Sample records for network driven fuzzy

  1. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  2. Design of fuzzy system by NNs and realization of adaptability

    NASA Technical Reports Server (NTRS)

    Takagi, Hideyuki

    1993-01-01

    The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.

  3. Fuzzy-driven energy storage system for mitigating voltage unbalance factor on distribution network with photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat

    2017-04-01

    The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.

  4. Fuzzy inductive reasoning: a consolidated approach to data-driven construction of complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Nebot, Àngela; Mugica, Francisco

    2012-10-01

    Fuzzy inductive reasoning (FIR) is a modelling and simulation methodology derived from the General Systems Problem Solver. It compares favourably with other soft computing methodologies, such as neural networks, genetic or neuro-fuzzy systems, and with hard computing methodologies, such as AR, ARIMA, or NARMAX, when it is used to predict future behaviour of different kinds of systems. This paper contains an overview of the FIR methodology, its historical background, and its evolution.

  5. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    NASA Astrophysics Data System (ADS)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  6. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    PubMed

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, U. T.

    2016-12-01

    Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged precipitation and lagged mean daily flow as candidate inputs. Model performance metric show that the CNPSA method had higher performance (with an efficiency of 0.76). Model output was used to assess the risk of extreme peak flows for a given day using an inverse possibility-to-probability transformation.

  8. Online intelligent controllers for an enzyme recovery plant: design methodology and performance.

    PubMed

    Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F

    2010-12-27

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.

  9. Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance

    PubMed Central

    Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.

    2010-01-01

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106

  10. Fast detection of the fuzzy communities based on leader-driven algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He

    2018-03-01

    In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.

  11. Comparison of crisp and fuzzy character networks in handwritten word recognition

    NASA Technical Reports Server (NTRS)

    Gader, Paul; Mohamed, Magdi; Chiang, Jung-Hsien

    1992-01-01

    Experiments involving handwritten word recognition on words taken from images of handwritten address blocks from the United States Postal Service mailstream are described. The word recognition algorithm relies on the use of neural networks at the character level. The neural networks are trained using crisp and fuzzy desired outputs. The fuzzy outputs were defined using a fuzzy k-nearest neighbor algorithm. The crisp networks slightly outperformed the fuzzy networks at the character level but the fuzzy networks outperformed the crisp networks at the word level.

  12. Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control

    NASA Astrophysics Data System (ADS)

    Petrovic-Lazarevic, Sonja; Zhang, Jian Ying

    2007-12-01

    The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.

  13. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    PubMed

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Design of double fuzzy clustering-driven context neural networks.

    PubMed

    Kim, Eun-Hu; Oh, Sung-Kwun; Pedrycz, Witold

    2018-08-01

    In this study, we introduce a novel category of double fuzzy clustering-driven context neural networks (DFCCNNs). The study is focused on the development of advanced design methodologies for redesigning the structure of conventional fuzzy clustering-based neural networks. The conventional fuzzy clustering-based neural networks typically focus on dividing the input space into several local spaces (implied by clusters). In contrast, the proposed DFCCNNs take into account two distinct local spaces called context and cluster spaces, respectively. Cluster space refers to the local space positioned in the input space whereas context space concerns a local space formed in the output space. Through partitioning the output space into several local spaces, each context space is used as the desired (target) local output to construct local models. To complete this, the proposed network includes a new context layer for reasoning about context space in the output space. In this sense, Fuzzy C-Means (FCM) clustering is useful to form local spaces in both input and output spaces. The first one is used in order to form clusters and train weights positioned between the input and hidden layer, whereas the other one is applied to the output space to form context spaces. The key features of the proposed DFCCNNs can be enumerated as follows: (i) the parameters between the input layer and hidden layer are built through FCM clustering. The connections (weights) are specified as constant terms being in fact the centers of the clusters. The membership functions (represented through the partition matrix) produced by the FCM are used as activation functions located at the hidden layer of the "conventional" neural networks. (ii) Following the hidden layer, a context layer is formed to approximate the context space of the output variable and each node in context layer means individual local model. The outputs of the context layer are specified as a combination of both weights formed as linear function and the outputs of the hidden layer. The weights are updated using the least square estimation (LSE)-based method. (iii) At the output layer, the outputs of context layer are decoded to produce the corresponding numeric output. At this time, the weighted average is used and the weights are also adjusted with the use of the LSE scheme. From the viewpoint of performance improvement, the proposed design methodologies are discussed and experimented with the aid of benchmark machine learning datasets. Through the experiments, it is shown that the generalization abilities of the proposed DFCCNNs are better than those of the conventional FCNNs reported in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Improving land resource evaluation using fuzzy neural network ensembles

    USGS Publications Warehouse

    Xue, Yue-Ju; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.

    2007-01-01

    Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.

  16. A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru

    1993-01-01

    A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.

  17. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  18. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.

  19. An improved advertising CTR prediction approach based on the fuzzy deep neural network

    PubMed Central

    Gao, Shu; Li, Mingjiang

    2018-01-01

    Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise. PMID:29727443

  20. An improved advertising CTR prediction approach based on the fuzzy deep neural network.

    PubMed

    Jiang, Zilong; Gao, Shu; Li, Mingjiang

    2018-01-01

    Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.

  1. Supervised Learning in CINets

    DTIC Science & Technology

    2011-07-01

    supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property

  2. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  3. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  4. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  5. From fuzzy recurrence plots to scalable recurrence networks of time series

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.

    2017-04-01

    Recurrence networks, which are derived from recurrence plots of nonlinear time series, enable the extraction of hidden features of complex dynamical systems. Because fuzzy recurrence plots are represented as grayscale images, this paper presents a variety of texture features that can be extracted from fuzzy recurrence plots. Based on the notion of fuzzy recurrence plots, defuzzified, undirected, and unweighted recurrence networks are introduced. Network measures can be computed for defuzzified recurrence networks that are scalable to meet the demand for the network-based analysis of big data.

  6. Prospects of second generation artificial intelligence tools in calibration of chemical sensors.

    PubMed

    Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala

    2005-05-01

    Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.

  7. Design of fuzzy systems using neurofuzzy networks.

    PubMed

    Figueiredo, M; Gomide, F

    1999-01-01

    This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.

  8. A recurrent self-organizing neural fuzzy inference network.

    PubMed

    Juang, C F; Lin, C T

    1999-01-01

    A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.

  9. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    PubMed

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  10. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    PubMed Central

    Julie, E. Golden; Selvi, S. Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  11. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  12. Fuzzy and neural control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  13. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    NASA Astrophysics Data System (ADS)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  14. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  15. Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks.

    PubMed

    Wu, Ailong; Zeng, Zhigang

    2016-02-01

    We show that the ω-periodic fractional-order fuzzy neural networks cannot generate non-constant ω-periodic signals. In addition, several sufficient conditions are obtained to ascertain the boundedness and global Mittag-Leffler stability of fractional-order fuzzy neural networks. Furthermore, S-asymptotical ω-periodicity and global asymptotical ω-periodicity of fractional-order fuzzy neural networks is also characterized. The obtained criteria improve and extend the existing related results. To illustrate and compare the theoretical criteria, some numerical examples with simulation results are discussed in detail. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Culbert, Christopher J. (Editor)

    1993-01-01

    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.

  17. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data

    PubMed Central

    Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie

    2016-01-01

    Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993

  18. Approximation abilities of neuro-fuzzy networks

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2010-01-01

    The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.

  19. Fuzzy logic and neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  20. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    PubMed Central

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  1. Using fuzzy logic to integrate neural networks and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  2. Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1

    NASA Technical Reports Server (NTRS)

    Culbert, Christopher J. (Editor)

    1993-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.

  3. Experiments on neural network architectures for fuzzy logic

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  4. Receptive field optimisation and supervision of a fuzzy spiking neural network.

    PubMed

    Glackin, Cornelius; Maguire, Liam; McDaid, Liam; Sayers, Heather

    2011-04-01

    This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. The former technique typically results in compact solutions in terms of the number of neurons, and is shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates is generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning only occurs locally as in the biological case. The advantages and disadvantages of the network topology for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and directions of current and future work are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. On the fusion of tuning parameters of fuzzy rules and neural network

    NASA Astrophysics Data System (ADS)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  6. Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators

    NASA Astrophysics Data System (ADS)

    Iliadis, L. S.; Spartalis, S. I.

    2007-12-01

    This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.

  7. A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems

    NASA Astrophysics Data System (ADS)

    Propes, Nicholas C.; Vachtsevanos, George

    2003-08-01

    Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.

  8. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  9. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    PubMed

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

    NASA Astrophysics Data System (ADS)

    Shao, Xinxin; Naghdy, Fazel; Du, Haiping

    2017-03-01

    A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

  11. Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic

    NASA Technical Reports Server (NTRS)

    Lara-Rosano, Felipe

    1992-01-01

    In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.

  12. Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths

    NASA Astrophysics Data System (ADS)

    Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna

    2011-06-01

    We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.

  13. Comments on "The multisynapse neural network and its application to fuzzy clustering".

    PubMed

    Yu, Jian; Hao, Pengwei

    2005-05-01

    In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.

  14. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  15. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    PubMed

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  16. Prediction of soft soil foundation settlement in Guangxi granite area based on fuzzy neural network model

    NASA Astrophysics Data System (ADS)

    Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.

  17. Closed loop supply chain network design with fuzzy tactical decisions

    NASA Astrophysics Data System (ADS)

    Sherafati, Mahtab; Bashiri, Mahdi

    2016-09-01

    One of the most strategic and the most significant decisions in supply chain management is reconfiguration of the structure and design of the supply chain network. In this paper, a closed loop supply chain network design model is presented to select the best tactical and strategic decision levels simultaneously considering the appropriate transportation mode in activated links. The strategic decisions are made for a long term; thus, it is more satisfactory and more appropriate when the decision variables are considered uncertain and fuzzy, because it is more flexible and near to the real world. This paper is the first research which considers fuzzy decision variables in the supply chain network design model. Moreover, in this study a new fuzzy optimization approach is proposed to solve a supply chain network design problem with fuzzy tactical decision variables. Finally, the proposed approach and model are verified using several numerical examples. The comparison of the results with other existing approaches confirms efficiency of the proposed approach. Moreover the results confirms that by considering the vagueness of tactical decisions some properties of the supply chain network will be improved.

  18. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  19. Introduction to Fuzzy Set Theory

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  20. New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…

  1. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less

  2. An Efficient Interval Type-2 Fuzzy CMAC for Chaos Time-Series Prediction and Synchronization.

    PubMed

    Lee, Ching-Hung; Chang, Feng-Yu; Lin, Chih-Min

    2014-03-01

    This paper aims to propose a more efficient control algorithm for chaos time-series prediction and synchronization. A novel type-2 fuzzy cerebellar model articulation controller (T2FCMAC) is proposed. In some special cases, this T2FCMAC can be reduced to an interval type-2 fuzzy neural network, a fuzzy neural network, and a fuzzy cerebellar model articulation controller (CMAC). So, this T2FCMAC is a more generalized network with better learning ability, thus, it is used for the chaos time-series prediction and synchronization. Moreover, this T2FCMAC realizes the un-normalized interval type-2 fuzzy logic system based on the structure of the CMAC. It can provide better capabilities for handling uncertainty and more design degree of freedom than traditional type-1 fuzzy CMAC. Unlike most of the interval type-2 fuzzy system, the type-reduction of T2FCMAC is bypassed due to the property of un-normalized interval type-2 fuzzy logic system. This causes T2FCMAC to have lower computational complexity and is more practical. For chaos time-series prediction and synchronization applications, the training architectures with corresponding convergence analyses and optimal learning rates based on Lyapunov stability approach are introduced. Finally, two illustrated examples are presented to demonstrate the performance of the proposed T2FCMAC.

  3. Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine

    2009-03-05

    In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.

  4. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  5. Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir

    2010-11-01

    Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.

  6. Modeling Belt-Servomechanism by Chebyshev Functional Recurrent Neuro-Fuzzy Network

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Ruey; Kang, Yuan; Chu, Ming-Hui; Chang, Yeon-Pun

    A novel Chebyshev functional recurrent neuro-fuzzy (CFRNF) network is developed from a combination of the Takagi-Sugeno-Kang (TSK) fuzzy model and the Chebyshev recurrent neural network (CRNN). The CFRNF network can emulate the nonlinear dynamics of a servomechanism system. The system nonlinearity is addressed by enhancing the input dimensions of the consequent parts in the fuzzy rules due to functional expansion of a Chebyshev polynomial. The back propagation algorithm is used to adjust the parameters of the antecedent membership functions as well as those of consequent functions. To verify the performance of the proposed CFRNF, the experiment of the belt servomechanism is presented in this paper. Both of identification methods of adaptive neural fuzzy inference system (ANFIS) and recurrent neural network (RNN) are also studied for modeling of the belt servomechanism. The analysis and comparison results indicate that CFRNF makes identification of complex nonlinear dynamic systems easier. It is verified that the accuracy and convergence of the CFRNF are superior to those of ANFIS and RNN by the identification results of a belt servomechanism.

  7. Character recognition using a neural network model with fuzzy representation

    NASA Technical Reports Server (NTRS)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  8. A fuzzy call admission control scheme in wireless networks

    NASA Astrophysics Data System (ADS)

    Ma, Yufeng; Gong, Shenguang; Hu, Xiulin; Zhang, Yunyu

    2007-11-01

    Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in wireless networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities. Simulation compares the proposed fuzzy scheme with an adaptive channel reservation scheme. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.

  9. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. New Passivity Criteria for Fuzzy Bam Neural Networks with Markovian Jumping Parameters and Time-Varying Delays

    NASA Astrophysics Data System (ADS)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P.

    2013-02-01

    This paper addresses the problem of passivity analysis issue for a class of fuzzy bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time varying delays. A set of sufficient conditions for the passiveness of the considered fuzzy BAM neural network model is derived in terms of linear matrix inequalities by using the delay fractioning technique together with the Lyapunov function approach. In addition, the uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance. Further, this result is extended to study the robust passivity criteria for uncertain fuzzy BAM neural networks with time varying delays and uncertainties. These criteria are expressed in the form of linear matrix inequalities (LMIs), which can be efficiently solved via standard numerical software. Two numerical examples are provided to demonstrate the effectiveness of the obtained results.

  11. Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.

    PubMed

    Wang, B H; Lim, J W; Lim, J S

    2016-08-30

    Many studies exist for reconstructing gene regulatory networks (GRNs). In this paper, we propose a method based on an advanced neuro-fuzzy system, for gene regulatory network reconstruction from microarray time-series data. This approach uses a neural network with a weighted fuzzy function to model the relationships between genes. Fuzzy rules, which determine the regulators of genes, are very simplified through this method. Additionally, a regulator selection procedure is proposed, which extracts the exact dynamic relationship between genes, using the information obtained from the weighted fuzzy function. Time-series related features are extracted from the original data to employ the characteristics of temporal data that are useful for accurate GRN reconstruction. The microarray dataset of the yeast cell cycle was used for our study. We measured the mean squared prediction error for the efficiency of the proposed approach and evaluated the accuracy in terms of precision, sensitivity, and F-score. The proposed method outperformed the other existing approaches.

  12. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Syed Ali, M.; Balasubramaniam, P.

    2008-07-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.

  13. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  14. Fuzzy probabilistic design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Fu, Guangtao; Kapelan, Zoran

    2011-05-01

    The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.

  15. Study on pattern recognition of Raman spectrum based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing

    2017-10-01

    Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.

  16. Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation.

    PubMed

    Shafizadeh-Moghadam, Hossein; Tayyebi, Amin; Helbich, Marco

    2017-06-01

    Transition index maps (TIMs) are key products in urban growth simulation models. However, their operationalization is still conflicting. Our aim was to compare the prediction accuracy of three TIM-based spatially explicit land cover change (LCC) models in the mega city of Mumbai, India. These LCC models include two data-driven approaches, namely artificial neural networks (ANNs) and weight of evidence (WOE), and one knowledge-based approach which integrates an analytical hierarchical process with fuzzy membership functions (FAHP). Using the relative operating characteristics (ROC), the performance of these three LCC models were evaluated. The results showed 85%, 75%, and 73% accuracy for the ANN, FAHP, and WOE. The ANN was clearly superior compared to the other LCC models when simulating urban growth for the year 2010; hence, ANN was used to predict urban growth for 2020 and 2030. Projected urban growth maps were assessed using statistical measures, including figure of merit, average spatial distance deviation, producer accuracy, and overall accuracy. Based on our findings, we recomend ANNs as an and accurate method for simulating future patterns of urban growth.

  17. The Prediction of the Gas Utilization Ratio Based on TS Fuzzy Neural Network and Particle Swarm Optimization

    PubMed Central

    Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-01-01

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469

  18. The Prediction of the Gas Utilization Ratio based on TS Fuzzy Neural Network and Particle Swarm Optimization.

    PubMed

    Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-02-20

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.

  19. Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger

    NASA Astrophysics Data System (ADS)

    Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun

    2011-04-01

    This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.

  20. Fuzzy neural network methodology applied to medical diagnosis

    NASA Technical Reports Server (NTRS)

    Gorzalczany, Marian B.; Deutsch-Mcleish, Mary

    1992-01-01

    This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.

  1. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  2. Recognition of Handwritten Arabic words using a neuro-fuzzy network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boukharouba, Abdelhak; Bennia, Abdelhak

    We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descentmore » learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.« less

  3. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  4. Optimization of Close Range Photogrammetry Network Design Applying Fuzzy Computation

    NASA Astrophysics Data System (ADS)

    Aminia, A. S.

    2017-09-01

    Measuring object 3D coordinates with optimum accuracy is one of the most important issues in close range photogrammetry. In this context, network design plays an important role in determination of optimum position of imaging stations. This is, however, not a trivial task due to various geometric and radiometric constraints affecting the quality of the measurement network. As a result, most camera stations in the network are defined on a try and error basis based on the user's experience and generic network concept. In this paper, we propose a post-processing task to investigate the quality of camera positions right after image capturing to achieve the best result. To do this, a new fuzzy reasoning approach is adopted, in which the constraints affecting the network design are all modeled. As a result, the position of all camera locations is defined based on fuzzy rules and inappropriate stations are determined. The experiments carried out show that after determination and elimination of the inappropriate images using the proposed fuzzy reasoning system, the accuracy of measurements is improved and enhanced about 17% for the latter network.

  5. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    PubMed

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Incomplete fuzzy data processing systems using artificial neural network

    NASA Technical Reports Server (NTRS)

    Patyra, Marek J.

    1992-01-01

    In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.

  7. Optoelectronic fuzzy associative memory with controllable attraction basin sizes

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqing; Campbell, Scott; Wu, Weishu; Yeh, Pochi

    1995-10-01

    We propose and demonstrate a new fuzzy associative memory model that provides an option to control the sizes of the attraction basins in neural networks. In our optoelectronic implementation we use spatial/polarization encoding to represent the fuzzy variables. Shadow casting of the encoded patterns is employed to yield the fuzzy-absolute difference between fuzzy variables.

  8. A fuzzy neural network for intelligent data processing

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam

    2005-03-01

    In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.

  9. Cloud E-Learning Service Strategies for Improving E-Learning Innovation Performance in a Fuzzy Environment by Using a New Hybrid Fuzzy Multiple Attribute Decision-Making Model

    ERIC Educational Resources Information Center

    Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung

    2016-01-01

    The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…

  10. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.

    PubMed

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-08-18

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.

