for advice about prevention programs. The outcome was a scale with 4 subscales: coalition function, planning, achievement of benchmarks, and progress in prevention activities. We used multiple linear regression and path analysis to test hypotheses. Intervention had a significant effect on decreasing the density of coalition networks. The change in density subsequently increased adoption of evidence-based practices. Optimal community network structures for the adoption of public health programs are unknown, but it should not be assumed that increasing network density or centralization are appropriate goals. Lower-density networks may be more efficient for organizing evidence-based prevention programs in communities.

  3. Local communities obstruct global consensus: Naming game on multi-local-world networks

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Chen, Guanrong; Fan, Zhengping; Xiang, Luna

    2018-02-01

    Community structure is essential for social communications, where individuals belonging to the same community are much more actively interacting and communicating with each other than those in different communities within the human society. Naming game, on the other hand, is a social communication model that simulates the process of learning a name of an object within a community of humans, where the individuals can generally reach global consensus asymptotically through iterative pair-wise conversations. The underlying network indicates the relationships among the individuals. In this paper, three typical topologies, namely random-graph, small-world and scale-free networks, are employed, which are embedded with the multi-local-world community structure, to study the naming game. Simulations show that (1) the convergence process to global consensus is getting slower as the community structure becomes more prominent, and eventually might fail; (2) if the inter-community connections are sufficiently dense, neither the number nor the size of the communities affects the convergence process; and (3) for different topologies with the same (or similar) average node-degree, local clustering of individuals obstruct or prohibit global consensus to take place. The results reveal the role of local communities in a global naming game in social network studies.

  4. Molecular ecological network analyses.

    PubMed

    Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong

    2012-05-30

    Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.

  5. Approximation of Nash equilibria and the network community structure detection problem

    PubMed Central

    2017-01-01

    Game theory based methods designed to solve the problem of community structure detection in complex networks have emerged in recent years as an alternative to classical and optimization based approaches. The Mixed Nash Extremal Optimization uses a generative relation for the characterization of Nash equilibria to identify the community structure of a network by converting the problem into a non-cooperative game. This paper proposes a method to enhance this algorithm by reducing the number of payoff function evaluations. Numerical experiments performed on synthetic and real-world networks show that this approach is efficient, with results better or just as good as other state-of-the-art methods. PMID:28467496

  6. A local immunization strategy for networks with overlapping community structure

    NASA Astrophysics Data System (ADS)

    Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi

    2017-02-01

    Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.

  7. A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies

    PubMed Central

    2017-01-01

    The authors use four criteria to examine a novel community detection algorithm: (a) effectiveness in terms of producing high values of normalized mutual information (NMI) and modularity, using well-known social networks for testing; (b) examination, meaning the ability to examine mitigating resolution limit problems using NMI values and synthetic networks; (c) correctness, meaning the ability to identify useful community structure results in terms of NMI values and Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks; and (d) scalability, or the ability to produce comparable modularity values with fast execution times when working with large-scale real-world networks. In addition to describing a simple hierarchical arc-merging (HAM) algorithm that uses network topology information, we introduce rule-based arc-merging strategies for identifying community structures. Five well-studied social network datasets and eight sets of LFR benchmark networks were employed to validate the correctness of a ground-truth community, eight large-scale real-world complex networks were used to measure its efficiency, and two synthetic networks were used to determine its susceptibility to two resolution limit problems. Our experimental results indicate that the proposed HAM algorithm exhibited satisfactory performance efficiency, and that HAM-identified and ground-truth communities were comparable in terms of social and LFR benchmark networks, while mitigating resolution limit problems. PMID:29121100

  8. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.

    PubMed

    Binzer, Amrei; Guill, Christian; Rall, Björn C; Brose, Ulrich

    2016-01-01

    Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors. © 2015 John Wiley & Sons Ltd.

  9. Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks

    PubMed Central

    Beckett, Stephen J.; Williams, Hywel T. P.

    2013-01-01

    Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719

  10. Homophyly/kinship hypothesis: Natural communities, and predicting in networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng

    2015-02-01

    It has been a longstanding challenge to understand natural communities in real world networks. We proposed a community finding algorithm based on fitness of networks, two algorithms for prediction, accurate prediction and confirmation of keywords for papers in the citation network Arxiv HEP-TH (high energy physics theory), and the measures of internal centrality, external de-centrality, internal and external slopes to characterize the structures of communities. We implemented our algorithms on 2 citation and 5 cooperation graphs. Our experiments explored and validated a homophyly/kinship principle of real world networks. The homophyly/kinship principle includes: (1) homophyly is the natural selection in real world networks, similar to Darwin's kinship selection in nature, (2) real world networks consist of natural communities generated by the natural selection of homophyly, (3) most individuals in a natural community share a short list of common attributes, (4) natural communities have an internal centrality (or internal heterogeneity) that a natural community has a few nodes dominating most of the individuals in the community, (5) natural communities have an external de-centrality (or external homogeneity) that external links of a natural community homogeneously distributed in different communities, and (6) natural communities of a given network have typical structures determined by the internal slopes, and have typical patterns of outgoing links determined by external slopes, etc. Our homophyly/kinship principle perfectly matches Darwin's observation that animals from ants to people form social groups in which most individuals work for the common good, and that kinship could encourage altruistic behavior. Our homophyly/kinship principle is the network version of Darwinian theory, and builds a bridge between Darwinian evolution and network science.

  11. A mixing evolution model for bidirectional microblog user networks

    NASA Astrophysics Data System (ADS)

    Yuan, Wei-Guo; Liu, Yun

    2015-08-01

    Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.

  12. Dynamics of Opinion Forming in Structurally Balanced Social Networks

    PubMed Central

    Altafini, Claudio

    2012-01-01

    A structurally balanced social network is a social community that splits into two antagonistic factions (typical example being a two-party political system). The process of opinion forming on such a community is most often highly predictable, with polarized opinions reflecting the bipartition of the network. The aim of this paper is to suggest a class of dynamical systems, called monotone systems, as natural models for the dynamics of opinion forming on structurally balanced social networks. The high predictability of the outcome of a decision process is explained in terms of the order-preserving character of the solutions of this class of dynamical systems. If we represent a social network as a signed graph in which individuals are the nodes and the signs of the edges represent friendly or hostile relationships, then the property of structural balance corresponds to the social community being splittable into two antagonistic factions, each containing only friends. PMID:22761667

  13. Global Electricity Trade Network: Structures and Implications

    PubMed Central

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  14. Global Electricity Trade Network: Structures and Implications.

    PubMed

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S F; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions.

  15. Convergent evolution of modularity in metabolic networks through different community structures.

    PubMed

    Zhou, Wanding; Nakhleh, Luay

    2012-09-14

    It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.

  16. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  17. Multi-objective community detection based on memetic algorithm.

    PubMed

    Wu, Peng; Pan, Li

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.

  18. Discovering Link Communities in Complex Networks by an Integer Programming Model and a Genetic Algorithm

    PubMed Central

    Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua

    2013-01-01

    Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268

  19. Sequential detection of temporal communities by estrangement confinement.

    PubMed

    Kawadia, Vikas; Sreenivasan, Sameet

    2012-01-01

    Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks.

  20. Epidemic spreading in time-varying community networks.

    PubMed

    Ren, Guangming; Wang, Xingyuan

    2014-06-01

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q < qc. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.

  1. Network community structure and loop coefficient method

    NASA Astrophysics Data System (ADS)

    Vragović, I.; Louis, E.

    2006-07-01

    A modular structure, in which groups of tightly connected nodes could be resolved as separate entities, is a property that can be found in many complex networks. In this paper, we propose a algorithm for identifying communities in networks. It is based on a local measure, so-called loop coefficient that is a generalization of the clustering coefficient. Nodes with a large loop coefficient tend to be core inner community nodes, while other vertices are usually peripheral sites at the borders of communities. Our method gives satisfactory results for both artificial and real-world graphs, if they have a relatively pronounced modular structure. This type of algorithm could open a way of interpreting the role of nodes in communities in terms of the local loop coefficient, and could be used as a complement to other methods.

  2. Inference and Analysis of Population Structure Using Genetic Data and Network Theory

    PubMed Central

    Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli

    2016-01-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080

  3. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.

  4. Tripartite community structure in social bookmarking data

    NASA Astrophysics Data System (ADS)

    Neubauer, Nicolas; Obermayer, Klaus

    2011-12-01

    Community detection is a branch of network analysis concerned with identifying strongly connected subnetworks. Social bookmarking sites aggregate datasets of often hundreds of millions of triples (document, user, and tag), which, when interpreted as edges of a graph, give rise to special networks called 3-partite, 3-uniform hypergraphs. We identify challenges and opportunities of generalizing community detection and in particular modularity optimization to these structures. Two methods for community detection are introduced that preserve the hypergraph's special structure to different degrees. Their performance is compared on synthetic datasets, showing the benefits of structure preservation. Furthermore, a tool for interactive exploration of the community detection results is introduced and applied to examples from real datasets. We find additional evidence for the importance of structure preservation and, more generally, demonstrate how tripartite community detection can help understand the structure of social bookmarking data.

  5. Detection of communities with Naming Game-based methods

    PubMed Central

    Ribeiro, Carlos Henrique Costa

    2017-01-01

    Complex networks are often organized in groups or communities of agents that share the same features and/or functions, and this structural organization is built naturally with the formation of the system. In social networks, we argue that the dynamic of linguistic interactions of agreement among people can be a crucial factor in generating this community structure, given that sharing opinions with another person bounds them together, and disagreeing constantly would probably weaken the relationship. We present here a computational model of opinion exchange that uncovers the community structure of a network. Our aim is not to present a new community detection method proper, but to show how a model of social communication dynamics can reveal the (simple and overlapping) community structure in an emergent way. Our model is based on a standard Naming Game, but takes into consideration three social features: trust, uncertainty and opinion preference, that are built over time as agents communicate among themselves. We show that the separate addition of each social feature in the Naming Game results in gradual improvements with respect to community detection. In addition, the resulting uncertainty and trust values classify nodes and edges according to role and position in the network. Also, our model has shown a degree of accuracy both for non-overlapping and overlapping communities that are comparable with most algorithms specifically designed for topological community detection. PMID:28797097

  6. Dynamical origins of the community structure of an online multi-layer society

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi; Thurner, Stefan

    2016-08-01

    Social structures emerge as a result of individuals managing a variety of different social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various layers in the multiplex network. Community sizes distributions are either fat-tailed or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex network. Depending on link and node fluctuation probabilities, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.

  7. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems

    USGS Publications Warehouse

    Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell, Grant E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C.

    2011-01-01

    Explaining the mechanisms underlying patterns of species diversity and composition in riverine networks is challenging. Historically, community ecologists have conceived of communities as largely isolated entities and have focused on local environmental factors and interspecific interactions as the major forces determining species composition. However, stream ecologists have long embraced a multiscale approach to studying riverine ecosystems and have studied both local factors and larger-scale regional factors, such as dispersal and disturbance. River networks exhibit a dendritic spatial structure that can constrain aquatic organisms when their dispersal is influenced by or confined to the river network. We contend that the principles of metacommunity theory would help stream ecologists to understand how the complex spatial structure of river networks mediates the relative influences of local and regional control on species composition. From a basic ecological perspective, the concept is attractive because new evidence suggests that the importance of regional processes (dispersal) depends on spatial structure of habitat and on connection to the regional species pool. The role of local factors relative to regional factors will vary with spatial position in a river network. From an applied perspective, the long-standing view in ecology that local community composition is an indicator of habitat quality may not be uniformly applicable across a river network, but the strength of such bioassessment approaches probably will depend on spatial position in the network. The principles of metacommunity theory are broadly applicable across taxa and systems but seem of particular consequence to stream ecology given the unique spatial structure of riverine systems. By explicitly embracing processes at multiple spatial scales, metacommunity theory provides a foundation on which to build a richer understanding of stream communities.

  8. Network communities within and across borders

    PubMed Central

    Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo

    2014-01-01

    We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index. PMID:24686380

  9. Network communities within and across borders.

    PubMed

    Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo

    2014-04-01

    We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.

  10. The National Biomedical Communications Network as a Developing Structure *

    PubMed Central

    Davis, Ruth M.

    1971-01-01

    The National Biomedical Communications Network has evolved both from a set of conceptual recommendations over the last twelve years and an accumulation of needs manifesting themselves in the requests of members of the medical community. With a short history of three years this network and its developing structure have exhibited most of the stresses of technology interfacing with customer groups, and of a structure attempting to build itself upon many existing fragmentary unconnected segments of a potentially viable resourcesharing capability. In addition to addressing these topics, the paper treats a design appropriate to any network devoted to information transfer in a special interest user community. It discusses fundamentals of network design, highlighting that network structure most appropriate to a national information network. Examples are given of cost analyses of information services and certain conjectures are offered concerning the roles of national networks. PMID:5542912

  11. Identifying the Community Structure of the Food-Trade International Multi-Network

    NASA Technical Reports Server (NTRS)

    Torreggiani, S.; Mangioni, G.

    2018-01-01

    Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network's community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001-2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors-such as geographical proximity and trade-agreement co-membership-than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential 'shocks' to global food trade.

  12. Epidemic spreading in time-varying community networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024; Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com

    2014-06-15

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel onmore » the epidemic spreading in complex networks with community structure.« less

  13. Active Semi-Supervised Community Detection Based on Must-Link and Cannot-Link Constraints

    PubMed Central

    Cheng, Jianjun; Leng, Mingwei; Li, Longjie; Zhou, Hanhai; Chen, Xiaoyun

    2014-01-01

    Community structure detection is of great importance because it can help in discovering the relationship between the function and the topology structure of a network. Many community detection algorithms have been proposed, but how to incorporate the prior knowledge in the detection process remains a challenging problem. In this paper, we propose a semi-supervised community detection algorithm, which makes full utilization of the must-link and cannot-link constraints to guide the process of community detection and thereby extracts high-quality community structures from networks. To acquire the high-quality must-link and cannot-link constraints, we also propose a semi-supervised component generation algorithm based on active learning, which actively selects nodes with maximum utility for the proposed semi-supervised community detection algorithm step by step, and then generates the must-link and cannot-link constraints by accessing a noiseless oracle. Extensive experiments were carried out, and the experimental results show that the introduction of active learning into the problem of community detection makes a success. Our proposed method can extract high-quality community structures from networks, and significantly outperforms other comparison methods. PMID:25329660

  14. Contrasting effects of invasive plants in plant-pollinator networks.

    PubMed

    Bartomeus, Ignasi; Vilà, Montserrat; Santamaría, Luís

    2008-04-01

    The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant-pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant-pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant-pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant-pollinator network.

  15. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    PubMed

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  16. A density-based clustering model for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Li, Yantao; Qu, Zehui

    2018-04-01

    Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.

  17. The optimal community detection of software based on complex networks

    NASA Astrophysics Data System (ADS)

    Huang, Guoyan; Zhang, Peng; Zhang, Bing; Yin, Tengteng; Ren, Jiadong

    2016-02-01

    The community structure is important for software in terms of understanding the design patterns, controlling the development and the maintenance process. In order to detect the optimal community structure in the software network, a method Optimal Partition Software Network (OPSN) is proposed based on the dependency relationship among the software functions. First, by analyzing the information of multiple execution traces of one software, we construct Software Execution Dependency Network (SEDN). Second, based on the relationship among the function nodes in the network, we define Fault Accumulation (FA) to measure the importance of the function node and sort the nodes with measure results. Third, we select the top K(K=1,2,…) nodes as the core of the primal communities (only exist one core node). By comparing the dependency relationships between each node and the K communities, we put the node into the existing community which has the most close relationship. Finally, we calculate the modularity with different initial K to obtain the optimal division. With experiments, the method OPSN is verified to be efficient to detect the optimal community in various softwares.

  18. A cooperative game framework for detecting overlapping communities in social networks

    NASA Astrophysics Data System (ADS)

    Jonnalagadda, Annapurna; Kuppusamy, Lakshmanan

    2018-02-01

    Community detection in social networks is a challenging and complex task, which received much attention from researchers of multiple domains in recent years. The evolution of communities in social networks happens merely due to the self-interest of the nodes. The interesting feature of community structure in social networks is the multi membership of the nodes resulting in overlapping communities. Assuming the nodes of the social network as self-interested players, the dynamics of community formation can be captured in the form of a game. In this paper, we propose a greedy algorithm, namely, Weighted Graph Community Game (WGCG), in order to model the interactions among the self-interested nodes of the social network. The proposed algorithm employs the Shapley value mechanism to discover the inherent communities of the underlying social network. The experimental evaluation on the real-world and synthetic benchmark networks demonstrates that the performance of the proposed algorithm is superior to the state-of-the-art overlapping community detection algorithms.

  19. Environmental Design for a Structured Network Learning Society

    ERIC Educational Resources Information Center

    Chang, Ben; Cheng, Nien-Heng; Deng, Yi-Chan; Chan, Tak-Wai

    2007-01-01

    Social interactions profoundly impact the learning processes of learners in traditional societies. The rapid rise of the Internet using population has been the establishment of numerous different styles of network communities. Network societies form when more Internet communities are established, but the basic form of a network society, especially…

  20. A mathematical programming approach for sequential clustering of dynamic networks

    NASA Astrophysics Data System (ADS)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  1. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  2. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Huang, Ruiping; Li, Yan; Li, Futian; Wu, Yaping; Hutchins, David A.; Dai, Minhan; Gao, Kunshan

    2018-01-01

    There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  3. Living in the branches: population dynamics and ecological processes in dendritic networks

    USGS Publications Warehouse

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  4. Weighted compactness function based label propagation algorithm for community detection

    NASA Astrophysics Data System (ADS)

    Zhang, Weitong; Zhang, Rui; Shang, Ronghua; Jiao, Licheng

    2018-02-01

    Community detection in complex networks, is to detect the community structure with the internal structure relatively compact and the external structure relatively sparse, according to the topological relationship among nodes in the network. In this paper, we propose a compactness function which combines the weight of nodes, and use it as the objective function to carry out the node label propagation. Firstly, according to the node degree, we find the sets of core nodes which have great influence on the network. The more the connections between the core nodes and the other nodes are, the larger the amount of the information these kernel nodes receive and transform. Then, according to the similarity of the nodes between the core nodes sets and the nodes degree, we assign weights to the nodes in the network. So the label of the nodes with great influence will be the priority in the label propagation process, which effectively improves the accuracy of the label propagation. The compactness function between nodes and communities in this paper is based on the nodes influence. It combines the connections between nodes and communities with the degree of the node belongs to its neighbor communities based on calculating the node weight. The function effectively uses the information of nodes and connections in the network. The experimental results show that the proposed algorithm can achieve good results in the artificial network and large-scale real networks compared with the 8 contrast algorithms.

  5. Emergence of bursts and communities in evolving weighted networks.

    PubMed

    Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo

    2011-01-01

    Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.

  6. Structure and dynamics of stock market in times of crisis

    NASA Astrophysics Data System (ADS)

    Zhao, Longfeng; Li, Wei; Cai, Xu

    2016-02-01

    Daily correlations among 322 S&P 500 constituent stocks are investigated by means of correlation-based (CB) network. By using the heterogeneous time scales, we identify global expansion and local clustering market behaviors during crises, which are mainly caused by community splits and inter-sector edge number decreases. The CB networks display distinctive community and sector structures. Graph edit distance is applied to capturing the dynamics of CB networks in which drastic structure reconfigurations can be observed during crisis periods. Edge statistics reveal the power-law nature of edges' duration time distribution. Despite the networks' strong structural changes during crises, we still find some long-duration edges that serve as the backbone of the stock market. Finally the dynamical change of network structure has shown its capability in predicting the implied volatility index (VIX).

  7. Identifying the community structure of the food-trade international multi-network

    NASA Astrophysics Data System (ADS)

    Torreggiani, S.; Mangioni, G.; Puma, M. J.; Fagiolo, G.

    2018-05-01

    Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network’s community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001–2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors—such as geographical proximity and trade-agreement co-membership—than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential ‘shocks’ to global food trade.

  8. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    PubMed

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Mnemonic convergence in social networks: The emergent properties of cognition at a collective level.

    PubMed

    Coman, Alin; Momennejad, Ida; Drach, Rae D; Geana, Andra

    2016-07-19

    The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members' memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals.

  10. Convergent evolution of modularity in metabolic networks through different community structures

    PubMed Central

    2012-01-01

    Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations. PMID:22974099

  11. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication

    PubMed Central

    Stetz, Gabrielle; Verkhivker, Gennady M.

    2017-01-01

    Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400

  12. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2017-01-01

    Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.

  13. A community detection algorithm based on structural similarity

    NASA Astrophysics Data System (ADS)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  14. Community Structure of a Bank-Firm Credit Network in Japan

    NASA Astrophysics Data System (ADS)

    Iyetomi, Hiroshi; Matsuura, Yuki

    2014-03-01

    We study temporal change of community structure in a Japanese credit network formed by banks and listed firms through their financial relations over the last 30 years. The credit connectedness is regarded as a potenital source of systemic risk. Our network is a bipartite graph consisting of two species of nodes connected with bidirectional links. The direction of links is identified with that of risk flows and their weights are relative credit/loan with respect to the targets. In a partial credit network obtained only with the links pointing from firms toward banks, the city banks forms one major community in most of the time period to share risk when firms go wrong. On the other hand, a partial network only with the links from banks toward firms is decomposed into communities of similar size each of which has its own city bank, reflecting the main-bank system in Japan. Finally we take overlapping parts of the two community sets to find cores of the risk concentration in the credit network. This work was supported by JSPS KAKENHI Grant Number 22300080.

  15. Why are some plant-pollinator networks more nested than others?

    PubMed

    Song, Chuliang; Rohr, Rudolf P; Saavedra, Serguei

    2017-10-01

    Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  16. A FRAMEWORK FOR ATTRIBUTE-BASED COMMUNITY DETECTION WITH APPLICATIONS TO INTEGRATED FUNCTIONAL GENOMICS.

    PubMed

    Yu, Han; Hageman Blair, Rachael

    2016-01-01

    Understanding community structure in networks has received considerable attention in recent years. Detecting and leveraging community structure holds promise for understanding and potentially intervening with the spread of influence. Network features of this type have important implications in a number of research areas, including, marketing, social networks, and biology. However, an overwhelming majority of traditional approaches to community detection cannot readily incorporate information of node attributes. Integrating structural and attribute information is a major challenge. We propose a exible iterative method; inverse regularized Markov Clustering (irMCL), to network clustering via the manipulation of the transition probability matrix (aka stochastic flow) corresponding to a graph. Similar to traditional Markov Clustering, irMCL iterates between "expand" and "inflate" operations, which aim to strengthen the intra-cluster flow, while weakening the inter-cluster flow. Attribute information is directly incorporated into the iterative method through a sigmoid (logistic function) that naturally dampens attribute influence that is contradictory to the stochastic flow through the network. We demonstrate advantages and the exibility of our approach using simulations and real data. We highlight an application that integrates breast cancer gene expression data set and a functional network defined via KEGG pathways reveal significant modules for survival.

  17. Social contagions on time-varying community networks

    NASA Astrophysics Data System (ADS)

    Liu, Mian-Xin; Wang, Wei; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng

    2017-05-01

    Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.

  18. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network

    PubMed Central

    Eggo, Rosalind M; Lenczner, Michael

    2015-01-01

    Background Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns. Objective The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated epidemics with multiple wave structures. Methods We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure) of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network. We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to the network’s ability to produce multiwave epidemics. Results We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the ones forging contacts with more distant social groups. Conclusions Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in epidemic dynamics allows officials to anticipate epidemic resurgence without having to forecast future changes in hosts, pathogens, or the environment. PMID:26156032

  19. Community Structure in Online Collegiate Social Networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  20. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  1. An ant colony based algorithm for overlapping community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di

    2015-06-01

    Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.

  2. The role of community structure on the nature of explosive synchronization.

    PubMed

    Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein

    2018-03-01

    In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.

  3. Extracting Communities from Complex Networks by the k-Dense Method

    NASA Astrophysics Data System (ADS)

    Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro

    To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.

  4. Subcommunities and Their Mutual Relationships in a Transaction Network

    NASA Astrophysics Data System (ADS)

    Iino, T.; Iyetomi, H.

    We investigate a Japanese transaction network consisting ofabout 800 thousand firms (nodes) and four million business relations (links) with focus on its modular structure. Communities detected by maximizing modularity often are dominated by firms with common features or behaviors in the network, such as characterized by regions or industry sectors. However, it is well known that the modularity optimization approach has a resolution limit problem, that is, it fails in identifying fine communities buried in large communities. To unfold such hidden structures, we apply the community detection to each of subnetworks formed by isolating those communities from the whole body. Subcommunities thus identified are composed of firms with finer regions, more specified sectors or business affiliations. Also we introduce a new idea of reduced modularity matrix to measure the strength of relations between (sub)communities.

  5. Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.

    PubMed

    Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios

    2018-04-24

    Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.

  6. Modeling information diffusion in time-varying community networks

    NASA Astrophysics Data System (ADS)

    Cui, Xuelian; Zhao, Narisa

    2017-12-01

    Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.

  7. Urban ecological stewardship: understanding the structure, function and network of community-based urban land management

    Treesearch

    Erika s. Svendsen; Lindsay K. Campbell

    2008-01-01

    Urban environmental stewardship activities are on the rise in cities throughout the Northeast. Groups participating in stewardship activities range in age, size, and geography and represent an increasingly complex and dynamic arrangement of civil society, government and business sectors. To better understand the structure, function and network of these community-based...

  8. Discovering SIFIs in Interbank Communities

    PubMed Central

    Pecora, Nicolò; Rovira Kaltwasser, Pablo; Spelta, Alessandro

    2016-01-01

    This paper proposes a new methodology based on non-negative matrix factorization to detect communities and to identify central nodes in a network as well as within communities. The method is specifically designed for directed weighted networks and, consequently, it has been applied to the interbank network derived from the e-MID interbank market. In an interbank network indeed links are directed, representing flows of funds between lenders and borrowers. Besides distinguishing between Systemically Important Borrowers and Lenders, the technique complements the detection of systemically important banks, revealing the community structure of the network, that proxies the most plausible areas of contagion of institutions’ distress. PMID:28002445

  9. The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure

    PubMed Central

    Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven

    2012-01-01

    Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713

  10. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    PubMed

    Goekoop, Rutger; Goekoop, Jaap G; Scholte, H Steven

    2012-01-01

    Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. At facet level, NCS showed a best match (96.2%) with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  11. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    PubMed

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  12. Exploring the spiral of silence in adjustable social networks

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Du, Ya-Jun; Li, Xian-Yong; Chen, Xiao-Liang

    2015-03-01

    This study extends the understanding of the spiral of silence theory by taking into account four factors, including the topology of networks, the time factor of information transmission, the node degree of individuals and the freedom of expression. Simulation experiments analyze the silencers, public opinion in steady state and relaxation time in small-world networks, scale-free networks and community-structured networks by adjusting the initial conditions. Results highlight that individuals are easier to keep silent in scale-free network, especially when the individual with big degree and minority opinion starts the discussion. Conversely, there are only a few individuals keep silent in the community-structured network when the two communities hold opposite opinions. Moreover, the number of silencers grows as the degree of coupling increases, and it decreases as the freedom of expression goes up. By analyzing the public opinion evolution, we also find some important conditions, such as the network topology, the potential public opinion distribution, and the status and sides of the first speaker, can drive the minority reversal.

  13. Z-Score-Based Modularity for Community Detection in Networks

    PubMed Central

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270

  14. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    PubMed Central

    Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197

  15. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    NASA Astrophysics Data System (ADS)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  16. Network Skewness Measures Resilience in Lake Ecosystems

    NASA Astrophysics Data System (ADS)

    Langdon, P. G.; Wang, R.; Dearing, J.; Zhang, E.; Doncaster, P.; Yang, X.; Yang, H.; Dong, X.; Hu, Z.; Xu, M.; Yanjie, Z.; Shen, J.

    2017-12-01

    Changes in ecosystem resilience defy straightforward quantification from biodiversity metrics, which ignore influences of community structure. Naturally self-organized network structures show positive skewness in the distribution of node connections. Here we test for skewness reduction in lake diatom communities facing anthropogenic stressors, across a network of 273 lakes in China containing 452 diatom species. Species connections show positively skewed distributions in little-impacted lakes, switching to negative skewness in lakes associated with human settlement, surrounding land-use change, and higher phosphorus concentration. Dated sediment cores reveal a down-shifting of network skewness as human impacts intensify, and reversal with recovery from disturbance. The appearance and degree of negative skew presents a new diagnostic for quantifying system resilience and impacts from exogenous forcing on ecosystem communities.

