Sample records for network dynamics impact

  1. Risk assessment by dynamic representation of vulnerability, exploitation, and impact

    NASA Astrophysics Data System (ADS)

    Cam, Hasan

    2015-05-01

    Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.

  2. Robustness of Oscillatory Behavior in Correlated Networks

    PubMed Central

    Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki

    2015-01-01

    Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574

  3. Controllability of flow-conservation networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu

    2017-07-01

    The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.

  4. Impact of constrained rewiring on network structure and node dynamics

    NASA Astrophysics Data System (ADS)

    Rattana, P.; Berthouze, L.; Kiss, I. Z.

    2014-11-01

    In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.

  5. Dynamic vs. static social networks in models of parasite transmission: predicting Cryptosporidium spread in wild lemurs.

    PubMed

    Springer, Andrea; Kappeler, Peter M; Nunn, Charles L

    2017-05-01

    Social networks provide an established tool to implement heterogeneous contact structures in epidemiological models. Dynamic temporal changes in contact structure and ranging behaviour of wildlife may impact disease dynamics. A consensus has yet to emerge, however, concerning the conditions in which network dynamics impact model outcomes, as compared to static approximations that average contact rates over longer time periods. Furthermore, as many pathogens can be transmitted both environmentally and via close contact, it is important to investigate the relative influence of both transmission routes in real-world populations. Here, we use empirically derived networks from a population of wild primates, Verreaux's sifakas (Propithecus verreauxi), and simulated networks to investigate pathogen spread in dynamic vs. static social networks. First, we constructed a susceptible-exposed-infected-recovered model of Cryptosporidium spread in wild Verreaux's sifakas. We incorporated social and environmental transmission routes and parameterized the model for two different climatic seasons. Second, we used simulated networks and greater variation in epidemiological parameters to investigate the conditions in which dynamic networks produce larger outbreak sizes than static networks. We found that average outbreak size of Cryptosporidium infections in sifakas was larger when the disease was introduced in the dry season than in the wet season, driven by an increase in home range overlap towards the end of the dry season. Regardless of season, dynamic networks always produced larger average outbreak sizes than static networks. Larger outbreaks in dynamic models based on simulated networks occurred especially when the probability of transmission and recovery were low. Variation in tie strength in the dynamic networks also had a major impact on outbreak size, while network modularity had a weaker influence than epidemiological parameters that determine transmission and recovery. Our study adds to emerging evidence that dynamic networks can change predictions of disease dynamics, especially if the disease shows low transmissibility and a long infectious period, and when environmental conditions lead to enhanced between-group contact after an infectious agent has been introduced. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  6. Studies on the population dynamics of a rumor-spreading model in online social networks

    NASA Astrophysics Data System (ADS)

    Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang

    2018-02-01

    This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.

  7. Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics.

    PubMed

    Thomas, Bryce; Jurdak, Raja; Zhao, Kun; Atkinson, Ian

    2016-01-01

    Temporal contact networks are studied to understand dynamic spreading phenomena such as communicable diseases or information dissemination. To establish how spatiotemporal dynamics of nodes impact spreading potential in colocation contact networks, we propose "inducement-shuffling" null models which break one or more correlations between times, locations and nodes. By reconfiguring the time and/or location of each node's presence in the network, these models induce alternative sets of colocation events giving rise to contact networks with varying spreading potential. This enables second-order causal reasoning about how correlations in nodes' spatiotemporal preferences not only lead to a given contact network but ultimately influence the network's spreading potential. We find the correlation between nodes and times to be the greatest impediment to spreading, while the correlation between times and locations slightly catalyzes spreading. Under each of the presented null models we measure both the number of contacts and infection prevalence as a function of time, with the surprising finding that the two have no direct causality.

  8. Dynamic hydro-climatic networks in pristine and regulated rivers

    NASA Astrophysics Data System (ADS)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.