  11. Using Evolved Fuzzy Neural Networks for Injury Detection from Isokinetic Curves

    NASA Astrophysics Data System (ADS)

    Couchet, Jorge; Font, José María; Manrique, Daniel

    In this paper we propose an evolutionary fuzzy neural networks system for extracting knowledge from a set of time series containing medical information. The series represent isokinetic curves obtained from a group of patients exercising the knee joint on an isokinetic dynamometer. The system has two parts: i) it analyses the time series input in order generate a simplified model of an isokinetic curve; ii) it applies a grammar-guided genetic program to obtain a knowledge base represented by a fuzzy neural network. Once the knowledge base has been generated, the system is able to perform knee injuries detection. The results suggest that evolved fuzzy neural networks perform better than non-evolutionary approaches and have a high accuracy rate during both the training and testing phases. Additionally, they are robust, as the system is able to self-adapt to changes in the problem without human intervention.

  12. A novel prosodic-information synthesizer based on recurrent fuzzy neural network for the Chinese TTS system.

    PubMed

    Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu

    2004-02-01

    In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.

  13. Fuzzy control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  14. A hybrid modeling approach for option pricing

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Ehsan; Seifi, Abbas

    2011-11-01

    The complexity of option pricing has led many researchers to develop sophisticated models for such purposes. The commonly used Black-Scholes model suffers from a number of limitations. One of these limitations is the assumption that the underlying probability distribution is lognormal and this is so controversial. We propose a couple of hybrid models to reduce these limitations and enhance the ability of option pricing. The key input to option pricing model is volatility. In this paper, we use three popular GARCH type model for estimating volatility. Then, we develop two non-parametric models based on neural networks and neuro-fuzzy networks to price call options for S&P 500 index. We compare the results with those of Black-Scholes model and show that both neural network and neuro-fuzzy network models outperform Black-Scholes model. Furthermore, comparing the neural network and neuro-fuzzy approaches, we observe that for at-the-money options, neural network model performs better and for both in-the-money and an out-of-the money option, neuro-fuzzy model provides better results.

  15. A neuro-fuzzy architecture for real-time applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song

    1992-01-01

    Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.

  16. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  17. Multilayer perceptron, fuzzy sets, and classification

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.; Mitra, Sushmita

    1992-01-01

    A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.

  18. Challenging Aerospace Problems for Intelligent Systems

    DTIC Science & Technology

    2003-06-01

    importance of each rule. Techniques such as logarithmic regression or Saaty’s AHP may be employed to apply the weights on to the fuzzy rules. 15-9 Given u...at which designs could be evaluated. This implies that modeling techniques such as neural networks, fuzzy systems and so on can play an important role...failure conditions [4-6]. These approaches apply techniques, such as neural networks, fuzzy logic, and parameter identification, to improve aircraft

  19. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    PubMed

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  20. Deduction of reservoir operating rules for application in global hydrological models

    NASA Astrophysics Data System (ADS)

    Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.

    2018-01-01

    A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.

  1. Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.

    PubMed

    Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung

    2007-05-01

    This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.

  2. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  3. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    NASA Astrophysics Data System (ADS)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2017-11-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  4. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  5. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  6. Knowledge Network Values: Learning at Risk?

    ERIC Educational Resources Information Center

    Young, Peter R.

    The boundaries between various information, entertainment, and communication fields are shifting. The edges between our library systems and communication networks are becoming increasingly fuzzy. These fuzzy edges affect concepts of education, learning, and knowledge. The existing library paradigm does not easily accommodate the new, fluid and…

  7. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks

    PubMed Central

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-01-01

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238

  8. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL providesmore » a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.« less

  9. Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.

    PubMed

    Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung

    2018-04-01

    In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jason Wright

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less

  11. A neural network architecture for implementation of expert systems for real time monitoring

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  12. Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)

    2000-01-01

    In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.

  13. Observer-Based Non-PDC Control for Networked T-S Fuzzy Systems With an Event-Triggered Communication.

    PubMed

    Peng, Chen; Ma, Shaodong; Xie, Xiangpeng

    2017-02-07

    This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi-Sugeno (T-S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions. First, a unified event-triggered T-S fuzzy model is provided, in which: 1) a fuzzy observer with the imperfect premise matching is constructed to estimate the unmeasurable states of the studied system; 2) a fuzzy controller is designed following the same premise as the observer; and 3) an output-based event-triggering transmission scheme is designed to economize the restricted network resources. Different from the traditional PDC method, the synchronous premise between the fuzzy observer and the T-S fuzzy system are no longer needed in this paper. Second, by use of Lyapunov theory, a stability criterion and a stabilization condition are obtained for ensuring asymptotically stable of the studied system. On account of the imperfect premise matching conditions are well considered in the derivation of the above criteria, less conservation can be expected to enhance the design flexibility. Compared with some existing emulation-based methods, the controller gains are no longer required to be known a priori. Finally, the availability of proposed non-PDC design scheme is illustrated by the backing-up control of a truck-trailer system.

  14. Assessing the Health of LiFePO4 Traction Batteries through Monotonic Echo State Networks

    PubMed Central

    Anseán, David; Otero, José; Couso, Inés

    2017-01-01

    A soft sensor is presented that approximates certain health parameters of automotive rechargeable batteries from on-vehicle measurements of current and voltage. The sensor is based on a model of the open circuit voltage curve. This last model is implemented through monotonic neural networks and estimate over-potentials arising from the evolution in time of the Lithium concentration in the electrodes of the battery. The proposed soft sensor is able to exploit the information contained in operational records of the vehicle better than the alternatives, this being particularly true when the charge or discharge currents are between moderate and high. The accuracy of the neural model has been compared to different alternatives, including data-driven statistical models, first principle-based models, fuzzy observers and other recurrent neural networks with different topologies. It is concluded that monotonic echo state networks can outperform well established first-principle models. The algorithms have been validated with automotive Li-FePO4 cells. PMID:29267219

  15. Fuzzy Neural Networks for Decision Support in Negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakas, D. P.; Vlachos, D. S.; Simos, T. E.

    There is a large number of parameters which one can take into account when building a negotiation model. These parameters in general are uncertain, thus leading to models which represents them with fuzzy sets. On the other hand, the nature of these parameters makes them very difficult to model them with precise values. During negotiation, these parameters play an important role by altering the outcomes or changing the state of the negotiators. One reasonable way to model this procedure is to accept fuzzy relations (from theory or experience). The action of these relations to fuzzy sets, produce new fuzzy setsmore » which describe now the new state of the system or the modified parameters. But, in the majority of these situations, the relations are multidimensional, leading to complicated models and exponentially increasing computational time. In this paper a solution to this problem is presented. The use of fuzzy neural networks is shown that it can substitute the use of fuzzy relations with comparable results. Finally a simple simulation is carried in order to test the new method.« less

  16. Learning fuzzy information in a hybrid connectionist, symbolic model

    NASA Technical Reports Server (NTRS)

    Romaniuk, Steve G.; Hall, Lawrence O.

    1993-01-01

    An instance-based learning system is presented. SC-net is a fuzzy hybrid connectionist, symbolic learning system. It remembers some examples and makes groups of examples into exemplars. All real-valued attributes are represented as fuzzy sets. The network representation and learning method is described. To illustrate this approach to learning in fuzzy domains, an example of segmenting magnetic resonance images of the brain is discussed. Clearly, the boundaries between human tissues are ill-defined or fuzzy. Example fuzzy rules for recognition are generated. Segmentations are presented that provide results that radiologists find useful.

  17. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.

  18. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID3, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results for a real-life recognition problem of distinguishing defects in a glass ribbon, and for a benchmark problen of telling two spirals apart are shown and discussed.

  19. Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.

    PubMed

    Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael

    2006-05-01

    In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.

  20. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-08-10

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

  1. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  2. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    PubMed

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  3. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    PubMed

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  4. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    PubMed Central

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227

  5. Family of new operations equivalency of neuro-fuzzy logic: optoelectronic realization and applications

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey

    2002-07-01

    The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy logic's.

  6. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.

  7. A Fuzzy ARTMAP Approach To The Incorporation Of Chromatographic Retention Time Information To An MS Based E-Nose

    NASA Astrophysics Data System (ADS)

    Burian, Cosmin; Brezmes, Jesus; Vinaixa, Maria; Llobet, Eduard; Vilanova, Xavier; Cañellas, Nicolau; Correig, Xavier

    2009-05-01

    This paper presents the work done with Fuzzy ARTMAP neural networks in order to improve the performance of mass spectrometry-based electronic noses using the time retention of a chromatographic column as additional information. Solutions of nine isomers of dimethylphenols and ethylphenols were used in this experiment. The gas chromatograph mass spectrometer response was analyzed with an in-house developed Fuzzy ARTMAP neural network, showing that the combined information (GC plus MS) gives better results than MS information alone.

  8. Image segmentation using fuzzy LVQ clustering networks

    NASA Technical Reports Server (NTRS)

    Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.

    1992-01-01

    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.

  9. Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    PubMed Central

    Díaz-Rodríguez, Natalia; Cadahía, Olmo León; Cuéllar, Manuel Pegalajar; Lilius, Johan; Calvo-Flores, Miguel Delgado

    2014-01-01

    Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches. PMID:25268914

  10. The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.

    2017-05-01

    The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.

  11. Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors

    NASA Astrophysics Data System (ADS)

    Xenides, D.; Vlachos, D. S.; Simos, T. E.

    2007-12-01

    The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.

  12. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  13. Relationship between isoseismal area and magnitude of historical earthquakes in Greece by a hybrid fuzzy neural network method

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-A.; Sokos, E.

    2012-01-01

    In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.

  14. A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight

    NASA Astrophysics Data System (ADS)

    Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu

    2017-05-01

    Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.

  15. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  16. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  17. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Are artificial neural networks black boxes?

    PubMed

    Benitez, J M; Castro, J L; Requena, I

    1997-01-01

    Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.

  19. Realtime motion planning for a mobile robot in an unknown environment using a neurofuzzy based approach

    NASA Astrophysics Data System (ADS)

    Zheng, Taixiong

    2005-12-01

    A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.

  20. Fuzzy Comprehensive Evaluation (FCE) in Military Decision Support Processes

    DTIC Science & Technology

    2013-12-01

    detection in military aircraft (Brotherton & Johnson, 2001). Today, as reported by the international journal Advances in Fuzzy Systems (2013), as of March... detection for advanced military aircraft using neural networks. In IEEE Proceedings Aerospace Conference, 2001, 6, 3113–3123. Cheng, C . H. (1996... C .   OBJECTIVE ................................................................................................... 3   II.   THE FUZZY

  1. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  2. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    USGS Publications Warehouse

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  3. Intelligent call admission control for multi-class services in mobile cellular networks

    NASA Astrophysics Data System (ADS)

    Ma, Yufeng; Hu, Xiulin; Zhang, Yunyu

    2005-11-01

    Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in mobile cellular networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities of each service class. Simulation compares the proposed fuzzy scheme with complete sharing and guard channel policies. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.

  4. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  5. Interference Path Loss Prediction in A319/320 Airplanes Using Modulated Fuzzy Logic and Neural Networks

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.

    2007-01-01

    In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  6. Fuzzy neural network for flow estimation in sewer systems during wet weather.

    PubMed

    Shen, Jun; Shen, Wei; Chang, Jian; Gong, Ning

    2006-02-01

    Estimation of the water flow from rainfall intensity during storm events is important in hydrology, sewer system control, and environmental protection. The runoff-producing behavior of a sewer system changes from one storm event to another because rainfall loss depends not only on rainfall intensities, but also on the state of the soil and vegetation, the general condition of the climate, and so on. As such, it would be difficult to obtain a precise flowrate estimation without sufficient a priori knowledge of these factors. To establish a model for flow estimation, one can also use statistical methods, such as the neural network STORMNET, software developed at Lyonnaise des Eaux, France, analyzing the relation between rainfall intensity and flowrate data of the known storm events registered in the past for a given sewer system. In this study, the authors propose a fuzzy neural network to estimate the flowrate from rainfall intensity. The fuzzy neural network combines four STORMNETs and fuzzy deduction to better estimate the flowrates. This study's system for flow estimation can be calibrated automatically by using known storm events; no data regarding the physical characteristics of the drainage basins are required. Compared with the neural network STORMNET, this method reduces the mean square error of the flow estimates by approximately 20%. Experimental results are reported herein.

  7. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network

    PubMed Central

    Dai, Zongli; Zhao, Aiwu; He, Jie

    2018-01-01

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method. PMID:29420584

  8. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network.

    PubMed

    Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie

    2018-01-01

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.

  9. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  10. A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo

    1996-01-01

    The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.

  11. Naturally-Emerging Technology-Based Leadership Roles in Three Independent Schools: A Social Network-Based Case Study Using Fuzzy Set Qualitative Comparative Analysis

    ERIC Educational Resources Information Center

    Velastegui, Pamela J.

    2013-01-01

    This hypothesis-generating case study investigates the naturally emerging roles of technology brokers and technology leaders in three independent schools in New York involving 92 school educators. A multiple and mixed method design utilizing Social Network Analysis (SNA) and fuzzy set Qualitative Comparative Analysis (FSQCA) involved gathering…

  12. Predicting Length of Stay in Intensive Care Units after Cardiac Surgery: Comparison of Artificial Neural Networks and Adaptive Neuro-fuzzy System.

    PubMed

    Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin

    2018-04-01

    Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.

  13. Wood texture classification by fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Gonzaga, Adilson; de Franca, Celso A.; Frere, Annie F.

    1999-03-01

    The majority of scientific papers focusing on wood classification for pencil manufacturing take into account defects and visual appearance. Traditional methodologies are base don texture analysis by co-occurrence matrix, by image modeling, or by tonal measures over the plate surface. In this work, we propose to classify plates of wood without biological defects like insect holes, nodes, and cracks, by analyzing their texture. By this methodology we divide the plate image in several rectangular windows or local areas and reduce the number of gray levels. From each local area, we compute the histogram of difference sand extract texture features, given them as input to a Local Neuro-Fuzzy Network. Those features are from the histogram of differences instead of the image pixels due to their better performance and illumination independence. Among several features like media, contrast, second moment, entropy, and IDN, the last three ones have showed better results for network training. Each LNN output is taken as input to a Partial Neuro-Fuzzy Network (PNFN) classifying a pencil region on the plate. At last, the outputs from the PNFN are taken as input to a Global Fuzzy Logic doing the plate classification. Each pencil classification within the plate is done taking into account each quality index.

  14. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    PubMed

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  15. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor

    NASA Astrophysics Data System (ADS)

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  16. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    PubMed Central

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169

  17. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.

    PubMed

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.

  18. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor.

    PubMed

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  19. Development of neural network techniques for finger-vein pattern classification

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen

    2010-02-01

    A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.

  20. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    NASA Astrophysics Data System (ADS)

    Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.

    2013-02-01

    The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the determination of the landslide susceptibility map.

  1. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems

    NASA Astrophysics Data System (ADS)

    El-Sebakhy, Emad A.

    2009-09-01

    Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.

  2. International Neural Network Society Annual Meeting (1994) Held in San Diego, California on 5-9 June 1994. Volume 1

    DTIC Science & Technology

    1994-06-09

    Ethics and the Soul 1-221 P. Werbos A Net Program for Natural Language Comprehension 1-863 J. Weiss Applications Oral ANN Design of Image Processing...Controlling Nonlinear Dynamic Systems Using Neuro-Fuzzy Networks 1-787 E. Teixera, G. Laforga, H. Azevedo Neural Fuzzy Logics as a Tool for Design Ecological ...Discrete Neural Network 11-466 Z. Cheng-fu Representation of Number A Theory of Mathematical Modeling 11-479 J. Cristofano An Ecological Approach to

  3. Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition

    NASA Astrophysics Data System (ADS)

    Popko, E. A.; Weinstein, I. A.

    2016-08-01

    Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.

  4. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  5. Abrasive slurry jet cutting model based on fuzzy relations

    NASA Astrophysics Data System (ADS)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  6. Using heuristic algorithms for capacity leasing and task allocation issues in telecommunication networks under fuzzy quality of service constraints

    NASA Astrophysics Data System (ADS)

    Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin

    2014-03-01

    Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.

  7. A Fuzzy-Decision Based Approach for Composite Event Detection in Wireless Sensor Networks

    PubMed Central

    Zhang, Shukui; Chen, Hao; Zhu, Qiaoming

    2014-01-01

    The event detection is one of the fundamental researches in wireless sensor networks (WSNs). Due to the consideration of various properties that reflect events status, the Composite event is more consistent with the objective world. Thus, the research of the Composite event becomes more realistic. In this paper, we analyze the characteristics of the Composite event; then we propose a criterion to determine the area of the Composite event and put forward a dominating set based network topology construction algorithm under random deployment. For the unreliability of partial data in detection process and fuzziness of the event definitions in nature, we propose a cluster-based two-dimensional τ-GAS algorithm and fuzzy-decision based composite event decision mechanism. In the case that the sensory data of most nodes are normal, the two-dimensional τ-GAS algorithm can filter the fault node data effectively and reduce the influence of erroneous data on the event determination. The Composite event judgment mechanism which is based on fuzzy-decision holds the superiority of the fuzzy-logic based algorithm; moreover, it does not need the support of a huge rule base and its computational complexity is small. Compared to CollECT algorithm and CDS algorithm, this algorithm improves the detection accuracy and reduces the traffic. PMID:25136690

  8. Mamdani Fuzzy System for Indoor Autonomous Mobile Robot

    NASA Astrophysics Data System (ADS)

    Khan, M. K. A. Ahamed; Rashid, Razif; Elamvazuthi, I.

    2011-06-01

    Several control algorithms for autonomous mobile robot navigation have been proposed in the literature. Recently, the employment of non-analytical methods of computing such as fuzzy logic, evolutionary computation, and neural networks has demonstrated the utility and potential of these paradigms for intelligent control of mobile robot navigation. In this paper, Mamdani fuzzy system for an autonomous mobile robot is developed. The paper begins with the discussion on the conventional controller and then followed by the description of fuzzy logic controller in detail.

  9. Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Gamba, P.; Houshmand, B.

    1998-01-01

    In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.

  10. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    PubMed

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  11. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  12. North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 1

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Compiler)

    1992-01-01

    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.

  13. North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Compiler)

    1992-01-01

    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.

  14. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  15. A Logical Framework for Service Migration Based Survivability

    DTIC Science & Technology

    2016-06-24

    platforms; Service Migration Strategy Fuzzy Inference System Knowledge Base Fuzzy rules representing domain expert knowledge about implications of...service migration strategy. Our approach uses expert knowledge as linguistic reasoning rules and takes service programs damage assessment, service...programs complexity, and available network capability as input. The fuzzy inference system includes four components as shown in Figure 5: (1) a knowledge

  16. Driving profile modeling and recognition based on soft computing approach.

    PubMed

    Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya

    2009-04-01

    Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.

  17. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    PubMed

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  18. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    PubMed

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  19. A survey of fuzzy logic monitoring and control utilisation in medicine.

    PubMed

    Mahfouf, M; Abbod, M F; Linkens, D A

    2001-01-01

    Intelligent systems have appeared in many technical areas, such as consumer electronics, robotics and industrial control systems. Many of these intelligent systems are based on fuzzy control strategies which describe complex systems mathematical models in terms of linguistic rules. Since the 1980s new techniques have appeared from which fuzzy logic has been applied extensively in medical systems. The justification for such intelligent systems driven solutions is that biological systems are so complex that the development of computerised systems within such environments is not always a straightforward exercise. In practice, a precise model may not exist for biological systems or it may be too difficult to model. In most cases fuzzy logic is considered to be an ideal tool as human minds work from approximate data, extract meaningful information and produce crisp solutions. This paper surveys the utilisation of fuzzy logic control and monitoring in medical sciences with an analysis of its possible future penetration.

  20. Neural networks: A simulation technique under uncertainty conditions

    NASA Technical Reports Server (NTRS)

    Mcallister, M. Luisa Nicosia

    1992-01-01

    This paper proposes a new definition of fuzzy graphs and shows how transmission through a graph with linguistic expressions as labels provides an easy computational tool. These labels are represented by modified Kauffmann Fuzzy numbers.