  17. River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community.

    PubMed

    Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F

    2017-05-01

    Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.

  18. Mass media influence spreading in social networks with community structure

    NASA Astrophysics Data System (ADS)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  19. Multimedia Information Networks in Social Media

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Qi, Guojun; Tsai, Shen-Fu; Tsai, Min-Hsuan; Pozo, Andrey Del; Huang, Thomas S.; Zhang, Xuemei; Lim, Suk Hwan

    The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.

  20. Dynamic robustness of knowledge collaboration network of open source product development community

    NASA Astrophysics Data System (ADS)

    Zhou, Hong-Li; Zhang, Xiao-Dong

    2018-01-01

    As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.

  1. How plants connect pollination and herbivory networks and their contribution to community stability.

    PubMed

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  2. Detecting network communities beyond assortativity-related attributes

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Murata, Tsuyoshi; Wakita, Ken

    2014-07-01

    In network science, assortativity refers to the tendency of links to exist between nodes with similar attributes. In social networks, for example, links tend to exist between individuals of similar age, nationality, location, race, income, educational level, religious belief, and language. Thus, various attributes jointly affect the network topology. An interesting problem is to detect community structure beyond some specific assortativity-related attributes ρ, i.e., to take out the effect of ρ on network topology and reveal the hidden community structures which are due to other attributes. An approach to this problem is to redefine the null model of the modularity measure, so as to simulate the effect of ρ on network topology. However, a challenge is that we do not know to what extent the network topology is affected by ρ and by other attributes. In this paper, we propose a distance modularity, which allows us to freely choose any suitable function to simulate the effect of ρ. Such freedom can help us probe the effect of ρ and detect the hidden communities which are due to other attributes. We test the effectiveness of distance modularity on synthetic benchmarks and two real-world networks.

  3. Impact of individual interest shift on information dissemination in modular networks

    NASA Astrophysics Data System (ADS)

    Zhao, Narisa; Cui, Xuelian

    2017-01-01

    Social networks exhibit strong community structure. Many researches have been done to explore the impacts of community structure on information diffusion but few combined with human behaviors together. In this paper, we focus on how the individual interests' changing behavior impacts the dynamics of information propagation. Firstly, we propose an information dissemination model considering both the community structure and individual interest shift where social reinforcement and time decaying are taken into account. The accuracy of the model is evaluated by comparing the simulation and theoretical results. Further, the numerical results illustrate that both the community structure and the interests changing behavior have effects on the outbreak size of the information dissemination. Specially, lower modularity and higher community connection density will accelerate the speed of information propagation especially when the information maximal lifetime is shorter. In addition, the changes of individual interests in the message have a great impact on the final density of the received through increasing or decreasing the number of satisfied individuals directly. What is more, our findings suggest that when the modularity of the network is higher and the community clustering coefficient is lower individual interest shift behavior will have a heavier effect on the spread scope.

  4. Mnemonic convergence in social networks: The emergent properties of cognition at a collective level

    PubMed Central

    Coman, Alin; Momennejad, Ida; Drach, Rae D.; Geana, Andra

    2016-01-01

    The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members’ memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals. PMID:27357678

  5. Community evolution mining and analysis in social network

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Tian, Yuan; Liu, Xueyan; Jian, Jie

    2017-03-01

    With the development of digital and network technology, various social platforms emerge. These social platforms have greatly facilitated access to information, attracting more and more users. They use these social platforms every day to work, study and communicate, so every moment social platforms are generating massive amounts of data. These data can often be modeled as complex networks, making large-scale social network analysis possible. In this paper, the existing evolution classification model of community has been improved based on community evolution relationship over time in dynamic social network, and the Evolution-Tree structure is proposed which can show the whole life cycle of the community more clearly. The comparative test result shows that the improved model can excavate the evolution relationship of the community well.

  6. Variability of community interaction networks in marine reserves and adjacent exploited areas

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2008-01-01

    Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.

  7. Community structure and scale-free collections of Erdős-Rényi graphs.

    PubMed

    Seshadhri, C; Kolda, Tamara G; Pinar, Ali

    2012-05-01

    Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.

  8. The Community Structure of the European Network of Interlocking Directorates 2005–2010

    PubMed Central

    Heemskerk, Eelke M.; Daolio, Fabio; Tomassini, Marco

    2013-01-01

    The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer. PMID:23894318

  9. The community structure of the European network of interlocking directorates 2005-2010.

    PubMed

    Heemskerk, Eelke M; Daolio, Fabio; Tomassini, Marco

    2013-01-01

    The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer.

  10. Artificial neural networks and ecological communities (Book Review: Modelling community structure in freshwater ecosystems)

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2005-01-01

    Review info: Modeling community structure in freshwater ecosystems. Edited by Sovan Lek, Michele Scardi, Piet F.M. Verdonschot, Jean-Pierre Descy, and Young-Seuk Park, 2005. ISBN: 3-540-23940-5, 518 pp.

  11. A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale.

    PubMed

    Burns, K C; Zotz, G

    2010-02-01

    Epiphytes are an important component of many forested ecosystems, yet our understanding of epiphyte communities lags far behind that of terrestrial-based plant communities. This discrepancy is exacerbated by the lack of a theoretical context to assess patterns in epiphyte community structure. We attempt to fill this gap by developing an analytical framework to investigate epiphyte assemblages, which we then apply to a data set on epiphyte distributions in a Panamanian rain forest. On a coarse scale, interactions between epiphyte species and host tree species can be viewed as bipartite networks, similar to pollination and seed dispersal networks. On a finer scale, epiphyte communities on individual host trees can be viewed as meta-communities, or suites of local epiphyte communities connected by dispersal. Similar analytical tools are typically employed to investigate species interaction networks and meta-communities, thus providing a unified analytical framework to investigate coarse-scale (network) and fine-scale (meta-community) patterns in epiphyte distributions. Coarse-scale analysis of the Panamanian data set showed that most epiphyte species interacted with fewer host species than expected by chance. Fine-scale analyses showed that epiphyte species richness on individual trees was lower than null model expectations. Therefore, epiphyte distributions were clumped at both scales, perhaps as a result of dispersal limitations. Scale-dependent patterns in epiphyte species composition were observed. Epiphyte-host networks showed evidence of negative co-occurrence patterns, which could arise from adaptations among epiphyte species to avoid competition for host species, while most epiphyte meta-communities were distributed at random. Application of our "meta-network" analytical framework in other locales may help to identify general patterns in the structure of epiphyte assemblages and their variation in space and time.

  12. Scalable detection of statistically significant communities and hierarchies, using message passing for modularity

    PubMed Central

    Zhang, Pan; Moore, Cristopher

    2014-01-01

    Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096

  13. Fast detection of the fuzzy communities based on leader-driven algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He

    2018-03-01

    In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.

  14. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    PubMed

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  15. Building Research Infrastructure in Community Health Centers: A Community Health Applied Research Network (CHARN) Report

    PubMed Central

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E.

    2015-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and “matchmaking” between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings. PMID:24004710

  16. Network Structural Influences on the Adoption of Evidence-Based Prevention in Communities

    ERIC Educational Resources Information Center

    Fujimoto, Kayo; Valente, Thomas W.; Pentz, Mary Ann

    2009-01-01

    This study examined the impact of key variables in coalition communication networks, centralization and density, on the adoption of evidence-based substance abuse prevention. Data were drawn from a network survey and a corresponding community leader survey that measured leader attitudes and practices toward substance abuse prevention programs. Two…

  17. How Social Network Position Relates to Knowledge Building in Online Learning Communities

    ERIC Educational Resources Information Center

    Wang, Lu

    2010-01-01

    Social Network Analysis, Statistical Analysis, Content Analysis and other research methods were used to research online learning communities at Capital Normal University, Beijing. Analysis of the two online courses resulted in the following conclusions: (1) Social networks of the two online courses form typical core-periphery structures; (2)…

  18. Improving resolution of dynamic communities in human brain networks through targeted node removal

    PubMed Central

    Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2017-01-01

    Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662

  19. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  20. How Relations are Built within a SNS World -- Social Network Analysis on Mixi --

    NASA Astrophysics Data System (ADS)

    Matsuo, Yutaka; Yasud, Yuki

    Our purpose here is to (1) investigate the structure of the personal networks developed on mixi, a Japanese social networking service (SNS), and (2) to consider the governing mechanism which guides participants of a SNS to form an aggregate network. Our findings are as follows:the clustering coefficient of the network is as high as 0.33 while the characteristic path lenght is as low as 5.5. A network among central users (over 300 edges) consist of two cliques, which seems to be very fragile. Community-affiliation network suggests there are several easy-entry communities which later lead users to more high-entry, unique-theme communities. The analysis on connectedness within a community reveals the importance of real-world interaction. Lastly, we depict a probable image of the entire ecology on {\\\\em mixi} among users and communities, which contributes broadly to social systems on the Web.

  1. Communities and classes in symmetric fractals

    NASA Astrophysics Data System (ADS)

    Krawczyk, Małgorzata J.

    2015-07-01

    Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analyzed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.

  2. Modeling Temporal Variation in Social Network: An Evolutionary Web Graph Approach

    NASA Astrophysics Data System (ADS)

    Mitra, Susanta; Bagchi, Aditya

    A social network is a social structure between actors (individuals, organization or other social entities) and indicates the ways in which they are connected through various social relationships like friendships, kinships, professional, academic etc. Usually, a social network represents a social community, like a club and its members or a city and its citizens etc. or a research group communicating over Internet. In seventies Leinhardt [1] first proposed the idea of representing a social community by a digraph. Later, this idea became popular among other research workers like, network designers, web-service application developers and e-learning modelers. It gave rise to a rapid proliferation of research work in the area of social network analysis. Some of the notable structural properties of a social network are connectedness between actors, reachability between a source and a target actor, reciprocity or pair-wise connection between actors with bi-directional links, centrality of actors or the important actors having high degree or more connections and finally the division of actors into sub-structures or cliques or strongly-connected components. The cycles present in a social network may even be nested [2, 3]. The formal definition of these structural properties will be provided in Sect. 8.2.1. The division of actors into cliques or sub-groups can be a very important factor for understanding a social structure, particularly the degree of cohesiveness in a community. The number, size, and connections among the sub-groups in a network are useful in understanding how the network, as a whole, is likely to behave.

  3. The anatomy of urban social networks and its implications in the searchability problem

    PubMed Central

    Herrera-Yagüe, C.; Schneider, C. M.; Couronné, T.; Smoreda, Z.; Benito, R. M.; Zufiria, P. J.; González, M. C.

    2015-01-01

    The appearance of large geolocated communication datasets has recently increased our understanding of how social networks relate to their physical space. However, many recurrently reported properties, such as the spatial clustering of network communities, have not yet been systematically tested at different scales. In this work we analyze the social network structure of over 25 million phone users from three countries at three different scales: country, provinces and cities. We consistently find that this last urban scenario presents significant differences to common knowledge about social networks. First, the emergence of a giant component in the network seems to be controlled by whether or not the network spans over the entire urban border, almost independently of the population or geographic extension of the city. Second, urban communities are much less geographically clustered than expected. These two findings shed new light on the widely-studied searchability in self-organized networks. By exhaustive simulation of decentralized search strategies we conclude that urban networks are searchable not through geographical proximity as their country-wide counterparts, but through an homophily-driven community structure. PMID:26035529

  4. The anatomy of urban social networks and its implications in the searchability problem.

    PubMed

    Herrera-Yagüe, C; Schneider, C M; Couronné, T; Smoreda, Z; Benito, R M; Zufiria, P J; González, M C

    2015-06-02

    The appearance of large geolocated communication datasets has recently increased our understanding of how social networks relate to their physical space. However, many recurrently reported properties, such as the spatial clustering of network communities, have not yet been systematically tested at different scales. In this work we analyze the social network structure of over 25 million phone users from three countries at three different scales: country, provinces and cities. We consistently find that this last urban scenario presents significant differences to common knowledge about social networks. First, the emergence of a giant component in the network seems to be controlled by whether or not the network spans over the entire urban border, almost independently of the population or geographic extension of the city. Second, urban communities are much less geographically clustered than expected. These two findings shed new light on the widely-studied searchability in self-organized networks. By exhaustive simulation of decentralized search strategies we conclude that urban networks are searchable not through geographical proximity as their country-wide counterparts, but through an homophily-driven community structure.

  5. Overlapping Community Detection based on Network Decomposition

    NASA Astrophysics Data System (ADS)

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-04-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.

  6. Liking and hyperlinking: Community detection in online child sexual exploitation networks.

    PubMed

    Westlake, Bryce G; Bouchard, Martin

    2016-09-01

    The online sexual exploitation of children is facilitated by websites that form virtual communities, via hyperlinks, to distribute images, videos, and other material. However, how these communities form, are structured, and evolve over time is unknown. Collected using a custom-designed webcrawler, we begin from known child sexual exploitation (CE) seed websites and follow hyperlinks to connected, related, websites. Using a repeated measure design we analyze 10 networks of 300 + websites each - over 4.8 million unique webpages in total, over a period of 60 weeks. Community detection techniques reveal that CE-related networks were dominated by two large communities hosting varied material -not necessarily matching the seed website. Community stability, over 60 weeks, varied across networks. Reciprocity in hyperlinking between community members was substantially higher than within the full network, however, websites were not more likely to connect to homogeneous-content websites. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Virality Prediction and Community Structure in Social Networks

    NASA Astrophysics Data System (ADS)

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-08-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  8. Virality Prediction and Community Structure in Social Networks

    PubMed Central

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106

  9. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  10. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  11. Incorporation of spatial interactions in location networks to identify critical geo-referenced routes for assessing disease control measures on a large-scale campus.

    PubMed

    Wen, Tzai-Hung; Chin, Wei Chien Benny

    2015-04-14

    Respiratory diseases mainly spread through interpersonal contact. Class suspension is the most direct strategy to prevent the spread of disease through elementary or secondary schools by blocking the contact network. However, as university students usually attend courses in different buildings, the daily contact patterns on a university campus are complicated, and once disease clusters have occurred, suspending classes is far from an efficient strategy to control disease spread. The purpose of this study is to propose a methodological framework for generating campus location networks from a routine administration database, analyzing the community structure of the network, and identifying the critical links and nodes for blocking respiratory disease transmission. The data comes from the student enrollment records of a major comprehensive university in Taiwan. We combined the social network analysis and spatial interaction model to establish a geo-referenced community structure among the classroom buildings. We also identified the critical links among the communities that were acting as contact bridges and explored the changes in the location network after the sequential removal of the high-risk buildings. Instead of conducting a questionnaire survey, the study established a standard procedure for constructing a location network on a large-scale campus from a routine curriculum database. We also present how a location network structure at a campus could function to target the high-risk buildings as the bridges connecting communities for blocking disease transmission.

  12. Unifying Inference of Meso-Scale Structures in Networks.

    PubMed

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  13. An improved game-theoretic approach to uncover overlapping communities

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Liang; Ch'Ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-Bing

    How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic-Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division.

  14. Emergence of communities and diversity in social networks

    PubMed Central

    Han, Xiao; Cao, Shinan; Shen, Zhesi; Zhang, Boyu; Wang, Wen-Xu; Cressman, Ross

    2017-01-01

    Communities are common in complex networks and play a significant role in the functioning of social, biological, economic, and technological systems. Despite widespread interest in detecting community structures in complex networks and exploring the effect of communities on collective dynamics, a deep understanding of the emergence and prevalence of communities in social networks is still lacking. Addressing this fundamental problem is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in society. An elusive question is how communities with common internal properties arise in social networks with great individual diversity. Here, we answer this question using the ultimatum game, which has been a paradigm for characterizing altruism and fairness. We experimentally show that stable local communities with different internal agreements emerge spontaneously and induce social diversity into networks, which is in sharp contrast to populations with random interactions. Diverse communities and social norms come from the interaction between responders with inherent heterogeneous demands and rational proposers via local connections, where the former eventually become the community leaders. This result indicates that networks are significant in the emergence and stabilization of communities and social diversity. Our experimental results also provide valuable information about strategies for developing network models and theories of evolutionary games and social dynamics. PMID:28235785

  15. Emergence of communities and diversity in social networks.

    PubMed

    Han, Xiao; Cao, Shinan; Shen, Zhesi; Zhang, Boyu; Wang, Wen-Xu; Cressman, Ross; Stanley, H Eugene

    2017-03-14

    Communities are common in complex networks and play a significant role in the functioning of social, biological, economic, and technological systems. Despite widespread interest in detecting community structures in complex networks and exploring the effect of communities on collective dynamics, a deep understanding of the emergence and prevalence of communities in social networks is still lacking. Addressing this fundamental problem is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in society. An elusive question is how communities with common internal properties arise in social networks with great individual diversity. Here, we answer this question using the ultimatum game, which has been a paradigm for characterizing altruism and fairness. We experimentally show that stable local communities with different internal agreements emerge spontaneously and induce social diversity into networks, which is in sharp contrast to populations with random interactions. Diverse communities and social norms come from the interaction between responders with inherent heterogeneous demands and rational proposers via local connections, where the former eventually become the community leaders. This result indicates that networks are significant in the emergence and stabilization of communities and social diversity. Our experimental results also provide valuable information about strategies for developing network models and theories of evolutionary games and social dynamics.

  16. Time development in the early history of social networks: link stabilization, group dynamics, and segregation.

    PubMed

    Bruun, Jesper; Bearden, Ian G

    2014-01-01

    Studies of the time development of empirical networks usually investigate late stages where lasting connections have already stabilized. Empirical data on early network history are rare but needed for a better understanding of how social network topology develops in real life. Studying students who are beginning their studies at a university with no or few prior connections to each other offers a unique opportunity to investigate the formation and early development of link patterns and community structure in social networks. During a nine week introductory physics course, first year physics students were asked to identify those with whom they communicated about problem solving in physics during the preceding week. We use these students' self reports to produce time dependent student interaction networks. We investigate these networks to elucidate possible effects of different student attributes in early network formation. Changes in the weekly number of links show that while roughly half of all links change from week to week, students also reestablish a growing number of links as they progress through their first weeks of study. Using the Infomap community detection algorithm, we show that the networks exhibit community structure, and we use non-network student attributes, such as gender and end-of-course grade to characterize communities during their formation. Specifically, we develop a segregation measure and show that students structure themselves according to gender and pre-organized sections (in which students engage in problem solving and laboratory work), but not according to end-of-coure grade. Alluvial diagrams of consecutive weeks' communities show that while student movement between groups are erratic in the beginning of their studies, they stabilize somewhat towards the end of the course. Taken together, the analyses imply that student interaction networks stabilize quickly and that students establish collaborations based on who is immediately available to them and on observable personal characteristics.

  17. How to become a superhero

    NASA Astrophysics Data System (ADS)

    Gleiser, Pablo M.

    2007-09-01

    We analyze a collaboration network based on the Marvel Universe comic books. First, we consider the system as a binary network, where two characters are connected if they appear in the same publication. The analysis of degree correlations reveals that, in contrast to most real social networks, the Marvel Universe presents a disassortative mixing on the degree. Then, we use a weight measure to study the system as a weighted network. This allows us to find and characterize well defined communities. Through the analysis of the community structure and the clustering as a function of the degree we show that the network presents a hierarchical structure. Finally, we comment on possible mechanisms responsible for the particular motifs observed.

  18. Inferring and analysis of social networks using RFID check-in data in China

    PubMed Central

    Liu, Tao; Liu, Shouyin; Ge, Shuangkui

    2017-01-01

    Social networks play an important role in our daily lives. However, social ties are rather elusive to quantify, especially for large groups of subjects over prolonged periods of time. In this work, we first propose a methodology for extracting social ties from long spatio-temporal data streams, where the subjects are 17,795 undergraduates from a university of China and the data streams are the 9,147,106 time-stamped RFID check-in records left behind by them during one academic year. By several metrics mentioned below, we then analyze the structure of the social network. Our results center around three main observations. First, we characterize the global structure of the network, and we confirm the small-world phenomenon on a global scale. Second, we find that the network shows clear community structure. And we observe that younger students at lower levels tend to form large communities, while students at higher levels mostly form smaller communities. Third, we characterize the assortativity patterns by studying the basic demographic and network properties of users. We observe clear degree assortativity on a global scale. Furthermore, we find a strong effect of grade and school on tie formation preference, but we do not find any strong region homophily. Our research may help us to elucidate the structural characteristics and the preference of the formation of social ties in college students’ social network. PMID:28570586

  19. Community Structure in Social Networks: Applications for Epidemiological Modelling

    PubMed Central

    Kitchovitch, Stephan; Liò, Pietro

    2011-01-01

    During an infectious disease outbreak people will often change their behaviour to reduce their risk of infection. Furthermore, in a given population, the level of perceived risk of infection will vary greatly amongst individuals. The difference in perception could be due to a variety of factors including varying levels of information regarding the pathogen, quality of local healthcare, availability of preventative measures, etc. In this work we argue that we can split a social network, representing a population, into interacting communities with varying levels of awareness of the disease. We construct a theoretical population and study which such communities suffer most of the burden of the disease and how their awareness affects the spread of infection. We aim to gain a better understanding of the effects that community-structured networks and variations in awareness, or risk perception, have on the disease dynamics and to promote more community-resolved modelling in epidemiology. PMID:21789238

  20. Business cycles' correlation and systemic risk of the Japanese supplier-customer network.

    PubMed

    Krichene, Hazem; Chakraborty, Abhijit; Inoue, Hiroyasu; Fujiwara, Yoshi

    2017-01-01

    This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms' attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network.

  1. Business cycles’ correlation and systemic risk of the Japanese supplier-customer network

    PubMed Central

    Chakraborty, Abhijit; Inoue, Hiroyasu; Fujiwara, Yoshi

    2017-01-01

    This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms’ attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network. PMID:29059233

  2. To cut or not to cut? Assessing the modular structure of brain networks.

    PubMed

    Chang, Yu-Teng; Pantazis, Dimitrios; Leahy, Richard M

    2014-05-01

    A wealth of methods has been developed to identify natural divisions of brain networks into groups or modules, with one of the most prominent being modularity. Compared with the popularity of methods to detect community structure, only a few methods exist to statistically control for spurious modules, relying almost exclusively on resampling techniques. It is well known that even random networks can exhibit high modularity because of incidental concentration of edges, even though they have no underlying organizational structure. Consequently, interpretation of community structure is confounded by the lack of principled and computationally tractable approaches to statistically control for spurious modules. In this paper we show that the modularity of random networks follows a transformed version of the Tracy-Widom distribution, providing for the first time a link between module detection and random matrix theory. We compute parametric formulas for the distribution of modularity for random networks as a function of network size and edge variance, and show that we can efficiently control for false positives in brain and other real-world networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Social and place-focused communities in location-based online social networks

    NASA Astrophysics Data System (ADS)

    Brown, Chloë; Nicosia, Vincenzo; Scellato, Salvatore; Noulas, Anastasios; Mascolo, Cecilia

    2013-06-01

    Thanks to widely available, cheap Internet access and the ubiquity of smartphones, millions of people around the world now use online location-based social networking services. Understanding the structural properties of these systems and their dependence upon users' habits and mobility has many potential applications, including resource recommendation and link prediction. Here, we construct and characterise social and place-focused graphs by using longitudinal information about declared social relationships and about users' visits to physical places collected from a popular online location-based social service. We show that although the social and place-focused graphs are constructed from the same data set, they have quite different structural properties. We find that the social and location-focused graphs have different global and meso-scale structure, and in particular that social and place-focused communities have negligible overlap. Consequently, group inference based on community detection performed on the social graph alone fails to isolate place-focused groups, even though these do exist in the network. By studying the evolution of tie structure within communities, we show that the time period over which location data are aggregated has a substantial impact on the stability of place-focused communities, and that information about place-based groups may be more useful for user-centric applications than that obtained from the analysis of social communities alone.

  4. Structural vulnerability of the French swine industry trade network to the spread of infectious diseases.

    PubMed

    Rautureau, S; Dufour, B; Durand, B

    2012-07-01

    The networks generated by live animal movements are the principal vector for the propagation of infectious agents between farms, and their topology strongly affects how fast a disease may spread. The structural characteristics of networks may thus provide indicators of network vulnerability to the spread of infectious disease. This study applied social network analysis methods to describe the French swine trade network. Initial analysis involved calculating several parameters to characterize networks and then identifying high-risk subgroups of holdings for different time scales. Holding-specific centrality measurements ('degree', 'betweenness' and 'ingoing infection chain'), which summarize the place and the role of holdings in the network, were compared according to the production type. In addition, network components and communities, areas where connectedness is particularly high and could influence the speed and the extent of a disease, were identified and analysed. Dealer holdings stood out because of their high centrality values suggesting that these holdings may control the flow of animals in part of the network. Herds with growing units had higher values for degree and betweenness centrality, representing central positions for both spreading and receiving disease, whereas herds with finishing units had higher values for in-degree and ingoing infection chain centrality values and appeared more vulnerable with many contacts through live animal movements and thus at potentially higher risk for introduction of contagious diseases. This reflects the dynamics of the swine trade with downward movements along the production chain. But, the significant heterogeneity of farms with several production units did not reveal any particular type of production for targeting disease surveillance or control. Besides, no giant strong connected component was observed, the network being rather organized according to communities of small or medium size (<20% of network size). Because of this fragmentation, the swine trade network appeared less structurally vulnerable than ruminant trade networks. This fragmentation is explained by the hierarchical structure, which thus limits the structural vulnerability of the global trade network. However, inside communities, the hierarchical structure of the swine production system would favour the spread of an infectious agent (especially if introduced in breeding herds).

  5. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  6. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  7. Finding and testing network communities by lumped Markov chains.

    PubMed

    Piccardi, Carlo

    2011-01-01

    Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "α-community" if such a probability is not smaller than α. Consistently, a partition composed of α-communities is an "α-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired α-level allows one to immediately select the α-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.

  8. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  9. How to Trigger Emergence and Self-Organisation in Learning Networks

    NASA Astrophysics Data System (ADS)

    Brouns, Francis; Fetter, Sibren; van Rosmalen, Peter

    The previous chapters of this section discussed why the social structure of Learning Networks is important and present guidelines on how to maintain and allow the emergence of communities in Learning Networks. Chapter 2 explains how Learning Networks rely on social interaction and active participations of the participants. Chapter 3 then continues by presenting guidelines and policies that should be incorporated into Learning Network Services in order to maintain existing communities by creating conditions that promote social interaction and knowledge sharing. Chapter 4 discusses the necessary conditions required for knowledge sharing to occur and to trigger communities to self-organise and emerge. As pointed out in Chap. 4, ad-hoc transient communities facilitate the emergence of social interaction in Learning Networks, self-organising them into communities, taking into account personal characteristics, community characteristics and general guidelines. As explained in Chap. 4 community members would benefit from a service that brings suitable people together for a specific purpose, because it will allow the participant to focus on the knowledge sharing process by reducing the effort or costs. In the current chapter, we describe an example of a peer support Learning Network Service based on the mechanism of peer tutoring in ad-hoc transient communities.

  10. Stylized facts in social networks: Community-based static modeling

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Murase, Yohsuke; Török, János; Kertész, János; Kaski, Kimmo

    2018-06-01

    The past analyses of datasets of social networks have enabled us to make empirical findings of a number of aspects of human society, which are commonly featured as stylized facts of social networks, such as broad distributions of network quantities, existence of communities, assortative mixing, and intensity-topology correlations. Since the understanding of the structure of these complex social networks is far from complete, for deeper insight into human society more comprehensive datasets and modeling of the stylized facts are needed. Although the existing dynamical and static models can generate some stylized facts, here we take an alternative approach by devising a community-based static model with heterogeneous community sizes and larger communities having smaller link density and weight. With these few assumptions we are able to generate realistic social networks that show most stylized facts for a wide range of parameters, as demonstrated numerically and analytically. Since our community-based static model is simple to implement and easily scalable, it can be used as a reference system, benchmark, or testbed for further applications.