  9. Impacts assessment of dynamic speed harmonization with queue warning : task 3, impacts assessment report.

    DOT National Transportation Integrated Search

    2015-06-01

    This report assesses the impacts of a prototype of Dynamic Speed Harmonization (SPD-HARM) with Queue Warning (Q-WARN), which are two component applications of the Intelligent Network Flow Optimization (INFLO) bundle. The assessment is based on an ext...

  10. Graph fibrations and symmetries of network dynamics

    NASA Astrophysics Data System (ADS)

    Nijholt, Eddie; Rink, Bob; Sanders, Jan

    2016-11-01

    Dynamical systems with a network structure can display remarkable phenomena such as synchronisation and anomalous synchrony breaking. A methodology for classifying patterns of synchrony in networks was developed by Golubitsky and Stewart. They showed that the robustly synchronous dynamics of a network is determined by its quotient networks. This result was recently reformulated by DeVille and Lerman, who pointed out that the reduction from a network to a quotient is an example of a graph fibration. The current paper exploits this observation and demonstrates the importance of self-fibrations of network graphs. Self-fibrations give rise to symmetries in the dynamics of a network. We show that every network admits a lift with a semigroup or semigroupoid of self-fibrations. The resulting symmetries impact the global dynamics of the network and can therefore be used to explain and predict generic scenarios for synchrony breaking. Also, when the network has a trivial symmetry groupoid, then every robust synchrony in the lift is determined by symmetry. We finish this paper with a discussion of networks with interior symmetries and nonhomogeneous networks.

  11. Generalized priority-queue network dynamics: Impact of team and hierarchy

    NASA Astrophysics Data System (ADS)

    Cho, Won-Kuk; Min, Byungjoon; Goh, K.-I.; Kim, I.-M.

    2010-06-01

    We study the effect of team and hierarchy on the waiting-time dynamics of priority-queue networks. To this end, we introduce generalized priority-queue network models incorporating interaction rules based on team-execution and hierarchy in decision making, respectively. It is numerically found that the waiting-time distribution exhibits a power law for long waiting times in both cases, yet with different exponents depending on the team size and the position of queue nodes in the hierarchy, respectively. The observed power-law behaviors have in many cases a corresponding single or pairwise-interacting queue dynamics, suggesting that the pairwise interaction may constitute a major dynamic consequence in the priority-queue networks. It is also found that the reciprocity of influence is a relevant factor for the priority-queue network dynamics.

  12. A mathematical model for mesenchymal and chemosensitive cell dynamics.

    PubMed

    Häcker, Anita

    2012-01-01

    The structure of an underlying tissue network has a strong impact on cell dynamics. If, in addition, cells alter the network by mechanical and chemical interactions, their movement is called mesenchymal. Important examples for mesenchymal movement include fibroblasts in wound healing and metastatic tumour cells. This paper is focused on the latter. Based on the anisotropic biphasic theory of Barocas and Tranquillo, which models a fibre network and interstitial solution as two-component fluid, a mathematical model for the interactions of cells with a fibre network is developed. A new description for fibre reorientation is given and orientation-dependent proteolysis is added to the model. With respect to cell dynamics, the equation, based on anisotropic diffusion, is extended by haptotaxis and chemotaxis. The chemoattractants are the solute network fragments, emerging from proteolysis, and the epidermal growth factor which may guide the cells to a blood vessel. Moreover the cell migration is impeded at either high or low network density. This new model enables us to study chemotactic cell migration in a complex fibre network and the consequential network deformation. Numerical simulations for the cell migration and network deformation are carried out in two space dimensions. Simulations of cell migration in underlying tissue networks visualise the impact of the network structure on cell dynamics. In a scenario for fibre reorientation between cell clusters good qualitative agreement with experimental results is achieved. The invasion speeds of cells in an aligned and an isotropic fibre network are compared. © Springer-Verlag 2011

  13. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Teixeira, Kristina J.; Davies, Stuart J.; Bennett, Amy C.