  1. NASA/ARC proposed training in intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1990-01-01

    Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.

  2. Robust nonlinear variable selective control for networked systems

    NASA Astrophysics Data System (ADS)

    Rahmani, Behrooz

    2016-10-01

    This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.

  3. Neural networks with fuzzy Petri nets for modeling a machining process

    NASA Astrophysics Data System (ADS)

    Hanna, Moheb M.

    1998-03-01

    The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.

  4. Using a fuzzy comprehensive evaluation method to determine product usability: A test case

    PubMed Central

    Zhou, Ronggang; Chan, Alan H. S.

    2016-01-01

    BACKGROUND: In order to take into account the inherent uncertainties during product usability evaluation, Zhou and Chan [1] proposed a comprehensive method of usability evaluation for products by combining the analytic hierarchy process (AHP) and fuzzy evaluation methods for synthesizing performance data and subjective response data. This method was designed to provide an integrated framework combining the inevitable vague judgments from the multiple stages of the product evaluation process. OBJECTIVE AND METHODS: In order to illustrate the effectiveness of the model, this study used a summative usability test case to assess the application and strength of the general fuzzy usability framework. To test the proposed fuzzy usability evaluation framework [1], a standard summative usability test was conducted to benchmark the overall usability of a specific network management software. Based on the test data, the fuzzy method was applied to incorporate both the usability scores and uncertainties involved in the multiple components of the evaluation. Then, with Monte Carlo simulation procedures, confidence intervals were used to compare the reliabilities among the fuzzy approach and two typical conventional methods combining metrics based on percentages. RESULTS AND CONCLUSIONS: This case study showed that the fuzzy evaluation technique can be applied successfully for combining summative usability testing data to achieve an overall usability quality for the network software evaluated. Greater differences of confidence interval widths between the method of averaging equally percentage and weighted evaluation method, including the method of weighted percentage averages, verified the strength of the fuzzy method. PMID:28035942

  5. Using a fuzzy comprehensive evaluation method to determine product usability: A test case.

    PubMed

    Zhou, Ronggang; Chan, Alan H S

    2017-01-01

    In order to take into account the inherent uncertainties during product usability evaluation, Zhou and Chan [1] proposed a comprehensive method of usability evaluation for products by combining the analytic hierarchy process (AHP) and fuzzy evaluation methods for synthesizing performance data and subjective response data. This method was designed to provide an integrated framework combining the inevitable vague judgments from the multiple stages of the product evaluation process. In order to illustrate the effectiveness of the model, this study used a summative usability test case to assess the application and strength of the general fuzzy usability framework. To test the proposed fuzzy usability evaluation framework [1], a standard summative usability test was conducted to benchmark the overall usability of a specific network management software. Based on the test data, the fuzzy method was applied to incorporate both the usability scores and uncertainties involved in the multiple components of the evaluation. Then, with Monte Carlo simulation procedures, confidence intervals were used to compare the reliabilities among the fuzzy approach and two typical conventional methods combining metrics based on percentages. This case study showed that the fuzzy evaluation technique can be applied successfully for combining summative usability testing data to achieve an overall usability quality for the network software evaluated. Greater differences of confidence interval widths between the method of averaging equally percentage and weighted evaluation method, including the method of weighted percentage averages, verified the strength of the fuzzy method.

  6. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  7. Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

    PubMed Central

    Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.

    2013-01-01

    Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication. PMID:23690884

  8. Forecasting of natural gas consumption with neural network and neuro fuzzy system

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan

    2010-05-01

    The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting

  9. A Fuzzy-Based Decision Support Model for Selecting the Best Dialyser Flux in Haemodialysis.

    PubMed

    Oztürk, Necla; Tozan, Hakan

    2015-01-01

    Decision making is an important procedure for every organization. The procedure is particularly challenging for complicated multi-criteria problems. Selection of dialyser flux is one of the decisions routinely made for haemodialysis treatment provided for chronic kidney failure patients. This study provides a decision support model for selecting the best dialyser flux between high-flux and low-flux dialyser alternatives. The preferences of decision makers were collected via a questionnaire. A total of 45 questionnaires filled by dialysis physicians and nephrologists were assessed. A hybrid fuzzy-based decision support software that enables the use of Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Analytic Network Process (ANP), and Fuzzy Analytic Network Process (FANP) was used to evaluate the flux selection model. In conclusion, the results showed that a high-flux dialyser is the best. option for haemodialysis treatment.

  10. Fuzzy Modelling for Human Dynamics Based on Online Social Networks

    PubMed Central

    Cuenca-Jara, Jesus; Valdes-Vela, Mercedes; Skarmeta, Antonio F.

    2017-01-01

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities. PMID:28837120

  11. Fuzzy Modelling for Human Dynamics Based on Online Social Networks.

    PubMed

    Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2017-08-24

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.

  12. Neural networks for learning and prediction with applications to remote sensing and speech perception

    NASA Astrophysics Data System (ADS)

    Gjaja, Marin N.

    1997-11-01

    Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An unsupervised neural network model is proposed that embodies two principal hypotheses supported by experimental data--that sensory experience guides language-specific development of an auditory neural map and that a population vector can predict psychological phenomena based on map cell activities. Model simulations show how a nonuniform distribution of map cell firing preferences can develop from language-specific input and give rise to the magnet effect.

  13. MFAHP: A novel method on the performance evaluation of the industrial wireless networked control system

    NASA Astrophysics Data System (ADS)

    Wu, Linqin; Xu, Sheng; Jiang, Dezhi

    2015-12-01

    Industrial wireless networked control system has been widely used, and how to evaluate the performance of the wireless network is of great significance. In this paper, considering the shortcoming of the existing performance evaluation methods, a comprehensive performance evaluation method of networks multi-indexes fuzzy analytic hierarchy process (MFAHP) combined with the fuzzy mathematics and the traditional analytic hierarchy process (AHP) is presented. The method can overcome that the performance evaluation is not comprehensive and subjective. Experiments show that the method can reflect the network performance of real condition. It has direct guiding role on protocol selection, network cabling, and node setting, and can meet the requirements of different occasions by modifying the underlying parameters.

  14. QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm.

    PubMed

    Bao, Ying; Lei, Weimin; Zhang, Wei; Zhan, Yuzhuo

    2016-01-01

    At present, to realize or improve the quality of experience (QoE) is a major goal for network media transmission service, and QoE evaluation is the basis for adjusting the transmission control mechanism. Therefore, a kind of QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm is proposed in this paper, which is concentrated on service score calculation at the server side. The server side collects network transmission quality of service (QoS) parameter, node location data, and user expectation value from client feedback information. Then it manages the historical data in database through the "big data" process mode, and predicts user score according to heuristic rules. On this basis, it completes fuzzy clustering analysis, and generates service QoE score and management message, which will be finally fed back to clients. Besides, this paper mainly discussed service evaluation generative rules, heuristic evaluation rules and fuzzy clustering analysis methods, and presents service-based QoE evaluation processes. The simulation experiments have verified the effectiveness of QoE collaborative evaluation method based on fuzzy clustering heuristic rules.

  15. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.

    PubMed

    Nagoor Gani, A; Latha, S R

    2016-01-01

    A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.

  16. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  17. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  18. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    PubMed Central

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  19. A Fuzzy analytical hierarchy process approach in irrigation networks maintenance

    NASA Astrophysics Data System (ADS)

    Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i

    2017-11-01

    Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.

  20. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  1. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  2. WNN 92; Proceedings of the 3rd Workshop on Neural Networks: Academic/Industrial/NASA/Defense, Auburn Univ., AL, Feb. 10-12, 1992 and South Shore Harbour, TX, Nov. 4-6, 1992

    NASA Technical Reports Server (NTRS)

    Padgett, Mary L. (Editor)

    1993-01-01

    The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.

  3. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    NASA Astrophysics Data System (ADS)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  4. ELIPS: Toward a Sensor Fusion Processor on a Chip

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James

    1998-01-01

    The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.

  5. Self-learning fuzzy controllers based on temporal back propagation

    NASA Technical Reports Server (NTRS)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  6. Determining geophysical properties from well log data using artificial neural networks and fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Chang, Hsien-Cheng

    Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.

  7. A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks.

    PubMed

    Alia, Osama Moh'd

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  8. A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks

    PubMed Central

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols. PMID:25162060

  9. Using Fuzzy Logic for Performance Evaluation in Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.

    1992-01-01

    Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that it is possible to start with an approximate prior knowledge and learn to refine it through experiments using reinforcement learning.

  10. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2015-10-01

    Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.

  11. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  12. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  13. JPRS Report, Science & Technology, Japan, Key Tech Center Advanced Communications Research

    DTIC Science & Technology

    1990-02-26

    networks. 27 b. Fuzzy access Even when correct information regarding the connection destination is not available, this makes it possible to establish...a connection based on the stored fuzzy information. c. Logical accessing Makes it possible to effect a connection based on the logical name (indivi...understand fuzzy indications from the user. (b) Normality check tests The following tests should be conducted to check the normality of user- defined services

  14. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  15. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the D.C. motor. Furthermore, the LFLC has better performance in rise time, settling time and steady state error than to the conventional PI controller. This abstract accurately represents the content of the candidate's thesis. I recommend its publication.

  16. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  17. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  18. Reactive navigation for autonomous guided vehicle using neuro-fuzzy techniques

    NASA Astrophysics Data System (ADS)

    Cao, Jin; Liao, Xiaoqun; Hall, Ernest L.

    1999-08-01

    A Neuro-fuzzy control method for navigation of an Autonomous Guided Vehicle robot is described. Robot navigation is defined as the guiding of a mobile robot to a desired destination or along a desired path in an environment characterized by as terrain and a set of distinct objects, such as obstacles and landmarks. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Neural network and fuzzy logic control techniques can improve real-time control performance for mobile robot due to its high robustness and error-tolerance ability. For a mobile robot to navigate automatically and rapidly, an important factor is to identify and classify mobile robots' currently perceptual environment. In this paper, a new approach of the current perceptual environment feature identification and classification, which are based on the analysis of the classifying neural network and the Neuro- fuzzy algorithm, is presented. The significance of this work lies in the development of a new method for mobile robot navigation.

  19. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  20. Time dependent neural network models for detecting changes of state in complex processes: applications in earth sciences and astronomy.

    PubMed

    Valdés, Julio J; Bonham-Carter, Graeme

    2006-03-01

    A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.

  1. Adaptive Neural Networks for Automatic Negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakas, D. P.; Vlachos, D. S.; Simos, T. E.

    The use of fuzzy logic and fuzzy neural networks has been found effective for the modelling of the uncertain relations between the parameters of a negotiation procedure. The problem with these configurations is that they are static, that is, any new knowledge from theory or experiment lead to the construction of entirely new models. To overcome this difficulty, we apply in this work, an adaptive neural topology to model the negotiation process. Finally a simple simulation is carried in order to test the new method.

  2. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  3. Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Zhou, Kefa; Du, Xishihui

    2017-04-01

    Mineral prospectivity mapping (MPM) is a multi-step process that ranks promising target areas for further exploration. Fuzzy logic and fuzzy analytical hierarchy process (AHP) are knowledge-driven MPM approaches. In this study, both approaches were used for data processing, based on which MPM was performed for porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang. The results of the two methods were then compared. The two methods combined expert experience and the Studentized contrast (S(C)) values of the weights-of-evidence approach to calculate the weights of 15 layers, and these layers were then integrated by the gamma operator (γ). Through prediction-area (P-A) plot analysis, the optimal γ for fuzzy logic and fuzzy AHP was determined as 0.95 and 0.93, respectively. The thresholds corresponding to different levels of metallogenic probability were defined via concentration-area (C-A) fractal analysis. The prediction performances of the two methods were compared on this basis. The results showed that in MPM based on fuzzy logic, the area under the receiver operating characteristic (ROC) curve was 0.806 and 81.48% of the known deposits were predicted, whereas in MPM based on fuzzy AHP, the area under the ROC curve was 0.862 and 92.59% of the known deposits were predicted. Therefore, prediction based on fuzzy AHP is more accurate and can provide directions for future prospecting.

  4. Comment on “Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems”

    NASA Astrophysics Data System (ADS)

    Pan, Yongping; Huang, Daoping

    2011-03-01

    In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.

  5. Data driven model generation based on computational intelligence

    NASA Astrophysics Data System (ADS)

    Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus

    2010-05-01

    The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion parameters with respect to a defined rating function and experimental data. To find A, we use for example a linear equation solver and RMSE-function. In practical process models, the number of Fuzzy sets and the according number of rules is fairly low. Nevertheless, creating the optimal model requires some experience. Therefore, we improved this development step by methods for automatic generation of Fuzzy sets, rules, and conclusions. Basically, the model achievement depends to a great extend on the selection of the conclusion variables. It is the aim that variables having most influence on the system reaction being considered and superfluous ones being neglected. At first, we use Kohonen maps, a specialized ANN, to identify relevant input variables from the large set of available system variables. A greedy algorithm selects a comprehensive set of dominant and uncorrelated variables. Next, the premise variables are analyzed with clustering methods (e.g. Fuzzy-C-means) and Fuzzy sets are then derived from cluster centers and outlines. The rule base is automatically constructed by permutation of the Fuzzy sets of the premise variables. Finally, the conclusion parameters are calculated and the total coverage of the input space is iteratively tested with experimental data, rarely firing rules are combined and coarse coverage of sensitive process states results in refined Fuzzy sets and rules. Results The described methods were implemented and integrated in a development system for process models. A series of models has already been built e.g. for rainfall-runoff modeling or for flood prediction (up to 72 hours) in river catchments. The models required significantly less development effort and showed advanced simulation results compared to conventional models. The models can be used operationally and simulation takes only some minutes on a standard PC e.g. for a gauge forecast (up to 72 hours) for the whole Mosel (Germany) river catchment.

  6. Model Multi Criteria Decision Making with Fuzzy ANP Method for Performance Measurement Small Medium Enterprise (SME)

    NASA Astrophysics Data System (ADS)

    Rahmanita, E.; Widyaningrum, V. T.; Kustiyahningsih, Y.; Purnama, J.

    2018-04-01

    SMEs have a very important role in the development of the economy in Indonesia. SMEs assist the government in terms of creating new jobs and can support household income. The number of SMEs in Madura and the number of measurement indicators in the SME mapping so that it requires a method.This research uses Fuzzy Analytic Network Process (FANP) method for performance measurement SME. The FANP method can handle data that contains uncertainty. There is consistency index in determining decisions. Performance measurement in this study is based on a perspective of the Balanced Scorecard. This research approach integrated internal business perspective, learning, and growth perspective and fuzzy Analytic Network Process (FANP). The results of this research areframework a priority weighting of assessment indicators SME.

  7. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  8. Soft computing methods for geoidal height transformation

    NASA Astrophysics Data System (ADS)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  9. Fuzzy time-series based on Fibonacci sequence for stock price forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia

    2007-07-01

    Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.

  10. Intelligent manipulation technique for multi-branch robotic systems

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  11. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  12. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.

    PubMed

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang

    2016-12-01

    It is very important for robotically assisted minimally invasive surgery to achieve a high-precision and smooth motion control. However, the surgical instrument tip will exhibit vibration caused by nonlinear friction and unmodeled dynamics, especially when the surgical robot system is attempting low-speed, fine motion. A fuzzy neural network sliding mode controller (FNNSMC) is proposed to suppress vibration of the surgical robotic system. Nonlinear friction and modeling uncertainties are compensated by a Stribeck model, a radial basis function (RBF) neural network and a fuzzy system, respectively. Simulations and experiments were performed on a 3 degree-of-freedom (DOF) minimally invasive surgical robot. The results demonstrate that the FNNSMC is effective and can suppress vibrations at the surgical instrument tip. The proposed FNNSMC can provide a robust performance and suppress the vibrations at the surgical instrument tip, which can enhance the quality and security of surgical procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.

    PubMed

    Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G

    2011-10-01

    In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts.

  14. An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks

    PubMed Central

    Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches. PMID:25574490

  15. An adaptive handover prediction scheme for seamless mobility based wireless networks.

    PubMed

    Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  16. Fuzzy Logic based Handoff Latency Reduction Mechanism in Layer 2 of Heterogeneous Mobile IPv6 Networks

    NASA Astrophysics Data System (ADS)

    Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.

    2013-12-01

    Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.

  17. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    PubMed

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.

  18. Comparison of Fuzzy-Based Models in Landslide Hazard Mapping

    NASA Astrophysics Data System (ADS)

    Mijani, N.; Neysani Samani, N.

    2017-09-01

    Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP), Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR) and Quality Sum (QS). The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P) and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  19. Application-Driven No-Reference Quality Assessment for Dermoscopy Images With Multiple Distortions.

    PubMed

    Xie, Fengying; Lu, Yanan; Bovik, Alan C; Jiang, Zhiguo; Meng, Rusong

    2016-06-01

    Dermoscopy images often suffer from blur and uneven illumination distortions that occur during acquisition, which can adversely influence consequent automatic image analysis results on potential lesion objects. The purpose of this paper is to deploy an algorithm that can automatically assess the quality of dermoscopy images. Such an algorithm could be used to direct image recapture or correction. We describe an application-driven no-reference image quality assessment (IQA) model for dermoscopy images affected by possibly multiple distortions. For this purpose, we created a multiple distortion dataset of dermoscopy images impaired by varying degrees of blur and uneven illumination. The basis of this model is two single distortion IQA metrics that are sensitive to blur and uneven illumination, respectively. The outputs of these two metrics are combined to predict the quality of multiply distorted dermoscopy images using a fuzzy neural network. Unlike traditional IQA algorithms, which use human subjective score as ground truth, here ground truth is driven by the application, and generated according to the degree of influence of the distortions on lesion analysis. The experimental results reveal that the proposed model delivers accurate and stable quality prediction results for dermoscopy images impaired by multiple distortions. The proposed model is effective for quality assessment of multiple distorted dermoscopy images. An application-driven concept for IQA is introduced, and at the same time, a solution framework for the IQA of multiple distortions is proposed.

  20. Prediction of coagulation and flocculation processes using ANN models and fuzzy regression.

    PubMed

    Zangooei, Hossein; Delnavaz, Mohammad; Asadollahfardi, Gholamreza

    2016-09-01

    Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R 2 ) of 0.96 and root mean square error of 0.0106.

  1. Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization

    PubMed Central

    Küffner, Robert; Petri, Tobias; Windhager, Lukas; Zimmer, Ralf

    2010-01-01

    Background The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters. PMID:20862218

  2. Intelligent Traffic Quantification System

    NASA Astrophysics Data System (ADS)

    Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta

    2017-08-01

    Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.

  3. Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks

    PubMed Central

    Xia, Feng; Zhao, Wenhong; Sun, Youxian; Tian, Yu-Chu

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support. PMID:28903288

  4. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  5. Fuzzy recognition of noncompact musical objects

    NASA Astrophysics Data System (ADS)

    Cristobal Salas, Alfredo; Tchernykh, Andrei

    1997-03-01

    This article describes and compares some techniques to extract attributes from black and white images which contain musical objects. The inertia moment, the central moments and the wavelet transform methods are used to describe the images. Two supervised neural networks are applied to classify the images: backpropagation and fuzzy backpropagation. The results are compared.

  6. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    NASA Astrophysics Data System (ADS)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root mean square error (RMSE), absolute error mean (AEM) and scatter index (SI) between target and predicted sand fraction values. The achieved estimation accuracy may diverge minutely depending on geological characteristics of a particular study area. The documented results in this study demonstrate acceptable resemblance between target and predicted variables, and hence, encourage the application of integrated machine learning approaches such as Neuro-Fuzzy in reservoir characterization domain. Furthermore, visualization of the variation of sand probability in the study area would assist in identifying placement of potential wells for future drilling operations.