  11. Money circulation networks reveal emerging geographical communities

    NASA Astrophysics Data System (ADS)

    Brockmann, D.; Theis, F.; David, V.

    2008-03-01

    Geographical communities and their boundaries are key determinants of various spatially extended dynamical phenomena. Examples are migration dynamics of species, the spread of infectious diseases, bioinvasive processes, and the spatial evolution of language. We address the question to what extend multiscale human transportation networks encode geographical community structures, how they differ from geopolitical classifications, whether they are spatially coherent, and analyse their structure as a function of length scale. Our analysis is based on a proxy network for human transportation obtained from the geographic circulation of more than 10 million dollar bills in the United States recorded at the bill tracking website www.wheresgeorge.com. The data extends that of a previous study (Brockmann et al., Nature 2006) on the discovery of scaling laws of human travel by an order of magnitude and permits an approach to multiscale human transportation from a network perspective.

  12. Emergence of Multiplex Communities in Collaboration Networks.

    PubMed

    Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito

    2016-01-01

    Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.

  13. A Shadowing Problem in the Detection of Overlapping Communities: Lifting the Resolution Limit through a Cascading Procedure

    PubMed Central

    Young, Jean-Gabriel; Allard, Antoine; Hébert-Dufresne, Laurent; Dubé, Louis J.

    2015-01-01

    Community detection is the process of assigning nodes and links in significant communities (e.g. clusters, function modules) and its development has led to a better understanding of complex networks. When applied to sizable networks, we argue that most detection algorithms correctly identify prominent communities, but fail to do so across multiple scales. As a result, a significant fraction of the network is left uncharted. We show that this problem stems from larger or denser communities overshadowing smaller or sparser ones, and that this effect accounts for most of the undetected communities and unassigned links. We propose a generic cascading approach to community detection that circumvents the problem. Using real and artificial network datasets with three widely used community detection algorithms, we show how a simple cascading procedure allows for the detection of the missing communities. This work highlights a new detection limit of community structure, and we hope that our approach can inspire better community detection algorithms. PMID:26461919

  14. NETWORK STRUCTURE, MULTIPLEXITY, AND EVOLUTION AS INFLUENCES ON COMMUNITY-BASED PARTICIPATORY INTERVENTIONS.

    PubMed

    Wang, Rong; Tanjasiri, Sora Park; Palmer, Paula; Valente, Thomas W

    2016-08-01

    This study applies an ecological perspective to the context of community-based participatory research (CBPR). Specifically, it examines how endogenous and exogenous factors influence the dynamics of CBPR partnerships, including the tendency toward reciprocity and transitivity, the organizational type, the level of resource sufficiency, the level of organizational influence, and the perceived CBPR effect on organizations. The results demonstrate that network structure is related to the selection and retention of interorganizational networks over time, and organizations of the same type are more likely to form partnerships with each other. It shows that the dynamics of the CBPR initiative presented in this article were driven by the structure of the interorganizational networks rather than their individual organizational attributes. Implications for sustaining CBPR partnerships are drawn from the findings.

  15. NETWORK STRUCTURE, MULTIPLEXITY, AND EVOLUTION AS INFLUENCES ON COMMUNITY-BASED PARTICIPATORY INTERVENTIONS

    PubMed Central

    Wang, Rong; Tanjasiri, Sora Park; Palmer, Paula; Valente, Thomas W.

    2017-01-01

    This study applies an ecological perspective to the context of community-based participatory research (CBPR). Specifically, it examines how endogenous and exogenous factors influence the dynamics of CBPR partnerships, including the tendency toward reciprocity and transitivity, the organizational type, the level of resource sufficiency, the level of organizational influence, and the perceived CBPR effect on organizations. The results demonstrate that network structure is related to the selection and retention of interorganizational networks over time, and organizations of the same type are more likely to form partnerships with each other. It shows that the dynamics of the CBPR initiative presented in this article were driven by the structure of the interorganizational networks rather than their individual organizational attributes. Implications for sustaining CBPR partnerships are drawn from the findings. PMID:29430067

  16. Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks.

    PubMed

    Pérez-Valera, Eduardo; Goberna, Marta; Faust, Karoline; Raes, Jeroen; García, Carlos; Verdú, Miguel

    2017-01-01

    Fire alters ecosystems by changing the composition and community structure of soil microbes. The phylogenetic structure of a community provides clues about its main assembling mechanisms. While environmental filtering tends to reduce the community phylogenetic diversity by selecting for functionally (and hence phylogenetically) similar species, processes like competitive exclusion by limiting similarity tend to increase it by preventing the coexistence of functionally (and phylogenetically) similar species. We used co-occurrence networks to detect co-presence (bacteria that co-occur) or exclusion (bacteria that do not co-occur) links indicative of the ecological interactions structuring the community. We propose that inspecting the phylogenetic structure of co-presence or exclusion links allows to detect the main processes simultaneously assembling the community. We monitored a soil bacterial community after an experimental fire and found that fire altered its composition, richness and phylogenetic diversity. Both co-presence and exclusion links were more phylogenetically related than expected by chance. We interpret such a phylogenetic clustering in co-presence links as a result of environmental filtering, while that in exclusion links reflects competitive exclusion by limiting similarity. This suggests that environmental filtering and limiting similarity operate simultaneously to assemble soil bacterial communities, widening the traditional view that only environmental filtering structures bacterial communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome.

    PubMed

    Pavlovic, Dragana M; Vértes, Petra E; Bullmore, Edward T; Schafer, William R; Nichols, Thomas E

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4-5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the "core-in-modules" decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems.

  18. A Deep Stochastic Model for Detecting Community in Complex Networks

    NASA Astrophysics Data System (ADS)

    Fu, Jingcheng; Wu, Jianliang

    2017-01-01

    Discovering community structures is an important step to understanding the structure and dynamics of real-world networks in social science, biology and technology. In this paper, we develop a deep stochastic model based on non-negative matrix factorization to identify communities, in which there are two sets of parameters. One is the community membership matrix, of which the elements in a row correspond to the probabilities of the given node belongs to each of the given number of communities in our model, another is the community-community connection matrix, of which the element in the i-th row and j-th column represents the probability of there being an edge between a randomly chosen node from the i-th community and a randomly chosen node from the j-th community. The parameters can be evaluated by an efficient updating rule, and its convergence can be guaranteed. The community-community connection matrix in our model is more precise than the community-community connection matrix in traditional non-negative matrix factorization methods. Furthermore, the method called symmetric nonnegative matrix factorization, is a special case of our model. Finally, based on the experiments on both synthetic and real-world networks data, it can be demonstrated that our algorithm is highly effective in detecting communities.

  19. Evaluating program integration and the rise in collaboration: case study of a palliative care network.

    PubMed

    Bainbridge, Daryl; Brazil, Kevin; Krueger, Paul; Ploeg, Jenny; Taniguchi, Alan; Darnay, Julie

    2011-01-01

    There is increasing global interest in using regional palliative care networks (PCNs) to integrate care and create systems that are more cost-effective and responsive. We examined a PCN that used a community development approach to build capacity for palliative care in each distinct community in a region of southern Ontario, Canada, with the goal of achieving a competent integrated system. Using a case study methodology, we examined a PCN at the structural level through a document review, a survey of 20 organizational administrators, and an interview with the network director. The PCN identified 14 distinct communities at different stages of development within the region. Despite the lack of some key features that would facilitate efficient palliative care delivery across these communities, administrators largely viewed the network partnership as beneficial and collaborative. The PCN has attempted to recognize specific needs in each local area. Change is gradual but participatory. There remain structural issues that may negatively affect the functioning of the PCN.

  20. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    PubMed

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  1. Partnership disengagement from primary community care networks (PCCNs): A qualitative study for a national demonstration project

    PubMed Central

    2010-01-01

    Background The Primary Community Care Network (PCCN) Demonstration Project, launched by the Bureau of National Health Insurance (BNHI) in 2003, is still in progress. Partnership structures in PCCNs represent both contractual clinic-to-clinic and clinic-to-hospital member relationships of organizational aspects. The partnership structures are the formal relationships between individuals and the total network. Their organizational design aims to ensure effective communication, coordination, and integration across the total network. Previous studies have focused largely on how contractual integration among the partnerships works and on its effects. Few studies, however, have tried to understand partnership disengagement in PCCNs. This study explores why some partnerships in PCCNs disengage. Methods This study used a qualitative methodology with semi-structured questions for in-depth interviews. The semi-structured questions were pre-designed to explore the factors driving partnership disengagement. Thirty-seven clinic members who had withdrawn from their PCCNs were identified from the 2003-2005 Taiwan Primary Community Care Network Lists. Results Organization/participant factors (extra working time spend and facility competency), network factors (partner collaboration), and community factors (health policy design incompatibility, patient-physician relationship, and effectiveness) are reasons for clinic physicians to withdraw or change their partnerships within the PCCNs. Conclusions To strengthen partnership relationships, several suggestions are made, including to establish clinic and hospital member relationships, and to reduce administrative work. In addition, both educating the public about the concept of family doctors and ensuring well-organized national health policies could help health care providers improve the integration processes. PMID:20359369

  2. Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome

    PubMed Central

    Hannigan, Geoffrey D.; Duhaime, Melissa B.; Koutra, Danai

    2018-01-01

    Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks. PMID:29668682

  3. Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome.

    PubMed

    Hannigan, Geoffrey D; Duhaime, Melissa B; Koutra, Danai; Schloss, Patrick D

    2018-04-01

    Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks.

  4. Understanding and planning ecological restoration of plant-pollinator networks.

    PubMed

    Devoto, Mariano; Bailey, Sallie; Craze, Paul; Memmott, Jane

    2012-04-01

    Theory developed from studying changes in the structure and function of communities during natural or managed succession can guide the restoration of particular communities. We constructed 30 quantitative plant-flower visitor networks along a managed successional gradient to identify the main drivers of change in network structure. We then applied two alternative restoration strategies in silico (restoring for functional complementarity or redundancy) to data from our early successional plots to examine whether different strategies affected the restoration trajectories. Changes in network structure were explained by a combination of age, tree density and variation in tree diameter, even when variance explained by undergrowth structure was accounted for first. A combination of field data, a network approach and numerical simulations helped to identify which species should be given restoration priority in the context of different restoration targets. This combined approach provides a powerful tool for directing management decisions, particularly when management seeks to restore or conserve ecosystem function. © 2012 Blackwell Publishing Ltd/CNRS.

  5. Fragmentation alters stream fish community structure in dendritic ecological networks.

    PubMed

    Perkin, Joshuah S; Gido, Keith B

    2012-12-01

    Effects of fragmentation on the ecology of organisms occupying dendritic ecological networks (DENs) have recently been described through both conceptual and mathematical models, but few hypotheses have been tested in complex, real-world ecosystems. Stream fishes provide a model system for assessing effects of fragmentation on the structure of communities occurring within DENs, including how fragmentation alters metacommunity dynamics and biodiversity. A recently developed habitat-availability measure, the "dendritic connectivity index" (DCI), allows for assigning quantitative measures of connectivity in DENs regardless of network extent or complexity, and might be used to predict fish community response to fragmentation. We characterized stream fish community structure in 12 DENs in the Great Plains, USA, during periods of dynamic (summer) and muted (fall) discharge regimes to test the DCI as a predictive model of fish community response to fragmentation imposed by road crossings. Results indicated that fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) relative to communities that maintained connectivity with the surrounding DEN during summer and fall. Furthermore, isolated communities had greater dissimilarity (beta diversity) to downstream sites notisolated by road crossings during summer and fall. Finally, dissimilarity among communities within DENs decreased as a function of increased habitat connectivity (measured using the DCI) for summer and fall, suggesting that communities within highly connected DENs tend to be more homogeneous. Our results indicate that the DCI is sensitive to community effects of fragmentation in riverscapes and might be used by managers to predict ecological responses to changes in habitat connectivity. Moreover, our findings illustrate that relating structural connectivity of riverscapes to functional connectivity among communities might aid in maintaining metacommunity dynamics and biodiversity in complex dendritic ecosystems.

  6. Improving the Efficiency and Effectiveness of Community Detection via Prior-Induced Equivalent Super-Network.

    PubMed

    Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise

    2017-03-29

    Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.

  7. Insect-Flower Interaction Network Structure Is Resilient to a Temporary Pulse of Floral Resources from Invasive Rhododendron ponticum

    PubMed Central

    Tiedeken, Erin Jo; Stout, Jane C.

    2015-01-01

    Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering), yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H’2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure is robust to seasonal changes in floral abundance at sites invaded by alien, mass-flowering plant species, as long as alternative floral resources remain throughout the season to support the flower-visiting community. PMID:25764085

  8. Mapping U.S. cattle shipment networks: Spatial and temporal patterns of trade communities from 2009 to 2011.

    PubMed

    Gorsich, Erin E; Luis, Angela D; Buhnerkempe, Michael G; Grear, Daniel A; Portacci, Katie; Miller, Ryan S; Webb, Colleen T

    2016-11-01

    The application of network analysis to cattle shipments broadens our understanding of shipment patterns beyond pairwise interactions to the network as a whole. Such a quantitative description of cattle shipments in the U.S. can identify trade communities, describe temporal shipment patterns, and inform the design of disease surveillance and control strategies. Here, we analyze a longitudinal dataset of beef and dairy cattle shipments from 2009 to 2011 in the United States to characterize communities within the broader cattle shipment network, which are groups of counties that ship mostly to each other. Because shipments occur over time, we aggregate the data at various temporal scales to examine the consistency of network and community structure over time. Our results identified nine large (>50 counties) communities based on shipments of beef cattle in 2009 aggregated into an annual network and nine large communities based on shipments of dairy cattle. The size and connectance of the shipment network was highly dynamic; monthly networks were smaller than yearly networks and revealed seasonal shipment patterns consistent across years. Comparison of the shipment network over time showed largely consistent shipping patterns, such that communities identified on annual networks of beef and diary shipments from 2009 still represented 41-95% of shipments in monthly networks from 2009 and 41-66% of shipments from networks in 2010 and 2011. The temporal aspects of cattle shipments suggest that future applications of the U.S. cattle shipment network should consider seasonal shipment patterns. However, the consistent within-community shipping patterns indicate that yearly communities could provide a reasonable way to group regions for management. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.

    PubMed

    He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian

    2018-04-01

    Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.

  10. A complex speciation–richness relationship in a simple neutral model

    PubMed Central

    Desjardins-Proulx, Philippe; Gravel, Dominique

    2012-01-01

    Speciation is the “elephant in the room” of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations. PMID:22957181

  11. Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.

    2013-12-01

    Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.

  12. Constant Communities in Complex Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy; Srinivasan, Sriram; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh

    2013-05-01

    Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core functional units of the larger communities.

  13. The BioPlex Network: A Systematic Exploration of the Human Interactome.

    PubMed

    Huttlin, Edward L; Ting, Lily; Bruckner, Raphael J; Gebreab, Fana; Gygi, Melanie P; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E; De Camilli, Pietro; Paulo, Joao A; Harper, J Wade; Gygi, Steven P

    2015-07-16

    Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The BioPlex Network: A Systematic Exploration of the Human Interactome

    PubMed Central

    Huttlin, Edward L.; Ting, Lily; Bruckner, Raphael J.; Gebreab, Fana; Gygi, Melanie P.; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K.; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A.; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E.; DeCamilli, Pietro; Paulo, Joao A.; Harper, J. Wade; Gygi, Steven P.

    2015-01-01

    SUMMARY Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally-related proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors. PMID:26186194

  15. Network Community Detection based on the Physarum-inspired Computational Framework.

    PubMed

    Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili

    2016-12-13

    Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.

  16. Modular and hierarchical structure of social contact networks

    NASA Astrophysics Data System (ADS)

    Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong

    2013-10-01

    Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.

  17. FUNCTIONAL NETWORK ARCHITECTURE OF READING-RELATED REGIONS ACROSS DEVELOPMENT

    PubMed Central

    Vogel, Alecia C.; Church, Jessica A.; Power, Jonathan D.; Miezin, Fran M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    Reading requires coordinated neural processing across a large number of brain regions. Studying relationships between reading-related regions informs the specificity of information processing performed in each region. Here, regions of interest were defined from a meta-analysis of reading studies, including a developmental study. Relationships between regions were defined as temporal correlations in spontaneous fMRI signal; i.e., resting state functional connectivity MRI (RSFC). Graph theory based network analysis defined the community structure of the “reading-related” regions. Regions sorted into previously defined communities, such as the fronto-parietal and cingulo-opercular control networks, and the default mode network. This structure was similar in children, and no apparent “reading” community was defined in any age group. These results argue against regions, or sets of regions, being specific or preferential for reading, instead indicating that regions used in reading are also used in a number of other tasks. PMID:23506969

  18. Model of community emergence in weighted social networks

    NASA Astrophysics Data System (ADS)

    Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.

    2009-04-01

    Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.

  19. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    PubMed Central

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-01-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging. PMID:27881879

  20. The narrow gap between norms and cooperative behaviour in a reindeer herding community

    PubMed Central

    2018-01-01

    Cooperation evolves on social networks and is shaped, in part, by norms: beliefs and expectations about the behaviour of others or of oneself. Networks of cooperative social partners and associated norms are vital for pastoralists, such as Saami reindeer herders in northern Norway. However, little is known quantitatively about how norms structure pastoralists' social networks or shape cooperation. Saami herders reported their social networks and participated in field experiments, allowing us to gauge the overlap between reported and emergent cooperation. We show that individuals' perceptions of reciprocal cooperation within their social networks exceeded actual reciprocity, although both occurred frequently and were concentrated within herding groups. Herders with more extensive cooperation networks received more rewards in an economic game. Although herders overestimated reciprocal helping, cooperation in this community was still extensive, suggesting that perceived norms potentially allow network structures promoting cooperation to emerge and be maintained. PMID:29515842

  1. Sovereign public debt crisis in Europe. A network analysis

    NASA Astrophysics Data System (ADS)

    Matesanz, David; Ortega, Guillermo J.

    2015-10-01

    In this paper we analyse the evolving network structure of the quarterly public debt-to-GDP ratio from 2000 to 2014. By applying tools and concepts coming from complex systems we study the effects of the global financial crisis over public debt network connections and communities. Two main results arise from this analysis: firstly, countries public debts tend to synchronize their evolution, increasing global connectivity in the network and dramatically decreasing the number of communities. Secondly, a disruption in previous structure is observed at the time of the shock, emerging a more centralized and less diversify network topological organization which might be more prone to suffer contagion effects. This last fact is evidenced by an increasing tendency in countries of similar level of public debt to be connected between them, which we have quantified by the network assortativity.

  2. Critical slowing down as early warning for the onset of collapse in mutualistic communities.

    PubMed

    Dakos, Vasilis; Bascompte, Jordi

    2014-12-09

    Tipping points are crossed when small changes in external conditions cause abrupt unexpected responses in the current state of a system. In the case of ecological communities under stress, the risk of approaching a tipping point is unknown, but its stakes are high. Here, we test recently developed critical slowing-down indicators as early-warning signals for detecting the proximity to a potential tipping point in structurally complex ecological communities. We use the structure of 79 empirical mutualistic networks to simulate a scenario of gradual environmental change that leads to an abrupt first extinction event followed by a sequence of species losses until the point of complete community collapse. We find that critical slowing-down indicators derived from time series of biomasses measured at the species and community level signal the proximity to the onset of community collapse. In particular, we identify specialist species as likely the best-indicator species for monitoring the proximity of a community to collapse. In addition, trends in slowing-down indicators are strongly correlated to the timing of species extinctions. This correlation offers a promising way for mapping species resilience and ranking species risk to extinction in a given community. Our findings pave the road for combining theory on tipping points with patterns of network structure that might prove useful for the management of a broad class of ecological networks under global environmental change.

  3. Temporal variations in a phytoplankton community in a subtropical reservoir: An interplay of extrinsic and intrinsic community effects.

    PubMed

    Yang, Wen; Zheng, Zhongming; Zheng, Cheng; Lu, Kaihong; Ding, Dewen; Zhu, Jinyong

    2018-01-15

    The phytoplankton community structure is potentially influenced by both extrinsic effects originating from the surrounding environment and intrinsic effects relying on interspecific interactions between two species. However, few studies have simultaneously considered both types of effects and assessed the relative importance of these factors. In this study, we used data collected over nine months (August 2012-May 2013) from a typical subtropical reservoir in southeast China to analyze the temporal variation of its phytoplankton community structure and develop a quantitative understanding of the extrinsic and intrinsic effects on phytoplankton community dynamics. Significant temporal variations were observed in environmental variables as well as the phytoplankton and zooplankton communities, whereas their variational trajectories and directions were entirely different. Variance partitioning analysis showed that extrinsic factors significantly explained only 31% of the variation in the phytoplankton community, thus suggesting that these factors were incomplete predictors of the community structure. Random forest-based models showed that 48% of qualified responsible phytoplankton species were more accurately predicted by phytoplankton-only models, which revealed clear effects of interspecific species-to-species interactions. Furthermore, we used association networks to model the interactions among phytoplankton, zooplankton and the environment. Network comparisons indicated that interspecific interactions were widely present in the phytoplankton community and dominated the network rather than those between phytoplankton and extrinsic factors. These findings expand the current understanding of the underlying mechanisms that govern phytoplankton community dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Information dynamics algorithm for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

    2012-11-01

    The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

  5. Relating Diarrheal Disease to Social Networks and the Geographic Configuration of Communities in Rural Ecuador

    PubMed Central

    Bates, Sarah J.; Trostle, James; Cevallos, William T.; Hubbard, Alan; Eisenberg, Joseph N. S.

    2008-01-01

    Social networks and geographic structures of communities are important predictors of infectious disease transmission. To examine their joint effects on diarrheal disease and how these effects might develop, the authors analyzed social network and geographic data from northern coastal Ecuador and examined associations with diarrhea prevalence. Between July 2003 and May 2005, 113 cases of diarrhea were identified in nine communities. Concurrently, sociometric surveys were conducted, and households were mapped with geographic information systems. Spatial distribution metrics of households within communities and of communities with respect to roads were developed that predict social network degree in casual contact (“contact”) and food-sharing (“food”) networks. The mean degree is 25-40% lower in communities with versus without road access and 66-94% lower in communities with lowest versus highest housing density. Associations with diarrheal disease were found for housing density (comparing dense with dispersed communities: risk ratio = 3.3, 95% confidence interval (CI): 1.1, 10.0) and social connectedness (comparing lowest with highest degree communities: risk ratio = 3.4, 95% CI: 1.1, 10.1 in the contact network and risk ratio = 4.9, 95% CI: 1.1, 21.9 in the food network). Some of these differences may be related to more new residents, lower housing density, and less social connectedness in road communities. PMID:17690221

  6. A fast community detection method in bipartite networks by distance dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Hong-liang; Ch'ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-bing

    2018-04-01

    Many real bipartite networks are found to be divided into two-mode communities. In this paper, we formulate a new two-mode community detection algorithm BiAttractor. It is based on distance dynamics model Attractor proposed by Shao et al. with extension from unipartite to bipartite networks. Since Jaccard coefficient of distance dynamics model is incapable to measure distances of different types of vertices in bipartite networks, our main contribution is to extend distance dynamics model from unipartite to bipartite networks using a novel measure Local Jaccard Distance (LJD). Furthermore, distances between different types of vertices are not affected by common neighbors in the original method. This new idea makes clear assumptions and yields interpretable results in linear time complexity O(| E |) in sparse networks, where | E | is the number of edges. Experiments on synthetic networks demonstrate it is capable to overcome resolution limit compared with existing other methods. Further research on real networks shows that this model can accurately detect interpretable community structures in a short time.

  7. Value Co-creation and Co-innovation: Linking Networked Organisations and Customer Communities

    NASA Astrophysics Data System (ADS)

    Romero, David; Molina, Arturo

    Strategic networks such as Collaborative Networked Organisations (CNOs) and Virtual Customer Communities (VCCs) show a high potential as drivers of value co-creation and collaborative innovation in today’s Networking Era. Both look at the network structures as a source of jointly value creation and open innovation through access to new skills, knowledge, markets and technologies by sharing risk and integrating complementary competencies. This collaborative endeavour has proven to be able to enhance the adaptability and flexibility of CNOs and VCCs value creating systems in order to react in response to external drivers such as collaborative (business) opportunities. This paper presents a reference framework for creating interface networks, also known as ‘experience-centric networks’, as enablers for linking networked organisations and customer communities in order to support the establishment of user-driven and collaborative innovation networks.

  8. Network structure, topology, and dynamics in generalized models of synchronization

    NASA Astrophysics Data System (ADS)

    Lerman, Kristina; Ghosh, Rumi

    2012-08-01

    Network structure is a product of both its topology and interactions between its nodes. We explore this claim using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, nodes synchronize in stages, revealing the network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process similar to diffusion. However, social and biological processes are often nonconservative. We propose a model of synchronization in a network of oscillators coupled via nonconservative processes. We study the dynamics of synchronization of a synthetic and real-world networks and show that the traditional and nonconservative models of synchronization reveal different structures within the same network.

  9. Identifying influential user communities on the social network

    NASA Astrophysics Data System (ADS)

    Hu, Weishu; Gong, Zhiguo; Hou U, Leong; Guo, Jingzhi

    2015-10-01

    Nowadays social network services have been popularly used in electronic commerce systems. Users on the social network can develop different relationships based on their common interests and activities. In order to promote the business, it is interesting to explore hidden relationships among users developed on the social network. Such knowledge can be used to locate target users for different advertisements and to provide effective product recommendations. In this paper, we define and study a novel community detection problem that is to discover the hidden community structure in large social networks based on their common interests. We observe that the users typically pay more attention to those users who share similar interests, which enable a way to partition the users into different communities according to their common interests. We propose two algorithms to detect influential communities using common interests in large social networks efficiently and effectively. We conduct our experimental evaluation using a data set from Epinions, which demonstrates that our method achieves 4-11.8% accuracy improvement over the state-of-the-art method.

  10. Community detection using preference networks

    NASA Astrophysics Data System (ADS)

    Tasgin, Mursel; Bingol, Haluk O.

    2018-04-01

    Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.

  11. Bandwidth turbulence control based on flow community structure in the Internet

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Gu, Rentao; Ji, Yuefeng

    2016-10-01

    Bursty flows vary rapidly in short period of time, and cause fierce bandwidth turbulence in the Internet. In this letter, we model the flow bandwidth turbulence process by constructing a flow interaction network (FIN network), with nodes representing flows and edges denoting bandwidth interactions among them. To restrain the bandwidth turbulence in FIN networks, an immune control strategy based on flow community structure is proposed. Flows in community boundary positions are immunized to cut off the inter-community turbulence spreading. By applying this control strategy in the first- and the second-level flow communities separately, 97.2% flows can effectively avoid bandwidth variations by immunizing 21% flows, and the average bandwidth variation degree reaches near zero. To achieve a similar result, about 70%-90% immune flows are needed with targeted control strategy based on flow degrees and random control strategy. Moreover, simulation results showed that the control effect of the proposed strategy improves significantly if the immune flow number is relatively smaller in each control step.

  12. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    PubMed

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  13. Community-level demographic consequences of urbanization: an ecological network approach.

    PubMed

    Rodewald, Amanda D; Rohr, Rudolf P; Fortuna, Miguel A; Bascompte, Jordi

    2014-11-01

    Ecological networks are known to influence ecosystem attributes, but we poorly understand how interspecific network structure affect population demography of multiple species, particularly for vertebrates. Establishing the link between network structure and demography is at the crux of being able to use networks to understand population dynamics and to inform conservation. We addressed the critical but unanswered question, does network structure explain demographic consequences of urbanization? We studied 141 ecological networks representing interactions between plants and nesting birds in forests across an urbanization gradient in Ohio, USA, from 2001 to 2011. Nest predators were identified by video-recording nests and surveyed from 2004 to 2011. As landscapes urbanized, bird-plant networks were more nested, less compartmentalized and dominated by strong interactions between a few species (i.e. low evenness). Evenness of interaction strengths promoted avian nest survival, and evenness explained demography better than urbanization, level of invasion, numbers of predators or other qualitative network metrics. Highly uneven networks had approximately half the nesting success as the most even networks. Thus, nest survival reflected how urbanization altered species interactions, particularly with respect to how nest placement affected search efficiency of predators. The demographic effects of urbanization were not direct, but were filtered through bird-plant networks. This study illustrates how network structure can influence demography at the community level and further, that knowledge of species interactions and a network approach may be requisite to understanding demographic responses to environmental change. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  14. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  15. The role of banks in the Brazilian interbank market: Does bank type matter?