    2014-09-25

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forestmore » diversity and dynamics in a era of global change« less

  14. Impact of environmental inputs on reverse-engineering approach to network structures.

    PubMed

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  15. A network of networks.

    PubMed

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian

    2017-04-10

    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more from network members than participation in a single network, as it involves health service professionals and consumers in a multi-network dynamic. This dynamic requires deliberations and collaborations to be flexible, and it increasingly positions members as "strategic hybrids" - people who have moved on from singular taken-as-given stances and identities, towards hybrid positionings and flexible perspectives. Originality/value This paper is novel in that it identifies a critical feature of health service reform and large system transformation: network governance is empowered through the dynamic co-location of and collaboration among healthcare networks, particularly when complemented with "enabler" teams of people specialising in programme implementation and evaluation.

  16. A dynamic network model for interbank market

    NASA Astrophysics Data System (ADS)

    Xu, Tao; He, Jianmin; Li, Shouwei

    2016-12-01

    In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.

  17. Complex networks repair strategies: Dynamic models

    NASA Astrophysics Data System (ADS)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.

  18. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks

    PubMed Central

    Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730

  19. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    PubMed

    Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.

  20. A Graph-Based Impact Metric for Mitigating Lateral Movement Cyber Attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purvine, Emilie AH; Johnson, John R.; Lo, Chaomei

    Most cyber network attacks begin with an adversary gain- ing a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signa- ture of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typ- ically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reach- ability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolvemore » over time. We use this reacha- bility graph to develop dynamic machine-level and network- level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.« less

  1. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  2. DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES

    PubMed Central

    YSA, TAMYKO; SIERRA, VICENTA; ESTEVE, MARC

    2014-01-01

    The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized. PMID:25520529

  3. DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES.

    PubMed

    Ysa, Tamyko; Sierra, Vicenta; Esteve, Marc

    2014-09-01

    The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized.

  4. Impact analysis of two kinds of failure strategies in Beijing road transportation network

    NASA Astrophysics Data System (ADS)

    Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan

    The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.

  5. The dynamics of transmission and the dynamics of networks.

    PubMed

    Farine, Damien

    2017-05-01

    A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors, such as seasonality, led to consistent differences in the structure of social networks, using dynamic vs. static representations of networks generated differences in the predicted outbreak size of an emergent disease. These findings highlight some of the challenges associated with studying disease dynamics in animal populations, and the importance of continuing efforts to develop the network tools needed to study disease spread. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  6. What's in a crowd? Analysis of face-to-face behavioral networks.

    PubMed

    Isella, Lorenzo; Stehlé, Juliette; Barrat, Alain; Cattuto, Ciro; Pinton, Jean-François; Van den Broeck, Wouter

    2011-02-21

    The availability of new data sources on human mobility is opening new avenues for investigating the interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios. We compare two settings with very different properties, a scientific conference and a long-running museum exhibition. We track the behavioral networks of face-to-face proximity, and characterize them from both a static and a dynamic point of view, exposing differences and similarities. We use our data to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity. The spreading patterns are markedly different for the conference and the museum case, and they are strongly impacted by the causal structure of the network data. A deeper study of the spreading paths shows that the mere knowledge of static aggregated networks would lead to erroneous conclusions about the transmission paths on the dynamical networks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Individual heterogeneity generating explosive system network dynamics.

    PubMed

    Manrique, Pedro D; Johnson, Neil F

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  8. Individual heterogeneity generating explosive system network dynamics

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Johnson, Neil F.

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  9. Quantifying the spatio-temporal pattern of the ground impact of space weather events using dynamical networks formed from the SuperMAG database of ground based magnetometer stations.