  7. Risk analysis with a fuzzy-logic approach of a complex installation

    NASA Astrophysics Data System (ADS)

    Peikert, Tim; Garbe, Heyno; Potthast, Stefan

    2016-09-01

    This paper introduces a procedural method based on fuzzy logic to analyze systematic the risk of an electronic system in an intentional electromagnetic environment (IEME). The method analyzes the susceptibility of a complex electronic installation with respect to intentional electromagnetic interference (IEMI). It combines the advantages of well-known techniques as fault tree analysis (FTA), electromagnetic topology (EMT) and Bayesian networks (BN) and extends the techniques with an approach to handle uncertainty. This approach uses fuzzy sets, membership functions and fuzzy logic to handle the uncertainty with probability functions and linguistic terms. The linguistic terms add to the risk analysis the knowledge from experts of the investigated system or environment.

  8. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  9. Diagnosing Parkinson's Diseases Using Fuzzy Neural System

    PubMed Central

    Abiyev, Rahib H.; Abizade, Sanan

    2016-01-01

    This study presents the design of the recognition system that will discriminate between healthy people and people with Parkinson's disease. A diagnosing of Parkinson's diseases is performed using fusion of the fuzzy system and neural networks. The structure and learning algorithms of the proposed fuzzy neural system (FNS) are presented. The approach described in this paper allows enhancing the capability of the designed system and efficiently distinguishing healthy individuals. It was proved through simulation of the system that has been performed using data obtained from UCI machine learning repository. A comparative study was carried out and the simulation results demonstrated that the proposed fuzzy neural system improves the recognition rate of the designed system. PMID:26881009

  10. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  11. A new learning algorithm for a fully connected neuro-fuzzy inference system.

    PubMed

    Chen, C L Philip; Wang, Jing; Wang, Chi-Hsu; Chen, Long

    2014-10-01

    A traditional neuro-fuzzy system is transformed into an equivalent fully connected three layer neural network (NN), namely, the fully connected neuro-fuzzy inference systems (F-CONFIS). The F-CONFIS differs from traditional NNs by its dependent and repeated weights between input and hidden layers and can be considered as the variation of a kind of multilayer NN. Therefore, an efficient learning algorithm for the F-CONFIS to cope these repeated weights is derived. Furthermore, a dynamic learning rate is proposed for neuro-fuzzy systems via F-CONFIS where both premise (hidden) and consequent portions are considered. Several simulation results indicate that the proposed approach achieves much better accuracy and fast convergence.

  12. A Conceptual Framework for Representing Human Behavior Characteristics in a System of Systems Agent-Based Survivability Simulation

    DTIC Science & Technology

    2010-11-22

    fuzzy matrix converges to a “zero-one” matrix. The values of “0” and “1” simply means that two edges of the network with “1” have a crisp ...fuzzy matrix converges to a “zero-one” matrix. The values of “0” and “1” simply means that two edges of the network with “1” have a crisp connectivity...converges to a “zero-one” matrix. The values of “0” and “1” simply means that two edges of the network with “1” have a crisp connectivity (and

  13. Imbibition well stimulation via neural network design

    DOEpatents

    Weiss, William [Socorro, NM

    2007-08-14

    A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.

  14. A Multimetric Approach for Handoff Decision in Heterogeneous Wireless Networks

    NASA Astrophysics Data System (ADS)

    Kustiawan, I.; Purnama, W.

    2018-02-01

    Seamless mobility and service continuity anywhere at any time are an important issue in the wireless Internet. This research proposes a scheme to make handoff decisions effectively in heterogeneous wireless networks using a fuzzy system. Our design lies in an inference engine which takes RSS (received signal strength), data rate, network latency, and user preference as strategic determinants. The logic of our engine is realized on a UE (user equipment) side in faster reaction to network dynamics while roaming across different radio access technologies. The fuzzy system handles four metrics jointly to deduce a moderate decision about when to initiate handoff. The performance of our design is evaluated by simulating move-out mobility scenarios. Simulation results show that our scheme outperforms other approaches in terms of reducing unnecessary handoff.

  15. Fuzzy logic applications to expert systems and control

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

  16. Differentiating malignant from benign breast tumors on acoustic radiation force impulse imaging using fuzzy-based neural networks with principle component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Hsiao-Chuan; Chou, Yi-Hong; Tiu, Chui-Mei; Hsieh, Chi-Wen; Liu, Brent; Shung, K. Kirk

    2017-03-01

    Many modalities have been developed as screening tools for breast cancer. A new screening method called acoustic radiation force impulse (ARFI) imaging was created for distinguishing breast lesions based on localized tissue displacement. This displacement was quantitated by virtual touch tissue imaging (VTI). However, VTIs sometimes express reverse results to intensity information in clinical observation. In the study, a fuzzy-based neural network with principle component analysis (PCA) was proposed to differentiate texture patterns of malignant breast from benign tumors. Eighty VTIs were randomly retrospected. Thirty four patients were determined as BI-RADS category 2 or 3, and the rest of them were determined as BI-RADS category 4 or 5 by two leading radiologists. Morphological method and Boolean algebra were performed as the image preprocessing to acquire region of interests (ROIs) on VTIs. Twenty four quantitative parameters deriving from first-order statistics (FOS), fractal dimension and gray level co-occurrence matrix (GLCM) were utilized to analyze the texture pattern of breast tumors on VTIs. PCA was employed to reduce the dimension of features. Fuzzy-based neural network as a classifier to differentiate malignant from benign breast tumors. Independent samples test was used to examine the significance of the difference between benign and malignant breast tumors. The area Az under the receiver operator characteristic (ROC) curve, sensitivity, specificity and accuracy were calculated to evaluate the performance of the system. Most all of texture parameters present significant difference between malignant and benign tumors with p-value of less than 0.05 except the average of fractal dimension. For all features classified by fuzzy-based neural network, the sensitivity, specificity, accuracy and Az were 95.7%, 97.1%, 95% and 0.964, respectively. However, the sensitivity, specificity, accuracy and Az can be increased to 100%, 97.1%, 98.8% and 0.985, respectively if PCA was performed to reduce the dimension of features. Patterns of breast tumors on VTIs can effectively be recognized by quantitative texture parameters, and differentiated malignant from benign lesions by fuzzy-based neural network with PCA.

  17. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    NASA Astrophysics Data System (ADS)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  18. a Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks

    NASA Astrophysics Data System (ADS)

    Heidari, A. A.; Delavar, M. R.

    2016-06-01

    In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.

  19. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    PubMed

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  20. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    PubMed

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  1. a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation

    NASA Astrophysics Data System (ADS)

    Nadi, S.; Houshyaripour, A. H.

    2017-09-01

    This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.

  2. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  3. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  4. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    NASA Astrophysics Data System (ADS)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  5. Nonlinear aeroacoustic characterization of Helmholtz resonators with a local-linear neuro-fuzzy network model

    NASA Astrophysics Data System (ADS)

    Förner, K.; Polifke, W.

    2017-10-01

    The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.

  6. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    PubMed Central

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889

  7. Hybrid Architectures and Their Impact on Intelligent Design

    NASA Technical Reports Server (NTRS)

    Kandel, Abe

    1996-01-01

    In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.

  8. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain.

    PubMed

    Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.

  9. An optimal general type-2 fuzzy controller for Urban Traffic Network.

    PubMed

    Khooban, Mohammad Hassan; Vafamand, Navid; Liaghat, Alireza; Dragicevic, Tomislav

    2017-01-01

    Urban traffic network model is illustrated by state-charts and object-diagram. However, they have limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space model is used to calculate the half-value waiting time of vehicles. In this study, a combination of the general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth flow of traffic with the least wait times and average queue length. The parameters of input and output membership functions are optimized simultaneously by the novel heuristic algorithm MBSA. A comparison is made between the achieved results with those of optimal and conventional type-1 fuzzy logic controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Integration of QFD, AHP, and LPP methods in supplier development problems under uncertainty

    NASA Astrophysics Data System (ADS)

    Shad, Zahra; Roghanian, Emad; Mojibian, Fatemeh

    2014-04-01

    Quality function deployment (QFD) is a customer-driven approach, widely used to develop or process new product to maximize customer satisfaction. Last researches used linear physical programming (LPP) procedure to optimize QFD; however, QFD issue involved uncertainties, or fuzziness, which requires taking them into account for more realistic study. In this paper, a set of fuzzy data is used to address linguistic values parameterized by triangular fuzzy numbers. Proposed integrated approach including analytic hierarchy process (AHP), QFD, and LPP to maximize overall customer satisfaction under uncertain conditions and apply them in the supplier development problem. The fuzzy AHP approach is adopted as a powerful method to obtain the relationship between the customer requirements and engineering characteristics (ECs) to construct house of quality in QFD method. LPP is used to obtain the optimal achievement level of the ECs and subsequently the customer satisfaction level under different degrees of uncertainty. The effectiveness of proposed method will be illustrated by an example.

  11. A new design of robust H∞ sliding mode control for uncertain stochastic T-S fuzzy time-delay systems.

    PubMed

    Gao, Qing; Feng, Gang; Xi, Zhiyu; Wang, Yong; Qiu, Jianbin

    2014-09-01

    In this paper, a novel dynamic sliding mode control scheme is proposed for a class of uncertain stochastic nonlinear time-delay systems represented by Takagi-Sugeno fuzzy models. The key advantage of the proposed scheme is that two very restrictive assumptions in most existing sliding mode control approaches for stochastic fuzzy systems have been removed. It is shown that the closed-loop control system trajectories can be driven onto the sliding surface in finite time almost certainly. It is also shown that the stochastic stability of the resulting sliding motion can be guaranteed in terms of linear matrix inequalities; moreover, the sliding-mode controller can be obtained simultaneously. Simulation results illustrating the advantages and effectiveness of the proposed approaches are also provided.

  12. Learning and tuning fuzzy logic controllers through reinforcements.

    PubMed

    Berenji, H R; Khedkar, P

    1992-01-01

    A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  13. Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Castellano, Timothy

    1991-01-01

    The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.

  14. GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failures.

    PubMed

    Tung, W L; Quek, C; Cheng, P

    2004-05-01

    Bank failure prediction is an important issue for the regulators of the banking industries. The collapse and failure of a bank could trigger an adverse financial repercussion and generate negative impacts such as a massive bail out cost for the failing bank and loss of confidence from the investors and depositors. Very often, bank failures are due to financial distress. Hence, it is desirable to have an early warning system (EWS) that identifies potential bank failure or high-risk banks through the traits of financial distress. Various traditional statistical models have been employed to study bank failures [J Finance 1 (1975) 21; J Banking Finance 1 (1977) 249; J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073]. However, these models do not have the capability to identify the characteristics of financial distress and thus function as black boxes. This paper proposes the use of a new neural fuzzy system [Foundations of neuro-fuzzy systems, 1997], namely the Generic Self-organising Fuzzy Neural Network (GenSoFNN) [IEEE Trans Neural Networks 13 (2002c) 1075] based on the compositional rule of inference (CRI) [Commun ACM 37 (1975) 77], as an alternative to predict banking failure. The CRI based GenSoFNN neural fuzzy network, henceforth denoted as GenSoFNN-CRI(S), functions as an EWS and is able to identify the inherent traits of financial distress based on financial covariates (features) derived from publicly available financial statements. The interaction between the selected features is captured in the form of highly intuitive IF-THEN fuzzy rules. Such easily comprehensible rules provide insights into the possible characteristics of financial distress and form the knowledge base for a highly desired EWS that aids bank regulation. The performance of the GenSoFNN-CRI(S) network is subsequently benchmarked against that of the Cox's proportional hazards model [J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073], the multi-layered perceptron (MLP) and the modified cerebellar model articulation controller (MCMAC) [IEEE Trans Syst Man Cybern: Part B 30 (2000) 491] in predicting bank failures based on a population of 3635 US banks observed over a 21 years period. Three sets of experiments are performed-bank failure classification based on the last available financial record and prediction using financial records one and two years prior to the last available financial statements. The performance of the GenSoFNN-CRI(S) network as a bank failure classification and EWS is encouraging.

  15. Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety

    NASA Astrophysics Data System (ADS)

    Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly

    2017-09-01

    The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.

  16. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    PubMed

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  17. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    NASA Astrophysics Data System (ADS)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  18. Approximate reasoning-based learning and control for proximity operations and docking in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Jani, Yashvant; Lea, Robert N.

    1991-01-01

    A recently proposed hybrid-neutral-network and fuzzy-logic-control architecture is applied to a fuzzy logic controller developed for attitude control of the Space Shuttle. A model using reinforcement learning and learning from past experience for fine-tuning its knowledge base is proposed. Two main components of this approximate reasoning-based intelligent control (ARIC) model - an action-state evaluation network and action selection network are described as well as the Space Shuttle attitude controller. An ARIC model for the controller is presented, and it is noted that the input layer in each network includes three nodes representing the angle error, angle error rate, and bias node. Preliminary results indicate that the controller can hold the pitch rate within its desired deadband and starts to use the jets at about 500 sec in the run.

  19. Fuzzy Logic-based Intelligent Scheme for Enhancing QoS of Vertical Handover Decision in Vehicular Ad-hoc Networks

    NASA Astrophysics Data System (ADS)

    Azzali, F.; Ghazali, O.; Omar, M. H.

    2017-08-01

    The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.

  20. An object recognition method based on fuzzy theory and BP networks

    NASA Astrophysics Data System (ADS)

    Wu, Chuan; Zhu, Ming; Yang, Dong

    2006-01-01

    It is difficult to choose eigenvectors when neural network recognizes object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling, shifting, rotation if eigenvectors can not be chosen appropriately. In order to solve this problem, the image is edged, the membership function is reconstructed and a new threshold segmentation method based on fuzzy theory is proposed to get the binary image. Moment invariant of binary image is extracted and normalized. Some time moment invariant is too small to calculate effectively so logarithm of moment invariant is taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively, correctly and quickly.

  1. Capturing multi-stage fuzzy uncertainties in hybrid system dynamics and agent-based models for enhancing policy implementation in health systems research.

    PubMed

    Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa

    2018-01-01

    In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data meaningful and quantifiable in a simulation environment. This research can help practitioners and decision makers to gain better understanding on the dynamics and complexities of precision intervention in healthcare. It can aid the improvement of the optimal allocation of resources for targeted group (s) and the achievement of maximum utility. As this technology becomes more mature, one can design policy flight simulators by which policy/intervention designers can test a variety of assumptions when they evaluate different alternatives interventions.

  2. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  3. "A Bright Supernova Discovered in the Nearby Galaxy NGC 5128" | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments in Cen A. In the near IR the luminous nucleus - the bright fuzzy object - of Cen A is prominent IR the luminous nucleus - the bright fuzzy object - of Cen A is prominent, while in the u band it is

  4. W-algebra for solving problems with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Shevlyakov, A. O.; Matveev, M. G.

    2018-03-01

    A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.

  5. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

    PubMed

    Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

    2016-03-03

    This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

  6. Fuzzy set methods for object recognition in space applications

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.

  7. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics

    NASA Astrophysics Data System (ADS)

    Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim

    2018-05-01

    The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).

  8. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia

    NASA Astrophysics Data System (ADS)

    Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg

    2013-03-01

    Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.

  9. Automated Interpretation of LIBS Spectra using a Fuzzy Logic Inference Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeremy J. Hatch; Timothy R. McJunkin; Cynthia Hanson

    2012-02-01

    Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. A fuzzy logic inference engine (FLIE) was used to differentiate between various copper containing and stainless steel alloys as well as unknowns. Results using FLIE indicate a high degree of confidence in spectral assignment.

  10. Knowledge and intelligent computing system in medicine.

    PubMed

    Pandey, Babita; Mishra, R B

    2009-03-01

    Knowledge-based systems (KBS) and intelligent computing systems have been used in the medical planning, diagnosis and treatment. The KBS consists of rule-based reasoning (RBR), case-based reasoning (CBR) and model-based reasoning (MBR) whereas intelligent computing method (ICM) encompasses genetic algorithm (GA), artificial neural network (ANN), fuzzy logic (FL) and others. The combination of methods in KBS such as CBR-RBR, CBR-MBR and RBR-CBR-MBR and the combination of methods in ICM is ANN-GA, fuzzy-ANN, fuzzy-GA and fuzzy-ANN-GA. The combination of methods from KBS to ICM is RBR-ANN, CBR-ANN, RBR-CBR-ANN, fuzzy-RBR, fuzzy-CBR and fuzzy-CBR-ANN. In this paper, we have made a study of different singular and combined methods (185 in number) applicable to medical domain from mid 1970s to 2008. The study is presented in tabular form, showing the methods and its salient features, processes and application areas in medical domain (diagnosis, treatment and planning). It is observed that most of the methods are used in medical diagnosis very few are used for planning and moderate number in treatment. The study and its presentation in this context would be helpful for novice researchers in the area of medical expert system.

  11. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-05-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.

  12. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    PubMed Central

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-01-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468

  13. eFSM--a novel online neural-fuzzy semantic memory model.

    PubMed

    Tung, Whye Loon; Quek, Chai

    2010-01-01

    Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.

  14. Fuzzy Petri nets to model vision system decisions within a flexible manufacturing system

    NASA Astrophysics Data System (ADS)

    Hanna, Moheb M.; Buck, A. A.; Smith, R.

    1994-10-01

    The paper presents a Petri net approach to modelling, monitoring and control of the behavior of an FMS cell. The FMS cell described comprises a pick and place robot, vision system, CNC-milling machine and 3 conveyors. The work illustrates how the block diagrams in a hierarchical structure can be used to describe events at different levels of abstraction. It focuses on Fuzzy Petri nets (Fuzzy logic with Petri nets) including an artificial neural network (Fuzzy Neural Petri nets) to model and control vision system decisions and robot sequences within an FMS cell. This methodology can be used as a graphical modelling tool to monitor and control the imprecise, vague and uncertain situations, and determine the quality of the output product of an FMS cell.

  15. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    PubMed

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Fuzzy Kernel k-Medoids algorithm for anomaly detection problems

    NASA Astrophysics Data System (ADS)

    Rustam, Z.; Talita, A. S.

    2017-07-01

    Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.

  17. Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.

    PubMed

    Ciofolo, Cybèle; Barillot, Christian

    2009-06-01

    We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.

  18. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    PubMed

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  19. Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty

    NASA Astrophysics Data System (ADS)

    Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi

    2017-09-01

    Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.

  20. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  1. An ANFIS-based on B2C electronic commerce transaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Juan, E-mail: linjuanliucaihong@qq.com; Liu, Chenlian, E-mail: chenglian.liu@gmail.com; Guo, Yongning, E-mail: guoyn@163.com

    2014-10-06

    The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.

  2. An ANFIS-based on B2C electronic commerce transaction

    NASA Astrophysics Data System (ADS)

    Lin, Juan; Liu, Chenlian; Guo, Yongning

    2014-10-01

    The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.

  3. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    PubMed Central

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  4. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  5. GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Koo, Youngju

    2011-04-01

    The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.

  6. Distributed collaborative probabilistic design of multi-failure structure with fluid-structure interaction using fuzzy neural network of regression

    NASA Astrophysics Data System (ADS)

    Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen

    2018-05-01

    To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.

  7. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    PubMed Central

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830

  8. Detection of Anomalies in Hydrometric Data Using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Lauzon, N.; Lence, B. J.