    NASA Astrophysics Data System (ADS)

    Cajueiro, Daniel O.; Tabak, Benjamin M.

    2008-12-01

    This paper analyzes the Brazilian interbank network structure using a complex network-based approach. Results suggest a weak evidence of community structure, high heterogeneity of the network and that this market is characterized by money centers having exposures to many banks. Furthermore, we go beyond the structure of the network using information about the characteristics of the nodes and a non-parametric test in order to understand the role of the banks in the interbanking market.

  16. Social Networks and Community-Based Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Lauber, T. Bruce; Decker, Daniel J.; Knuth, Barbara A.

    2008-10-01

    We conducted case studies of three successful examples of collaborative, community-based natural resource conservation and development. Our purpose was to: (1) identify the functions served by interactions within the social networks of involved stakeholders; (2) describe key structural properties of these social networks; and (3) determine how these structural properties varied when the networks were serving different functions. The case studies relied on semi-structured, in-depth interviews of 8 to 11 key stakeholders at each site who had played a significant role in the collaborative projects. Interview questions focused on the roles played by key stakeholders and the functions of interactions between them. Interactions allowed the exchange of ideas, provided access to funding, and enabled some stakeholders to influence others. The exchange of ideas involved the largest number of stakeholders, the highest percentage of local stakeholders, and the highest density of interactions. Our findings demonstrated the value of tailoring strategies for involving stakeholders to meet different needs during a collaborative, community-based natural resource management project. Widespread involvement of local stakeholders may be most appropriate when ideas for a project are being developed. During efforts to exert influence to secure project approvals or funding, however, involving specific individuals with political connections or influence on possible sources of funds may be critical. Our findings are consistent with past work that has postulated that social networks may require specific characteristics to meet different needs in community-based environmental management.

  17. A Regional ETV Network: Community Needs and System Structure. Technical Report 791.

    ERIC Educational Resources Information Center

    Hershkowitz, Martin

    A systems analysis of a community educational television (ETV) structure and of community needs was made in three counties of Appalachian Maryland to see whether an ETV system could meet integrated needs of public school students, disadvantaged families, educators, health service groups, police and fire departments, and business/industry across…

  18. Improving the recommender algorithms with the detected communities in bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Wang, Duo; Xiao, Jinghua

    2017-04-01

    Recommender system offers a powerful tool to make information overload problem well solved and thus gains wide concerns of scholars and engineers. A key challenge is how to make recommendations more accurate and personalized. We notice that community structures widely exist in many real networks, which could significantly affect the recommendation results. By incorporating the information of detected communities in the recommendation algorithms, an improved recommendation approach for the networks with communities is proposed. The approach is examined in both artificial and real networks, the results show that the improvement on accuracy and diversity can be 20% and 7%, respectively. This reveals that it is beneficial to classify the nodes based on the inherent properties in recommender systems.

  19. The shifting dynamics of social roles and project ownership over the lifecycle of a community-based participatory research project.

    PubMed

    Salsberg, Jon; Macridis, Soultana; Garcia Bengoechea, Enrique; Macaulay, Ann C; Moore, Spencer

    2017-06-01

    . Community based participatory research (CBPR) is often initiated by academic researchers, yet relies on meaningful community engagement and ownership to have lasting impact. Little is understood about how ownership shifts from academic to community partners. . We examined a CBPR project over its life course and asked: what does the evolution of ownership look like from project initiation by an academic (non-community) champion (T1); to maturation-when the intervention is ready to be deployed (T2); to independence-the time when the original champion steps aside (T3); and finally, to its maintenance-when the community has had an opportunity to function independently of the original academic champion (T4)? . Using sociometric (whole network) social network analysis, knowledge leadership was measured using 'in-degree centrality'. Stakeholder network structure was measured using 'centralisation' and 'core-periphery analysis'. Friedman rank sum test was used to measure change in actor roles over time from T1 to T4. . Project stakeholder roles were observed to shift significantly (P < 0.005) from initiation (T1) to project maintenance (T4). Community stakeholders emerged into positions of knowledge leadership, while the roles of academic partners diminished in importance. The overall stakeholder network demonstrated a structural shift towards a core of densely interacting community stakeholders. . This was the first study to use Social network analysis to document a shift in ownership from academic to community partners, indicating community self-determination over the research process. Further analysis of qualitative data will determine which participatory actions or strategies were responsible for this observed change. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years.

    PubMed

    Fang, Qiang; Huang, Shuang-Quan

    2012-01-01

    Plants and their pollinators form pollination networks integral to the evolution and persistence of species in communities. Previous studies suggest that pollination network structure remains nested while network composition is highly dynamic. However, little is known about temporal variation in the structure and function of plant-pollinator networks, especially in species-rich communities where the strength of pollinator competition is predicted to be high. Here we quantify temporal variation of pollination networks over four consecutive years in an alpine meadow in the Hengduan Mountains biodiversity hotspot in China. We found that ranked positions and idiosyncratic temperatures of both plants and pollinators were more conservative between consecutive years than in non-consecutive years. Although network compositions exhibited high turnover, generalized core groups--decomposed by a k-core algorithm--were much more stable than peripheral groups. Given the high rate of turnover observed, we suggest that identical plants and pollinators that persist for at least two successive years sustain pollination services at the community level. Our data do not support theoretical predictions of a high proportion of specialized links within species-rich communities. Plants were relatively specialized, exhibiting less variability in pollinator composition at pollinator functional group level than at the species level. Both specialized and generalized plants experienced narrow variation in functional pollinator groups. The dynamic nature of pollination networks in the alpine meadow demonstrates the potential for networks to mitigate the effects of fluctuations in species composition in a high biodiversity area.

  1. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    PubMed

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  2. Structural social capital and local-level forest governance: Do they inter-relate? A mushroom permit case in Catalonia.

    PubMed

    Gorriz-Mifsud, Elena; Secco, Laura; Da Re, Riccardo; Pisani, Elena; Bonet, José Antonio

    2017-03-01

    In diffuse forest uses, like non-timber forest products' harvesting, the behavioural alignment of pickers is crucial for avoiding a "tragedy of the commons". Moreover, the introduction of policy tools such as a harvest permit system may help in keeping the activity under control. Besides the official enforcement, pickers' engagement may also derive from the perceived legitimate decision of forest managers and the community pressure to behave according to the shared values. Framed within the social capital theory, this paper examines three types of relations of rural communities in a protected area in Catalonia (Spain) where a system of mushroom picking permits was recently introduced. Through social network analysis, we explore structural changes in relations within the policy network across the policy conception, design and implementation phases. We then test whether social links of the pickers' community relate to influential members of the policy network. Lastly, we assess whether pickers' bonding and bridging structures affect the rate of permit uptake. Our results show that the high degree of acceptance could be explained by an adequate consideration of pickers' preferences within the decision-making group: local pickers show proximity to members of the policy network with medium-high influence during the three policy phases. The policy network also evolves, with some members emerging as key actors during certain phases. Significant differences are found in pickers' relations among and across the involved municipalities following an urban-rural gradient. A preliminary relation is found between social structures and differential pickers' engagement. These results illustrate a case of positive social capital backing policy design and, probably, also implementation. This calls for a meticulous design of forest policy networks with respect to communities of affected forest users. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Community detection in complex networks using proximate support vector clustering

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  4. Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community?

    PubMed

    Saetnan, Eli Rudinow; Kipling, Richard Philip

    In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.

  5. A game theoretic algorithm to detect overlapping community structure in networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Zhao, Xiaohui; Liu, Yanheng; Sun, Geng

    2018-04-01

    Community detection can be used as an important technique for product and personalized service recommendation. A game theory based approach to detect overlapping community structure is introduced in this paper. The process of the community formation is converted into a game, when all agents (nodes) cannot improve their own utility, the game process will be terminated. The utility function is composed of a gain and a loss function and we present a new gain function in this paper. In addition, different from choosing action randomly among join, quit and switch for each agent to get new label, two new strategies for each agent to update its label are designed during the game, and the strategies are also evaluated and compared for each agent in order to find its best result. The overlapping community structure is naturally presented when the stop criterion is satisfied. The experimental results demonstrate that the proposed algorithm outperforms other similar algorithms for detecting overlapping communities in networks.

  6. Religious networking organizations and social justice: an ethnographic case study.

    PubMed

    Todd, Nathan R

    2012-09-01

    The current study provides an innovative examination of how and why religious networking organizations work for social justice in their local community. Similar to a coalition or community coordinating council, religious networking organizations are formal organizations comprised of individuals from multiple religious congregations who consistently meet to organize around a common goal. Based on over a year and a half of ethnographic participation in two separate religious networking organizations focused on community betterment and social justice, this study reports on the purpose and structure of these organizations, how each used networking to create social capital, and how religion was integrated into the organizations' social justice work. Findings contribute to the growing literature on social capital, empowering community settings, and the unique role of religious settings in promoting social justice. Implications for future research and practice also are discussed.

  7. Overlapping communities from dense disjoint and high total degree clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongli; Gao, Yang; Zhang, Yue

    2018-04-01

    Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.

  8. Relationship of Social Network to Protective Factors in Suicide and Alcohol Use Disorder Intervention for Rural Yup’ik Alaska Native Youth

    PubMed Central

    Philip, Jacques; Ford, Tara; Henry, David; Rasmus, Stacy; Allen, James

    2015-01-01

    Suicide and alcohol use disorders are significant Alaska Native health disparities, yet there is limited understanding of protection and no studies of social network factors in protection in this or other populations. The Qungasvik intervention enhances protective factors from suicide and alcohol use disorders through activities grounded in Yup’ik cultural practices and values. Identification of social network factors associated with protection within the cultural context of these tight, close knit, and high density rural Yup’ik Alaska Native communities in southwest Alaska can help identify effective prevention strategies for suicide and alcohol use disorder risk. Using data from ego-centered social network and protective factors from suicide and alcohol use disorders surveys with 50 Yup’ik adolescents, we provide descriptive data on structural and network composition variables, identify key network variables that explain major proportions of the variance in a four principal component structure of these network variables, and demonstrate the utility of these key network variables as predictors of family and community protective factors from suicide and alcohol use disorder risk. Connections to adults and connections to elders, but not peer connections, emerged as predictors of family and community level protection, suggesting these network factors as important intervention targets for intervention. PMID:27110094

  9. Global cluster synchronization in nonlinearly coupled community networks with heterogeneous coupling delays.

    PubMed

    Tseng, Jui-Pin

    2017-02-01

    This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Alternative community structures in a kelp-urchin community: A qualitative modeling approach

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2007-01-01

    Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to reconstruct guidelines that may govern community patterns. ?? 2007 Elsevier B.V. All rights reserved.

  11. Understanding the structure of community collaboration: the case of one Canadian health promotion network.

    PubMed

    Barnes, Martha; Maclean, Joanne; Cousens, Laura

    2010-06-01

    In 2004, over 6.8 million Canadians were considered overweight, with an additional 2.4 million labeled clinically obese. Due to these escalating levels of obesity in Canada, physical activity is being championed by politicians, physicians, educators and community members as a means to address this health crisis. In doing so, many organizations are being called upon to provide essential physical activity services and programs to combat rising obesity rates. Yet, strategies for achieving these organizations' mandates, which invariably involve stretching already scarce resources, are difficult to implement and sustain. One strategy for improving the health and physical activity levels of people in communities has been the creation of inter-organizational networks of service providers. Yet, little is known about whether networks are effective in addressing policy issues in non-clinical health settings. The purpose of this investigation was 2-fold; to use whole network analysis to determine the structure of one health promotion network in Canada, and to identify the types of ties shared by actors in the health network. Findings revealed a network wherein information sharing constituted the basis for collaboration, whereas efforts related to sharing resources, marketing and/or fundraising endeavors were less evident.

  12. The robustness of ecosystems to the species loss of community

    NASA Astrophysics Data System (ADS)

    Cai, Qing; Liu, Jiming

    2016-10-01

    To study the robustness of ecosystems is crucial to promote the sustainable development of human society. This paper aims to analyze the robustness of ecosystems from an interesting viewpoint of the species loss of community. Unlike the existing definitions, we first introduce the notion of a community as a population of species belonging to the same trophic level. We then put forward a novel multiobjective optimization model which can be utilized to discover community structures from arbitrary unipartite networks. Because an ecosystem is commonly represented as a multipartite network, we further introduce a mechanism of competition among species whereby a multipartite network is transformed into a unipartite signed network without loss of species interaction information. Finally, we examine three strategies to test the robustness of an ecosystem. Our experiments indicate that ecosystems are robust to random species loss of community but fragile to target ones. We also investigate the relationships between the robustness of an ecosystem and that of its community composed network both to species loss. Our experiments indicate that the robustness analysis of a large-scale ecosystem to species loss may be akin to that of its community composed network which is usually small in size.

  13. Social Dynamics in Adult and Community Education Networks: Insights from a Case Study

    ERIC Educational Resources Information Center

    Dollhausen, Karin; Alke, Matthias

    2014-01-01

    Implementing network type structures has become a widely appreciated strategy to promote actor-relationships in the field of adult and community education and to coordinate them purposefully. However, there is still a lack of knowledge on how a "successful" coordination of actor-relationships can actually be achieved. This paper offers…

  14. Emergent Complex Behavior in Social Networks: Examples from the Ktunaxa Speech Community

    ERIC Educational Resources Information Center

    Horsethief, Christopher

    2012-01-01

    Language serves as a primary tool for structuring identity and loss of language represents the loss of that identity. This study utilizes a social network analysis of Ktunaxa speech community activities for evidence of internally generated revitalization efforts. These behaviors include instances of self-organized emergence. Such emergent behavior…

  15. Diversity and patterns of interaction of an anuran-parasite network in a neotropical wetland.

    PubMed

    Campião, K M; Ribas, A; Tavares, L E R

    2015-12-01

    We describe the diversity and structure of a host-parasite network of 11 anuran species and their helminth parasites in the Pantanal wetland, Brazil. Specifically, we investigate how the heterogeneous use of space by hosts changes parasite community diversity, and how the local pool of parasites exploits sympatric host species of different habits. We examined 229 anuran specimens, interacting with 32 helminth parasite taxa. Mixed effect models indicated the influence of anuran body size, but not habit, as a determinant of parasite species richness. Variation in parasite taxonomic diversity, however, was not significantly correlated with host size or habit. Parasite community composition was not correlated with host phylogeny, indicating no strong effect of the evolutionary relationships among anurans on the similarities in their parasite communities. Host-parasite network showed a nested and non-modular pattern of interaction, which is probably a result of the low host specificity observed for most helminths in this study. Overall, we found host body size was important in determining parasite community richness, whereas low parasite specificity was important to network structure.

  16. Complexity and dynamics of topological and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2017-07-01

    Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

  17. Structure constrained by metadata in networks of chess players.

    PubMed

    Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V

    2017-11-09

    Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.

  18. Community detection in complex networks by using membrane algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren

    Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.

  19. a New Dynamic Community Model for Social Networks

    NASA Astrophysics Data System (ADS)

    Lu, Zhe-Ming; Wu, Zhen; Guo, Shi-Ze; Chen, Zhe; Song, Guang-Hua

    2014-09-01

    In this paper, based on the phenomenon that individuals join into and jump from the organizations in the society, we propose a dynamic community model to construct social networks. Two parameters are adopted in our model, one is the communication rate Pa that denotes the connection strength in the organization and the other is the turnover rate Pb, that stands for the frequency of jumping among the organizations. Based on simulations, we analyze not only the degree distribution, the clustering coefficient, the average distance and the network diameter but also the group distribution which is closely related to their community structure. Moreover, we discover that the networks generated by the proposed model possess the small-world property and can well reproduce the networks of social contacts.

  20. Community Interagency Connections for Immigrant Worker Health Interventions, King County, Washington State, 2012-2013.

    PubMed

    Tsai, Jenny Hsin-Chin; Petrescu-Prahova, Miruna

    2016-06-02

    Cross-sector community partnerships are a potentially powerful strategy to address population health problems, including health disparities. US immigrants - commonly employed in low-wage jobs that pose high risks to their health - experience such disparities because of hazardous exposures in the workplace. Hazardous exposures contribute to chronic health problems and complicate disease management. Moreover, prevention strategies such as worksite wellness programs are not effective for low-wage immigrant groups. The purpose of this article was to describe an innovative application of social network analysis to characterize interagency connections and knowledge needed to design and deliver a comprehensive community-based chronic disease prevention program for immigrant workers. Using iterative sample expansion, we identified 42 agencies representing diverse community sectors (service agencies, faith-based organizations, unions, nonprofits, government agencies) pertinent to the health of Chinese immigrant workers. To capture data on shared information, resources, and services as well as organizational characteristics, we jointly interviewed 2 representatives from each agency. We used social network analysis to describe interagency network structure and the positions of agencies within the networks. Agency interconnections were established primarily for information sharing. In the overall interagency network, a few service-oriented agencies held central or gatekeeper positions. Strong interconnectedness occurred predominately across service, public, and nonprofit sectors. The Chinese and Pan-Asian service sectors showed the strongest interconnectedness. Network analysis yields critical understanding of community structural links and assets needed to inform decisions about actual and potential community collaborations. Alternative intervention strategies may be needed to address health disparities among immigrant workers.

  1. Disentangling the role of floral sensory stimuli in pollination networks.

    PubMed

    Kantsa, Aphrodite; Raguso, Robert A; Dyer, Adrian G; Olesen, Jens M; Tscheulin, Thomas; Petanidou, Theodora

    2018-03-12

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role for sensory bias and diffuse coevolution in structuring plant-pollinator networks. This knowledge of floral sensory diversity, by identifying the most influential phenotypes, could help prioritize efforts for plant-pollinator community restoration.

  2. Few Ant Species Play a Central Role Linking Different Plant Resources in a Network in Rupestrian Grasslands

    PubMed Central

    Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.

    2016-01-01

    Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919

  3. An edge-centric perspective on the human connectome: link communities in the brain.

    PubMed

    de Reus, Marcel A; Saenger, Victor M; Kahn, René S; van den Heuvel, Martijn P

    2014-10-05

    Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Large Scale Data Analysis and Knowledge Extraction in Communication Data

    DTIC Science & Technology

    2017-03-31

    this purpose, we developed a novel method the " Correlation Density Ran!C’ which finds probability density distribution of related frequent event on all...which is called " Correlation Density Rank", is developed to derive the community tree from the network. As in the real world, where a network is...Community Structure in Dynamic Social Networks using the Correlation Density Rank," 2014 ASE BigData/SocialCom/Cybersecurity Conference, Stanford

  5. Ensemble method: Community detection based on game theory

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Xia, Zhengyou; Xu, Shengwu; Wang, J. D.

    2014-08-01

    Timely and cost-effective analytics over social network has emerged as a key ingredient for success in many businesses and government endeavors. Community detection is an active research area of relevance to analyze online social network. The problem of selecting a particular community detection algorithm is crucial if the aim is to unveil the community structure of a network. The choice of a given methodology could affect the outcome of the experiments because different algorithms have different advantages and depend on tuning specific parameters. In this paper, we propose a community division model based on the notion of game theory, which can combine advantages of previous algorithms effectively to get a better community classification result. By making experiments on some standard dataset, it verifies that our community detection model based on game theory is valid and better.

  6. Computational Modeling of Allosteric Regulation in the Hsp90 Chaperones: A Statistical Ensemble Analysis of Protein Structure Networks and Allosteric Communications

    PubMed Central

    Blacklock, Kristin; Verkhivker, Gennady M.

    2014-01-01

    A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. PMID:24922508

  7. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    PubMed

    Blacklock, Kristin; Verkhivker, Gennady M

    2014-06-01

    A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks.

  8. Bank-firm credit network in Japan: an analysis of a bipartite network.

    PubMed

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms.

  9. Bank-Firm Credit Network in Japan: An Analysis of a Bipartite Network

    PubMed Central

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N.

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms. PMID:25933413

  10. The structural role of weak and strong links in a financial market network

    NASA Astrophysics Data System (ADS)

    Garas, A.; Argyrakis, P.; Havlin, S.

    2008-05-01

    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  11. Uncovering the community structure in signed social networks based on greedy optimization

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yan, Jiaqi; Yang, Yu; Chen, Junhua

    2017-05-01

    The formality of signed relationships has been recently adopted in a lot of complicated systems. The relations among these entities are complicated and multifarious. We cannot indicate these relationships only by positive links, and signed networks have been becoming more and more universal in the study of social networks when community is being significant. In this paper, to identify communities in signed networks, we exploit a new greedy algorithm, taking signs and the density of these links into account. The main idea of the algorithm is the initial procedure of signed modularity and the corresponding update rules. Specially, we employ the “Asymmetric and Constrained Belief Evolution” procedure to evaluate the optimal number of communities. According to the experimental results, the algorithm is proved to be able to run well. More specifically, the proposed algorithm is very efficient for these networks with medium size, both dense and sparse.

  12. Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome

    PubMed Central

    Pavlovic, Dragana M.; Vértes, Petra E.; Bullmore, Edward T.; Schafer, William R.; Nichols, Thomas E.

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4–5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the “core-in-modules” decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems. PMID:24988196

  13. Efficient community-based control strategies in adaptive networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Tang, Ming; Zhang, Hai-Feng

    2012-12-01

    Most studies on adaptive networks concentrate on the properties of steady state, but neglect transient dynamics. In this study, we pay attention to the emergence of community structure in the transient process and the effects of community-based control strategies on epidemic spreading. First, by normalizing the modularity, we investigate the evolution of community structure during the transient process, and find that a strong community structure is induced by the rewiring mechanism in the early stage of epidemic dynamics, which, remarkably, delays the outbreak of disease. We then study the effects of control strategies started at different stages on the prevalence. Both immunization and quarantine strategies indicate that it is not ‘the earlier, the better’ for the implementation of control measures. And the optimal control effect is obtained if control measures can be efficiently implemented in the period of a strong community structure. For the immunization strategy, immunizing the susceptible nodes on susceptible-infected links and immunizing susceptible nodes randomly have similar control effects. However, for the quarantine strategy, quarantining the infected nodes on susceptible-infected links can yield a far better result than quarantining infected nodes randomly. More significantly, the community-based quarantine strategy performs better than the community-based immunization strategy. This study may shed new light on the forecast and the prevention of epidemics among humans.

  14. Optimal community structure for social contagions

    NASA Astrophysics Data System (ADS)

    Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.

    2018-05-01

    Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.

  15. Social network analysis of stakeholder networks from two community-based obesity prevention interventions

    PubMed Central

    Nichols, Melanie; Korn, Ariella; Millar, Lynne; Marks, Jennifer; Sanigorski, Andrew; Pachucki, Mark; Swinburn, Boyd; Allender, Steven; Economos, Christina

    2018-01-01

    Introduction Studies of community-based obesity prevention interventions have hypothesized that stakeholder networks are a critical element of effective implementation. This paper presents a quantitative analysis of the interpersonal network structures within a sub-sample of stakeholders from two past successful childhood obesity prevention interventions. Methods Participants were recruited from the stakeholder groups (steering committees) of two completed community-based intervention studies, Romp & Chomp (R&C), Australia (2004-2008) and Shape Up Somerville (SUS), USA (2003-2005). Both studies demonstrated significant reductions of overweight and obesity among children. Members of the steering committees were asked to complete a retrospective social network questionnaire using a roster of other committee members and free recall. Each participant was asked to recall the people with whom they discussed issues related to childhood obesity throughout the intervention period, along with providing the closeness and level of influence of each relationship. Results Networks were reported by 13 participants from the SUS steering committee and 8 participants from the R&C steering committee. On average, participants nominated 16 contacts with whom they discussed issues related to childhood obesity through the intervention, with approximately half of the relationships described as ‘close’ and 30% as ‘influential’. The ‘discussion’ and ‘close’ networks had high clustering and reciprocity, with ties directed to other steering committee members, and to individuals external to the committee. In contrast, influential ties were more prominently directed internal to the steering committee, with higher network centralization, lower reciprocity and lower clustering. Discussion and conclusion Social network analysis provides a method to evaluate the ties within steering committees of community-based obesity prevention interventions. In this study, the network characteristics between a sub-set of stakeholders appeared to be supportive of diffused communication. Future work should prospectively examine stakeholder network structures in a heterogeneous sample of community-based interventions to identify elements most strongly associated with intervention effectiveness. PMID:29702660

  16. Uncovering the overlapping community structure of complex networks by maximal cliques

    NASA Astrophysics Data System (ADS)

    Li, Junqiu; Wang, Xingyuan; Cui, Yaozu

    2014-12-01

    In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.

  17. Network modules and hubs in plant-root fungal biomes

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Tanabe, Akifumi S.; Hayakawa, Takashi; Ishii, Hiroshi S.

    2016-01-01

    Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont–symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e. ‘enterotype’) and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont–symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root–microbiome dynamics. PMID:26962029

  18. LPA-CBD an improved label propagation algorithm based on community belonging degree for community detection

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Zhao, Zhili; Wei, Jiaxuan; Hu, Rongjing

    In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.

  19. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    NASA Astrophysics Data System (ADS)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  20. A network view on psychiatric disorders: network clusters of symptoms as elementary syndromes of psychopathology.

    PubMed

    Goekoop, Rutger; Goekoop, Jaap G

    2014-01-01

    The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "Depression", "Mania", "Anxiety", "Psychosis", "Retardation", and "Behavioral Disorganization". Network metrics were used to quantify the continuities between the elementary syndromes. We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a 'Psychopathology Web'. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology.

  1. A similarity based agglomerative clustering algorithm in networks

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  2. Detecting communities in large networks

    NASA Astrophysics Data System (ADS)

    Capocci, A.; Servedio, V. D. P.; Caldarelli, G.; Colaiori, F.

    2005-07-01

    We develop an algorithm to detect community structure in complex networks. The algorithm is based on spectral methods and takes into account weights and link orientation. Since the method detects efficiently clustered nodes in large networks even when these are not sharply partitioned, it turns to be specially suitable for the analysis of social and information networks. We test the algorithm on a large-scale data-set from a psychological experiment of word association. In this case, it proves to be successful both in clustering words, and in uncovering mental association patterns.

  3. Network clustering and community detection using modulus of families of loops.

    PubMed

    Shakeri, Heman; Poggi-Corradini, Pietro; Albin, Nathan; Scoglio, Caterina

    2017-01-01

    We study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.

  4. Homophyly/Kinship Model: Naturally Evolving Networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  5. Homophyly/Kinship Model: Naturally Evolving Networks

    PubMed Central

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-01-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network. PMID:26478264

  6. Multiple regimes of robust patterns between network structure and biodiversity

    NASA Astrophysics Data System (ADS)

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-12-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.

  7. Multiple regimes of robust patterns between network structure and biodiversity

    PubMed Central

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-01-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996

  8. Assessing the Network of Agencies in Local Communities that Promote Healthy Eating and Lifestyles among Populations with Limited Resources.

    PubMed

    An, Ruopeng; Khan, Naiman; Loehmer, Emily; McCaffrey, Jennifer

    2017-03-01

    We assessed the network of agencies in local communities that promote healthy eating and lifestyles among populations with limited resources. Network surveys were administered among 159 Illinois agencies identified as serving limited-resource audiences categorized into 8 types: K-12 schools, early childhood centers, emergency food providers, health-related agencies, social resource centers, low-income/subsidized housing complexes, continuing education organizations, and others. Network analysis was conducted to examine 4 network structures - communications, funding, cooperation, and collaboration networks between agencies within each county/county cluster. Agencies in a network were found to be loosely connected, indicated by low network density. Reporting accuracy might be of concern, indicated by low reciprocity. Agencies in a network are decentralized rather than centralized around a few influential agencies, indicated by low betweenness centrality. There is suggestive evidence regarding homophily in a network, indicated by some significant correlations within agencies of the same type. Agencies connected in one network are significantly more likely to be connected in all the other networks as well. Promoting healthy eating and lifestyles among populations with limited resources warrants strong partnership across agencies in communities. Network analysis serves as a useful tool to evaluate community partnerships and facilitate coalition building..