    NASA Astrophysics Data System (ADS)

    Dods, Joe; Chapman, Sandra; Gjerloev, Jesper

    2016-04-01

    Quantitative understanding of the full spatial-temporal pattern of space weather is important in order to estimate the ground impact. Geomagnetic indices such as AE track the peak of a geomagnetic storm or substorm, but cannot capture the full spatial-temporal pattern. Observations by the ~100 ground based magnetometers in the northern hemisphere have the potential to capture the detailed evolution of a given space weather event. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere. We can also investigate the solar wind control of the magnetospheric-ionospheric convection system using dynamical networks. The dynamical networks are first interpolated onto a regular grid. Statistically averaged network responses are then formed for a variety of solar wind conditions, including investigating the network response to southward turnings. [1] Dods, J., S. C. Chapman, and J. W. Gjerloev (2015), Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations, J. Geophys. Res. Space Physics, 120, 7774-7784, doi:10.1002/2015JA021456

  10. Impact of dynamic rate coding aspects of mobile phone networks on forensic voice comparison.

    PubMed

    Alzqhoul, Esam A S; Nair, Balamurali B T; Guillemin, Bernard J

    2015-09-01

    Previous studies have shown that landline and mobile phone networks are different in their ways of handling the speech signal, and therefore in their impact on it. But the same is also true of the different networks within the mobile phone arena. There are two major mobile phone technologies currently in use today, namely the global system for mobile communications (GSM) and code division multiple access (CDMA) and these are fundamentally different in their design. For example, the quality of the coded speech in the GSM network is a function of channel quality, whereas in the CDMA network it is determined by channel capacity (i.e., the number of users sharing a cell site). This paper examines the impact on the speech signal of a key feature of these networks, namely dynamic rate coding, and its subsequent impact on the task of likelihood-ratio-based forensic voice comparison (FVC). Surprisingly, both FVC accuracy and precision are found to be better for both GSM- and CDMA-coded speech than for uncoded. Intuitively one expects FVC accuracy to increase with increasing coded speech quality. This trend is shown to occur for the CDMA network, but, surprisingly, not for the GSM network. Further, in respect to comparisons between these two networks, FVC accuracy for CDMA-coded speech is shown to be slightly better than for GSM-coded speech, particularly when the coded-speech quality is high, but in terms of FVC precision the two networks are shown to be very similar. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Time Allocation in Social Networks: Correlation Between Social Structure and Human Communication Dynamics

    NASA Astrophysics Data System (ADS)

    Miritello, Giovanna; Lara, Rubén; Moro, Esteban

    Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.

  12. SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Zhang, Yumei; Man, Jiayu; Zhou, Yun; Wu, Xiaojun

    2017-02-01

    Cooperative learning is one of the most effective teaching methods, which has been widely used. Students' mutual contact forms a cooperative learning network in this process. Our previous research demonstrated that the cooperative learning network has complex characteristics. This study aims to investigating the dynamic spreading process of the knowledge in the cooperative learning network and the inspiration of leaders in this process. To this end, complex network transmission dynamics theory is utilized to construct the knowledge dissemination model of a cooperative learning network. Based on the existing epidemic models, we propose a new susceptible-infected-susceptible-leader (SISL) model that considers both students' forgetting and leaders' inspiration, and a susceptible-infected-removed-leader (SIRL) model that considers students' interest in spreading and leaders' inspiration. The spreading threshold λcand its impact factors are analyzed. Then, numerical simulation and analysis are delivered to reveal the dynamic transmission mechanism of knowledge and leaders' role. This work is of great significance to cooperative learning theory and teaching practice. It also enriches the theory of complex network transmission dynamics.

  13. Opinion formation in time-varying social networks: The case of the naming game

    NASA Astrophysics Data System (ADS)

    Maity, Suman Kalyan; Manoj, T. Venkat; Mukherjee, Animesh

    2012-09-01

    We study the dynamics of the naming game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the naming game dynamics. In particular, we perform a computational exploration of this model using simulations on top of real networks. We investigate the outcomes of the dynamics on two different types of time-varying data: (1) the networks vary on a day-to-day basis and (2) the networks vary within very short intervals of time (20 sec). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the naming game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the naming game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties of the game that differ largely from what has been reported in the existing literature.