    2002-12-01

    This work focuses on the detection of anomalies in hydrometric data sequences, such as 1) outliers, which are individual data having statistical properties that differ from those of the overall population; 2) shifts, which are sudden changes over time in the statistical properties of the historical records of data; and 3) trends, which are systematic changes over time in the statistical properties. For the purpose of the design and management of water resources systems, it is important to be aware of these anomalies in hydrometric data, for they can induce a bias in the estimation of water quantity and quality parameters. These anomalies may be viewed as specific patterns affecting the data, and therefore pattern recognition techniques can be used for identifying them. However, the number of possible patterns is very large for each type of anomaly and consequently large computing capacities are required to account for all possibilities using the standard statistical techniques, such as cluster analysis. Artificial intelligence techniques, such as the Kohonen neural network and fuzzy c-means, are clustering techniques commonly used for pattern recognition in several areas of engineering and have recently begun to be used for the analysis of natural systems. They require much less computing capacity than the standard statistical techniques, and therefore are well suited for the identification of outliers, shifts and trends in hydrometric data. This work constitutes a preliminary study, using synthetic data representing hydrometric data that can be found in Canada. The analysis of the results obtained shows that the Kohonen neural network and fuzzy c-means are reasonably successful in identifying anomalies. This work also addresses the problem of uncertainties inherent to the calibration procedures that fit the clusters to the possible patterns for both the Kohonen neural network and fuzzy c-means. Indeed, for the same database, different sets of clusters can be established with these calibration procedures. A simple method for analyzing uncertainties associated with the Kohonen neural network and fuzzy c-means is developed here. The method combines the results from several sets of clusters, either from the Kohonen neural network or fuzzy c-means, so as to provide an overall diagnosis as to the identification of outliers, shifts and trends. The results indicate an improvement in the performance for identifying anomalies when the method of combining cluster sets is used, compared with when only one cluster set is used.

  9. Evolving RBF neural networks for adaptive soft-sensor design.

    PubMed

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  10. Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    PubMed Central

    Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.

    2012-01-01

    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225

  11. Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.

    PubMed

    Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun

    2016-10-01

    This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.

  12. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  13. Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm.

    PubMed

    Sinha, S K; Karray, F

    2002-01-01

    Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.

  14. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  15. Classification and Quality Evaluation of Tobacco Leaves Based on Image Processing and Fuzzy Comprehensive Evaluation

    PubMed Central

    Zhang, Fan; Zhang, Xinhong

    2011-01-01

    Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744

  16. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  17. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  18. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement.

    PubMed

    Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun

    2016-12-03

    Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.

  19. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement

    PubMed Central

    Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun

    2016-01-01

    Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC. PMID:27918482

  20. Classification of air quality using fuzzy synthetic multiplication.

    PubMed

    Abdullah, Lazim; Khalid, Noor Dalina

    2012-11-01

    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.

  1. Neurocontrol and fuzzy logic: Connections and designs

    NASA Technical Reports Server (NTRS)

    Werbos, Paul J.

    1991-01-01

    Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.

  2. Exploiting expert systems in cardiology: a comparative study.

    PubMed

    Economou, George-Peter K; Sourla, Efrosini; Stamatopoulou, Konstantina-Maria; Syrimpeis, Vasileios; Sioutas, Spyros; Tsakalidis, Athanasios; Tzimas, Giannis

    2015-01-01

    An improved Adaptive Neuro-Fuzzy Inference System (ANFIS) in the field of critical cardiovascular diseases is presented. The system stems from an earlier application based only on a Sugeno-type Fuzzy Expert System (FES) with the addition of an Artificial Neural Network (ANN) computational structure. Thus, inherent characteristics of ANNs, along with the human-like knowledge representation of fuzzy systems are integrated. The ANFIS has been utilized into building five different sub-systems, distinctly covering Coronary Disease, Hypertension, Atrial Fibrillation, Heart Failure, and Diabetes, hence aiding doctors of medicine (MDs), guide trainees, and encourage medical experts in their diagnoses centering a wide range of Cardiology. The Fuzzy Rules have been trimmed down and the ANNs have been optimized in order to focus into each particular disease and produce results ready-to-be applied to real-world patients.

  3. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    PubMed Central

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  4. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  5. A neuro-fuzzy approach in the classification of students' academic performance.

    PubMed

    Do, Quang Hung; Chen, Jeng-Fung

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  6. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher

    1994-01-01

    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  7. Fuzzy-information-based robustness of interconnected networks against attacks and failures

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai

    2016-09-01

    Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.

  8. Optimized face recognition algorithm using radial basis function neural networks and its practical applications.

    PubMed

    Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold

    2015-09-01

    In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Urban Growth Modeling Using Anfis Algorithm: a Case Study for Sanandaj City, Iran

    NASA Astrophysics Data System (ADS)

    Mohammady, S.; Delavar, M. R.; Pijanowski, B. C.

    2013-10-01

    Global urban population has increased from 22.9% in 1985 to 47% in 2010. In spite of the tendency for urbanization worldwide, only about 2% of Earth's land surface is covered by cities. Urban population in Iran is increasing due to social and economic development. The proportion of the population living in Iran urban areas has consistently increased from about 31% in 1956 to 68.4% in 2006. Migration of the rural population to cities and population growth in cities have caused many problems, such as irregular growth of cities, improper placement of infrastructure and urban services. Air and environmental pollution, resource degradation and insufficient infrastructure, are the results of poor urban planning that have negative impact on the environment or livelihoods of people living in cities. These issues are a consequence of improper land use planning. Models have been employed to assist in our understanding of relations between land use and its subsequent effects. Different models for urban growth modeling have been developed. Methods from computational intelligence have made great contributions in all specific application domains and hybrid algorithms research as a part of them has become a big trend in computational intelligence. Artificial Neural Network (ANN) has the capability to deal with imprecise data by training, while fuzzy logic can deal with the uncertainty of human cognition. ANN learns from scratch by adjusting the interconnections between layers and Fuzzy Inference Systems (FIS) is a popular computing framework based on the concept of fuzzy set theory, fuzzy logic, and fuzzy reasoning. Fuzzy logic has many advantages such as flexibility and at the other sides, one of the biggest problems in fuzzy logic application is the location and shape and of membership function for each fuzzy variable which is generally being solved by trial and error method. In contrast, numerical computation and learning are the advantages of neural network, however, it is not easy to obtain the optimal structure. Since, in this type of fuzzy logic, neural network has been used, therefore, by using a learning algorithm the parameters have been changed until reach the optimal solution. Adaptive Neuro Fuzzy Inference System (ANFIS) computing due to ability to understand nonlinear structures is a popular framework for solving complex problems. Fusion of ANN and FIS has attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. In this research, an ANFIS method has been developed for modeling land use change and interpreting the relationship between the drivers of urbanization. Our study area is the city of Sanandaj located in the west of Iran. Landsat images acquired in 2000 and 2006 have been used for model development and calibration. The parameters used in this study include distance to major roads, distance to residential regions, elevation, number of urban pixels in a 3 by 3 neighborhood and distance to green space. Percent Correct Match (PCM) and Figure of Merit were used to assess model goodness of fit were 93.77% and 64.30%, respectively.

  10. Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Jian, Shaoyong

    2018-03-01

    an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.

  11. Impulsive effect on global exponential stability of BAM fuzzy cellular neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Li, Kelin

    2010-02-01

    In this article, a class of impulsive bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time-varying delays is formulated and investigated. By employing delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM FCNNs with time-varying delays are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM FCNNs. An example is given to show the effectiveness of the results obtained here.

  12. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects.

    PubMed

    Schwaibold, M; Schöchlin, J; Bolz, A

    2002-01-01

    For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.

  13. FuzzyFusion: an application architecture for multisource information fusion

    NASA Astrophysics Data System (ADS)

    Fox, Kevin L.; Henning, Ronda R.

    2009-04-01

    The correlation of information from disparate sources has long been an issue in data fusion research. Traditional data fusion addresses the correlation of information from sources as diverse as single-purpose sensors to all-source multi-media information. Information system vulnerability information is similar in its diversity of sources and content, and in the desire to draw a meaningful conclusion, namely, the security posture of the system under inspection. FuzzyFusionTM, A data fusion model that is being applied to the computer network operations domain is presented. This model has been successfully prototyped in an applied research environment and represents a next generation assurance tool for system and network security.

  14. Smart sensorless prediction diagnosis of electric drives

    NASA Astrophysics Data System (ADS)

    Kruglova, TN; Glebov, NA; Shoshiashvili, ME

    2017-10-01

    In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.

  15. Real-time quality monitoring in debutanizer column with regression tree and ANFIS

    NASA Astrophysics Data System (ADS)

    Siddharth, Kumar; Pathak, Amey; Pani, Ajaya Kumar

    2018-05-01

    A debutanizer column is an integral part of any petroleum refinery. Online composition monitoring of debutanizer column outlet streams is highly desirable in order to maximize the production of liquefied petroleum gas. In this article, data-driven models for debutanizer column are developed for real-time composition monitoring. The dataset used has seven process variables as inputs and the output is the butane concentration in the debutanizer column bottom product. The input-output dataset is divided equally into a training (calibration) set and a validation (testing) set. The training set data were used to develop fuzzy inference, adaptive neuro fuzzy (ANFIS) and regression tree models for the debutanizer column. The accuracy of the developed models were evaluated by simulation of the models with the validation dataset. It is observed that the ANFIS model has better estimation accuracy than other models developed in this work and many data-driven models proposed so far in the literature for the debutanizer column.

  16. Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Wang, Bin; Zhang, Xian-min; Han, Jian-da

    2013-04-01

    This study presents a novel translating piezoelectric flexible manipulator driven by a rodless cylinder. Simultaneous positioning control and vibration suppression of the flexible manipulator is accomplished by using a hybrid driving scheme composed of the pneumatic cylinder and a piezoelectric actuator. Pulse code modulation (PCM) method is utilized for the cylinder. First, the system dynamics model is derived, and its standard multiple input multiple output (MIMO) state-space representation is provided. Second, a composite proportional derivative (PD) control algorithms and a direct adaptive fuzzy control method are designed for the MIMO system. Also, a time delay compensation algorithm, bandstop and low-pass filters are utilized, under consideration of the control hysteresis and the caused high-frequency modal vibration due to the long stroke of the cylinder, gas compression and nonlinear factors of the pneumatic system. The convergence of the closed loop system is analyzed. Finally, experimental apparatus is constructed and experiments are conducted. The effectiveness of the designed controllers and the hybrid driving scheme is verified through simulation and experimental comparison studies. The numerical simulation and experimental results demonstrate that the proposed system scheme of employing the pneumatic drive and piezoelectric actuator can suppress the vibration and achieve the desired positioning location simultaneously. Furthermore, the adopted adaptive fuzzy control algorithms can significantly enhance the control performance.

  17. Globally-Applicable Predictive Wildfire Model   a Temporal-Spatial GIS Based Risk Analysis Using Data Driven Fuzzy Logic Functions

    NASA Astrophysics Data System (ADS)

    van den Dool, G.

    2017-11-01

    This study (van den Dool, 2017) is a proof of concept for a global predictive wildfire model, in which the temporal-spatial characteristics of wildfires are placed in a Geographical Information System (GIS), and the risk analysis is based on data-driven fuzzy logic functions. The data sources used in this model are available as global datasets, but subdivided into three pilot areas: North America (California/Nevada), Europe (Spain), and Asia (Mongolia), and are downscaled to the highest resolution (3-arc second). The GIS is constructed around three themes: topography, fuel availability and climate. From the topographical data, six derived sub-themes are created and converted to a fuzzy membership based on the catchment area statistics. The fuel availability score is a composite of four data layers: land cover, wood loads, biomass, biovolumes. As input for the climatological sub-model reanalysed daily averaged, weather-related data is used, which is accumulated to a global weekly time-window (to account for the uncertainty within the climatological model) and forms the temporal component of the model. The final product is a wildfire risk score (from 0 to 1) by week, representing the average wildfire risk in an area. To compute the potential wildfire risk the sub-models are combined usinga Multi-Criteria Approach, and the model results are validated against the area under the Receiver Operating Characteristic curve.

  18. Data Driven Ionospheric Modeling in Relation to Space Weather: Percent Cloud Coverage

    NASA Astrophysics Data System (ADS)

    Tulunay, Y.; Senalp, E. T.; Tulunay, E.

    2009-04-01

    Since 1990, a small group at METU has been developing data driven models in order to forecast some critical system parameters related with the near-Earth space processes. The background on the subject supports new achievements, which contributed the COST 724 activities, which will contribute to the new ES0803 activities. This work mentions one of the outstanding contributions, namely forecasting of meteorological parameters by considering the probable influence of cosmic rays (CR) and sunspot numbers (SSN). The data-driven method is generic and applicable to many Near-Earth Space processes including ionospheric/plasmaspheric interactions. It is believed that the EURIPOS initiative would be useful in supplying wide range reliable data to the models developed. Quantification of physical mechanisms, which causally link Space Weather to the Earth's Weather, has been a challenging task. In this basis, the percent cloud coverage (%CC) and cloud top temperatures (CTT) were forecast one month ahead of time between geographic coordinates of (22.5˚N; 57.5˚N); and (7.5˚W; 47.5˚E) at 96 grid locations and covering the years of 1983 to 2000 using the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M) [Tulunay, 2008]. The Near Earth Space variability at several different time scales arises from a number of separate factors and the physics of the variations cannot be modeled due to the lack of current information about the parameters of several natural processes. CR are shielded by the magnetosphere to a certain extent, but they can modulate the low level cloud cover. METU-FNN-M was developed, trained and applied for forecasting the %CC and CTT, by considering the history of those meteorological variables; Cloud Optical Depth (COD); the Ionization (I) value that is formulized and computed by using CR data and CTT; SSN; temporal variables; and defuzified cloudiness. The temporal and spatial variables and the cut off rigidity are used to compute the defuzified cloudiness. The forecast %CC and CTT values at uniformly spaced grids over the region of interest are used for mapping by Bezier surfaces. The major advantage of the fuzzy model is that it uses its inputs and the expert knowledge in coordination. Long-term cloud analysis was performed on a region having differences in terms of atmospheric activity, in order to show the generalization capability. Global and local parameters of the process were considered. Both CR Flux and SSN reflect the influence of Space Weather on general planetary situation; but other parameters in the inputs of the model reflect local situation. Error and correlation analysis on the forecast and observed parameters were performed. The correlations between the forecast and observed parameters are very promising. The model contributes to the dependence of the cloud formation process on CR Fluxes. The one-month in advance forecast values of the model can also be used as inputs to other models, which forecast some other local or global parameters in order to further test the hypothesis on possible link(s) between Space Weather and the Earth's Weather. The model based, theoretical and numerical works mentioned are promising and have potential for future research and developments. References Tulunay Y., E.T. Şenalp, Ş. Öz, L.I. Dorman, E. Tulunay, S.S. Menteş and M.E. Akcan (2008), A Fuzzy Neural Network Model to Forecast the Percent Cloud Coverage and Cloud Top Temperature Maps, Ann. Geophys., 26(12), 3945-3954, 2008.

  19. A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight Gas Turbine Engine Diagnostics

    DTIC Science & Technology

    2001-04-05

    Margin (ADM) and (ii) Fault Detection Margin (FDM). Key Words: ANFIS, Engine Health Monitoring , Gas Path Analysis, and Stochastic Analysis Adaptive Network...The paper illustrates the application of a hybrid Stochastic- Fuzzy -Inference Model-Based System (StoFIS) to fault diagnostics and prognostics for both...operational history monitored on-line by the engine health management (EHM) system. To capture the complex functional relationships between different

  20. Three-dimensional slum urban reconstruction in Envisat and Google Earth Egypt

    NASA Astrophysics Data System (ADS)

    Marghany, M.; Genderen, J. v.

    2014-02-01

    This study aims to aim to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed country such as Egypt. The main objective of this work is to utilize 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slam. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.

  1. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  2. Fuzzy fractional order sliding mode controller for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.

    2010-04-01

    In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.

  3. Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose

    NASA Astrophysics Data System (ADS)

    Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.

  4. Fuzzy logic in autonomous orbital operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  5. Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong; Kim, Keunwoo

    2013-03-01

    The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.

  6. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images

    NASA Astrophysics Data System (ADS)

    Maboudi, Mehdi; Amini, Jalal; Malihi, Shirin; Hahn, Michael

    2018-04-01

    Updated road network as a crucial part of the transportation database plays an important role in various applications. Thus, increasing the automation of the road extraction approaches from remote sensing images has been the subject of extensive research. In this paper, we propose an object based road extraction approach from very high resolution satellite images. Based on the object based image analysis, our approach incorporates various spatial, spectral, and textural objects' descriptors, the capabilities of the fuzzy logic system for handling the uncertainties in road modelling, and the effectiveness and suitability of ant colony algorithm for optimization of network related problems. Four VHR optical satellite images which are acquired by Worldview-2 and IKONOS satellites are used in order to evaluate the proposed approach. Evaluation of the extracted road networks shows that the average completeness, correctness, and quality of the results can reach 89%, 93% and 83% respectively, indicating that the proposed approach is applicable for urban road extraction. We also analyzed the sensitivity of our algorithm to different ant colony optimization parameter values. Comparison of the achieved results with the results of four state-of-the-art algorithms and quantifying the robustness of the fuzzy rule set demonstrate that the proposed approach is both efficient and transferable to other comparable images.

  7. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    PubMed

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  8. A medical cost estimation with fuzzy neural network of acute hepatitis patients in emergency room.

    PubMed

    Kuo, R J; Cheng, W C; Lien, W C; Yang, T J

    2015-10-01

    Taiwan is an area where chronic hepatitis is endemic. Liver cancer is so common that it has been ranked first among cancer mortality rates since the early 1980s in Taiwan. Besides, liver cirrhosis and chronic liver diseases are the sixth or seventh in the causes of death. Therefore, as shown by the active research on hepatitis, it is not only a health threat, but also a huge medical cost for the government. The estimated total number of hepatitis B carriers in the general population aged more than 20 years old is 3,067,307. Thus, a case record review was conducted from all patients with diagnosis of acute hepatitis admitted to the Emergency Department (ED) of a well-known teaching-oriented hospital in Taipei. The cost of medical resource utilization is defined as the total medical fee. In this study, a fuzzy neural network is employed to develop the cost forecasting model. A total of 110 patients met the inclusion criteria. The computational results indicate that the FNN model can provide more accurate forecasts than the support vector regression (SVR) or artificial neural network (ANN). In addition, unlike SVR and ANN, FNN can also provide fuzzy IF-THEN rules for interpretation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    PubMed

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  10. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture

    PubMed Central

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-01

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT. PMID:28098822

  11. Study on a Biometric Authentication Model based on ECG using a Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Kim, Ho J.; Lim, Joon S.

    2018-03-01

    Traditional authentication methods use numbers or graphic passwords and thus involve the risk of loss or theft. Various studies are underway regarding biometric authentication because it uses the unique biometric data of a human being. Biometric authentication technology using ECG from biometric data involves signals that record electrical stimuli from the heart. It is difficult to manipulate and is advantageous in that it enables unrestrained measurements from sensors that are attached to the skin. This study is on biometric authentication methods using the neural network with weighted fuzzy membership functions (NEWFM). In the biometric authentication process, normalization and the ensemble average is applied during preprocessing, characteristics are extracted using Haar-wavelets, and a registration process called “training” is performed in the fuzzy neural network. In the experiment, biometric authentication was performed on 73 subjects in the Physionet Database. 10-40 ECG waveforms were tested for use in the registration process, and 15 ECG waveforms were deemed the appropriate number for registering ECG waveforms. 1 ECG waveforms were used during the authentication stage to conduct the biometric authentication test. Upon testing the proposed biometric authentication method based on 73 subjects from the Physionet Database, the TAR was 98.32% and FAR was 5.84%.

  12. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    NASA Astrophysics Data System (ADS)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  13. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    PubMed

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  14. Fuzzy-logic-based network for complex systems risk assessment: application to ship performance analysis.