  9. Fragmented Romanian sociology: growth and structure of the collaboration network.

    PubMed

    Hâncean, Marian-Gabriel; Perc, Matjaž; Vlăsceanu, Lazăr

    2014-01-01

    Structural patterns in collaboration networks are essential for understanding how new ideas, research practices, innovation or cooperation circulate and develop within academic communities and between and within university departments. In our research, we explore and investigate the structure of the collaboration network formed by the academics working full-time within all the 17 sociology departments across Romania. We show that the collaboration network is sparse and fragmented, and that it constitutes an environment that does not promote the circulation of new ideas and innovation within the field. Although recent years have witnessed an increase in the productivity of Romanian sociologists, there is still ample room for improvement in terms of the interaction infrastructure that ought to link individuals together so that they could maximize their potentials. We also fail to discern evidence in favor of the Matthew effect governing the growth of the network, which suggests scientific success and productivity are not rewarded. Instead, the structural properties of the collaboration network are partly those of a core-periphery network, where the spread of innovation and change can be explained by structural equivalence rather than by interpersonal influence models. We also provide support for the idea that, within the observed network, collaboration is the product of homophily rather than prestige effects. Further research on the subject based on data from other countries in the region is needed to place our results in a comparative framework, in particular to discern whether the behavior of the Romanian sociologist community is unique or rather common.

  10. Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network

    PubMed Central

    Hâncean, Marian-Gabriel; Perc, Matjaž; Vlăsceanu, Lazăr

    2014-01-01

    Structural patterns in collaboration networks are essential for understanding how new ideas, research practices, innovation or cooperation circulate and develop within academic communities and between and within university departments. In our research, we explore and investigate the structure of the collaboration network formed by the academics working full-time within all the 17 sociology departments across Romania. We show that the collaboration network is sparse and fragmented, and that it constitutes an environment that does not promote the circulation of new ideas and innovation within the field. Although recent years have witnessed an increase in the productivity of Romanian sociologists, there is still ample room for improvement in terms of the interaction infrastructure that ought to link individuals together so that they could maximize their potentials. We also fail to discern evidence in favor of the Matthew effect governing the growth of the network, which suggests scientific success and productivity are not rewarded. Instead, the structural properties of the collaboration network are partly those of a core-periphery network, where the spread of innovation and change can be explained by structural equivalence rather than by interpersonal influence models. We also provide support for the idea that, within the observed network, collaboration is the product of homophily rather than prestige effects. Further research on the subject based on data from other countries in the region is needed to place our results in a comparative framework, in particular to discern whether the behavior of the Romanian sociologist community is unique or rather common. PMID:25409180

  11. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling

    PubMed Central

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-01-01

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P < 0.05) increased the gene alpha-diversity in terms of richness and Shannon – Simpson’s indexes for all three types of soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning. PMID:26396042

  12. Hierarchical sequencing of online social graphs

    NASA Astrophysics Data System (ADS)

    Andjelković, Miroslav; Tadić, Bosiljka; Maletić, Slobodan; Rajković, Milan

    2015-10-01

    In online communications, patterns of conduct of individual actors and use of emotions in the process can lead to a complex social graph exhibiting multilayered structure and mesoscopic communities. Using simplicial complexes representation of graphs, we investigate in-depth topology of the online social network constructed from MySpace dialogs which exhibits original community structure. A simulation of emotion spreading in this network leads to the identification of two emotion-propagating layers. Three topological measures are introduced, referred to as the structure vectors, which quantify graph's architecture at different dimension levels. Notably, structures emerging through shared links, triangles and tetrahedral faces, frequently occur and range from tree-like to maximal 5-cliques and their respective complexes. On the other hand, the structures which spread only negative or only positive emotion messages appear to have much simpler topology consisting of links and triangles. The node's structure vector represents the number of simplices at each topology level in which the node resides and the total number of such simplices determines what we define as the node's topological dimension. The presented results suggest that the node's topological dimension provides a suitable measure of the social capital which measures the actor's ability to act as a broker in compact communities, the so called Simmelian brokerage. We also generalize the results to a wider class of computer-generated networks. Investigating components of the node's vector over network layers reveals that same nodes develop different socio-emotional relations and that the influential nodes build social capital by combining their connections in different layers.

  13. The role of stabilizing and communicating symptoms given overlapping communities in psychopathology networks.

    PubMed

    Blanken, Tessa F; Deserno, Marie K; Dalege, Jonas; Borsboom, Denny; Blanken, Peter; Kerkhof, Gerard A; Cramer, Angélique O J

    2018-04-11

    Network theory, as a theoretical and methodological framework, is energizing many research fields, among which clinical psychology and psychiatry. Fundamental to the network theory of psychopathology is the role of specific symptoms and their interactions. Current statistical tools, however, fail to fully capture this constitutional property. We propose community detection tools as a means to evaluate the complex network structure of psychopathology, free from its original boundaries of distinct disorders. Unique to this approach is that symptoms can belong to multiple communities. Using a large community sample and spanning a broad range of symptoms (Symptom Checklist-90-Revised), we identified 18 communities of interconnected symptoms. The differential role of symptoms within and between communities offers a framework to study the clinical concepts of comorbidity, heterogeneity and hallmark symptoms. Symptoms with many and strong connections within a community, defined as stabilizing symptoms, could be thought of as the core of a community, whereas symptoms that belong to multiple communities, defined as communicating symptoms, facilitate the communication between problem areas. We propose that defining symptoms on their stabilizing and/or communicating role within and across communities accelerates our understanding of these clinical phenomena, central to research and treatment of psychopathology.

  14. Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes and Predict Network Dynamics

    PubMed Central

    Kovács, István A.; Palotai, Robin; Szalay, Máté S.; Csermely, Peter

    2010-01-01

    Background Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction. PMID:20824084

  15. Community detection in complex networks using link prediction

    NASA Astrophysics Data System (ADS)

    Cheng, Hui-Min; Ning, Yi-Zi; Yin, Zhao; Yan, Chao; Liu, Xin; Zhang, Zhong-Yuan

    2018-01-01

    Community detection and link prediction are both of great significance in network analysis, which provide very valuable insights into topological structures of the network from different perspectives. In this paper, we propose a novel community detection algorithm with inclusion of link prediction, motivated by the question whether link prediction can be devoted to improving the accuracy of community partition. For link prediction, we propose two novel indices to compute the similarity between each pair of nodes, one of which aims to add missing links, and the other tries to remove spurious edges. Extensive experiments are conducted on benchmark data sets, and the results of our proposed algorithm are compared with two classes of baselines. In conclusion, our proposed algorithm is competitive, revealing that link prediction does improve the precision of community detection.

  16. In Search of a Practice: Large-Scale Moderation in a Massive Online Community

    ERIC Educational Resources Information Center

    Pisa, Sheila Saden

    2013-01-01

    People are increasingly looking to online social communities as ways of communicating. However, even as participation in social networking is increasing, online communities often fail to coalesce. Noted success factors for online communities are linked to the community's purpose and culture. They are also related to structures that allow for…

  17. Combined node and link partitions method for finding overlapping communities in complex networks

    PubMed Central

    Jin, Di; Gabrys, Bogdan; Dang, Jianwu

    2015-01-01

    Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures. PMID:25715829

  18. Extracting information from multiplex networks

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  19. Improved graph clustering

    DTIC Science & Technology

    2013-01-01

    5, pp. 75–174, 2010. [2] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney , “Statistical properties of community structure in large social and...2011. [14] R. R. Nadakuditi and M. Newman , “Graph spectra and the detectability of community structure in networks,” Phys. Rev. Lett., vol. 108, no

  20. Community detection, link prediction, and layer interdependence in multilayer networks.

    PubMed

    De Bacco, Caterina; Power, Eleanor A; Larremore, Daniel B; Moore, Cristopher

    2017-04-01

    Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.

  1. Community detection, link prediction, and layer interdependence in multilayer networks

    NASA Astrophysics Data System (ADS)

    De Bacco, Caterina; Power, Eleanor A.; Larremore, Daniel B.; Moore, Cristopher

    2017-04-01

    Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.

  2. Patterns of Twitter Behavior Among Networks of Cannabis Dispensaries in California

    PubMed Central

    Chew, Robert F; Hsieh, Yuli P; Bieler, Gayle S; Bobashev, Georgiy V; Siege, Christopher; Zarkin, Gary A

    2017-01-01

    Background Twitter represents a social media platform through which medical cannabis dispensaries can rapidly promote and advertise a multitude of retail products. Yet, to date, no studies have systematically evaluated Twitter behavior among dispensaries and how these behaviors influence the formation of social networks. Objectives This study sought to characterize common cyberbehaviors and shared follower networks among dispensaries operating in two large cannabis markets in California. Methods From a targeted sample of 119 dispensaries in the San Francisco Bay Area and Greater Los Angeles, we collected metadata from the dispensary accounts using the Twitter API. For each city, we characterized the network structure of dispensaries based upon shared followers, then empirically derived communities with the Louvain modularity algorithm. Principal components factor analysis was employed to reduce 12 Twitter measures into a more parsimonious set of cyberbehavioral dimensions. Finally, quadratic discriminant analysis was implemented to verify the ability of the extracted dimensions to classify dispensaries into their derived communities. Results The modularity algorithm yielded three communities in each city with distinct network structures. The principal components factor analysis reduced the 12 cyberbehaviors into five dimensions that encompassed account age, posting frequency, referencing, hyperlinks, and user engagement among the dispensary accounts. In the quadratic discriminant analysis, the dimensions correctly classified 75% (46/61) of the communities in the San Francisco Bay Area and 71% (41/58) in Greater Los Angeles. Conclusions The most centralized and strongly connected dispensaries in both cities had newer accounts, higher daily activity, more frequent user engagement, and increased usage of embedded media, keywords, and hyperlinks. Measures derived from both network structure and cyberbehavioral dimensions can serve as key contextual indicators for the online surveillance of cannabis dispensaries and consumer markets over time. PMID:28676471

  3. Detecting phenotype-driven transitions in regulatory network structure.

    PubMed

    Padi, Megha; Quackenbush, John

    2018-01-01

    Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and contain dense "communities" of genes that carry out cellular processes, but these structures change between tissues, during development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes, and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling. The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex networks, but also that these changes may be relevant for characterizing biological phenotypes.

  4. How to Identify Success Among Networks That Promote Active Living.

    PubMed

    Litt, Jill; Varda, Danielle; Reed, Hannah; Retrum, Jessica; Tabak, Rachel; Gustat, Jeanette; O'Hara Tompkins, Nancy

    2015-11-01

    We evaluated organization- and network-level factors that influence organizations' perceived success. This is important for managing interorganizational networks, which can mobilize communities to address complex health issues such as physical activity, and for achieving change. In 2011, we used structured interview and network survey data from 22 states in the United States to estimate multilevel random-intercept models to understand organization- and network-level factors that explain perceived network success. A total of 53 of 59 "whole networks" met the criteria for inclusion in the analysis (89.8%). Coordinators identified 559 organizations, with 3 to 12 organizations from each network taking the online survey (response rate = 69.7%; range = 33%-100%). Occupying a leadership position (P < .01), the amount of time with the network (P < .05), and support from community leaders (P < .05) emerged as correlates of perceived success. Organizations' perceptions of success can influence decisions about continuing involvement and investment in networks designed to promote environment and policy change for active living. Understanding these factors can help leaders manage complex networks that involve diverse memberships, varied interests, and competing community-level priorities.

  5. Community core detection in transportation networks

    NASA Astrophysics Data System (ADS)

    De Leo, Vincenzo; Santoboni, Giovanni; Cerina, Federica; Mureddu, Mario; Secchi, Luca; Chessa, Alessandro

    2013-10-01

    This work analyzes methods for the identification and the stability under perturbation of a territorial community structure with specific reference to transportation networks. We considered networks of commuters for a city and an insular region. In both cases, we have studied the distribution of commuters’ trips (i.e., home-to-work trips and vice versa). The identification and stability of the communities’ cores are linked to the land-use distribution within the zone system, and therefore their proper definition may be useful to transport planners.

  6. Network analysis shining light on parasite ecology and diversity.

    PubMed

    Poulin, Robert

    2010-10-01

    The vast number of species making up natural communities, and the myriad interactions among them, pose great difficulties for the study of community structure, dynamics and stability. Borrowed from other fields, network analysis is making great inroads in community ecology and is only now being applied to host-parasite interactions. It allows a complex system to be examined in its entirety, as opposed to one or a few components at a time. This review explores what network analysis is and how it can be used to investigate parasite ecology. It also summarizes the first findings to emerge from network analyses of host-parasite interactions and identifies promising future directions made possible by this approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. How does language change as a lexical network? An investigation based on written Chinese word co-occurrence networks

    PubMed Central

    Chen, Heng; Chen, Xinying

    2018-01-01

    Language is a complex adaptive system, but how does it change? For investigating this process, four diachronic Chinese word co-occurrence networks have been built based on texts that were written during the last 2,000 years. By comparing the network indicators that are associated with the hierarchical features in language networks, we learn that the hierarchy of Chinese lexical networks has indeed evolved over time at three different levels. The connections of words at the micro level are continually weakening; the number of words in the meso-level communities has increased significantly; and the network is expanding at the macro level. This means that more and more words tend to be connected to medium-central words and form different communities. Meanwhile, fewer high-central words link these communities into a highly efficient small-world network. Understanding this process may be crucial for understanding the increasing structural complexity of the language system. PMID:29489837

  8. How does language change as a lexical network? An investigation based on written Chinese word co-occurrence networks.

    PubMed

    Chen, Heng; Chen, Xinying; Liu, Haitao

    2018-01-01

    Language is a complex adaptive system, but how does it change? For investigating this process, four diachronic Chinese word co-occurrence networks have been built based on texts that were written during the last 2,000 years. By comparing the network indicators that are associated with the hierarchical features in language networks, we learn that the hierarchy of Chinese lexical networks has indeed evolved over time at three different levels. The connections of words at the micro level are continually weakening; the number of words in the meso-level communities has increased significantly; and the network is expanding at the macro level. This means that more and more words tend to be connected to medium-central words and form different communities. Meanwhile, fewer high-central words link these communities into a highly efficient small-world network. Understanding this process may be crucial for understanding the increasing structural complexity of the language system.

  9. Discursive Deployments: Mobilizing Support for Municipal and Community Wireless Networks in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Rosio; Rodriguez, Juana Maria

    2008-08-16

    This paper examines Municipal Wireless (MW) deployments in the United States. In particular, the interest is in understanding how discourse has worked to mobilize widespread support for MW networks. We explore how local governments discursively deploy the language of social movements to create a shared understanding of the networking needs of communities. Through the process of"framing" local governments assign meaning to the MW networks in ways intended to mobilize support anddemobilize opposition. The mobilizing potential of a frame varies and is dependent on its centrality and cultural resonance. We examine the framing efforts of MW networks by using a samplemore » of Request for Proposals for community wireless networks, semi-structured interviews and local media sources. Prominent values that are central to a majority of the projects and others that are culturally specific are identified and analyzed for their mobilizing potency.« less

  10. BridgeRank: A novel fast centrality measure based on local structure of the network

    NASA Astrophysics Data System (ADS)

    Salavati, Chiman; Abdollahpouri, Alireza; Manbari, Zhaleh

    2018-04-01

    Ranking nodes in complex networks have become an important task in many application domains. In a complex network, influential nodes are those that have the most spreading ability. Thus, identifying influential nodes based on their spreading ability is a fundamental task in different applications such as viral marketing. One of the most important centrality measures to ranking nodes is closeness centrality which is efficient but suffers from high computational complexity O(n3) . This paper tries to improve closeness centrality by utilizing the local structure of nodes and presents a new ranking algorithm, called BridgeRank centrality. The proposed method computes local centrality value for each node. For this purpose, at first, communities are detected and the relationship between communities is completely ignored. Then, by applying a centrality in each community, only one best critical node from each community is extracted. Finally, the nodes are ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. We have also modified the proposed method by weighting the original BridgeRank and selecting several nodes from each community based on the density of that community. Our method can find the best nodes with high spread ability and low time complexity, which make it applicable to large-scale networks. To evaluate the performance of the proposed method, we use the SIR diffusion model. Finally, experiments on real and artificial networks show that our method is able to identify influential nodes so efficiently, and achieves better performance compared to other recent methods.

  11. Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations?

    PubMed Central

    Lange, Denise; Del-Claro, Kleber

    2014-01-01

    Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007

  12. Phase transition of Surprise optimization in community detection

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Tang, Yan-Ni; Gao, Yuan-Yuan; Liu, Lang; Hao, Yi; Li, Jian-Ming; Zhang, Yan; Chen, Shi

    2018-02-01

    Community detection is one of important issues in the research of complex networks. In literatures, many methods have been proposed to detect community structures in the networks, while they also have the scope of application themselves. In this paper, we investigate an important measure for community detection, Surprise (Aldecoa and Marín, Sci. Rep. 3 (2013) 1060), by focusing on the critical points in the merging and splitting of communities. We firstly analyze the critical behavior of Surprise and give the phase diagrams in community-partition transition. The results show that the critical number of communities for Surprise has a super-exponential increase with the increase of the link-density difference, while it is close to that of Modularity for small difference between inter- and intra-community link densities. By directly optimizing Surprise, we experimentally test the results on various networks, following a series of comparisons with other classical methods, and further find that the heterogeneity of networks could quicken the splitting of communities. On the whole, the results show that Surprise tends to split communities due to various reasons such as the heterogeneity in link density, degree and community size, and it thus exhibits higher resolution than other methods, e.g., Modularity, in community detection. Finally, we provide several approaches for enhancing Surprise.

  13. Assessment of Overlap of Phylogenetic Transmission Clusters and Communities in Simple Sexual Contact Networks: Applications to HIV-1

    PubMed Central

    Villandre, Luc; Günthard, Huldrych F.; Kouyos, Roger; Stadler, Tanja

    2016-01-01

    Background Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters. Methods The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index. Results and Conclusion Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs. PMID:26863322

  14. Network Structure and Community Evolution on Twitter: Human Behavior Change in Response to the 2011 Japanese Earthquake and Tsunami

    PubMed Central

    Lu, Xin; Brelsford, Christa

    2014-01-01

    To investigate the dynamics of social networks and the formation and evolution of online communities in response to extreme events, we collected three datasets from Twitter shortly before and after the 2011 earthquake and tsunami in Japan. We find that while almost all users increased their online activity after the earthquake, Japanese speakers, who are assumed to be more directly affected by the event, expanded the network of people they interact with to a much higher degree than English speakers or the global average. By investigating the evolution of communities, we find that the behavior of joining or quitting a community is far from random: users tend to stay in their current status and are less likely to join new communities from solitary or shift to other communities from their current community. While non-Japanese speakers did not change their conversation topics significantly after the earthquake, nearly all Japanese users changed their conversations to earthquake-related content. This study builds a systematic framework for investigating human behaviors under extreme events with online social network data and our findings on the dynamics of networks and communities may provide useful insight for understanding how patterns of social interaction are influenced by extreme events. PMID:25346468

  15. Network Structure and Community Evolution on Twitter: Human Behavior Change in Response to the 2011 Japanese Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Brelsford, Christa

    2014-10-01

    To investigate the dynamics of social networks and the formation and evolution of online communities in response to extreme events, we collected three datasets from Twitter shortly before and after the 2011 earthquake and tsunami in Japan. We find that while almost all users increased their online activity after the earthquake, Japanese speakers, who are assumed to be more directly affected by the event, expanded the network of people they interact with to a much higher degree than English speakers or the global average. By investigating the evolution of communities, we find that the behavior of joining or quitting a community is far from random: users tend to stay in their current status and are less likely to join new communities from solitary or shift to other communities from their current community. While non-Japanese speakers did not change their conversation topics significantly after the earthquake, nearly all Japanese users changed their conversations to earthquake-related content. This study builds a systematic framework for investigating human behaviors under extreme events with online social network data and our findings on the dynamics of networks and communities may provide useful insight for understanding how patterns of social interaction are influenced by extreme events.

  16. Structure and evolution of a European Parliament via a network and correlation analysis

    NASA Astrophysics Data System (ADS)

    Puccio, Elena; Pajala, Antti; Piilo, Jyrki; Tumminello, Michele

    2016-11-01

    We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members' attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.

  17. Developing an inter-organizational community-based health network: an Australian investigation.

    PubMed

    Short, Alison; Phillips, Rebecca; Nugus, Peter; Dugdale, Paul; Greenfield, David

    2015-12-01

    Networks in health care typically involve services delivered by a defined set of organizations. However, networked associations between the healthcare system and consumers or consumer organizations tend to be open, fragmented and are fraught with difficulties. Understanding the role and activities of consumers and consumer groups in a formally initiated inter-organizational health network, and the impacts of the network, is a timely endeavour. This study addresses this aim in three ways. First, the Unbounded Network Inter-organizational Collaborative Impact Model, a purpose-designed framework developed from existing literature, is used to investigate the process and products of inter-organizational network development. Second, the impact of a network artefact is explored. Third, the lessons learned in inter-organizational network development are considered. Data collection methods were: 16 h of ethnographic observation; 10 h of document analysis; six interviews with key informants and a survey (n = 60). Findings suggested that in developing the network, members used common aims, inter-professional collaboration, the power and trust engendered by their participation, and their leadership and management structures in a positive manner. These elements and activities underpinned the inter-organizational network to collaboratively produce the Health Expo network artefact. This event brought together healthcare providers, community groups and consumers to share information. The Health Expo demonstrated and reinforced inter-organizational working and community outreach, providing consumers with community-based information and linkages. Support and resources need to be offered for developing community inter-organizational networks, thereby building consumer capacity for self-management in the community. © The Author (2014). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta).

    PubMed

    Balasubramaniam, Krishna; Beisner, Brianne; Guan, Jiahui; Vandeleest, Jessica; Fushing, Hsieh; Atwill, Edward; McCowan, Brenda

    2018-01-01

    In group-living animals, heterogeneity in individuals' social connections may mediate the sharing of microbial infectious agents. In this regard, the genetic relatedness of individuals' commensal gut bacterium Escherichia coli may be ideal to assess the potential for pathogen transmission through animal social networks. Here we use microbial phylogenetics and population genetics approaches, as well as host social network reconstruction, to assess evidence for the contact-mediated sharing of E. coli among three groups of captively housed rhesus macaques ( Macaca mulatta ), at multiple organizational scales. For each group, behavioral data on grooming, huddling, and aggressive interactions collected for a six-week period were used to reconstruct social network communities via the Data Cloud Geometry (DCG) clustering algorithm. Further, an E. coli isolate was biochemically confirmed and genotypically fingerprinted from fecal swabs collected from each macaque. Population genetics approaches revealed that Group Membership, in comparison to intrinsic attributes like age, sex, and/or matriline membership of individuals, accounted for the highest proportion of variance in E. coli genotypic similarity. Social network approaches revealed that such sharing was evident at the community-level rather than the dyadic level. Specifically, although we found no links between dyadic E. coli similarity and social contact frequencies, similarity was significantly greater among macaques within the same social network communities compared to those across different communities. Moreover, tests for one of our study-groups confirmed that E. coli isolated from macaque rectal swabs were more genotypically similar to each other than they were to isolates from environmentally deposited feces. In summary, our results suggest that among frequently interacting, spatially constrained macaques with complex social relationships, microbial sharing via fecal-oral, social contact-mediated routes may depend on both individuals' direct connections and on secondary network pathways that define community structure. They lend support to the hypothesis that social network communities may act as bottlenecks to contain the spread of infectious agents, thereby encouraging disease control strategies to focus on multiple organizational scales. Future directions includeincreasing microbial sampling effort per individual to better-detect dyadic transmission events, and assessments of the co-evolutionary links between sociality, infectious agent risk, and host immune function.

  19. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    PubMed Central

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; Sale, Kenneth L.; Yu, Eizadora T.

    2016-01-01

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations. PMID:27507966

  20. Traveling salesman problems with PageRank Distance on complex networks reveal community structure

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongzhou; Liu, Jing; Wang, Shuai

    2016-12-01

    In this paper, we propose a new algorithm for community detection problems (CDPs) based on traveling salesman problems (TSPs), labeled as TSP-CDA. Since TSPs need to find a tour with minimum cost, cities close to each other are usually clustered in the tour. This inspired us to model CDPs as TSPs by taking each vertex as a city. Then, in the final tour, the vertices in the same community tend to cluster together, and the community structure can be obtained by cutting the tour into a couple of paths. There are two challenges. The first is to define a suitable distance between each pair of vertices which can reflect the probability that they belong to the same community. The second is to design a suitable strategy to cut the final tour into paths which can form communities. In TSP-CDA, we deal with these two challenges by defining a PageRank Distance and an automatic threshold-based cutting strategy. The PageRank Distance is designed with the intrinsic properties of CDPs in mind, and can be calculated efficiently. In the experiments, benchmark networks with 1000-10,000 nodes and varying structures are used to test the performance of TSP-CDA. A comparison is also made between TSP-CDA and two well-established community detection algorithms. The results show that TSP-CDA can find accurate community structure efficiently and outperforms the two existing algorithms.

  1. Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change

    PubMed Central

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier

    2015-01-01

    Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853

  2. The relations between network-operation and topological-property in a scale-free and small-world network with community structure

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Yao, Bing

    2017-10-01

    It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.

  3. A Network View on Psychiatric Disorders: Network Clusters of Symptoms as Elementary Syndromes of Psychopathology

    PubMed Central

    Goekoop, Rutger; Goekoop, Jaap G.

    2014-01-01

    Introduction The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. Aim To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. Methods 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. Results In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "DEPRESSION", "MANIA", “ANXIETY”, "PSYCHOSIS", "RETARDATION", and "BEHAVIORAL DISORGANIZATION". Network metrics were used to quantify the continuities between the elementary syndromes. Conclusion We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a ‘Psychopathology Web’. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology. PMID:25427156

  4. Detecting livestock production zones.

    PubMed

    Grisi-Filho, J H H; Amaku, M; Ferreira, F; Dias, R A; Neto, J S Ferreira; Negreiros, R L; Ossada, R

    2013-07-01

    Communities are sets of nodes that are related in an important way, most likely sharing common properties and/or playing similar roles within a network. Unraveling a network structure, and hence the trade preferences and pathways, could be useful to a researcher or a decision maker. We implemented a community detection algorithm to find livestock communities, which is consistent with the definition of a livestock production zone, assuming that a community is a group of farm premises in which an animal is more likely to stay during its lifetime than expected by chance. We applied this algorithm to the network of animal movements within the state of Mato Grosso for 2007. This database holds information concerning 87,899 premises and 521,431 movements throughout the year, totaling 15,844,779 animals moved. The community detection algorithm achieved a network partition that shows a clear geographical and commercial pattern, two crucial features for preventive veterinary medicine applications; this algorithm provides also a meaningful interpretation to trade networks where links emerge based on trader node choices. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A network model of the interbank market

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; He, Jianmin; Zhuang, Yaming

    2010-12-01

    This work introduces a network model of an interbank market based on interbank credit lending relationships. It generates some network features identified through empirical analysis. The critical issue to construct an interbank network is to decide the edges among banks, which is realized in this paper based on the interbank’s degree of trust. Through simulation analysis of the interbank network model, some typical structural features are identified in our interbank network, which are also proved to exist in real interbank networks. They are namely, a low clustering coefficient and a relatively short average path length, community structures, and a two-power-law distribution of out-degree and in-degree.

  6. Decay of interspecific avian flock networks along a disturbance gradient in Amazonia.

    PubMed

    Mokross, Karl; Ryder, Thomas B; Côrtes, Marina Corrêa; Wolfe, Jared D; Stouffer, Philip C

    2014-02-07

    Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.

  7. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses.

    PubMed

    Hurwitz, Bonnie L; Westveld, Anton H; Brum, Jennifer R; Sullivan, Matthew B

    2014-07-22

    Long-standing questions in marine viral ecology are centered on understanding how viral assemblages change along gradients in space and time. However, investigating these fundamental ecological questions has been challenging due to incomplete representation of naturally occurring viral diversity in single gene- or morphology-based studies and an inability to identify up to 90% of reads in viral metagenomes (viromes). Although protein clustering techniques provide a significant advance by helping organize this unknown metagenomic sequence space, they typically use only ∼75% of the data and rely on assembly methods not yet tuned for naturally occurring sequence variation. Here, we introduce an annotation- and assembly-free strategy for comparative metagenomics that combines shared k-mer and social network analyses (regression modeling). This robust statistical framework enables visualization of complex sample networks and determination of ecological factors driving community structure. Application to 32 viromes from the Pacific Ocean Virome dataset identified clusters of samples broadly delineated by photic zone and revealed that geographic region, depth, and proximity to shore were significant predictors of community structure. Within subsets of this dataset, depth, season, and oxygen concentration were significant drivers of viral community structure at a single open ocean station, whereas variability along onshore-offshore transects was driven by oxygen concentration in an area with an oxygen minimum zone and not depth or proximity to shore, as might be expected. Together these results demonstrate that this highly scalable approach using complete metagenomic network-based comparisons can both test and generate hypotheses for ecological investigation of viral and microbial communities in nature.