  14. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  15. Accounting for heterogeneity of nutrient dynamics in riverscapes through spatially distributed models

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.

    2011-12-01

    Numerous types of heterogeneity exist within river systems, leading to hotspots of nutrient sources, sinks, and impacts embedded within an underlying gradient defined by river size. This heterogeneity influences the downstream propagation of anthropogenic impacts across flow conditions. We applied a river network model to explore how nitrogen saturation at river network scales is influenced by the abundance and distribution of potential nutrient processing hotspots (lakes, beaver ponds, tributary junctions, hyporheic zones) under different flow conditions. We determined that under low flow conditions, whole network nutrient removal is relatively insensitive to the number of hotspots because the underlying river network structure has sufficient nutrient processing capacity. However, hotspots become more important at higher flows and greatly influence the spatial distribution of removal within the network at all flows, suggesting that identification of heterogeneity is critical to develop predictive understanding of nutrient removal processes under changing loading and climate conditions. New temporally intensive data from in situ sensors can potentially help to better understand and constrain these dynamics.

  16. The diminishing role of hubs in dynamical processes on complex networks.

    PubMed

    Quax, Rick; Apolloni, Andrea; Sloot, Peter M A

    2013-11-06

    It is notoriously difficult to predict the behaviour of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology. Even if the dynamics of each microscopic unit is known, a real understanding of their contributions to the macroscopic system behaviour is still lacking. Here, we develop information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics. We show that for a system of units connected by a network of interaction potentials with an arbitrary degree distribution, highly connected units have less impact on the system dynamics when compared with intermediately connected units. In an equilibrium setting, the hubs are often found to dictate the long-term behaviour. However, we find both analytically and experimentally that the instantaneous states of these units have a short-lasting effect on the state trajectory of the entire system. We present qualitative evidence of this phenomenon from empirical findings about a social network of product recommendations, a protein-protein interaction network and a neural network, suggesting that it might indeed be a widespread property in nature.

  17. Growing complex network of citations of scientific papers: Modeling and measurements

    NASA Astrophysics Data System (ADS)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  18. Development of a system dynamics model for financially sustainable management of municipal watermain networks.

    PubMed

    Rehan, R; Knight, M A; Unger, A J A; Haas, C T

    2013-12-15

    This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Estimating User Influence in Online Social Networks Subject to Information Overload

    NASA Astrophysics Data System (ADS)

    Li, Pei; Sun, Yunchuan; Chen, Yingwen; Tian, Zhi

    2014-11-01

    Online social networks have attracted remarkable attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. Due to the existence of information overload, the research on diffusion dynamics in epidemiology cannot be adopted directly to that in online social networks. In this paper, we consider diffusion dynamics in online social networks subject to information overload, and model the information-processing process of a user by a queue with a batch arrival and a finite buffer. We use the average number of times a message is processed after it is generated by a given user to characterize the user influence, which is then estimated through theoretical analysis for a given network. We validate the accuracy of our estimation by simulations, and apply the results to study the impacts of different factors on the user influence. Among the observations, we find that the impact of network size on the user influence is marginal while the user influence decreases with assortativity due to information overload, which is particularly interesting.

  20. Impact of Trust on Security and Performance in Tactical Networks

    DTIC Science & Technology

    2013-06-01

    and reliability . On the other hand, in organizational theory, trust management has viewed trust as a key factor to manage relationships that flourish...environments challenges, these dynamics can hinder accurate and reliable trust evaluation of entities in the network [10], [11]. • Information Network Domain...trustworthy entities. • Social/Cognitive Network Domain: Social scientists, physiologists, and neuroscientists have studied social trust, interpersonal

  1. Comparing spatial and temporal patterns of river water isotopes across networks

    EPA Science Inventory

    A detailed understanding of the spatial and temporal dynamics of water sources across river networks is central to managing the impacts of climate change. Because the stable isotope composition of precipitation varies geographically, variation in surface-water isotope signatures ...