    PubMed

    Abou, Seraphin C

    2012-03-01

    In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1996-01-01

    Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

  16. Discrimination of Human Forearm Motions on the Basis of Myoelectric Signals by Using Adaptive Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Seki, Hirokazu

    This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.

  17. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  18. BP network identification technology of infrared polarization based on fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Zeng, Haifang; Gu, Guohua; He, Weiji; Chen, Qian; Yang, Wei

    2011-08-01

    Infrared detection system is frequently employed on surveillance operations and reconnaissance mission to detect particular targets of interest in both civilian and military communities. By incorporating the polarization of light as supplementary information, the target discrimination performance could be enhanced. So this paper proposed an infrared target identification method which is based on fuzzy theory and neural network with polarization properties of targets. The paper utilizes polarization degree and light intensity to advance the unsupervised KFCM (kernel fuzzy C-Means) clustering method. And establish different material pol1arization properties database. In the built network, the system can feedback output corresponding material types of probability distribution toward any input polarized degree such as 10° 15°, 20°, 25°, 30°. KFCM, which has stronger robustness and accuracy than FCM, introduces kernel idea and gives the noise points and invalid value different but intuitively reasonable weights. Because of differences in characterization of material properties, there will be some conflicts in classification results. And D - S evidence theory was used in the combination of the polarization and intensity information. Related results show KFCM clustering precision and operation rate are higher than that of the FCM clustering method. The artificial neural network method realizes material identification, which reasonable solved the problems of complexity in environmental information of infrared polarization, and improperness of background knowledge and inference rule. This method of polarization identification is fast in speed, good in self-adaption and high in resolution.

  19. Hybrid expert system for decision supporting in the medical area: complexity and cognitive computing.

    PubMed

    Brasil, L M; de Azevedo, F M; Barreto, J M

    2001-09-01

    This paper proposes a hybrid expert system (HES) to minimise some complexity problems pervasive to the artificial intelligence such as: the knowledge elicitation process, known as the bottleneck of expert systems; the model choice for knowledge representation to code human reasoning; the number of neurons in the hidden layer and the topology used in the connectionist approach; the difficulty to obtain the explanation on how the network arrived to a conclusion. Two algorithms applied to developing of HES are also suggested. One of them is used to train the fuzzy neural network and the other to obtain explanations on how the fuzzy neural network attained a conclusion. To overcome these difficulties the cognitive computing was integrated to the developed system. A case study is presented (e.g. epileptic crisis) with the problem definition and simulations. Results are also discussed.

  20. Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks.

    PubMed

    Wen, Chih-Yu; Chan, Fu-Kai

    2010-01-01

    Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation.

  1. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    PubMed

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Application of a Fuzzy Neural Network Model in Predicting Polycyclic Aromatic Hydrocarbon- Mediated Perturbations of the Cyp1b1 Transcriptional Regulatory Network in Mouse Skin

    PubMed Central

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation. Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. PMID:23274566

  3. Prediction of Compressional, Shear, and Stoneley Wave Velocities from Conventional Well Log Data Using a Committee Machine with Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2012-01-01

    Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.

  4. A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation

    NASA Astrophysics Data System (ADS)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah

    2016-06-01

    Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.

  5. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.

    PubMed

    Lin, Chuan-Kai

    2005-04-01

    A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.

  6. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  7. Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady state.

    PubMed

    Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S

    2009-10-01

    A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.

  8. Evolving fuzzy rules for relaxed-criteria negotiation.

    PubMed

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  9. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  10. An intelligent load shedding scheme using neural networks and neuro-fuzzy.

    PubMed

    Haidar, Ahmed M A; Mohamed, Azah; Al-Dabbagh, Majid; Hussain, Aini; Masoum, Mohammad

    2009-12-01

    Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper.

  11. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.

    PubMed

    Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar

    2018-02-01

    This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Easy Money? The Fuzzy Math of Online Fund-Raising.

    ERIC Educational Resources Information Center

    Struck, Myron

    2001-01-01

    Schools should beware questionable practices of many dot.com companies offering attractive rebates for purchases made online. High rebate rates are often designed to drive traffic to a particular site, but fine print can change overnight. Companies' connections to schools are tenuous and are driven by profit. (MLH)

  13. Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks.

    PubMed

    Dinov, Martin; Leech, Robert

    2017-01-01

    Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses.

  14. Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks

    PubMed Central

    Dinov, Martin; Leech, Robert

    2017-01-01

    Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses. PMID:29163110

  15. Structure identification in fuzzy inference using reinforcement learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1993-01-01

    In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.

  16. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.

    PubMed

    Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Moghaddam, Asghar Asghari

    2017-03-01

    Vulnerability indices of an aquifer assessed by different fuzzy logic (FL) models often give rise to differing values with no theoretical or empirical basis to establish a validated baseline or to develop a comparison basis between the modeling results and baselines, if any. Therefore, this research presents a supervised committee fuzzy logic (SCFL) method, which uses artificial neural networks to overarch and combine a selection of FL models. The indices are expressed by the widely used DRASTIC framework, which include geological, hydrological, and hydrogeological parameters often subject to uncertainty. DRASTIC indices represent collectively intrinsic (or natural) vulnerability and give a sense of contaminants, such as nitrate-N, percolating to aquifers from the surface. The study area is an aquifer in Ardabil plain, the province of Ardabil, northwest Iran. Improvements on vulnerability indices are achieved by FL techniques, which comprise Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL). As the correlation between estimated DRASTIC vulnerability index values and nitrate-N values is as low as 0.4, it is improved significantly by FL models (SFL, MFL, and LFL), which perform in similar ways but have differences. Their synergy is exploited by SCFL and uses the FL modeling results "conditioned" by nitrate-N values to raise their correlation to higher than 0.9.

  17. Fuzzy Versions of Epistemic and Deontic Logic

    NASA Technical Reports Server (NTRS)

    Gounder, Ramasamy S.; Esterline, Albert C.

    1998-01-01

    Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.

  18. Anfis Approach for Sssc Controller Design for the Improvement of Transient Stability Performance

    NASA Astrophysics Data System (ADS)

    Khuntia, Swasti R.; Panda, Sidhartha

    2011-06-01

    In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design a Static Synchronous Series Compensator (SSSC)-based controller for improvement of transient stability. The proposed ANFIS controller combines the advantages of fuzzy controller and quick response and adaptability nature of ANN. The ANFIS structures were trained using the generated database by fuzzy controller of SSSC. It is observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances. The results prove that the proposed SSSC-based ANFIS controller is found to be robust to fault location and change in operating conditions. Further, the results obtained are compared with the conventional lead-lag controllers for SSSC.

  19. Truth-Valued-Flow Inference (TVFI) and its applications in approximate reasoning

    NASA Technical Reports Server (NTRS)

    Wang, Pei-Zhuang; Zhang, Hongmin; Xu, Wei

    1993-01-01

    The framework of the theory of Truth-valued-flow Inference (TVFI) is introduced. Even though there are dozens of papers presented on fuzzy reasoning, we think it is still needed to explore a rather unified fuzzy reasoning theory which has the following two features: (1) it is simplified enough to be executed feasibly and easily; and (2) it is well structural and well consistent enough that it can be built into a strict mathematical theory and is consistent with the theory proposed by L.A. Zadeh. TVFI is one of the fuzzy reasoning theories that satisfies the above two features. It presents inference by the form of networks, and naturally views inference as a process of truth values flowing among propositions.

  20. Restoring Consistency In Subjective Information For Groundwater Driven Health Risk Assessment

    NASA Astrophysics Data System (ADS)

    Ozbek, M. M.; Pinder, G. F.

    2004-12-01

    In an earlier work (Ozbek and Pinder, 2003), we constructed a fuzzy rule-based knowledge base that uses subjective expert opinion to calculate risk-based design constraints (i.e., dose and pattern of exposure) to sustain the groundwater-driven individual health risk at a desired level. Ideally, our system must be capable to produce for any individual a meaningful risk result or for any given risk a meaningful design constraint, in the sense that the result is neither the empty set nor the whole domain of the variable of interest. Otherwise we consider our system as inconsistent. We present a method based on fuzzy similarity relations to restore consistency in our implicative fuzzy rule based system used for the risk-based groundwater remediation design problem. Both a global and a local approach are considered. Even though straightforward and computationally less demanding, the global approach can affect pieces of knowledge negatively by inducing unwarranted imprecision into the knowledge base. On the other hand, the local approach, given a family of parameterized similarity relations, determines a parameter for each inference such that consistent results are computed which may not be feasible in real time applications of our knowledge base. Several scenarios are considered for comparing the two approaches that suggest that for specific applications one or several approaches ranging from a completely global to a completely local one will be more suitable than others while calculating the design constraints.

  1. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    PubMed

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition.

    PubMed

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-10-31

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  3. FIR: An Effective Scheme for Extracting Useful Metadata from Social Media.

    PubMed

    Chen, Long-Sheng; Lin, Zue-Cheng; Chang, Jing-Rong

    2015-11-01

    Recently, the use of social media for health information exchange is expanding among patients, physicians, and other health care professionals. In medical areas, social media allows non-experts to access, interpret, and generate medical information for their own care and the care of others. Researchers paid much attention on social media in medical educations, patient-pharmacist communications, adverse drug reactions detection, impacts of social media on medicine and healthcare, and so on. However, relatively few papers discuss how to extract useful knowledge from a huge amount of textual comments in social media effectively. Therefore, this study aims to propose a Fuzzy adaptive resonance theory network based Information Retrieval (FIR) scheme by combining Fuzzy adaptive resonance theory (ART) network, Latent Semantic Indexing (LSI), and association rules (AR) discovery to extract knowledge from social media. In our FIR scheme, Fuzzy ART network firstly has been employed to segment comments. Next, for each customer segment, we use LSI technique to retrieve important keywords. Then, in order to make the extracted keywords understandable, association rules mining is presented to organize these extracted keywords to build metadata. These extracted useful voices of customers will be transformed into design needs by using Quality Function Deployment (QFD) for further decision making. Unlike conventional information retrieval techniques which acquire too many keywords to get key points, our FIR scheme can extract understandable metadata from social media.

  4. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    PubMed Central

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-01-01

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229

  5. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  6. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  7. Fuzzy logic inference-based Pavement Friction Management and real-time slippery warning systems: A proof of concept study.

    PubMed

    Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam

    2016-05-01

    Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. Published by Elsevier Ltd.

  8. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

    PubMed

    P, Karuppanan; Mahapatra, Kamala Kanta

    2012-01-01

    This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Fuzzy bilevel programming with multiple non-cooperative followers: model, algorithm and application

    NASA Astrophysics Data System (ADS)

    Ke, Hua; Huang, Hu; Ralescu, Dan A.; Wang, Lei

    2016-04-01

    In centralized decision problems, it is not complicated for decision-makers to make modelling technique selections under uncertainty. When a decentralized decision problem is considered, however, choosing appropriate models is no longer easy due to the difficulty in estimating the other decision-makers' inconclusive decision criteria. These decision criteria may vary with different decision-makers because of their special risk tolerances and management requirements. Considering the general differences among the decision-makers in decentralized systems, we propose a general framework of fuzzy bilevel programming including hybrid models (integrated with different modelling methods in different levels). Specially, we discuss two of these models which may have wide applications in many fields. Furthermore, we apply the proposed two models to formulate a pricing decision problem in a decentralized supply chain with fuzzy coefficients. In order to solve these models, a hybrid intelligent algorithm integrating fuzzy simulation, neural network and particle swarm optimization based on penalty function approach is designed. Some suggestions on the applications of these models are also presented.

  10. Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions.

    PubMed

    Khanesar, Mojtaba Ahmadieh; Kayacan, Erdal; Reyhanoglu, Mahmut; Kaynak, Okyay

    2015-04-01

    A novel type-2 fuzzy membership function (MF) in the form of an ellipse has recently been proposed in literature, the parameters of which that represent uncertainties are de-coupled from its parameters that determine the center and the support. This property has enabled the proposers to make an analytical comparison of the noise rejection capabilities of type-1 fuzzy logic systems with its type-2 counterparts. In this paper, a sliding mode control theory-based learning algorithm is proposed for an interval type-2 fuzzy logic system which benefits from elliptic type-2 fuzzy MFs. The learning is based on the feedback error learning method and not only the stability of the learning is proved but also the stability of the overall system is shown by adding an additional component to the control scheme to ensure robustness. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulations results show that the proposed control algorithm gives better performance results in terms of a smaller steady state error and a faster transient response as compared to conventional control algorithms.

  11. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  12. Information Resources Usage in Project Management Digital Learning System

    ERIC Educational Resources Information Center

    Davidovitch, Nitza; Belichenko, Margarita; Kravchenko, Yurii

    2017-01-01

    The article combines a theoretical approach to structuring knowledge that is based on the integrated use of fuzzy semantic network theory predicates, Boolean functions, theory of complexity of network structures and some practical aspects to be considered in the distance learning at the university. The paper proposes a methodological approach that…

  13. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  14. The effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria

    NASA Astrophysics Data System (ADS)

    Zaghba, L.; Khennane, M.; Terki, N.; Borni, A.; Bouchakour, A.; Fezzani, A.; Mahamed, I. Hadj; Oudjana, S. H.

    2017-02-01

    This paper presents modeling, simulation, and analysis evaluation of the grid-connected PV generation system performance under MATLAB/Simulink. The objective is to study the effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. This system works with a power converter. This converter allows the connection to the network and extracts maximum power from photovoltaic panels with the MPPT algorithm based on robust neuro-fuzzy sliding approach. The photovoltaic energy produced by the PV generator will be completely injected on the network. Simulation results show that the system controlled by the neuro-fuzzy sliding adapts to changing external disturbances and show their effectiveness not only for continued maximum power point but also for response time and stability.

  15. Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks.

    PubMed

    Arunkumar, A; Sakthivel, R; Mathiyalagan, K; Park, Ju H

    2014-07-01

    This paper focuses the issue of robust stochastic stability for a class of uncertain fuzzy Markovian jumping discrete-time neural networks (FMJDNNs) with various activation functions and mixed time delay. By employing the Lyapunov technique and linear matrix inequality (LMI) approach, a new set of delay-dependent sufficient conditions are established for the robust stochastic stability of uncertain FMJDNNs. More precisely, the parameter uncertainties are assumed to be time varying, unknown and norm bounded. The obtained stability conditions are established in terms of LMIs, which can be easily checked by using the efficient MATLAB-LMI toolbox. Finally, numerical examples with simulation result are provided to illustrate the effectiveness and less conservativeness of the obtained results. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentili, Pier Luigi, E-mail: pierluigi.gentili@unipg.it; Gotoda, Hiroshi; Dolnik, Milos

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and amore » local nonlinear predictor. We compare the performances of these three methods.« less

  17. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  18. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.

    PubMed

    Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R

    2016-12-01

    The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.

  19. Quick fuzzy backpropagation algorithm.

    PubMed

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  20. A multi-period distribution network design model under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Tabrizi, Babak H.; Razmi, Jafar

    2013-05-01

    Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input data determining market treatment, with respect to short-term planning, on the one hand. On the other hand, network performance may be threatened by the changes that take place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some different-sized problems to show its total performance.

  1. Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.

    PubMed

    Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki

    2015-05-01

    Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.

  2. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    PubMed

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  3. Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature-modulated resistive gas sensor

    NASA Astrophysics Data System (ADS)

    Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.

    2015-06-01

    Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.

  4. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  5. Improvements to Earthquake Location with a Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Gökalp, Hüseyin

    2018-01-01

    In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.

  6. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    NASA Astrophysics Data System (ADS)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  7. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    The prediction of flow into a reservoir is fundamental in water resources planning and management. The need for timely and accurate streamflow forecasting is widely recognized and emphasized by many in water resources fraternity. Real-time forecasts of natural inflows to reservoirs are of particular interest for operation and scheduling. The physical system of the river basin that takes the rainfall as an input and produces the runoff is highly nonlinear, complicated and very difficult to fully comprehend. The system is influenced by large number of factors and variables. The large spatial extent of the systems forces the uncertainty into the hydrologic information. A variety of methods have been proposed for forecasting reservoir inflows including conceptual (physical) and empirical (statistical) models (WMO 1994), but none of them can be considered as unique superior model (Shamseldin 1997). Owing to difficulties of formulating reasonable non-linear watershed models, recent attempts have resorted to Neural Network (NN) approach for complex hydrologic modeling. In recent years the use of soft computing in the field of hydrological forecasting is gaining ground. The relatively new soft computing technique of Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993) is able to take care of the non-linearity, uncertainty, and vagueness embedded in the system. It is a judicious combination of the Neural Networks and fuzzy systems. It can learn and generalize highly nonlinear and uncertain phenomena due to the embedded neural network (NN). NN is efficient in learning and generalization, and the fuzzy system mimics the cognitive capability of human brain. Hence, ANFIS can learn the complicated processes involved in the basin and correlate the precipitation to the corresponding discharge. In the present study, one step ahead forecasts are made for ten-daily flows, which are mostly required for short term operational planning of multipurpose reservoirs. A Neuro-Fuzzy model is developed to forecast ten-daily flows into the Hirakud reservoir on River Mahanadi in the state of Orissa in India. Correlation analysis is carried out to find out the most influential variables on the ten daily flow at Hirakud. Based on this analysis, four variables, namely, flow during the previous time period, ql1, rainfall during the previous two time periods, rl1 and rl2, and flow during the same period in previous year, qpy, are identified as the most influential variables to forecast the ten daily flow. Performance measures such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and coefficient of efficiency R2 are computed for training and testing phases of the model to evaluate its performance. The results indicate that the ten-daily forecasting model is efficient in predicting the high and medium flows with reasonable accuracy. The forecast of low flows is associated with less efficiency. REFERENCES Jang, J.S.R. (1993). "ANFIS: Adaptive - network- based fuzzy inference system." IEEE Trans. on Systems, Man and Cybernetics, 23 (3), 665-685. Shamseldin, A.Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." Journal of Hydrology, 199, 272-294. World Meteorological Organization (1975). Intercomparison of conceptual models used in operational hydrological forecasting. World Meteorological Organization, Technical Report No.429, Geneva, Switzerland.

  8. Fuzzy logic of Aristotelian forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlovsky, L.I.

    1996-12-31

    Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties.more » In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.« less

  9. Applications of Wavelet Transform and Fuzzy Neural Network on Power Quality Recognition

    NASA Astrophysics Data System (ADS)

    Liao, Chiung-Chou; Yang, Hong-Tzer; Lin, Ying-Chun

    2008-10-01

    The wavelet transform coefficients (WTCs) contain plenty of information needed for transient event identification of power quality (PQ) events. However, adopting WTCs directly has the drawbacks of taking a longer time and too much memory for the recognition system. To solve the abovementioned recognition problems and to effectively reduce the number of features representing power transients, spectrum energies of WTCs in different scales are calculated by Parseval's Theorem. Through the proposed approach, features of the original power signals can be reserved and not influenced by occurring points of PQ events. The fuzzy neural classification systems are then used for signal recognition and fuzzy rule construction. Success rates of recognizing PQ events from noise-riding signals are proven to be feasible in power system applications in this paper.

  10. Modeling and performance analysis using extended fuzzy-timing Petri nets for networked virtual environments.

    PubMed

    Zhou, Y; Murata, T; Defanti, T A

    2000-01-01

    Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.

  11. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study

    PubMed Central

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-01-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications. PMID:25426427

  12. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  13. The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil.

    PubMed

    Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun

    2015-11-11

    Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters.

  14. Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images

    PubMed Central

    Cao, Jianfang; Chen, Lichao

    2015-01-01

    With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818

  15. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.

    2013-09-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.

  16. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  17. Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels.