  8. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses

    PubMed Central

    Hurwitz, Bonnie L.; Westveld, Anton H.; Brum, Jennifer R.; Sullivan, Matthew B.

    2014-01-01

    Long-standing questions in marine viral ecology are centered on understanding how viral assemblages change along gradients in space and time. However, investigating these fundamental ecological questions has been challenging due to incomplete representation of naturally occurring viral diversity in single gene- or morphology-based studies and an inability to identify up to 90% of reads in viral metagenomes (viromes). Although protein clustering techniques provide a significant advance by helping organize this unknown metagenomic sequence space, they typically use only ∼75% of the data and rely on assembly methods not yet tuned for naturally occurring sequence variation. Here, we introduce an annotation- and assembly-free strategy for comparative metagenomics that combines shared k-mer and social network analyses (regression modeling). This robust statistical framework enables visualization of complex sample networks and determination of ecological factors driving community structure. Application to 32 viromes from the Pacific Ocean Virome dataset identified clusters of samples broadly delineated by photic zone and revealed that geographic region, depth, and proximity to shore were significant predictors of community structure. Within subsets of this dataset, depth, season, and oxygen concentration were significant drivers of viral community structure at a single open ocean station, whereas variability along onshore–offshore transects was driven by oxygen concentration in an area with an oxygen minimum zone and not depth or proximity to shore, as might be expected. Together these results demonstrate that this highly scalable approach using complete metagenomic network-based comparisons can both test and generate hypotheses for ecological investigation of viral and microbial communities in nature. PMID:25002514

  9. Automatic Tool for Local Assembly Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whole community shotgun sequencing of total DNA (i.e. metagenomics) and total RNA (i.e. metatranscriptomics) has provided a wealth of information in the microbial community structure, predicted functions, metabolic networks, and is even able to reconstruct complete genomes directly. Here we present ATLAS (Automatic Tool for Local Assembly Structures) a comprehensive pipeline for assembly, annotation, genomic binning of metagenomic and metatranscriptomic data with an integrated framework for Multi-Omics. This will provide an open source tool for the Multi-Omic community at large.

  10. Opinion diversity and community formation in adaptive networks

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.

    2017-10-01

    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.

  11. Evolution of network architecture in a granular material under compression

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle

    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. However, capturing and characterizing the dynamic nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. Here, we utilize multilayer networks as a framework for directly quantifying the evolution of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and inter-particle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the reconfiguration and evolution of this structure throughout the compression process. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be done by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than consideration of the local inter-particle forces alone. The results discussed throughout this study suggest that these novel network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup. National Science Foundation (BCS-1441502, PHY-1554488, and BCS-1631550).

  12. Structural disconnection is responsible for increased functional connectivity in multiple sclerosis.

    PubMed

    Patel, Kevin R; Tobyne, Sean; Porter, Daria; Bireley, John Daniel; Smith, Victoria; Klawiter, Eric

    2018-06-01

    Increased synchrony within neuroanatomical networks is often observed in neurophysiologic studies of human brain disease. Most often, this phenomenon is ascribed to a compensatory process in the face of injury, though evidence supporting such accounts is limited. Given the known dependence of resting-state functional connectivity (rsFC) on underlying structural connectivity (SC), we examine an alternative hypothesis: that topographical changes in SC, specifically particular patterns of disconnection, contribute to increased network rsFC. We obtain measures of rsFC using fMRI and SC using probabilistic tractography in 50 healthy and 28 multiple sclerosis subjects. Using a computational model of neuronal dynamics, we simulate BOLD using healthy subject SC to couple regions. We find that altering the model by introducing structural disconnection patterns observed in those multiple sclerosis subjects with high network rsFC generates simulations with high rsFC as well, suggesting that disconnection itself plays a role in producing high network functional connectivity. We then examine SC data in individuals. In multiple sclerosis subjects with high network rsFC, we find a preferential disconnection between the relevant network and wider system. We examine the significance of such network isolation by introducing random disconnection into the model. As observed empirically, simulated network rsFC increases with removal of connections bridging a community with the remainder of the brain. We thus show that structural disconnection known to occur in multiple sclerosis contributes to network rsFC changes in multiple sclerosis and further that community isolation is responsible for elevated network functional connectivity.

  13. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction.

    PubMed

    Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R

    2014-08-01

    The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

  14. Ocean plankton. Determinants of community structure in the global plankton interactome.

    PubMed

    Lima-Mendez, Gipsi; Faust, Karoline; Henry, Nicolas; Decelle, Johan; Colin, Sébastien; Carcillo, Fabrizio; Chaffron, Samuel; Ignacio-Espinosa, J Cesar; Roux, Simon; Vincent, Flora; Bittner, Lucie; Darzi, Youssef; Wang, Jun; Audic, Stéphane; Berline, Léo; Bontempi, Gianluca; Cabello, Ana M; Coppola, Laurent; Cornejo-Castillo, Francisco M; d'Ovidio, Francesco; De Meester, Luc; Ferrera, Isabel; Garet-Delmas, Marie-José; Guidi, Lionel; Lara, Elena; Pesant, Stéphane; Royo-Llonch, Marta; Salazar, Guillem; Sánchez, Pablo; Sebastian, Marta; Souffreau, Caroline; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Gorsky, Gabriel; Not, Fabrice; Ogata, Hiroyuki; Speich, Sabrina; Stemmann, Lars; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G; Sunagawa, Shinichi; Bork, Peer; Sullivan, Matthew B; Karsenti, Eric; Bowler, Chris; de Vargas, Colomban; Raes, Jeroen

    2015-05-22

    Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models. Copyright © 2015, American Association for the Advancement of Science.

  15. Context-aided analysis of community evolution in networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallotta, Giuliana; Konjevod, Goran; Cadena, Jose

    Here, we are interested in detecting and analyzing global changes in dynamic networks (networks that evolve with time). More precisely, we consider changes in the activity distribution within the network, in terms of density (ie, edge existence) and intensity (ie, edge weight). Detecting change in local properties, as well as individual measurements or metrics, has been well studied and often reduces to traditional statistical process control. In contrast, detecting change in larger scale structure of the network is more challenging and not as well understood. We address this problem by proposing a framework for detecting change in network structure basedmore » on separate pieces: a probabilistic model for partitioning nodes by their behavior, a label-unswitching heuristic, and an approach to change detection for sequences of complex objects. We examine the performance of one instantiation of such a framework using mostly previously available pieces. The dataset we use for these investigations is the publicly available New York City Taxi and Limousine Commission dataset covering all taxi trips in New York City since 2009. Using it, we investigate the evolution of an ensemble of networks under different spatiotemporal resolutions. We identify the community structure by fitting a weighted stochastic block model. In conclusion, we offer insights on different node ranking and clustering methods, their ability to capture the rhythm of life in the Big Apple, and their potential usefulness in highlighting changes in the underlying network structure.« less

  16. Context-aided analysis of community evolution in networks

    DOE PAGES

    Pallotta, Giuliana; Konjevod, Goran; Cadena, Jose; ...

    2017-09-15

    Here, we are interested in detecting and analyzing global changes in dynamic networks (networks that evolve with time). More precisely, we consider changes in the activity distribution within the network, in terms of density (ie, edge existence) and intensity (ie, edge weight). Detecting change in local properties, as well as individual measurements or metrics, has been well studied and often reduces to traditional statistical process control. In contrast, detecting change in larger scale structure of the network is more challenging and not as well understood. We address this problem by proposing a framework for detecting change in network structure basedmore » on separate pieces: a probabilistic model for partitioning nodes by their behavior, a label-unswitching heuristic, and an approach to change detection for sequences of complex objects. We examine the performance of one instantiation of such a framework using mostly previously available pieces. The dataset we use for these investigations is the publicly available New York City Taxi and Limousine Commission dataset covering all taxi trips in New York City since 2009. Using it, we investigate the evolution of an ensemble of networks under different spatiotemporal resolutions. We identify the community structure by fitting a weighted stochastic block model. In conclusion, we offer insights on different node ranking and clustering methods, their ability to capture the rhythm of life in the Big Apple, and their potential usefulness in highlighting changes in the underlying network structure.« less

  17. Community partnerships in healthy eating and lifestyle promotion: A network analysis.

    PubMed

    An, Ruopeng; Loehmer, Emily; Khan, Naiman; Scott, Marci K; Rindfleisch, Kimbirly; McCaffrey, Jennifer

    2017-06-01

    Promoting healthy eating and lifestyles among populations with limited resources is a complex undertaking that often requires strong partnerships between various agencies. In local communities, these agencies are typically located in different areas, serve diverse subgroups, and operate distinct programs, limiting their communication and interactions with each other. This study assessed the network of agencies in local communities that promote healthy eating and lifestyles among populations with limited resources. Network surveys were administered in 2016 among 89 agencies located in 4 rural counties in Michigan that served limited-resource audiences. The agencies were categorized into 8 types: K-12 schools, early childhood centers, emergency food providers, health-related agencies, social resource centers, low-income/subsidized housing complexes, continuing education organizations, and others. Network analysis was conducted to examine 4 network structures-communication, funding, cooperation, and collaboration networks between agencies within each county. Agencies had a moderate level of cooperation, but were only loosely connected in the other 3 networks, indicated by low network density. Agencies in a network were decentralized rather than centralized around a few influential agencies, indicated by low centralization. There was evidence regarding homophily in a network, indicated by some significant correlations within agencies of the same type. Agencies connected in any one network were considerably more likely to be connected in all the other networks as well. In conclusion, promoting healthy eating and lifestyles among populations with limited resources warrants strong partnership between agencies in communities. Network analysis serves as a useful tool to evaluate community partnerships and facilitate coalition building.

  18. Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence

    PubMed Central

    Grim, Patrick; Singer, Daniel J.; Fisher, Steven; Bramson, Aaron; Berger, William J.; Reade, Christopher; Flocken, Carissa; Sales, Adam

    2014-01-01

    A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others’, in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient. PMID:24683416

  19. Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence.

    PubMed

    Grim, Patrick; Singer, Daniel J; Fisher, Steven; Bramson, Aaron; Berger, William J; Reade, Christopher; Flocken, Carissa; Sales, Adam

    2013-12-01

    A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others', in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient.

  20. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure.

    PubMed

    Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn

    2016-06-01

    Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Effects of Dimers on Cooperation in the Spatial Prisoner's Dilemma Game

    NASA Astrophysics Data System (ADS)

    Li, Hai-Hong; Cheng, Hong-Yan; Dai, Qiong-Lin; Ju, Ping; Zhang, Mei; Yang, Jun-Zhong

    2011-11-01

    We investigate the evolutionary prisoner's dilemma game in structured populations by introducing dimers, which are defined as that two players in each dimer always hold a same strategy. We find that influences of dimers on cooperation depend on the type of dimers and the population structure. For those dimers in which players interact with each other, the cooperation level increases with the number of dimers though the cooperation improvement level depends on the type of network structures. On the other hand, the dimers, in which there are not mutual interactions, will not do any good to the cooperation level in a single community, but interestingly, will improve the cooperation level in a population with two communities. We explore the relationship between dimers and self-interactions and find that the effects of dimers are similar to that of self-interactions. Also, we find that the dimers, which are established over two communities in a multi-community network, act as one type of interaction through which information between communities is communicated by the requirement that two players in a dimer hold a same strategy.

  2. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  3. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability

    PubMed Central

    Andresen, Ellen; Díaz-Castelazo, Cecilia

    2016-01-01

    Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results revealed that migration and fruit richness explain the temporal variations in network size, connectance, nestedness and interaction strength asymmetry. On the other hand, fruit abundance only explained connectance and nestedness. Discussion. By means of a fine-resolution temporal analysis, we evidenced for the first time how temporal changes in the interaction network structure respond to the arrival of migratory species into the system and to fruit availability. Additionally, few migratory bird species are important links for structuring networks, while most of them were peripheral species. We showed the relevance of studying bird–plant interactions at fine temporal scales, considering changing scenarios of species composition with a quantitative network approach. PMID:27330852

  4. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity

    PubMed Central

    Taxis, Tasia M.; Wolff, Sara; Gregg, Sarah J.; Minton, Nicholas O.; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D.; Taylor, Jeremy F.; Kerley, Monty S.; Pires, J. Chris; Lamberson, William R.; Conant, Gavin C.

    2015-01-01

    By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. PMID:26420832

  5. Netgram: Visualizing Communities in Evolving Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2015-01-01

    Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538

  6. Multilabel user classification using the community structure of online networks

    PubMed Central

    Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user’s graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score. PMID:28278242

  7. Multilabel user classification using the community structure of online networks.

    PubMed

    Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  8. Estimating the resolution limit of the map equation in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Rosvall, Martin

    2015-01-01

    A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.

  9. An experimental analysis of granivory in a desert ecosystem: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.H.

    1987-03-01

    Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less

  10. Temporal variation in bat-fruit interactions: Foraging strategies influence network structure over time

    NASA Astrophysics Data System (ADS)

    Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.

    2017-11-01

    Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.

  11. Merging Social Networking Environments and Formal Learning Environments to Support and Facilitate Interprofessional Instruction

    PubMed Central

    King, Sharla; Greidanus, Elaine; Carbonaro, Michael; Drummond, Jane; Patterson, Steven

    2009-01-01

    This study describes the redesign of an interprofessional team development course for health science students. A theoretical model is hypothesized as a framework for the redesign process, consisting of two themes: 1) the increasing trend among post-secondary students to participate in social networking (e.g., Facebook, Second Life) and 2) the need for healthcare educators to provide interprofessional training that results in effective communities of practice and better patient care. The redesign focused on increasing the relevance of the course through the integration of custom-designed technology to facilitate social networking during their interprofessional education. Results suggest that students in an educationally structured social networking environment can be guided to join learning communities quickly and access course materials. More research and implementation work is required to effectively develop interprofessional health sciences communities in a combined face-to-face and on-line social networking context. PMID:20165519

  12. Building a Community of Practice for Researchers: The International Network for Simulation-Based Pediatric Innovation, Research and Education.

    PubMed

    Cheng, Adam; Auerbach, Marc; Calhoun, Aaron; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay; Hunt, Elizabeth A; Duval-Arnould, Jordan; Peiris, Nicola; Kessler, David

    2018-06-01

    The scope and breadth of simulation-based research is growing rapidly; however, few mechanisms exist for conducting multicenter, collaborative research. Failure to foster collaborative research efforts is a critical gap that lies in the path of advancing healthcare simulation. The 2017 Research Summit hosted by the Society for Simulation in Healthcare highlighted how simulation-based research networks can produce studies that positively impact the delivery of healthcare. In 2011, the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) was formed to facilitate multicenter, collaborative simulation-based research with the aim of developing a community of practice for simulation researchers. Since its formation, the network has successfully completed and published numerous collaborative research projects. In this article, we describe INSPIRE's history, structure, and internal processes with the goal of highlighting the community of practice model for other groups seeking to form a simulation-based research network.

  13. Merging social networking environments and formal learning environments to support and facilitate interprofessional instruction.

    PubMed

    King, Sharla; Greidanus, Elaine; Carbonaro, Michael; Drummond, Jane; Patterson, Steven

    2009-04-28

    This study describes the redesign of an interprofessional team development course for health science students. A theoretical model is hypothesized as a framework for the redesign process, consisting of two themes: 1) the increasing trend among post-secondary students to participate in social networking (e.g., Facebook, Second Life) and 2) the need for healthcare educators to provide interprofessional training that results in effective communities of practice and better patient care. The redesign focused on increasing the relevance of the course through the integration of custom-designed technology to facilitate social networking during their interprofessional education. Results suggest that students in an educationally structured social networking environment can be guided to join learning communities quickly and access course materials. More research and implementation work is required to effectively develop interprofessional health sciences communities in a combined face-to-face and on-line social networking context.

  14. Revealing and analyzing networks of environmental systems

    NASA Astrophysics Data System (ADS)

    Eveillard, D.; Bittner, L.; Chaffron, S.; Guidi, L.; Raes, J.; Karsenti, E.; Bowler, C.; Gorsky, G.

    2015-12-01

    Understanding the interactions between microbial communities and their environment well enough to be able to predict diversity on the basis of physicochemical parameters is a fundamental pursuit of microbial ecology that still eludes us. However, modeling microbial communities is a complicated task, because (i) communities are complex, (ii) most are described qualitatively, and (iii) quantitative understanding of the way communities interacts with their surroundings remains incomplete. Within this seminar, we will illustrate two complementary approaches that aim to overcome these points in different manners. First, we will present a network analysis that focus on the biological carbon pump in the global ocean. The biological carbon pump is the process by which photosynthesis transforms CO2 to organic carbon sinking to the deep-ocean as particles where it is sequestered. While the intensity of the pump correlate to plankton community composition, the underlying ecosystem structure and interactions driving this process remain largely uncharacterized Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve understanding of these drivers. We show that specific plankton communities correlate with carbon export and highlight unexpected and overlooked taxa such as Radiolaria, alveolate parasites and bacterial pathogens, as well as Synechococcus and their phages, as key players in the biological pump. Additionally, we show that the abundances of just a few bacterial and viral genes predict most of the global ocean carbon export's variability. Together these findings help elucidate ecosystem drivers of the biological carbon pump and present a case study for scaling from genes-to-ecosystems. Second, we will show preliminary results on a probabilistic modeling that predicts microbial community structure across observed physicochemical data, from a putative network and partial quantitative knowledge. This modeling shows that, despite distinct quantitative environmental perturbations, the constraints on community structure could remain stable.

  15. Analysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation

    PubMed Central

    Ofaim, Shany; Ofek-Lalzar, Maya; Sela, Noa; Jinag, Jiandong; Kashi, Yechezkel; Minz, Dror; Freilich, Shiri

    2017-01-01

    Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions) are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions). This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants – wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil), corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level) predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial communities. Understanding community-level metabolism is an essential step toward the manipulation and optimization of microbial function. Here, we introduce an analysis framework addressing three key challenges of such data: producing quantified links between taxonomy and function; contextualizing discrete functions into communal networks; and simulating environmental impact on community performances. New technologies will soon provide a high-coverage description of biotic and a-biotic aspects of complex microbial communities such as these found in gut and soil. This framework was designed to allow the integration of high-throughput metabolomic and metagenomic data toward tackling the intricate associations between community structure, community function, and metabolic inputs. PMID:28878756

  16. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.

    PubMed

    Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J

    2016-06-03

    Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.

  17. Aquarium Microbiome Response to Ninety-Percent System Water Change: Clues to Microbiome Management

    PubMed Central

    Van Bonn, William; LaPointe, Allen; Gibbons, Sean M.; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack

    2016-01-01

    The bacterial community composition and structure of water from an established teleost fish system was examined before, during and after a major water change to explore the impact of such a water-change disturbance on the stability of the aquarium water microbiome. The diversity and evenness of the bacterial community significantly increased following the 90% water replacement. While the change in bacterial community structure was significant, it was slight, and was also weakly correlated with changes in physicochemical parameters. Interestingly there was a significant shift in the correlative network relationships between operational taxonomic units from before to after the water replacement. We suggest this shift in network structure is due to the turnover of many taxa during the course of water replacement. These observations will inform future studies into manipulation of the microbiome by changing system environmental parameter values to optimize resident animal health. PMID:26031788

  18. Aquarium microbiome response to ninety-percent system water change: Clues to microbiome management.

    PubMed

    Van Bonn, William; LaPointe, Allen; Gibbons, Sean M; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack

    2015-01-01

    The bacterial community composition and structure of water from an established teleost fish system was examined before, during and after a major water change to explore the impact of such a water-change disturbance on the stability of the aquarium water microbiome. The diversity and evenness of the bacterial community significantly increased following the 90% water replacement. While the change in bacterial community structure was significant, it was slight, and was also weakly correlated with changes in physicochemical parameters. Interestingly there was a significant shift in the correlative network relationships between operational taxonomic units from before to after the water replacement. We suggest this shift in network structure is due to the turnover of many taxa during the course of water replacement. These observations will inform future studies into manipulation of the microbiome by changing system environmental parameter values to optimize resident animal health. © 2015 Wiley Periodicals, Inc.

  19. Fluctuating interaction network and time-varying stability of a natural fish community

    NASA Astrophysics Data System (ADS)

    Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio

    2018-02-01

    Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.

  20. Insights into the structure of plant-insect communities: Specialism and generalism in a regional set of non-pollinating fig wasp communities

    NASA Astrophysics Data System (ADS)

    Farache, F. H. A.; Cruaud, A.; Rasplus, J.-Y.; Cerezini, M. T.; Rattis, L.; Kjellberg, F.; Pereira, R. A. S.

    2018-07-01

    Insects show a multitude of symbiotic interactions that may vary in degree of specialization and structure. Gall-inducing insects and their parasitoids are thought to be relatively specialized organisms, but despite their ecological importance, the organization and structure of the interactions they establish with their hosts has seldom been investigated in tropical communities. Non-pollinating fig wasps (NPFW) are particularly interesting organisms for the study of ecological networks because most species strictly develop their offspring within fig inflorescences, and show a multitude of life history strategies. They can be gall-makers, cleptoparasites or parasitoids of pollinating or of other non-pollinating fig wasps. Here we analysed a set of non-pollinating fig wasp communities associated with six species of Ficus section Americanae over a wide area. This allowed us to investigate patterns of specialization in a diverse community composed of monophagous and polyphagous species. We observed that most NPFW species were cleptoparasites and parasitoids, colonizing figs several days after oviposition by pollinators. Most species that occurred in more than one host were much more abundant in a single preferential host, suggesting specialization. The food web established between wasps and figs shows structural properties that are typical of specific antagonistic relationships, especially of endophagous insect networks. Two species that occurred in all available hosts were highly abundant in the network, suggesting that in some cases generalized species can be more competitive than strict specialists. The Neotropical and, to a lesser extent, Afrotropical NPFW communities seem to be more generalized than other NPFW communities. However, evidence of host sharing in the Old World is quite limited, since most studies have focused on particular taxonomic groups (genera) of wasps instead of sampling the whole NPFW community. Moreover, the lack of quantitative information in previous studies prevents us from detecting patterns of host preferences in polyphagous species.

  1. Making big communities small: using network science to understand the ecological and behavioral requirements for community social capital.

    PubMed

    Neal, Zachary

    2015-06-01

    The concept of social capital is becoming increasingly common in community psychology and elsewhere. However, the multiple conceptual and operational definitions of social capital challenge its utility as a theoretical tool. The goals of this paper are to clarify two forms of social capital (bridging and bonding), explicitly link them to the structural characteristics of small world networks, and explore the behavioral and ecological prerequisites of its formation. First, I use the tools of network science and specifically the concept of small-world networks to clarify what patterns of social relationships are likely to facilitate social capital formation. Second, I use an agent-based model to explore how different ecological characteristics (diversity and segregation) and behavioral tendencies (homophily and proximity) impact communities' potential for developing social capital. The results suggest diverse communities have the greatest potential to develop community social capital, and that segregation moderates the effects that the behavioral tendencies of homophily and proximity have on community social capital. The discussion highlights how these findings provide community-based researchers with both a deeper understanding of the contextual constraints with which they must contend, and a useful tool for targeting their efforts in communities with the greatest need or greatest potential.

  2. A family of interaction-adjusted indices of community similarity.

    PubMed

    Schmidt, Thomas Sebastian Benedikt; Matias Rodrigues, João Frederico; von Mering, Christian

    2017-03-01

    Interactions between taxa are essential drivers of ecological community structure and dynamics, but they are not taken into account by traditional indices of β diversity. In this study, we propose a novel family of indices that quantify community similarity in the context of taxa interaction networks. Using publicly available datasets, we assessed the performance of two specific indices that are Taxa INteraction-Adjusted (TINA, based on taxa co-occurrence networks), and Phylogenetic INteraction-Adjusted (PINA, based on phylogenetic similarities). TINA and PINA outperformed traditional indices when partitioning human-associated microbial communities according to habitat, even for extremely downsampled datasets, and when organising ocean micro-eukaryotic plankton diversity according to geographical and physicochemical gradients. We argue that interaction-adjusted indices capture novel aspects of diversity outside the scope of traditional approaches, highlighting the biological significance of ecological association networks in the interpretation of community similarity.

  3. A family of interaction-adjusted indices of community similarity

    PubMed Central

    Schmidt, Thomas Sebastian Benedikt; Matias Rodrigues, João Frederico; von Mering, Christian

    2017-01-01

    Interactions between taxa are essential drivers of ecological community structure and dynamics, but they are not taken into account by traditional indices of β diversity. In this study, we propose a novel family of indices that quantify community similarity in the context of taxa interaction networks. Using publicly available datasets, we assessed the performance of two specific indices that are Taxa INteraction-Adjusted (TINA, based on taxa co-occurrence networks), and Phylogenetic INteraction-Adjusted (PINA, based on phylogenetic similarities). TINA and PINA outperformed traditional indices when partitioning human-associated microbial communities according to habitat, even for extremely downsampled datasets, and when organising ocean micro-eukaryotic plankton diversity according to geographical and physicochemical gradients. We argue that interaction-adjusted indices capture novel aspects of diversity outside the scope of traditional approaches, highlighting the biological significance of ecological association networks in the interpretation of community similarity. PMID:27935587

  4. Community mapping and respondent-driven sampling of gay and bisexual men’s communities in Vancouver, Canada

    PubMed Central

    Forrest, Jamie I; Stevenson, Benjamin; Rich, Ashleigh; Michelow, Warren; Pai, Jayaram; Jollimore, Jody; Raymond, H. Fisher; Moore, David; Hogg, Robert S; Roth, Eric A

    2014-01-01

    Literature suggests formative research is vital for those using respondent-driven sampling (RDS) to study hidden populations of interest. However, few authors have described in detail how different qualitative methodologies can address the objectives of formative research for understanding the social network properties of the study population, selecting seeds, and adapting survey logistics to best fit the population. In this paper we describe the use of community mapping exercises as a tool within focus groups to collect data on social and sexual network characteristics of gay and bisexual men in the metropolitan area of Vancouver, Canada. Three key themes emerged from analyzing community maps along with other formative research data: (a) connections between physical spaces and social networks of gay and bisexual men, (b) diversity in communities, and (c) substance use connected with formation of sub-communities. We discuss how these themes informed the planning and operations of a longitudinal epidemiological cohort study recruited by RDS. We argue that using community mapping within formative research is a valuable qualitative tool for characterizing network structures of a diverse and differentiated population of gay and bisexual men in a highly developed urban setting. PMID:24512070

  5. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  6. A host-endoparasite network of Neotropical marine fish: are there organizational patterns?

    PubMed

    Bellay, Sybelle; Lima, Dilermando P; Takemoto, Ricardo M; Luque, José L

    2011-12-01

    Properties of ecological networks facilitate the understanding of interaction patterns in host-parasite systems as well as the importance of each species in the interaction structure of a community. The present study evaluates the network structure, functional role of all species and patterns of parasite co-occurrence in a host-parasite network to determine the organization level of a host-parasite system consisting of 170 taxa of gastrointestinal metazoans of 39 marine fish species on the coast of Brazil. The network proved to be nested and modular, with a low degree of connectance. Host-parasite interactions were influenced by host phylogeny. Randomness in parasite co-occurrence was observed in most modules and component communities, although species segregation patterns were also observed. The low degree of connectance in the network may be the cause of properties such as nestedness and modularity, which indicate the presence of a high number of peripheral species. Segregation patterns among parasite species in modules underscore the role of host specificity. Knowledge of ecological networks allows detection of keystone species for the maintenance of biodiversity and the conduction of further studies on the stability of networks in relation to frequent environmental changes.

  7. Extraction of business relationships in supply networks using statistical learning theory.

    PubMed

    Zuo, Yi; Kajikawa, Yuya; Mori, Junichiro

    2016-06-01

    Supply chain management represents one of the most important scientific streams of operations research. The supply of energy, materials, products, and services involves millions of transactions conducted among national and local business enterprises. To deliver efficient and effective support for supply chain design and management, structural analyses and predictive models of customer-supplier relationships are expected to clarify current enterprise business conditions and to help enterprises identify innovative business partners for future success. This article presents the outcomes of a recent structural investigation concerning a supply network in the central area of Japan. We investigated the effectiveness of statistical learning theory to express the individual differences of a supply chain of enterprises within a certain business community using social network analysis. In the experiments, we employ support vector machine to train a customer-supplier relationship model on one of the main communities extracted from a supply network in the central area of Japan. The prediction results reveal an F-value of approximately 70% when the model is built by using network-based features, and an F-value of approximately 77% when the model is built by using attribute-based features. When we build the model based on both, F-values are improved to approximately 82%. The results of this research can help to dispel the implicit design space concerning customer-supplier relationships, which can be explored and refined from detailed topological information provided by network structures rather than from traditional and attribute-related enterprise profiles. We also investigate and discuss differences in the predictive accuracy of the model for different sizes of enterprises and types of business communities.

  8. Exploiting social influence to magnify population-level behaviour change in maternal and child health: study protocol for a randomised controlled trial of network targeting algorithms in rural Honduras

    PubMed Central

    Shakya, Holly B; Stafford, Derek; Hughes, D Alex; Keegan, Thomas; Negron, Rennie; Broome, Jai; McKnight, Mark; Nicoll, Liza; Nelson, Jennifer; Iriarte, Emma; Ordonez, Maria; Airoldi, Edo; Fowler, James H; Christakis, Nicholas A

    2017-01-01

    Introduction Despite global progress on many measures of child health, rates of neonatal mortality remain high in the developing world. Evidence suggests that substantial improvements can be achieved with simple, low-cost interventions within family and community settings, particularly those designed to change knowledge and behaviour at the community level. Using social network analysis to identify structurally influential community members and then targeting them for intervention shows promise for the implementation of sustainable community-wide behaviour change. Methods and analysis We will use a detailed understanding of social network structure and function to identify novel ways of targeting influential individuals to foster cascades of behavioural change at a population level. Our work will involve experimental and observational analyses. We will map face-to-face social networks of 30 000 people in 176 villages in Western Honduras, and then conduct a randomised controlled trial of a friendship-based network-targeting algorithm with a set of well-established care interventions. We will also test whether the proportion of the population targeted affects the degree to which the intervention spreads throughout the network. We will test scalable methods of network targeting that would not, in the future, require the actual mapping of social networks but would still offer the prospect of rapidly identifying influential targets for public health interventions. Ethics and dissemination The Yale IRB and the Honduran Ministry of Health approved all data collection procedures (Protocol number 1506016012) and all participants will provide informed consent before enrolment. We will publish our findings in peer-reviewed journals as well as engage non-governmental organisations and other actors through venues for exchanging practical methods for behavioural health interventions, such as global health conferences. We will also develop a ‘toolkit’ for practitioners to use in network-based intervention efforts, including public release of our network mapping software. Trial registration number NCT02694679; Pre-results. PMID:28289044

  9. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    PubMed

    Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  10. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks

    PubMed Central

    Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H.; Evers, Yvette; Curran, Marina Martin; Williams, Richard J.; Berlow, Eric L.

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally ‘peripheral’ actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance. PMID:27258007

  11. Evolution of network architecture in a granular material under compression

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James G.; Daniels, Karen E.; Bassett, Danielle S.

    2016-09-01

    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup.

  12. Revealing hidden insect-fungus interactions; moderately specialized, modular and anti-nested detritivore networks.

    PubMed

    Jacobsen, Rannveig M; Sverdrup-Thygeson, Anne; Kauserud, Håvard; Birkemoe, Tone

    2018-04-11

    Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered from a network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect-fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate. © 2018 The Author(s).

  13. Modular representation of layered neural networks.

    PubMed

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. How to Identify Success Among Networks That Promote Active Living

    PubMed Central

    Varda, Danielle; Reed, Hannah; Retrum, Jessica; Tabak, Rachel; Gustat, Jeanette; O'Hara Tompkins, Nancy

    2015-01-01

    Objectives. We evaluated organization- and network-level factors that influence organizations’ perceived success. This is important for managing interorganizational networks, which can mobilize communities to address complex health issues such as physical activity, and for achieving change. Methods. In 2011, we used structured interview and network survey data from 22 states in the United States to estimate multilevel random-intercept models to understand organization- and network-level factors that explain perceived network success. Results. A total of 53 of 59 “whole networks” met the criteria for inclusion in the analysis (89.8%). Coordinators identified 559 organizations, with 3 to 12 organizations from each network taking the online survey (response rate = 69.7%; range = 33%–100%). Occupying a leadership position (P < .01), the amount of time with the network (P < .05), and support from community leaders (P < .05) emerged as correlates of perceived success. Conclusions. Organizations’ perceptions of success can influence decisions about continuing involvement and investment in networks designed to promote environment and policy change for active living. Understanding these factors can help leaders manage complex networks that involve diverse memberships, varied interests, and competing community-level priorities. PMID:26378863

  15. Investigating the Associations between Ethnic Networks, Community Social Capital, and Physical Health among Marriage Migrants in Korea.

    PubMed

    Kim, Harris Hyun-Soo

    2018-01-17

    This study examines factors associated with the physical health of Korea's growing immigrant population. Specifically, it focuses on the associations between ethnic networks, community social capital, and self-rated health (SRH) among female marriage migrants. For empirical testing, secondary analysis of a large nationally representative sample (NSMF 2009) is conducted. Given the clustered data structure (individuals nested in communities), a series of two-level random intercepts and slopes models are fitted to probe the relationships between SRH and interpersonal (bonding and bridging) networks among foreign-born wives in Korea. In addition to direct effects, cross-level interaction effects are investigated using hierarchical linear modeling. While adjusting for confounders, bridging (inter-ethnic) networks are significantly linked with better health. Bonding (co-ethnic) networks, to the contrary, are negatively associated with immigrant health. Net of individual-level covariates, living in a commuijnity with more aggregate bridging social capital is positively linked with health. Community-level bonding social capital, however, is not a significant predictor. Lastly, two cross-level interaction terms are found. First, the positive relationship between bridging network and health is stronger in residential contexts with more aggregate bridging social capital. Second, it is weaker in communities with more aggregate bonding social capital.

  16. Young Earth System Scientists (YESS) Community

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Langendijk, G.; Bahar, F.; Huang-Lachmann, J. T.; Osman, M.; Mirsafa, M.; Sonntag, S.

    2017-12-01

    The Young Earth System Scientists (YESS) community is compiled of early career researchers (including students) coming from a range of scientific backgrounds, spanning both natural and social sciences. YESS unifies young researchers in an influential network to give them a collective voice and leverage within the geosciences community, while supporting career development. The YESS community has used its powerful network to provide a unified perspective on the future of Earth system science (Rauser et al. 2017), to be involved in the organization of international conferences, and to engage with existing international structures that coordinate science. Since its founding in Germany in 2010, the YESS community has grown extensively across the globe, with currently almost 1000 members from over 80 countries, and has become truly interdisciplinary. Recently, the organization has carried elections for Regional Representatives and the Executive Committee as part of its self-sustained governance structure. YESS is ready to continue pioneering crucial areas of research which provide solutions to benefit society for the long-term advancement of Earth system science.

  17. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta)

    PubMed Central

    Beisner, Brianne; Guan, Jiahui; Vandeleest, Jessica; Fushing, Hsieh; Atwill, Edward; McCowan, Brenda

    2018-01-01

    In group-living animals, heterogeneity in individuals’ social connections may mediate the sharing of microbial infectious agents. In this regard, the genetic relatedness of individuals’ commensal gut bacterium Escherichia coli may be ideal to assess the potential for pathogen transmission through animal social networks. Here we use microbial phylogenetics and population genetics approaches, as well as host social network reconstruction, to assess evidence for the contact-mediated sharing of E. coli among three groups of captively housed rhesus macaques (Macaca mulatta), at multiple organizational scales. For each group, behavioral data on grooming, huddling, and aggressive interactions collected for a six-week period were used to reconstruct social network communities via the Data Cloud Geometry (DCG) clustering algorithm. Further, an E. coli isolate was biochemically confirmed and genotypically fingerprinted from fecal swabs collected from each macaque. Population genetics approaches revealed that Group Membership, in comparison to intrinsic attributes like age, sex, and/or matriline membership of individuals, accounted for the highest proportion of variance in E. coli genotypic similarity. Social network approaches revealed that such sharing was evident at the community-level rather than the dyadic level. Specifically, although we found no links between dyadic E. coli similarity and social contact frequencies, similarity was significantly greater among macaques within the same social network communities compared to those across different communities. Moreover, tests for one of our study-groups confirmed that E. coli isolated from macaque rectal swabs were more genotypically similar to each other than they were to isolates from environmentally deposited feces. In summary, our results suggest that among frequently interacting, spatially constrained macaques with complex social relationships, microbial sharing via fecal-oral, social contact-mediated routes may depend on both individuals’ direct connections and on secondary network pathways that define community structure. They lend support to the hypothesis that social network communities may act as bottlenecks to contain the spread of infectious agents, thereby encouraging disease control strategies to focus on multiple organizational scales. Future directions includeincreasing microbial sampling effort per individual to better-detect dyadic transmission events, and assessments of the co-evolutionary links between sociality, infectious agent risk, and host immune function. PMID:29372120

  18. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation

    PubMed Central

    Laplante, Karine; Sébastien, Boutin; Derome, Nicolas

    2013-01-01

    Heavy metals released by anthropogenic activities such as mining trigger profound changes to bacterial communities. In this study we used 16S SSU rRNA gene high-throughput sequencing to characterize the impact of a polymetallic perturbation and other environmental parameters on taxonomic networks within five lacustrine bacterial communities from sites located near Rouyn-Noranda, Quebec, Canada. The results showed that community equilibrium was disturbed in terms of both diversity and structure. Moreover, heavy metals, especially cadmium combined with water acidity, induced parallel changes among sites via the selection of resistant OTUs (Operational Taxonomic Unit) and taxonomic dominance perturbations favoring the Alphaproteobacteria. Furthermore, under a similar selective pressure, covariation trends between phyla revealed conservation and parallelism within interphylum interactions. Our study sheds light on the importance of analyzing communities not only from a phylogenetic perspective but also including a quantitative approach to provide significant insights into the evolutionary forces that shape the dynamic of the taxonomic interaction networks in bacterial communities. PMID:23789031

  19. Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory

    NASA Astrophysics Data System (ADS)

    Wang, Na; Li, Dong; Wang, Qiwen

    2012-12-01

    The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government policies in China on the changes of dynamics of GDP and the three industries adjustment. The work in our paper provides a new way to understand the dynamics of economic development.

  20. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity

    USGS Publications Warehouse

    Novak, Mark; Wootton, J. Timothy; Doak, Daniel F.; Emmerson, Mark; Estes, James A.; Tinker, M. Timothy

    2011-01-01

    How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (∼25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.

  1. Team assembly mechanisms determine collaboration network structure and team performance.

    PubMed

    Guimerà, Roger; Uzzi, Brian; Spiro, Jarrett; Amaral, Luís A Nunes

    2005-04-29

    Agents in creative enterprises are embedded in networks that inspire, support, and evaluate their work. Here, we investigate how the mechanisms by which creative teams self-assemble determine the structure of these collaboration networks. We propose a model for the self-assembly of creative teams that has its basis in three parameters: team size, the fraction of newcomers in new productions, and the tendency of incumbents to repeat previous collaborations. The model suggests that the emergence of a large connected community of practitioners can be described as a phase transition. We find that team assembly mechanisms determine both the structure of the collaboration network and team performance for teams derived from both artistic and scientific fields.

  2. Patterns of Twitter Behavior Among Networks of Cannabis Dispensaries in California.

    PubMed

    Peiper, Nicholas C; Baumgartner, Peter M; Chew, Robert F; Hsieh, Yuli P; Bieler, Gayle S; Bobashev, Georgiy V; Siege, Christopher; Zarkin, Gary A

    2017-07-04

    Twitter represents a social media platform through which medical cannabis dispensaries can rapidly promote and advertise a multitude of retail products. Yet, to date, no studies have systematically evaluated Twitter behavior among dispensaries and how these behaviors influence the formation of social networks. This study sought to characterize common cyberbehaviors and shared follower networks among dispensaries operating in two large cannabis markets in California. From a targeted sample of 119 dispensaries in the San Francisco Bay Area and Greater Los Angeles, we collected metadata from the dispensary accounts using the Twitter API. For each city, we characterized the network structure of dispensaries based upon shared followers, then empirically derived communities with the Louvain modularity algorithm. Principal components factor analysis was employed to reduce 12 Twitter measures into a more parsimonious set of cyberbehavioral dimensions. Finally, quadratic discriminant analysis was implemented to verify the ability of the extracted dimensions to classify dispensaries into their derived communities. The modularity algorithm yielded three communities in each city with distinct network structures. The principal components factor analysis reduced the 12 cyberbehaviors into five dimensions that encompassed account age, posting frequency, referencing, hyperlinks, and user engagement among the dispensary accounts. In the quadratic discriminant analysis, the dimensions correctly classified 75% (46/61) of the communities in the San Francisco Bay Area and 71% (41/58) in Greater Los Angeles. The most centralized and strongly connected dispensaries in both cities had newer accounts, higher daily activity, more frequent user engagement, and increased usage of embedded media, keywords, and hyperlinks. Measures derived from both network structure and cyberbehavioral dimensions can serve as key contextual indicators for the online surveillance of cannabis dispensaries and consumer markets over time. ©Nicholas C Peiper, Peter M Baumgartner, Robert F Chew, Yuli P Hsieh, Gayle S Bieler, Georgiy V Bobashev, Christopher Siege, Gary A Zarkin. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 04.07.2017.

  3. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes.

    PubMed

    Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben

    2018-01-10

    Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.

  4. Community detection in complex networks using deep auto-encoded extreme learning machine

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-06-01

    Community detection has long been a fascinating topic in complex networks since the community structure usually unveils valuable information of interest. The prevalence and evolution of deep learning and neural networks have been pushing forward the advancement in various research fields and also provide us numerous useful and off the shelf techniques. In this paper, we put the cascaded stacked autoencoders and the unsupervised extreme learning machine (ELM) together in a two-level embedding process and propose a novel community detection algorithm. Extensive comparison experiments in circumstances of both synthetic and real-world networks manifest the advantages of the proposed algorithm. On one hand, it outperforms the k-means clustering in terms of the accuracy and stability thus benefiting from the determinate dimensions of the ELM block and the integration of sparsity restrictions. On the other hand, it endures smaller complexity than the spectral clustering method on account of the shrinkage in time spent on the eigenvalue decomposition procedure.

  5. An improved label propagation algorithm based on node importance and random walk for community detection

    NASA Astrophysics Data System (ADS)

    Ma, Tianren; Xia, Zhengyou

    2017-05-01

    Currently, with the rapid development of information technology, the electronic media for social communication is becoming more and more popular. Discovery of communities is a very effective way to understand the properties of complex networks. However, traditional community detection algorithms consider the structural characteristics of a social organization only, with more information about nodes and edges wasted. In the meanwhile, these algorithms do not consider each node on its merits. Label propagation algorithm (LPA) is a near linear time algorithm which aims to find the community in the network. It attracts many scholars owing to its high efficiency. In recent years, there are more improved algorithms that were put forward based on LPA. In this paper, an improved LPA based on random walk and node importance (NILPA) is proposed. Firstly, a list of node importance is obtained through calculation. The nodes in the network are sorted in descending order of importance. On the basis of random walk, a matrix is constructed to measure the similarity of nodes and it avoids the random choice in the LPA. Secondly, a new metric IAS (importance and similarity) is calculated by node importance and similarity matrix, which we can use to avoid the random selection in the original LPA and improve the algorithm stability. Finally, a test in real-world and synthetic networks is given. The result shows that this algorithm has better performance than existing methods in finding community structure.

  6. Networks in Social Policy Problems

    NASA Astrophysics Data System (ADS)

    Vedres, Balázs; Scotti, Marco

    2012-08-01

    1. Introduction M. Scotti and B. Vedres; Part I. Information, Collaboration, Innovation: The Creative Power of Networks: 2. Dissemination of health information within social networks C. Dhanjal, S. Blanchemanche, S. Clemençon, A. Rona-Tas and F. Rossi; 3. Scientific teams and networks change the face of knowledge creation S. Wuchty, J. Spiro, B. F. Jones and B. Uzzi; 4. Structural folds: the innovative potential of overlapping groups B. Vedres and D. Stark; 5. Team formation and performance on nanoHub: a network selection challenge in scientific communities D. Margolin, K. Ognyanova, M. Huang, Y. Huang and N. Contractor; Part II. Influence, Capture, Corruption: Networks Perspectives on Policy Institutions: 6. Modes of coordination of collective action: what actors in policy making? M. Diani; 7. Why skewed distributions of pay for executives is the cause of much grief: puzzles and few answers so far B. Kogut and J.-S. Yang; 8. Networks of institutional capture: a case of business in the State apparatus E. Lazega and L. Mounier; 9. The social and institutional structure of corruption: some typical network configurations of corruption transactions in Hungary Z. Szántó, I. J. Tóth and S. Varga; Part III. Crisis, Extinction, World System Change: Network Dynamics on a Large Scale: 10. How creative elements help the recovery of networks after crisis: lessons from biology A. Mihalik, A. S. Kaposi, I. A. Kovács, T. Nánási, R. Palotai, Á. Rák, M. S. Szalay-Beko and P. Csermely; 11. Networks and globalization policies D. R. White; 12. Network science in ecology: the structure of ecological communities and the biodiversity question A. Bodini, S. Allesina and C. Bondavalli; 13. Supply security in the European natural gas pipeline network M. Scotti and B. Vedres; 14. Conclusions and outlook A.-L. Barabási; Index.

  7. Generalised power graph compression reveals dominant relationship patterns in complex networks

    PubMed Central

    Ahnert, Sebastian E.

    2014-01-01

    We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified. PMID:24663099

  8. New Structures for the Effective Dissemination of Knowledge in an Enterprise.

    ERIC Educational Resources Information Center

    Kok, J. Andrew

    2000-01-01

    Discusses the creation of knowledge enterprises. Highlights include knowledge creation and sharing; networked organizational structures; structures of knowledge organization; competitive strategies; new structures to manage knowledge; boundary crossing; multi-skilled teams; communities of interest or practice; and dissemination of knowledge in an…

  9. An Analysis of Chemical Ingredients Network of Chinese Herbal Formulae for the Treatment of Coronary Heart Disease

    PubMed Central

    Ding, Fan; Zhang, Qianru; Ung, Carolina Oi Lam; Wang, Yitao; Han, Yifan; Hu, Yuanjia; Qi, Jin

    2015-01-01

    As a complex system, the complicated interactions between chemical ingredients, as well as the potential rules of interactive associations among chemical ingredients of traditional Chinese herbal formulae are not yet fully understood by modern science. On the other hand, network analysis is emerging as a powerful approach focusing on processing complex interactive data. By employing network approach in selected Chinese herbal formulae for the treatment of coronary heart disease (CHD), this article aims to construct and analyze chemical ingredients network of herbal formulae, and provide candidate herbs, chemical constituents, and ingredient groups for further investigation. As a result, chemical ingredients network composed of 1588 ingredients from 36 herbs used in 8 core formulae for the treatment of CHD was produced based on combination associations in herbal formulae. In this network, 9 communities with relative dense internal connections are significantly associated with 14 kinds of chemical structures with P<0.001. Moreover, chemical structural fingerprints of network communities were detected, while specific centralities of chemical ingredients indicating different levels of importance in the network were also measured. Finally, several distinct herbs, chemical ingredients, and ingredient groups with essential position in the network or high centrality value are recommended for further pharmacology study in the context of new drug development. PMID:25658855

  10. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity.

    PubMed

    Taxis, Tasia M; Wolff, Sara; Gregg, Sarah J; Minton, Nicholas O; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D; Taylor, Jeremy F; Kerley, Monty S; Pires, J Chris; Lamberson, William R; Conant, Gavin C

    2015-11-16

    By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Link removal for the control of stochastically evolving epidemics over networks: a comparison of approaches.

    PubMed

    Enns, Eva A; Brandeau, Margaret L

    2015-04-21

    For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two "preventive" approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two "reactive" approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdös-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdös-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing which nodes are initially infected by comparing the performance improvement achieved by reactive over preventive strategies. We find that such information is most valuable for moderate budget levels, with increasing value as disease spread becomes more likely (due to either increased connectedness of the network or increased infectiousness of the disease). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Link removal for the control of stochastically evolving epidemics over networks: A comparison of approaches

    PubMed Central

    Brandeau, Margaret L.

    2015-01-01

    For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two “preventive” approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two “reactive” approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdős-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdős-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing which nodes are initially infected by comparing the performance improvement achieved by reactive over preventive strategies. We find that such information is most valuable for moderate budget levels, with increasing value as disease spread becomes more likely (due to either increased connectedness of the network or increased infectiousness of the disease). PMID:25698229

  13. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    DOE PAGES

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; ...

    2016-07-26

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. Here we subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-termmore » treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Lastly, taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations.« less

  14. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. Here we subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-termmore » treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Lastly, taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations.« less

  15. ”We own the illness”: a qualitative study of networks in two communities with mixed ethnicity in Northern Norway

    PubMed Central

    Langås-Larsen, Anette; Salamonsen, Anita; Kristoffersen, Agnete Egilsdatter; Hamran, Torunn; Evjen, Bjørg; Stub, Trine

    2018-01-01

    ABSTRACT Background: When people in Northern Norway get ill, they often use traditional medicine. The global aim of this study was to examine the extended family networks’ function and responsibility in cases of illness in the family, in two Northern Norwegian communities with a population of mixed ethnicity. Methods: Semi-structured individual interviews with 13 participants and 4 focus group interviews with total 11 participants were conducted. The text data was transcribed verbatim and analysed based on the criteria for content analysis. Results: The participants grew up in areas where it was common to seek help from traditional healers. They were organized in networks and shared responsibility for the patient and they provided practical help and support for the family. According to the networks, health-care personnel should make room for the entire network to visit the patient in severe and life-threatening situations. Conclusion: Traditional networks are an extra resource for people in these communities. The networks seem to be essential in handling and disseminating hope and manageability on an individual as well as a collective level. Health personnel working in communities with mixed ethnicity should have thorough knowledge of the mixed culture, including the importance of traditional network to the patients. PMID:29466927

  16. Global Oscillation Network Group

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Global Oscillation Network Group (GONG) is an international, community-based project, operated by the NATIONAL SOLAR OBSERVATORY for the US National Science Foundation, to conduct a detailed study of the internal structure and dynamics of the Sun over an 11 year solar cycle using helioseismology. 10 242 velocity images are obtained by a six-station network located at Big Bear Solar Observato...

  17. Voting behavior, coalitions and government strength through a complex network analysis.

    PubMed

    Dal Maso, Carlo; Pompa, Gabriele; Puliga, Michelangelo; Riotta, Gianni; Chessa, Alessandro

    2014-01-01

    We analyze the network of relations between parliament members according to their voting behavior. In particular, we examine the emergent community structure with respect to political coalitions and government alliances. We rely on tools developed in the Complex Network literature to explore the core of these communities and use their topological features to develop new metrics for party polarization, internal coalition cohesiveness and government strength. As a case study, we focus on the Chamber of Deputies of the Italian Parliament, for which we are able to characterize the heterogeneity of the ruling coalition as well as parties specific contributions to the stability of the government over time. We find sharp contrast in the political debate which surprisingly does not imply a relevant structure based on established parties. We take a closer look to changes in the community structure after parties split up and their effect on the position of single deputies within communities. Finally, we introduce a way to track the stability of the government coalition over time that is able to discern the contribution of each member along with the impact of its possible defection. While our case study relies on the Italian parliament, whose relevance has come into the international spotlight in the present economic downturn, the methods developed here are entirely general and can therefore be applied to a multitude of other scenarios.

  18. Entropy of network ensembles

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  19. The Accounting Network: How Financial Institutions React to Systemic Crisis.

    PubMed

    Puliga, Michelangelo; Flori, Andrea; Pappalardo, Giuseppe; Chessa, Alessandro; Pammolli, Fabio

    2016-01-01

    The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following this methodological perspective we introduce here the Accounting Network, i.e. the network we can extract through vector similarities techniques from companies' financial statements. We build the Accounting Network on a large database of worldwide banks in the period 2001-2013, covering the onset of the global financial crisis of mid-2007. After a careful data cleaning, we apply a quality check in the construction of the network, introducing a parameter (the Quality Ratio) capable of trading off the size of the sample (coverage) and the representativeness of the financial statements (accuracy). We compute several basic network statistics and check, with the Louvain community detection algorithm, for emerging communities of banks. Remarkably enough sensible regional aggregations show up with the Japanese and the US clusters dominating the community structure, although the presence of a geographically mixed community points to a gradual convergence of banks into similar supranational practices. Finally, a Principal Component Analysis procedure reveals the main economic components that influence communities' heterogeneity. Even using the most basic vector similarity hypotheses on the composition of the financial statements, the signature of the financial crisis clearly arises across the years around 2008. We finally discuss how the Accounting Networks can be improved to reflect the best practices in the financial statement analysis.

  20. Structural power and the evolution of collective fairness in social networks.

    PubMed

    Santos, Fernando P; Pacheco, Jorge M; Paiva, Ana; Santos, Francisco C

    2017-01-01

    From work contracts and group buying platforms to political coalitions and international climate and economical summits, often individuals assemble in groups that must collectively reach decisions that may favor each part unequally. Here we quantify to which extent our network ties promote the evolution of collective fairness in group interactions, modeled by means of Multiplayer Ultimatum Games (MUG). We show that a single topological feature of social networks-which we call structural power-has a profound impact on the tendency of individuals to take decisions that favor each part equally. Increased fair outcomes are attained whenever structural power is high, such that the networks that tie individuals allow them to meet the same partners in different groups, thus providing the opportunity to strongly influence each other. On the other hand, the absence of such close peer-influence relationships dismisses any positive effect created by the network. Interestingly, we show that increasing the structural power of a network leads to the appearance of well-defined modules-as found in human social networks that often exhibit community structure-providing an interaction environment that maximizes collective fairness.

  1. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience.

    PubMed

    Mandakovic, Dinka; Rojas, Claudia; Maldonado, Jonathan; Latorre, Mauricio; Travisany, Dante; Delage, Erwan; Bihouée, Audrey; Jean, Géraldine; Díaz, Francisca P; Fernández-Gómez, Beatriz; Cabrera, Pablo; Gaete, Alexis; Latorre, Claudio; Gutiérrez, Rodrigo A; Maass, Alejandro; Cambiazo, Verónica; Navarrete, Sergio A; Eveillard, Damien; González, Mauricio

    2018-04-12

    Understanding the factors that modulate bacterial community assembly in natural soils is a longstanding challenge in microbial community ecology. In this work, we compared two microbial co-occurrence networks representing bacterial soil communities from two different sections of a pH, temperature and humidity gradient occurring along a western slope of the Andes in the Atacama Desert. In doing so, a topological graph alignment of co-occurrence networks was used to determine the impact of a shift in environmental variables on OTUs taxonomic composition and their relationships. We observed that a fraction of association patterns identified in the co-occurrence networks are persistent despite large environmental variation. This apparent resilience seems to be due to: (1) a proportion of OTUs that persist across the gradient and maintain similar association patterns within the community and (2) bacterial community ecological rearrangements, where an important fraction of the OTUs come to fill the ecological roles of other OTUs in the other network. Actually, potential functional features suggest a fundamental role of persistent OTUs along the soil gradient involving nitrogen fixation. Our results allow identifying factors that induce changes in microbial assemblage configuration, altering specific bacterial soil functions and interactions within the microbial communities in natural environments.