    PubMed

    Garcia-Arroyo, Jose Luis; Garcia-Zapirain, Begonya

    2018-01-01

    One of the most relevant dermoscopic patterns is the pigment network. An innovative method of pattern recognition is presented for its detection in dermoscopy images. It consists of two steps. In the first one, by means of a supervised machine learning process and after performing the extraction of different colour and texture features, a fuzzy classification of pixels into the three categories present in the pattern's definition ("net", "hole" and "other") is carried out. This enables the three corresponding fuzzy sets to be created and, as a result, the three probability images that map them out are generated. In the second step, the pigment network pattern is characterised from a parameterisation process -derived from the system specification- and the subsequent extraction of different features calculated from the combinations of image masks extracted from the probability images, corresponding to the alpha-cuts obtained from the fuzzy sets. The method was tested on a database of 875 images -by far the largest used in the state of the art to detect pigment network- extracted from a public Atlas of Dermoscopy, obtaining AUC results of 0.912 and 88%% accuracy, with 90.71%% sensitivity and 83.44%% specificity. The main contribution of this method is the very design of the algorithm, highly innovative, which could also be used to deal with other pattern recognition problems of a similar nature. Other contributions are: 1. The good performance in discriminating between the pattern and the disturbing artefacts -which means that no prior preprocessing is required in this method- and between the pattern and other dermoscopic patterns; 2. It puts forward a new methodological approach for work of this kind, introducing the system specification as a required step prior to algorithm design and development, being this specification the basis for a required parameterisation -in the form of configurable parameters (with their value ranges) and set threshold values- of the algorithm and the subsequent conducting of the experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Using artificial intelligence to predict permeability from petrographic data

    NASA Astrophysics Data System (ADS)

    Ali, Maqsood; Chawathé, Adwait

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate gradient method) was used to optimize the network weight matrix. The net was then successfully used to predict the permeability in the nearby South Lucky Lake field, also in the Shattuck Member. This study underscored various important aspects of using neural networks as non-linear estimators. The neural network learnt the complex relationships between petrographic control and permeability. By predicting permeability in a remotely-located, yet geologically similar field, the generalizing capability of the neural network was also demonstrated. In old fields, where conventional petrographic analysis was routine, this technique may be used to supplement core permeability estimates.

  19. Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.

    PubMed

    Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori

    2007-01-01

    We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.

  20. Encrypted data stream identification using randomness sparse representation and fuzzy Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Hou, Rui; Yi, Lei; Meng, Juan; Pan, Zhisong; Zhou, Yuhuan

    2016-07-01

    The accurate identification of encrypted data stream helps to regulate illegal data, detect network attacks and protect users' information. In this paper, a novel encrypted data stream identification algorithm is introduced. The proposed method is based on randomness characteristics of encrypted data stream. We use a l1-norm regularized logistic regression to improve sparse representation of randomness features and Fuzzy Gaussian Mixture Model (FGMM) to improve identification accuracy. Experimental results demonstrate that the method can be adopted as an effective technique for encrypted data stream identification.

  1. a Heuristic Approach for Multi Objective Distribution Feeder Reconfiguration: Using Fuzzy Sets in Normalization of Objective Functions

    NASA Astrophysics Data System (ADS)

    Milani, Armin Ebrahimi; Haghifam, Mahmood Reza

    2008-10-01

    The reconfiguration is an operation process used for optimization with specific objectives by means of changing the status of switches in a distribution network. In this paper each objectives is normalized with inspiration from fuzzy sets-to cause optimization more flexible- and formulized as a unique multi-objective function. The genetic algorithm is used for solving the suggested model, in which there is no risk of non-liner objective functions and constraints. The effectiveness of the proposed method is demonstrated through the examples.

  2. Implementation of logic functions and computations by chemical kinetics

    NASA Astrophysics Data System (ADS)

    Hjelmfelt, A.; Ross, J.

    We review our work on the computational functions of the kinetics of chemical networks. We examine spatially homogeneous networks which are based on prototypical reactions occurring in living cells and show the construction of logic gates and sequential and parallel networks. This work motivates the study of an important biochemical pathway, glycolysis, and we demonstrate that the switch that controls the flux in the direction of glycolysis or gluconeogenesis may be described as a fuzzy AND operator. We also study a spatially inhomogeneous network which shares features of theoretical and biological neural networks.

  3. Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks

    NASA Astrophysics Data System (ADS)

    Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui

    2018-06-01

    This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.

  4. An Adaptive Network-based Fuzzy Inference System for the detection of thermal and TEC anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake of 11 August 2012

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, M.

    2013-09-01

    Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.

  5. Ground Motion Prediction Model Using Adaptive Neuro-Fuzzy Inference Systems: An Example Based on the NGA-West 2 Data

    NASA Astrophysics Data System (ADS)

    Ameur, Mourad; Derras, Boumédiène; Zendagui, Djawed

    2018-03-01

    Adaptive neuro-fuzzy inference systems (ANFIS) are used here to obtain the robust ground motion prediction model (GMPM). Avoiding a priori functional form, ANFIS provides fully data-driven predictive models. A large subset of the NGA-West2 database is used, including 2335 records from 580 sites and 137 earthquakes. Only shallow earthquakes and recordings corresponding to stations with measured V s30 properties are selected. Three basics input parameters are chosen: the moment magnitude ( Mw), the Joyner-Boore distance ( R JB) and V s30. ANFIS model output is the peak ground acceleration (PGA), peak ground velocity (PGV) and 5% damped pseudo-spectral acceleration (PSA) at periods from 0.01 to 4 s. A procedure similar to the random-effects approach is developed to provide between- and within-event standard deviations. The total standard deviation (SD) varies between [0.303 and 0.360] (log10 units) depending on the period. The ground motion predictions resulting from such simple three explanatory variables ANFIS models are shown to be comparable to the most recent NGA results (e.g., Boore et al., in Earthquake Spectra 30:1057-1085, 2014; Derras et al., in Earthquake Spectra 32:2027-2056, 2016). The main advantage of ANFIS compared to artificial neuronal network (ANN) is its simple and one-off topology: five layers. Our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude and amplification on soft soils. The ability to implement ANFIS model using an analytic equation and Excel is demonstrated.

  6. Ground Motion Prediction Model Using Adaptive Neuro-Fuzzy Inference Systems: An Example Based on the NGA-West 2 Data

    NASA Astrophysics Data System (ADS)

    Ameur, Mourad; Derras, Boumédiène; Zendagui, Djawed

    2017-12-01

    Adaptive neuro-fuzzy inference systems (ANFIS) are used here to obtain the robust ground motion prediction model (GMPM). Avoiding a priori functional form, ANFIS provides fully data-driven predictive models. A large subset of the NGA-West2 database is used, including 2335 records from 580 sites and 137 earthquakes. Only shallow earthquakes and recordings corresponding to stations with measured V s30 properties are selected. Three basics input parameters are chosen: the moment magnitude (Mw), the Joyner-Boore distance (R JB) and V s30. ANFIS model output is the peak ground acceleration (PGA), peak ground velocity (PGV) and 5% damped pseudo-spectral acceleration (PSA) at periods from 0.01 to 4 s. A procedure similar to the random-effects approach is developed to provide between- and within-event standard deviations. The total standard deviation (SD) varies between [0.303 and 0.360] (log10 units) depending on the period. The ground motion predictions resulting from such simple three explanatory variables ANFIS models are shown to be comparable to the most recent NGA results (e.g., Boore et al., in Earthquake Spectra 30:1057-1085, 2014; Derras et al., in Earthquake Spectra 32:2027-2056, 2016). The main advantage of ANFIS compared to artificial neuronal network (ANN) is its simple and one-off topology: five layers. Our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude and amplification on soft soils. The ability to implement ANFIS model using an analytic equation and Excel is demonstrated.

  7. A hierarchical two-phase framework for selecting genes in cancer datasets with a neuro-fuzzy system.

    PubMed

    Lim, Jongwoo; Wang, Bohyun; Lim, Joon S

    2016-04-29

    Finding the minimum number of appropriate biomarkers for specific targets such as a lung cancer has been a challenging issue in bioinformatics. We propose a hierarchical two-phase framework for selecting appropriate biomarkers that extracts candidate biomarkers from the cancer microarray datasets and then selects the minimum number of appropriate biomarkers from the extracted candidate biomarkers datasets with a specific neuro-fuzzy algorithm, which is called a neural network with weighted fuzzy membership function (NEWFM). In this context, as the first phase, the proposed framework is to extract candidate biomarkers by using a Bhattacharyya distance method that measures the similarity of two discrete probability distributions. Finally, the proposed framework is able to reduce the cost of finding biomarkers by not receiving medical supplements and improve the accuracy of the biomarkers in specific cancer target datasets.

  8. Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm

    NASA Astrophysics Data System (ADS)

    Mittal, Ruchi; Kaur, Magandeep

    2010-11-01

    In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.

  9. A hierarchical fuzzy rule-based approach to aphasia diagnosis.

    PubMed

    Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid

    2007-10-01

    Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.

  10. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    PubMed

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  11. Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model

    PubMed Central

    Acampora, Giovanni; Brown, David; Rees, Robert C.

    2016-01-01

    The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC) points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR = 0.197, AUC = 0.582). PMID:27258119

  12. Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.

    PubMed

    Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong

    2017-12-01

    Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.

  13. A mathematical model of neuro-fuzzy approximation in image classification

    NASA Astrophysics Data System (ADS)

    Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.

    2016-06-01

    Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.

  14. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    PubMed Central

    Castañón–Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-01-01

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information. PMID:26633417

  15. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    PubMed

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  16. System identification of smart structures using a wavelet neuro-fuzzy model

    NASA Astrophysics Data System (ADS)

    Mitchell, Ryan; Kim, Yeesock; El-Korchi, Tahar

    2012-11-01

    This paper proposes a complex model of smart structures equipped with magnetorheological (MR) dampers. Nonlinear behavior of the structure-MR damper systems is represented by the use of a wavelet-based adaptive neuro-fuzzy inference system (WANFIS). The WANFIS is developed through the integration of wavelet transforms, artificial neural networks, and fuzzy logic theory. To evaluate the effectiveness of the WANFIS model, a three-story building employing an MR damper under a variety of natural hazards is investigated. An artificial earthquake is used for training the input-output mapping of the WANFIS model. The artificial earthquake is generated such that the characteristics of a variety of real recorded earthquakes are included. It is demonstrated that this new WANFIS approach is effective in modeling nonlinear behavior of the structure-MR damper system subjected to a variety of disturbances while resulting in shorter training times in comparison with an adaptive neuro-fuzzy inference system (ANFIS) model. Comparison with high fidelity data proves the viability of the proposed approach in a structural health monitoring setting, and it is validated using known earthquake signals such as El-Centro, Kobe, Northridge, and Hachinohe.

  17. Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Chih

    2010-12-01

    In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.

  18. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Translational controller results

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.

  19. The Design of Artificial Intelligence Robot Based on Fuzzy Logic Controller Algorithm

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Munoto; Hariadi, E.; Muslim, S.

    2018-04-01

    Artificial Intelligence Robot is a wheeled robot driven by a DC motor that moves along the wall using an ultrasonic sensor as a detector of obstacles. This study uses ultrasonic sensors HC-SR04 to measure the distance between the robot with the wall based ultrasonic wave. This robot uses Fuzzy Logic Controller to adjust the speed of DC motor. When the ultrasonic sensor detects a certain distance, sensor data is processed on ATmega8 then the data goes to ATmega16. From ATmega16, sensor data is calculated based on Fuzzy rules to drive DC motor speed. The program used to adjust the speed of a DC motor is CVAVR program (Code Vision AVR). The readable distance of ultrasonic sensor is 3 cm to 250 cm with response time 0.5 s. Testing of robots on walls with a setpoint value of 9 cm to 10 cm produce an average error value of -12% on the wall of L, -8% on T walls, -8% on U wall, and -1% in square wall.

  20. Attractor Structures of Signaling Networks: Consequences of Different Conformational Barcode Dynamics and Their Relations to Network-Based Drug Design.

    PubMed

    Szalay, Kristóf Z; Nussinov, Ruth; Csermely, Peter

    2014-06-01

    Conformational barcodes tag functional sites of proteins and are decoded by interacting molecules transmitting the incoming signal. Conformational barcodes are modified by all co-occurring allosteric events induced by post-translational modifications, pathogen, drug binding, etc. We argue that fuzziness (plasticity) of conformational barcodes may be increased by disordered protein structures, by integrative plasticity of multi-phosphorylation events, by increased intracellular water content (decreased molecular crowding) and by increased action of molecular chaperones. This leads to increased plasticity of signaling and cellular networks. Increased plasticity is both substantiated by and inducing an increased noise level. Using the versatile network dynamics tool, Turbine (www.turbine.linkgroup.hu), here we show that the 10 % noise level expected in cellular systems shifts a cancer-related signaling network of human cells from its proliferative attractors to its largest, apoptotic attractor representing their health-preserving response in the carcinogen containing and tumor suppressor deficient environment modeled in our study. Thus, fuzzy conformational barcodes may not only make the cellular system more plastic, and therefore more adaptable, but may also stabilize the complex system allowing better access to its largest attractor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Estimation of dew point temperature using neuro-fuzzy and neural network techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Kim, Sungwon; Shiri, Jalal

    2013-11-01

    This study investigates the ability of two different artificial neural network (ANN) models, generalized regression neural networks model (GRNNM) and Kohonen self-organizing feature maps neural networks model (KSOFM), and two different adaptive neural fuzzy inference system (ANFIS) models, ANFIS model with sub-clustering identification (ANFIS-SC) and ANFIS model with grid partitioning identification (ANFIS-GP), for estimating daily dew point temperature. The climatic data that consisted of 8 years of daily records of air temperature, sunshine hours, wind speed, saturation vapor pressure, relative humidity, and dew point temperature from three weather stations, Daego, Pohang, and Ulsan, in South Korea were used in the study. The estimates of ANN and ANFIS models were compared according to the three different statistics, root mean square errors, mean absolute errors, and determination coefficient. Comparison results revealed that the ANFIS-SC, ANFIS-GP, and GRNNM models showed almost the same accuracy and they performed better than the KSOFM model. Results also indicated that the sunshine hours, wind speed, and saturation vapor pressure have little effect on dew point temperature. It was found that the dew point temperature could be successfully estimated by using T mean and R H variables.

  2. Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Wei, Boya

    2018-02-01

    The theory of intuitionistic fuzzy sets (IFS) is widely used for dealing with vagueness and the Dempster-Shafer (D-S) evidence theory has a widespread use in multiple criteria decision-making problems under uncertain situation. However, there are many methods to aggregate intuitionistic fuzzy numbers (IFNs), but the aggregation operator to fuse basic probability assignment (BPA) is rare. Power average (P-A) operator, as a powerful operator, is useful and important in information fusion. Motivated by the idea of P-A power, in this paper, a new operator based on the IFS and D-S evidence theory is proposed, which is named as intuitionistic fuzzy evidential power average (IFEPA) aggregation operator. First, an IFN is converted into a BPA, and the uncertainty is measured in D-S evidence theory. Second, the difference between BPAs is measured by Jousselme distance and a satisfying support function is proposed to get the support degree between each other effectively. Then the IFEPA operator is used for aggregating the original IFN and make a more reasonable decision. The proposed method is objective and reasonable because it is completely driven by data once some parameters are required. At the same time, it is novel and interesting. Finally, an application of developed models to the 'One Belt, One road' investment decision-making problems is presented to illustrate the effectiveness and feasibility of the proposed operator.

  3. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    PubMed Central

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575

  4. Design of fuzzy cognitive maps using neural networks for predicting chaotic time series.

    PubMed

    Song, H J; Miao, C Y; Shen, Z Q; Roel, W; Maja, D H; Francky, C

    2010-12-01

    As a powerful paradigm for knowledge representation and a simulation mechanism applicable to numerous research and application fields, Fuzzy Cognitive Maps (FCMs) have attracted a great deal of attention from various research communities. However, the traditional FCMs do not provide efficient methods to determine the states of the investigated system and to quantify causalities which are the very foundation of the FCM theory. Therefore in many cases, constructing FCMs for complex causal systems greatly depends on expert knowledge. The manually developed models have a substantial shortcoming due to model subjectivity and difficulties with accessing its reliability. In this paper, we propose a fuzzy neural network to enhance the learning ability of FCMs so that the automatic determination of membership functions and quantification of causalities can be incorporated with the inference mechanism of conventional FCMs. In this manner, FCM models of the investigated systems can be automatically constructed from data, and therefore are independent of the experts. Furthermore, we employ mutual subsethood to define and describe the causalities in FCMs. It provides more explicit interpretation for causalities in FCMs and makes the inference process easier to understand. To validate the performance, the proposed approach is tested in predicting chaotic time series. The simulation studies show the effectiveness of the proposed approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John

    2005-04-01

    To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.

  6. The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil

    PubMed Central

    Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun

    2015-01-01

    Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters. PMID:26569243

  7. Autonomous self-organizing resource manager for multiple networked platforms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III

    2002-08-01

    A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.

  8. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    NASA Astrophysics Data System (ADS)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  9. Feedback control system based on a remote operated PID controller implemented using mbed NXP LPC1768 development board

    NASA Astrophysics Data System (ADS)

    Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae

    2015-11-01

    Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.

  10. [Study on building index system of risk assessment of post-marketing Chinese patent medicine based on AHP-fuzzy neural network].

    PubMed

    Li, Yuanyuan; Xie, Yanming; Fu, Yingkun

    2011-10-01

    Currently massive researches have been launched about the safety, efficiency and economy of post-marketing Chinese patent medicine (CPM) proprietary Chinese medicine, but it was lack of a comprehensive interpretation. Establishing the risk evaluation index system and risk assessment model of CPM is the key to solve drug safety problems and protect people's health. The clinical risk factors of CPM exist similarities with the Western medicine, can draw lessons from foreign experience, but also have itself multi-factor multivariate multi-level complex features. Drug safety risk assessment for the uncertainty and complexity, using analytic hierarchy process (AHP) to empower the index weights, AHP-based fuzzy neural network to build post-marketing CPM risk evaluation index system and risk assessment model and constantly improving the application of traditional Chinese medicine characteristic is accord with the road and feasible beneficial exploration.

  11. Decade Review (1999-2009): Artificial Intelligence Techniques in Student Modeling

    NASA Astrophysics Data System (ADS)

    Drigas, Athanasios S.; Argyri, Katerina; Vrettaros, John

    Artificial Intelligence applications in educational field are getting more and more popular during the last decade (1999-2009) and that is why much relevant research has been conducted. In this paper, we present the most interesting attempts to apply artificial intelligence methods such as fuzzy logic, neural networks, genetic programming and hybrid approaches such as neuro - fuzzy systems and genetic programming neural networks (GPNN) in student modeling. This latest research trend is a part of every Intelligent Tutoring System and aims at generating and updating a student model in order to modify learning content to fit individual needs or to provide reliable assessment and feedback to student's answers. In this paper, we make a brief presentation of methods used to point out their qualities and then we attempt a navigation to the most representative studies sought in the decade of our interest after classifying them according to the principal aim they attempted to serve.

  12. Energy efficient wireless sensor networks by using a fuzzy-based solution

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  13. Diagnosis support system based on clinical guidelines: comparison between case-based fuzzy cognitive maps and Bayesian networks.

    PubMed

    Douali, Nassim; Csaba, Huszka; De Roo, Jos; Papageorgiou, Elpiniki I; Jaulent, Marie-Christine

    2014-01-01

    Several studies have described the prevalence and severity of diagnostic errors. Diagnostic errors can arise from cognitive, training, educational and other issues. Examples of cognitive issues include flawed reasoning, incomplete knowledge, faulty information gathering or interpretation, and inappropriate use of decision-making heuristics. We describe a new approach, case-based fuzzy cognitive maps, for medical diagnosis and evaluate it by comparison with Bayesian belief networks. We created a semantic web framework that supports the two reasoning methods. We used database of 174 anonymous patients from several European hospitals: 80 of the patients were female and 94 male with an average age 45±16 (average±stdev). Thirty of the 80 female patients were pregnant. For each patient, signs/symptoms/observables/age/sex were taken into account by the system. We used a statistical approach to compare the two methods. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Using hybrid method to evaluate the green performance in uncertainty.

    PubMed

    Tseng, Ming-Lang; Lan, Lawrence W; Wang, Ray; Chiu, Anthony; Cheng, Hui-Ping

    2011-04-01

    Green performance measure is vital for enterprises in making continuous improvements to maintain sustainable competitive advantages. Evaluation of green performance, however, is a challenging task due to the dependence complexity of the aspects, criteria, and the linguistic vagueness of some qualitative information and quantitative data together. To deal with this issue, this study proposes a novel approach to evaluate the dependence aspects and criteria of firm's green performance. The rationale of the proposed approach, namely green network balanced scorecard, is using balanced scorecard to combine fuzzy set theory with analytical network process (ANP) and importance-performance analysis (IPA) methods, wherein fuzzy set theory accounts for the linguistic vagueness of qualitative criteria and ANP converts the relations among the dependence aspects and criteria into an intelligible structural modeling used IPA. For the empirical case study, four dependence aspects and 34 green performance criteria for PCB firms in Taiwan were evaluated. The managerial implications are discussed.

  15. Fuzzy Neural Network Applied to Gene Expression Profiling for Predicting the Prognosis of Diffuse Large B‐cell Lymphoma

    PubMed Central

    Ando, Tatsuya; Suguro, Miyuki; Hanai, Taizo; Kobayashi, Takeshi; Seto, Masao

    2002-01-01

    Diffuse large B‐cell lymphoma (DLBCL) is the largest category of aggressive lymphomas. Less than 50% of patients can be cured by combination chemotherapy. Microarray technologies have recently shown that the response to chemotherapy reflects the molecular heterogeneity in DLBCL. On the basis of published microarray data, we attempted to develop a long‐overdue method for the precise and simple prediction of survival of DLBCL patients. We developed a fuzzy neural network (FNN) model to analyze gene expression profiling data for DLBCL. From data on 5857 genes, this model identified four genes (CD10, AA807551, AA805611 and IRF‐4) that could be used to predict prognosis with 93% accuracy. FNNs are powerful tools for extracting significant biological markers affecting prognosis, and are applicable to various kinds of expression profiling data for any malignancy. PMID:12460461

  16. Fuzzy-cellular neural network for face recognition HCI Authentication

    NASA Astrophysics Data System (ADS)

    Hoomod, Haider K.; ali, Ahmed abd

    2018-05-01

    Because of the rapid development of mobile devices technology, ease of use and interact with humans. May have found a mobile device most uses in our communications. Mobile devices can carry large amounts of personal and sensitive data, but often left not guaranteed (pin) locks are inconvenient to use and thus have seen low adoption while biometrics is more convenient and less susceptible to fraud and manipulation. Were propose in this paper authentication technique for using a mobile face recognition based on cellular neural networks [1] and fuzzy rules control. The good speed and get recognition rate from applied the proposed system in Android system. The images obtained in real time for 60 persons each person has 20 t0 60 different shot face images (about 3600 images), were the results for (FAR = 0), (FRR = 1.66%), (FER = 1.66) and accuracy = 98.34

  17. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    PubMed

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  19. Conditions for addressing environmental determinants of health behavior in intersectoral policy networks: A fuzzy set Qualitative Comparative Analysis.

    PubMed

    Peters, D T J M; Verweij, S; Grêaux, K; Stronks, K; Harting, J

    2017-12-01

    Improving health requires changes in the social, physical, economic and political determinants of health behavior. For the realization of policies that address these environmental determinants, intersectoral policy networks are considered necessary for the pooling of resources to implement different policy instruments. However, such network diversity may increase network complexity and therefore hamper network performance. Network complexity may be reduced by network management and the provision of financial resources. This study examined whether network diversity - amidst the other conditions - is indeed needed to address environmental determinants of health behavior. We included 25 intersectoral policy networks in Dutch municipalities aimed at reducing overweight, smoking, and alcohol/drugs abuse. For our fuzzy set Qualitative Comparative Analysis we used data from three web-based surveys among (a) project leaders regarding network diversity and size (n = 38); (b) project leaders and project partners regarding management (n = 278); and (c) implementation professionals regarding types of environmental determinants addressed (n = 137). Data on budgets were retrieved from project application forms. Contrary to their intentions, most policy networks typically addressed personal determinants. If the environment was addressed too, it was mostly the social environment. To address environmental determinants of health behavior, network diversity (>50% of the actors are non-public health) was necessary in networks that were either small (<16 actors) or had small budgets (<€183,172), when both were intensively managed. Irrespective of network diversity, environmental determinants also were addressed by small networks with large budgets, and by large networks with small budgets, when both provided network management. We conclude that network diversity is important - although not necessary - for resource pooling to address environmental determinants of health behavior, but only effective in the presence of network management. Our findings may support intersectoral policy networks in improving health behaviors by addressing a variety of environmental determinants. Copyright © 2017. Published by Elsevier Ltd.

  20. Diagnosis of helicopter gearboxes using structure-based networks

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.

    1995-01-01

    A connectionist network is introduced for fault diagnosis of helicopter gearboxes that incorporates knowledge of the gearbox structure and characteristics of the vibration features as its fuzzy weights. Diagnosis is performed by propagating the abnormal features of vibration measurements through this Structure-Based Connectionist Network (SBCN), the outputs of which represent the fault possibility values for individual components of the gearbox. The performance of this network is evaluated by applying it to experimental vibration data from an OH-58A helicopter gearbox. The diagnostic results indicate that the network performance is comparable to those obtained from supervised pattern classification.

  1. Intelligent control based on fuzzy logic and neural net theory

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  2. Soft computing techniques toward modeling the water supplies of Cyprus.

    PubMed

    Iliadis, L; Maris, F; Tachos, S

    2011-10-01

    This research effort aims in the application of soft computing techniques toward water resources management. More specifically, the target is the development of reliable soft computing models capable of estimating the water supply for the case of "Germasogeia" mountainous watersheds in Cyprus. Initially, ε-Regression Support Vector Machines (ε-RSVM) and fuzzy weighted ε-RSVMR models have been developed that accept five input parameters. At the same time, reliable artificial neural networks have been developed to perform the same job. The 5-fold cross validation approach has been employed in order to eliminate bad local behaviors and to produce a more representative training data set. Thus, the fuzzy weighted Support Vector Regression (SVR) combined with the fuzzy partition has been employed in an effort to enhance the quality of the results. Several rational and reliable models have been produced that can enhance the efficiency of water policy designers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Sensory evaluation based fuzzy AHP approach for material selection in customized garment design and development process

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Curteza, A.; Zeng, X.; Bruniaux, P.; Chen, Y.

    2016-06-01

    Material selection is the most difficult section in the customized garment product design and development process. This study aims to create a hierarchical framework for material selection. The analytic hierarchy process and fuzzy sets theories have been applied to mindshare the diverse requirements from the customer and inherent interaction/interdependencies among these requirements. Sensory evaluation ensures a quick and effective selection without complex laboratory test such as KES and FAST, using the professional knowledge of the designers. A real empirical application for the physically disabled people is carried out to demonstrate the proposed method. Both the theoretical and practical background of this paper have indicated the fuzzy analytical network process can capture expert's knowledge existing in the form of incomplete, ambiguous and vague information for the mutual influence on attribute and criteria of the material selection.

  4. Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means

    PubMed Central

    Sabit, Hakilo; Al-Anbuky, Adnan

    2014-01-01

    Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495

  5. A Car-Steering Model Based on an Adaptive Neuro-Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Amor, Mohamed Anis Ben; Oda, Takeshi; Watanabe, Shigeyoshi

    This paper is concerned with the development of a car-steering model for traffic simulation. Our focus in this paper is to propose a model of the steering behavior of a human driver for different driving scenarios. These scenarios are modeled in a unified framework using the idea of target position. The proposed approach deals with the driver’s approximation and decision-making mechanisms in tracking a target position by means of fuzzy set theory. The main novelty in this paper lies in the development of a learning algorithm that has the intention to imitate the driver’s self-learning from his driving experience and to mimic his maneuvers on the steering wheel, using linear networks as local approximators in the corresponding fuzzy areas. Results obtained from the simulation of an obstacle avoidance scenario show the capability of the model to carry out a human-like behavior with emphasis on learned skills.

  6. Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Xu, Zezhong; Li, Li; Zheng, Yan

    2017-10-01

    Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.

  7. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  8. The explosion at institute: modeling and analyzing the situation awareness factor.

    PubMed

    Naderpour, Mohsen; Lu, Jie; Zhang, Guangquan

    2014-12-01

    In 2008 a runaway chemical reaction caused an explosion at a methomyl unit in West Virginia, USA, killing two employees, injuring eight people, evacuating more than 40,000 residents adjacent to the facility, disrupting traffic on a nearby highway and causing significant business loss and interruption. Although the accident was formally investigated, the role of the situation awareness (SA) factor, i.e., a correct understanding of the situation, and appropriate models to maintain SA, remain unexplained. This paper extracts details of abnormal situations within the methomyl unit and models them into a situational network using dynamic Bayesian networks. A fuzzy logic system is used to resemble the operator's thinking when confronted with these abnormal situations. The combined situational network and fuzzy logic system make it possible for the operator to assess such situations dynamically to achieve accurate SA. The findings show that the proposed structure provides a useful graphical model that facilitates the inclusion of prior background knowledge and the updating of this knowledge when new information is available from monitoring systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Incorporation of perception-based information in robot learning using fuzzy reinforcement learning agents

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiu; Meng, Qingchun; Guo, Zhongwen; Qu, Wiefen; Yin, Bo

    2002-04-01

    Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.

  10. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme.

    PubMed

    Syed Ali, M; Vadivel, R; Saravanakumar, R

    2018-06-01

    This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm

    NASA Astrophysics Data System (ADS)

    Shamir, L.; Nemiroff, R. J.

    2004-05-01

    One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.

  12. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  13. Fuzzy B-spline optimization for urban slum three-dimensional reconstruction using ENVISAT satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, Maged

    2014-06-01

    A critical challenges in urban aeras is slums. In fact, they are considered a source of crime and disease due to poor-quality housing, unsanitary conditions, poor infrastructures and occupancy security. The poor in the dense urban slums are the most vulnerable to infection due to (i) inadequate and restricted access to safety, drinking water and sufficient quantities of water for personal hygiene; (ii) the lack of removal and treatment of excreta; and (iii) the lack of removal of solid waste. This study aims to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed countries such as Egypt. The main objective of this work is to utilize some 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that the fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate between them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slum. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that the fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.

  14. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production.

    PubMed

    Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee

    2010-01-01

    Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.

  15. A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear.

    PubMed

    Zarandi, M H Fazel; Khadangi, A; Karimi, F; Turksen, I B

    2016-12-01

    Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. λ-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of "η" value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.

  16. Verifying Stability of Dynamic Soft-Computing Systems

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Napolitano, Marcello; Callahan, John

    1997-01-01

    Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.

  17. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  18. Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.

    PubMed

    Carpenter, Gail A.

    1997-11-01

    A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.

  19. An Architecture for Performance Optimization in a Collaborative Knowledge-Based Approach for Wireless Sensor Networks

    PubMed Central

    Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon

    2011-01-01

    Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values. PMID:22163687

  20. An architecture for performance optimization in a collaborative knowledge-based approach for wireless sensor networks.

    PubMed

    Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon

    2011-01-01

    Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.

  1. Dissociating functional brain networks by decoding the between-subject variability

    PubMed Central

    Seghier, Mohamed L.; Price, Cathy J.

    2009-01-01

    In this study we illustrate how the functional networks involved in a single task (e.g. the sensory, cognitive and motor components) can be segregated without cognitive subtractions at the second-level. The method used is based on meaningful variability in the patterns of activation between subjects with the assumption that regions belonging to the same network will have comparable variations from subject to subject. fMRI data were collected from thirty nine healthy volunteers who were asked to indicate with a button press if visually presented words were semantically related or not. Voxels were classified according to the similarity in their patterns of between-subject variance using a second-level unsupervised fuzzy clustering algorithm. The results were compared to those identified by cognitive subtractions of multiple conditions tested in the same set of subjects. This illustrated that the second-level clustering approach (on activation for a single task) was able to identify the functional networks observed using cognitive subtractions (e.g. those associated with vision, semantic associations or motor processing). In addition the fuzzy clustering approach revealed other networks that were not dissociated by the cognitive subtraction approach (e.g. those associated with high- and low-level visual processing and oculomotor movements). We discuss the potential applications of our method which include the identification of “hidden” or unpredicted networks as well as the identification of systems level signatures for different subgroupings of clinical and healthy populations. PMID:19150501

  2. Use seismic colored inversion and power law committee machine based on imperial competitive algorithm for improving porosity prediction in a heterogeneous reservoir

    NASA Astrophysics Data System (ADS)

    Ansari, Hamid Reza

    2014-09-01

    In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.

  3. A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.

    PubMed

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-03-07

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

  4. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkin, Andrew; Department of Statistics, Oregon State University; Superfund Research Center, Oregon State University

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdanimore » logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions for combining PAH mixtures in agreement with microarrays ► Predictions highly dependent on aryl hydrocarbon receptor repressor expression.« less

  5. An Artificial Intelligence Approach for Modeling and Prediction of Water Diffusion Inside a Carbon Nanotube

    PubMed Central

    2009-01-01

    Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input–output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input–output data pairs. Good performance of the designed ANFIS ensures its capability as a promising tool for modeling and prediction of fluid flow at nanoscale where the continuum models of fluid dynamics tend to break down. PMID:20596382

  6. An Artificial Intelligence Approach for Modeling and Prediction of Water Diffusion Inside a Carbon Nanotube.

    PubMed

    Ahadian, Samad; Kawazoe, Yoshiyuki

    2009-06-04

    Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input-output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input-output data pairs. Good performance of the designed ANFIS ensures its capability as a promising tool for modeling and prediction of fluid flow at nanoscale where the continuum models of fluid dynamics tend to break down.

  7. A neuro approach to solve fuzzy Riccati differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan

    2015-10-01

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  8. Multi-criteria analysis of potential recovery facilities in a reverse supply chain

    NASA Astrophysics Data System (ADS)

    Nukala, Satish; Gupta, Surendra M.

    2005-11-01

    Analytic Hierarchy Process (AHP) has been employed by researchers for solving multi-criteria analysis problems. However, AHP is often criticized for its unbalanced scale of judgments and failure to precisely handle the inherent uncertainty and vagueness in carrying out the pair-wise comparisons. With an objective to address these drawbacks, in this paper, we employ a fuzzy approach in selecting potential recovery facilities in the strategic planning of a reverse supply chain network that addresses the decision maker's level of confidence in the fuzzy assessments and his/her attitude towards risk. A numerical example is considered to illustrate the methodology.

  9. A neuro approach to solve fuzzy Riccati differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com; Telekom Malaysia, R&D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor; Kumaresan, N., E-mail: drnk2008@gmail.com

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  10. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    NASA Astrophysics Data System (ADS)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  11. A neural-network-based exponential H∞ synchronisation for chaotic secure communication via improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Hsiao, Feng-Hsiag

    2016-10-01

    In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.

  12. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    NASA Astrophysics Data System (ADS)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  13. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  14. Nonlinear rescaling of control values simplifies fuzzy control

    NASA Technical Reports Server (NTRS)

    Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.

    1993-01-01

    Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy control can be as good as the best state-of-art traditional non-linear controls.

  15. Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    NASA Astrophysics Data System (ADS)

    Yang, G.; Lin, Y.; Bhattacharya, P.

    2007-12-01

    To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

  16. Systemic Approach for Health Risk Assessment of Ambient Air Concentrations of Benzene in Petrochemical Environments: Integration of Fuzzy Logic, Artificial Neural Network, and IRIS Toxicity Method

    PubMed Central

    NOVIN, Vahid; GIVEHCHI, Saeed; HOVEIDI, Hassan

    2016-01-01

    Background: Reliable methods are crucial to cope with uncertainties in the risk analysis process. The aim of this study is to develop an integrated approach to assessing risks of benzene in the petrochemical plant that produces benzene. We offer an integrated system to contribute imprecise variables into the health risk calculation. Methods: The project was conducted in Asaluyeh, southern Iran during the years from 2013 to 2014. Integrated method includes fuzzy logic and artificial neural networks. Each technique had specific computational properties. Fuzzy logic was used for estimation of absorption rate. Artificial neural networks can decrease the noise of the data so applied for prediction of benzene concentration. First, the actual exposure was calculated then it combined with Integrated Risk Information System (IRIS) toxicity factors to assess real health risks. Results: High correlation between the measured and predicted benzene concentration was achieved (R2= 0.941). As for variable distribution, the best estimation of risk in a population implied 33% of workers exposed less than 1×10−5 and 67% inserted between 1.0×10−5 to 9.8×10−5 risk levels. The average estimated risk of exposure to benzene for entire work zones is equal to 2.4×10−5, ranging from 1.5×10−6 to 6.9×10−5. Conclusion: The integrated model is highly flexible as well as the rules possibly will be changed according to the necessities of the user in a different circumstance. The measured exposures can be duplicated well through proposed model and realistic risk assessment data will be produced. PMID:27957464

  17. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China.

    PubMed

    Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Chen, Wei

    2018-06-01

    In China, floods are considered as the most frequent natural disaster responsible for severe economic losses and serious damages recorded in agriculture and urban infrastructure. Based on the international experience prevention of flood events may not be completely possible, however identifying susceptible and vulnerable areas through prediction models is considered as a more visible task with flood susceptibility mapping being an essential tool for flood mitigation strategies and disaster preparedness. In this context, the present study proposes a novel approach to construct a flood susceptibility map in the Poyang County, JiangXi Province, China by implementing fuzzy weight of evidence (fuzzy-WofE) and data mining methods. The novelty of the presented approach is the usage of fuzzy-WofE that had a twofold purpose. Firstly, to create an initial flood susceptibility map in order to identify non-flood areas and secondly to weight the importance of flood related variables which influence flooding. Logistic Regression (LR), Random Forest (RF) and Support Vector Machines (SVM) were implemented considering eleven flood related variables, namely: lithology, soil cover, elevation, slope angle, aspect, topographic wetness index, stream power index, sediment transport index, plan curvature, profile curvature and distance from river network. The efficiency of this new approach was evaluated using area under curve (AUC) which measured the prediction and success rates. According to the outcomes of the performed analysis, the fuzzy WofE-SVM model was the model with the highest predictive performance (AUC value, 0.9865) which also appeared to be statistical significant different from the other predictive models, fuzzy WofE-RF (AUC value, 0.9756) and fuzzy WofE-LR (AUC value, 0.9652). The proposed methodology and the produced flood susceptibility map could assist researchers and local governments in flood mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering.

    PubMed

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2015-12-01

    Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.

  19. Impact of malicious servers over trust and reputation models in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Verma, Vinod Kumar; Singh, Surinder; Pathak, N. P.

    2016-03-01

    This article deals with the impact of malicious servers over different trust and reputation models in wireless sensor networks. First, we analysed the five trust and reputation models, namely BTRM-WSN, Eigen trust, peer trust, power trust, linguistic fuzzy trust model. Further, we proposed wireless sensor network design for optimisation of these models. Finally, influence of malicious servers on the behaviour of above mentioned trust and reputation models is discussed. Statistical analysis has been carried out to prove the validity of our proposal.

  20. Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function.

    PubMed

    Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger

    2013-04-22

    For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.

Top