  2. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  3. Detection of core-periphery structure in networks based on 3-tuple motifs

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Xiang, Bing-Bing; Chen, Han-Shuang; Small, Michael; Zhang, Hai-Feng

    2018-05-01

    Detecting mesoscale structure, such as community structure, is of vital importance for analyzing complex networks. Recently, a new mesoscale structure, core-periphery (CP) structure, has been identified in many real-world systems. In this paper, we propose an effective algorithm for detecting CP structure based on a 3-tuple motif. In this algorithm, we first define a 3-tuple motif in terms of the patterns of edges as well as the property of nodes, and then a motif adjacency matrix is constructed based on the 3-tuple motif. Finally, the problem is converted to find a cluster that minimizes the smallest motif conductance. Our algorithm works well in different CP structures: including single or multiple CP structure, and local or global CP structures. Results on the synthetic and the empirical networks validate the high performance of our method.

  4. Context-Sensitive Detection of Local Community Structure

    DTIC Science & Technology

    2011-04-01

    characters in the Victor Hugo novel Les Miserables (lesmis).[77 vertices, 254 edges] [Knu93]. • The neural network of the nematode C. Elegans (c.elegans...adjectives and nouns in the Novel David Cop- perfield by Charles Dickens.[112 vertices, 425 edges] [New06]. • Les Miserables . Co-appearance network of...exponential distribution. The degree distributions of the Network Science, Les Miserables , and Word Adjacencies networks display a similar heavy tail. By

  5. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI.

    PubMed

    Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo

    2009-08-01

    In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.

  6. [Integration of district psychiatric hospitals into the development of regional community psychiatry networks--the actual state. Results of a survey among medical directors of Bavarian district hospitals].

    PubMed

    Welschehold, Michael; Kraus, Eva

    2004-11-01

    In this study, the medical directors of all Bavarian district psychiatric hospitals evaluated certain aspects of the integration of their hospitals into the development of regional community psychiatry networks ("Gemeindepsychiatrische Verbunde" - GPVs). They were asked to rate the actual quantity of cooperation between their hospitals and diverse community based services and to express their requests concerning the quality of cooperation. An estimation of possible advantages of the hospitals' integration in GPVs and expectations to future perspectives of GPV development were also investigated. The data were collected by a written questionnaire. The results of the survey indicate that a high relevance is attached to GPV: inspite of current heterogenous developments and inspite of existing skepticism concerning the feasibility of a complete GPV structure, medical directors strongly approve of seeing their hospitals actively engaged in the further development of community psychiatry networks.

  7. Mapping the neuropsychological profile of temporal lobe epilepsy using cognitive network topology and graph theory.

    PubMed

    Kellermann, Tanja S; Bonilha, Leonardo; Eskandari, Ramin; Garcia-Ramos, Camille; Lin, Jack J; Hermann, Bruce P

    2016-10-01

    Normal cognitive function is defined by harmonious interaction among multiple neuropsychological domains. Epilepsy has a disruptive effect on cognition, but how diverse cognitive abilities differentially interact with one another compared with healthy controls (HC) is unclear. This study used graph theory to analyze the community structure of cognitive networks in adults with temporal lobe epilepsy (TLE) compared with that in HC. Neuropsychological assessment was performed in 100 patients with TLE and 82 HC. For each group, an adjacency matrix was constructed representing pair-wise correlation coefficients between raw scores obtained in each possible test combination. For each cognitive network, each node corresponded to a cognitive test; each link corresponded to the correlation coefficient between tests. Global network structure, community structure, and node-wise graph theory properties were qualitatively assessed. The community structure in patients with TLE was composed of fewer, larger, more mixed modules, characterizing three main modules representing close relationships between the following: 1) aspects of executive function (EF), verbal and visual memory, 2) speed and fluency, and 3) speed, EF, perception, language, intelligence, and nonverbal memory. Conversely, controls exhibited a relative division between cognitive functions, segregating into more numerous, smaller modules consisting of the following: 1) verbal memory, 2) language, perception, and intelligence, 3) speed and fluency, and 4) visual memory and EF. Overall node-wise clustering coefficient and efficiency were increased in TLE. Adults with TLE demonstrate a less clear and poorly structured segregation between multiple cognitive domains. This panorama suggests a higher degree of interdependency across multiple cognitive domains in TLE, possibly indicating compensatory mechanisms to overcome functional impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Uncovering collective listening habits and music genres in bipartite networks.

    PubMed

    Lambiotte, R; Ausloos, M

    2005-12-01

    In this paper, we analyze web-downloaded data on people sharing their music library, that we use as their individual musical signatures. The system is represented by a bipartite network, nodes being the music groups and the listeners. Music groups' audience size behaves like a power law, but the individual music library size is an exponential with deviations at small values. In order to extract structures from the network, we focus on correlation matrices, that we filter by removing the least correlated links. This percolation idea-based method reveals the emergence of social communities and music genres, that are visualized by a branching representation. Evidence of collective listening habits that do not fit the neat usual genres defined by the music industry indicates an alternative way of classifying listeners and music groups. The structure of the network is also studied by a more refined method, based upon a random walk exploration of its properties. Finally, a personal identification-community imitation model for growing bipartite networks is outlined, following Potts ingredients. Simulation results do reproduce quite well the empirical data.

  9. Searching for the structure of early American psychology: Networking Psychological Review, 1909-1923.

    PubMed

    Green, Christopher D; Feinerer, Ingo; Burman, Jeremy T

    2015-05-01

    This study continues a previous investigation of the intellectual structure of early American psychology by presenting and analyzing 3 networks that collectively include every substantive article published in Psychological Review during the 15-year period from 1909 to 1923. The networks were laid out such that articles (represented by the network's nodes) that possessed strongly correlated vocabularies were positioned closer to each other spatially than articles with weakly correlated vocabularies. We identified distinct research communities within the networks by locating and interpreting the clusters of lexically similar articles. We found that the Psychological Review was in some turmoil during this period compared with its first 15 years attributable, first, to Baldwin's unexpected departure in 1910; second, to the pressures placed on the discipline by United States entry into World War I; and, third, to the emergence of specialty psychology journals catering to research communities that had once published in the Review. The journal emerged from these challenges, however, with a better-defined mission: to serve as the chief repository of theoretical psychology in the United States. (c) 2015 APA, all rights reserved).

  10. Uncovering collective listening habits and music genres in bipartite networks

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Ausloos, M.

    2005-12-01

    In this paper, we analyze web-downloaded data on people sharing their music library, that we use as their individual musical signatures. The system is represented by a bipartite network, nodes being the music groups and the listeners. Music groups’ audience size behaves like a power law, but the individual music library size is an exponential with deviations at small values. In order to extract structures from the network, we focus on correlation matrices, that we filter by removing the least correlated links. This percolation idea-based method reveals the emergence of social communities and music genres, that are visualized by a branching representation. Evidence of collective listening habits that do not fit the neat usual genres defined by the music industry indicates an alternative way of classifying listeners and music groups. The structure of the network is also studied by a more refined method, based upon a random walk exploration of its properties. Finally, a personal identification-community imitation model for growing bipartite networks is outlined, following Potts ingredients. Simulation results do reproduce quite well the empirical data.

  11. Interest communities and flow roles in directed networks: the Twitter network of the UK riots

    PubMed Central

    Beguerisse-Díaz, Mariano; Garduño-Hernández, Guillermo; Vangelov, Borislav; Yaliraki, Sophia N.; Barahona, Mauricio

    2014-01-01

    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks. PMID:25297320

  12. Generating community-built tools for data sharing and analysis in environmental networks

    USGS Publications Warehouse

    Read, Jordan S.; Gries, Corinna; Read, Emily K.; Klug, Jennifer; Hanson, Paul C.; Hipsey, Matthew R.; Jennings, Eleanor; O'Reilley, Catherine; Winslow, Luke A.; Pierson, Don; McBride, Christopher G.; Hamilton, David

    2016-01-01

    Rapid data growth in many environmental sectors has necessitated tools to manage and analyze these data. The development of tools often lags behind the proliferation of data, however, which may slow exploratory opportunities and scientific progress. The Global Lake Ecological Observatory Network (GLEON) collaborative model supports an efficient and comprehensive data–analysis–insight life cycle, including implementations of data quality control checks, statistical calculations/derivations, models, and data visualizations. These tools are community-built and openly shared. We discuss the network structure that enables tool development and a culture of sharing, leading to optimized output from limited resources. Specifically, data sharing and a flat collaborative structure encourage the development of tools that enable scientific insights from these data. Here we provide a cross-section of scientific advances derived from global-scale analyses in GLEON. We document enhancements to science capabilities made possible by the development of analytical tools and highlight opportunities to expand this framework to benefit other environmental networks.

  13. A New Measure of Centrality for Brain Networks

    PubMed Central

    Joyce, Karen E.; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru

    2010-01-01

    Recent developments in network theory have allowed for the study of the structure and function of the human brain in terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree, betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality metric called leverage centrality that considers the extent of connectivity of a node relative to the connectivity of its neighbors. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the network. PMID:20808943

  14. Network community-based model reduction for vortical flows

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko

    2018-06-01

    A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.

  15. Can Online Learning Communities Achieve the Goals of Traditional Professional Learning Communities? What the Literature Says. REL 2013-003

    ERIC Educational Resources Information Center

    Blitz, Cynthia L.

    2013-01-01

    For more than a decade practitioners have promoted professional learning communities (PLCs) as an effective structure for providing teachers with professional development (Chappuis, Chappuis, & Stiggins, 2009; DuFour, Eaker, & DuFour, 2005). These collaborative networks are believed to be effective because they expose teachers to new ideas…

  16. Opinion dynamics in a group-based society

    NASA Astrophysics Data System (ADS)

    Gargiulo, F.; Huet, S.

    2010-09-01

    Many models have been proposed to analyze the evolution of opinion structure due to the interaction of individuals in their social environment. Such models analyze the spreading of ideas both in completely interacting backgrounds and on social networks, where each person has a finite set of interlocutors. In this paper we analyze the reciprocal feedback between the opinions of the individuals and the structure of the interpersonal relationships at the level of community structures. For this purpose we define a group-based random network and we study how this structure co-evolves with opinion dynamics processes. We observe that the adaptive network structure affects the opinion dynamics process helping the consensus formation. The results also show interesting behaviors in regards to the size distribution of the groups and their correlation with opinion structure.

  17. Efficient local behavioral-change strategies to reduce the spread of epidemics in networks

    NASA Astrophysics Data System (ADS)

    Bu, Yilei; Gregory, Steve; Mills, Harriet L.

    2013-10-01

    It has recently become established that the spread of infectious diseases between humans is affected not only by the pathogen itself but also by changes in behavior as the population becomes aware of the epidemic, for example, social distancing. It is also well known that community structure (the existence of relatively densely connected groups of vertices) in contact networks influences the spread of disease. We propose a set of local strategies for social distancing, based on community structure, that can be employed in the event of an epidemic to reduce the epidemic size. Unlike most social distancing methods, ours do not require individuals to know the disease state (infected or susceptible, etc.) of others, and we do not make the unrealistic assumption that the structure of the entire contact network is known. Instead, the recommended behavior change is based only on an individual's local view of the network. Each individual avoids contact with a fraction of his/her contacts, using knowledge of his/her local network to decide which contacts should be avoided. If the behavior change occurs only when an individual becomes ill or aware of the disease, these strategies can substantially reduce epidemic size with a relatively small cost, measured by the number of contacts avoided.

  18. Structure and evolution of online social relationships: Heterogeneity in unrestricted discussions.

    PubMed

    Goh, K-I; Eom, Y-H; Jeong, H; Kahng, B; Kim, D

    2006-06-01

    With the advancement in the information age, people are using electronic media more frequently for communications, and social relationships are also increasingly resorting to online channels. While extensive studies on traditional social networks have been carried out, little has been done on online social networks. Here we analyze the structure and evolution of online social relationships by examining the temporal records of a bulletin board system (BBS) in a university. The BBS dataset comprises of 1908 boards, in which a total of 7446 students participate. An edge is assigned to each dialogue between two students, and it is defined as the appearance of the name of a student in the from- and to-field in each message. This yields a weighted network between the communicating students with an unambiguous group association of individuals. In contrast to a typical community network, where intracommunities (intercommunities) are strongly (weakly) tied, the BBS network contains hub members who participate in many boards simultaneously but are strongly tied, that is, they have a large degree and betweenness centrality and provide communication channels between communities. On the other hand, intracommunities are rather homogeneously and weakly connected. Such a structure, which has never been empirically characterized in the past, might provide a new perspective on the social opinion formation in this digital era.

  19. Utilization of an interorganizational network analysis to evaluate the development of community capacity among a community-academic partnership.

    PubMed

    Clark, Heather R; Ramirez, Albert; Drake, Kelly N; Beaudoin, Christopher E; Garney, Whitney R; Wendel, Monica L; Outley, Corliss; Burdine, James N; Player, Harold D

    2014-01-01

    Following a community health assessment the Brazos Valley Health Partnership (BVHP) organized to address fragmentation of services and local health needs. This regional partnership employs the fundamental principles of community-based participatory research, fostering an equitable partnership with the aim of building community capacity to address local health issues. This article describes changes in relationships as a result of capacity building efforts in a community-academic partnership. Growth in network structure among organizations is hypothesized to be indicative of less fragmentation of services for residents and increased capacity of the BVHP to collectively address local health issues. Each of the participant organizations responded to a series of questions regarding its relationships with other organizations. Each organization was asked about information sharing, joint planning, resource sharing, and formal agreements with other organizations. The network survey has been administered 3 times between 2004 and 2009. Network density increased for sharing information and jointly planning events. Growth in the complexity of relationships was reported for sharing tangible resources and formal agreements. The average number of ties between organizations as well as the strength of relationships increased. This study provides evidence that the community capacity building efforts within these communities have contributed to beneficial changes in interorganizational relationships. Results from this analysis are useful for understanding how a community partnership's efforts to address access to care can strengthen a community's capacity for future action. Increased collaboration also leads to new assets, resources, and the transfer of knowledge and skills.

  20. Evolution of community structure in the world trade web

    NASA Astrophysics Data System (ADS)

    Tzekina, I.; Danthi, K.; Rockmore, D. N.

    2008-06-01

    In this note we study the bilateral merchandise trade flows between 186 countries over the 1948 2005 period using data from the International Monetary Fund. We use the network visualization package Pajek to identify network structure and behavior across thresholds and over time. In particular, we focus on the evolution of trade “islands” in a world trade network in which countries are linked with directed edges weighted according to the fraction of total dollars sent from one country to another. We find mixed evidence for globalization.

  1. Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network

    NASA Astrophysics Data System (ADS)

    Kölzsch, A.; Blasius, B.

    2011-12-01

    The transport of huge amounts of small aquatic organisms in the ballast tanks and at the hull of large cargo ships leads to ever increasing rates of marine bioinvasion. In this study, we apply a network theoretic approach to examine the introduction of invasive species into new ports by global shipping. This is the first stage of the invasion process where it is still possible to intervene with regulating measures. We compile a selection of widely used and newly developed network properties and apply these to analyse the structure and spread characteristics of the directed and weighted global cargo ship network (GCSN). Our results reveal that the GCSN is highly efficient, shows small world characteristics and is positive assortative, indicating that quick spread of invasive organisms between ports is likely. The GCSN shows strong community structure and contains two large communities, the Atlantic and Pacific trading groups. Ports that appear as connector hubs and are of high centralities are the Suez and Panama Canal, Singapore and Shanghai. Furthermore, from robustness analyses and the network's percolation behaviour, we evaluate differences of onboard and in-port ballast water treatment, set them into context with previous studies and advise bioinvasion management strategies.

  2. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  3. Real-time community detection in full social networks on a laptop

    PubMed Central

    Chamberlain, Benjamin Paul; Levy-Kramer, Josh; Humby, Clive

    2018-01-01

    For a broad range of research and practical applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As global social networks (e.g., Facebook and Twitter) are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present an approach for analyzing full social networks on a standard laptop, allowing for interactive exploration of the communities in the locality of a set of user specified query vertices. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates the edge weights between vertices in a derived graph. Local communities can be constructed by selecting vertices that are connected to the query vertices with high edge weights in the derived graph. This compression is robust to noise and allows for interactive queries of local communities in real-time, which we define to be less than the average human reaction time of 0.25s. We achieve single-machine real-time performance by compressing the neighborhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetize their data, helping them to continue to provide free services that are valued by billions of people globally. PMID:29342158

  4. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be considered in attempts to make interdependent networks more resilient.

  5. Multiple Assembly Rules Drive the Co-occurrence of Orthopteran and Plant Species in Grasslands: Combining Network, Functional and Phylogenetic Approaches

    PubMed Central

    Fournier, Bertrand; Mouly, Arnaud; Gillet, François

    2016-01-01

    Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754

  6. Closer to Learning: Social Networks, Trust, and Professional Communities

    ERIC Educational Resources Information Center

    Liou, Yi-Hwa; Daly, Alan J.

    2014-01-01

    Researchers, educators, and policymakers suggest the use of professional learning communities as one important approach to the improvement of teaching and learning. However, relatively little research examines the interplay of professional interactions (structural social capital) around instructional practices and key elements of professional…

  7. Social capital in a lower socioeconomic palliative care population: a qualitative investigation of individual, community and civic networks and relations.

    PubMed

    Lewis, Joanne M; DiGiacomo, Michelle; Currow, David C; Davidson, Patricia M

    2014-01-01

    Lower socioeconomic populations live and die in contexts that render them vulnerable to poorer health and wellbeing. Contexts of care at the end of life are overwhelmingly determined by the capacity and nature of formal and informal networks and relations to support care. To date, studies exploring the nature of networks and relations of support in lower socioeconomic populations at the end of life are absent. This qualitative study sought to identify the nature of individual, community and civic networks and relations that defined the contexts of care for this group. Semi-structured qualitative interviews were conducted with 16 patients and 6 informal carers who identified that they had social and economic needs and were from a lower socioeconomic area. A social capital questionnaire identifying individual, community and civic networks and relations formed the interview guide. Interviews were audio-taped, transcribed and analysed using framework analysis. Participants identified that individual and community networks and relations of support were mainly inadequate to meet care needs. Specifically, data revealed: (1) individual (informal caregivers) networks and relations were small and fragile due to the nature of conflict and crisis; (2) community trust and engagement was limited and shifted by illness and caregiving; (3) and formal care services were inconsistent and provided limited practical support. Some transitions in community relations for support were noted. Levels of civic and government engagement and support were overall positive and enabled access to welfare resources. Networks and relations of support are essential for ensuring quality end of life care is achieved. Lower socioeconomic groups are at a distinct disadvantage where these networks and relations are limited, as they lack the resources necessary to augment these gaps. Understanding of the nature of assets and limitations, in networks and relations of support, is necessary to inform interventions to improve end of life care for lower socioeconomic populations.

  8. Social capital in a lower socioeconomic palliative care population: a qualitative investigation of individual, community and civic networks and relations

    PubMed Central

    2014-01-01

    Background Lower socioeconomic populations live and die in contexts that render them vulnerable to poorer health and wellbeing. Contexts of care at the end of life are overwhelmingly determined by the capacity and nature of formal and informal networks and relations to support care. To date, studies exploring the nature of networks and relations of support in lower socioeconomic populations at the end of life are absent. This qualitative study sought to identify the nature of individual, community and civic networks and relations that defined the contexts of care for this group. Methods Semi-structured qualitative interviews were conducted with 16 patients and 6 informal carers who identified that they had social and economic needs and were from a lower socioeconomic area. A social capital questionnaire identifying individual, community and civic networks and relations formed the interview guide. Interviews were audio-taped, transcribed and analysed using framework analysis. Results Participants identified that individual and community networks and relations of support were mainly inadequate to meet care needs. Specifically, data revealed: (1) individual (informal caregivers) networks and relations were small and fragile due to the nature of conflict and crisis; (2) community trust and engagement was limited and shifted by illness and caregiving; (3) and formal care services were inconsistent and provided limited practical support. Some transitions in community relations for support were noted. Levels of civic and government engagement and support were overall positive and enabled access to welfare resources. Conclusion Networks and relations of support are essential for ensuring quality end of life care is achieved. Lower socioeconomic groups are at a distinct disadvantage where these networks and relations are limited, as they lack the resources necessary to augment these gaps. Understanding of the nature of assets and limitations, in networks and relations of support, is necessary to inform interventions to improve end of life care for lower socioeconomic populations. PMID:24959101

  9. Analysis of Structure and Composition of Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a Citywide Network in Germany

    PubMed Central

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid

    2012-01-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373

  10. Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany.

    PubMed

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G

    2012-05-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.

  11. Exploiting social influence to magnify population-level behaviour change in maternal and child health: study protocol for a randomised controlled trial of network targeting algorithms in rural Honduras.

    PubMed

    Shakya, Holly B; Stafford, Derek; Hughes, D Alex; Keegan, Thomas; Negron, Rennie; Broome, Jai; McKnight, Mark; Nicoll, Liza; Nelson, Jennifer; Iriarte, Emma; Ordonez, Maria; Airoldi, Edo; Fowler, James H; Christakis, Nicholas A

    2017-03-13

    Despite global progress on many measures of child health, rates of neonatal mortality remain high in the developing world. Evidence suggests that substantial improvements can be achieved with simple, low-cost interventions within family and community settings, particularly those designed to change knowledge and behaviour at the community level. Using social network analysis to identify structurally influential community members and then targeting them for intervention shows promise for the implementation of sustainable community-wide behaviour change. We will use a detailed understanding of social network structure and function to identify novel ways of targeting influential individuals to foster cascades of behavioural change at a population level. Our work will involve experimental and observational analyses. We will map face-to-face social networks of 30 000 people in 176 villages in Western Honduras, and then conduct a randomised controlled trial of a friendship-based network-targeting algorithm with a set of well-established care interventions. We will also test whether the proportion of the population targeted affects the degree to which the intervention spreads throughout the network. We will test scalable methods of network targeting that would not, in the future, require the actual mapping of social networks but would still offer the prospect of rapidly identifying influential targets for public health interventions. The Yale IRB and the Honduran Ministry of Health approved all data collection procedures (Protocol number 1506016012) and all participants will provide informed consent before enrolment. We will publish our findings in peer-reviewed journals as well as engage non-governmental organisations and other actors through venues for exchanging practical methods for behavioural health interventions, such as global health conferences. We will also develop a 'toolkit' for practitioners to use in network-based intervention efforts, including public release of our network mapping software. NCT02694679; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  13. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013), 10.1038/srep01783]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012), 10.1038/nphys2162]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  14. Adaptive fixed-time control for cluster synchronisation of coupled complex networks with uncertain disturbances

    NASA Astrophysics Data System (ADS)

    Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming

    2017-12-01

    This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.

  15. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity

    USGS Publications Warehouse

    Novak, M.; Wootton, J.T.; Doak, D.F.; Emmerson, M.; Estes, J.A.; Tinker, M.T.

    2011-01-01

    How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (??25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities. ?? 2011 by the Ecological Society of America.

  16. Public–nonprofit partnership performance in a disaster context: the case of Haiti.

    PubMed

    Nolte, Isabella M; Boenigk, Silke

    2011-01-01

    During disasters, partnerships between public and nonprofit organizations are vital to provide fast relief to affected communities. In this article, we develop a process model to support a performance evaluation of such intersectoral partnerships. The model includes input factors, organizational structures, outputs and the long-term outcomes of public–nonprofit partnerships. These factors derive from theory and a systematic literature review of emergency, public, nonprofit, and network research. To adapt the model to a disaster context, we conducted a case study that examines public and nonprofit organizations that partnered during the 2010 Haiti earthquake. The case study results show that communication, trust, and experience are the most important partnership inputs; the most prevalent governance structure of public–nonprofit partnerships is a lead organization network. Time and quality measures should be considered to assess partnership outputs, and community, network, and organizational actor perspectives must be taken into account when evaluating partnership outcomes.

  17. Primary health care teams and the patient perspective: a social network analysis.

    PubMed

    Cheong, Lynn H M; Armour, Carol L; Bosnic-Anticevich, Sinthia Z

    2013-01-01

    Multidisciplinary care (MDC) has been proposed as a potential strategy to address the rising challenges of modern health issues. However, it remains unclear as to how patients' health connections may impact on multidisciplinary processes and outcomes. This research aims to gain a deeper understanding of patients' potential role in MDC: i) describe patients' health networks, ii) compare different care groups, iii) gain an understanding of the nature and extent of their interactions, and iv) identify the role of pharmacists within patient networks. In-depth, semi-structured interviews were conducted with asthma patients from Sydney, Australia. Participants were recruited from a range of standard asthma health care access points (community group) and a specialized multidisciplinary asthma clinic (clinic group). Quantitative social network analysis provided structural insight into asthma networks while qualitative social network analysis assisted in interpretation of network data. A total of 47 interviews were conducted (26 community group participants and 21 clinic group participants). Although participants' asthma networks consisted of a range of health care professionals (HCPs), these did not reflect or encourage MDC. Not only did participants favor minimal interaction with any HCP, they preferred sole-charge care and were found to strongly rely on lay individuals such as family and friends. While general practitioners and respiratory specialists were participants' principal choice of HCP, community pharmacists were less regarded. Limited opportunities were presented for HCPs to collaborate, particularly pharmacists. As patients' choices of HCPs may strongly influence collaborative processes and outcomes, this research highlights the need to consider patient perspectives in the development of MDC models in primary care. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The role of interpersonal communication in the process of knowledge mobilization within a community-based organization: a network analysis.

    PubMed

    Gainforth, Heather L; Latimer-Cheung, Amy E; Athanasopoulos, Peter; Moore, Spencer; Ginis, Kathleen A Martin

    2014-05-22

    Diffusion of innovations theory has been widely used to explain knowledge mobilization of research findings. This theory posits that individuals who are more interpersonally connected within an organization may be more likely to adopt an innovation (e.g., research evidence) than individuals who are less interconnected. Research examining this tenet of diffusion of innovations theory in the knowledge mobilization literature is limited. The purpose of the present study was to use network analysis to examine the role of interpersonal communication in the adoption and mobilization of the physical activity guidelines for people with spinal cord injury (SCI) among staff in a community-based organization (CBO). The study used a cross-sectional, whole-network design. In total, 56 staff completed the network survey. Adoption of the guidelines was assessed using Rogers' innovation-decision process and interpersonal communication was assessed using an online network instrument. The patterns of densities observed within the network were indicative of a core-periphery structure revealing that interpersonal communication was greater within the core than between the core and periphery and within the periphery. Membership in the core, as opposed to membership in the periphery, was associated with greater knowledge of the evidence-based physical activity resources available and engagement in physical activity promotion behaviours (ps < 0.05). Greater in-degree centrality was associated with adoption of evidence-based behaviours (p < 0.05). Findings suggest that interpersonal communication is associated with knowledge mobilization and highlight how the network structure could be improved for further dissemination efforts. diffusion of innovations; network analysis; community-based organization; knowledge mobilization; knowledge translation, interpersonal communication.

  19. Assessing opinions in community leadership networks to address health inequalities: a case study from Project IMPACT

    PubMed Central

    McCauley, M. P.; Ramanadhan, S.; Viswanath, K.

    2015-01-01

    This study demonstrates a novel approach that those engaged in promoting social change in health can use to analyze community power, mobilize it and enhance community capacity to reduce health inequalities. We used community reconnaissance methods to select and interview 33 participants from six leadership sectors in ‘Milltown’, the New England city where the study was conducted. We used UCINET network analysis software to assess the structure of local leadership and NVivo qualitative software to analyze leaders’ views on public health and health inequalities. Our main analyses showed that community power is distributed unequally in Milltown, with our network of 33 divided into an older, largely male and more powerful group, and a younger, largely female group with many ‘grassroots’ sector leaders who focus on reducing health inequalities. Ancillary network analyses showed that grassroots leaders comprise a self-referential cluster that could benefit from greater affiliation with leaders from other sectors and identified leaders who may serve as leverage points in our overall program of public agenda change to address health inequalities. Our innovative approach provides public health practitioners with a method for assessing community leaders’ views, understanding subgroup divides and mobilizing leaders who may be helpful in reducing health inequalities. PMID:26471919

  20. Overlapping Modularity at the Critical Point of k-Clique Percolation

    NASA Astrophysics Data System (ADS)

    Tóth, Bálint; Vicsek, Tamás; Palla, Gergely

    2013-05-01

    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.

Top