  2. Multivariate machine learning distinguishes cross-network dynamic functional connectivity patterns in state and trait neuropathic pain.

    PubMed

    Cheng, J C; Rogachov, A; Hemington, K S; Kucyi, A; Bosma, R L; Lindquist, M A; Inman, R D; Davis, K D

    2018-04-26

    Communication within the brain is dynamic. Chronic pain can also be dynamic, with varying intensities experienced over time. Little is known of how brain dynamics are disrupted in chronic pain, or relates to patients' pain assessed at various time-scales (e.g., short-term state versus long-term trait). Patients experience pain "traits" indicative of their general condition, but also pain "states" that vary day to day. Here, we used network-based multivariate machine learning to determine how patterns in dynamic and static brain communication are related to different characteristics and timescales of chronic pain. Our models were based on resting state dynamic and static functional connectivity (dFC, sFC) in patients with chronic neuropathic pain (NP) or non-NP. The most prominent networks in the models were the default mode, salience, and executive control networks. We also found that cross-network measures of dFC rather than sFC were better associated with patients' pain, but only in those with NP features. These associations were also more highly and widely associated with measures of trait rather than state pain. Furthermore, greater dynamic connectivity with executive control networks was associated with milder neuropathic pain, but greater dynamic connectivity with limbic networks was associated greater neuropathic pain. Compared with healthy individuals, the dFC features most highly related to trait neuropathic pain were also more abnormal in patients with greater pain. Our findings indicate that dFC reflects patients' overall pain condition (i.e., trait pain), not just their current state, and is impacted by complexities in pain features beyond intensity.

  3. The impact of multiple information on coupled awareness-epidemic dynamics in multiplex networks

    NASA Astrophysics Data System (ADS)

    Pan, Yaohui; Yan, Zhijun

    2018-02-01

    Growing interest has emerged in the study of the interplay between awareness and epidemics in multiplex networks. However, previous studies on this issue usually assume that all aware individuals take the same level of precautions, ignoring individual heterogeneity. In this paper, we investigate the coupled awareness-epidemic dynamics in multiplex networks considering individual heterogeneity. Here, the precaution levels are heterogeneous and depend on three types of information: contact information and local and global prevalence information. The results show that contact-based precautions can decrease the epidemic prevalence and augment the epidemic threshold, but prevalence-based precautions, regardless of local or global information, can only decrease the epidemic prevalence. Moreover, unlike previous studies in single-layer networks, we do not find a greater impact of local prevalence information on the epidemic prevalence compared to global prevalence information. In addition, we find that the altruistic behaviors of infected individuals can effectively suppress epidemic spreading, especially when the level of contact-based precaution is high.

  4. Incorporating social impact on new product adoption in choice modeing: A case study in green vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lin; Wang, Mingxian; Chen, Wei

    While discrete choice analysis is prevalent in capturing consumer preferences and describing their choice behaviors in product design, the traditional choice modeling approach assumes that each individual makes independent decisions, without considering the social impact. However, empirical studies show that choice is social - influenced by many factors beyond engineering performance of a product and consumer attributes. To alleviate this limitation, we propose a new choice modeling framework to capture the dynamic influence from social networks on consumer adoption of new products. By introducing social influence attributes into a choice utility function, social network simulation is integrated with the traditionalmore » discrete choice analysis in a three-stage process. Our study shows the need for considering social impact in forecasting new product adoption. Using hybrid electric vehicles as an example, our work illustrates the procedure of social network construction, social influence evaluation, and choice model estimation based on data from the National Household Travel Survey. Our study also demonstrates several interesting findings on the dynamic nature of new technology adoption and how social networks may influence hybrid electric vehicle adoption. (C) 2014 Elsevier Ltd. All rights reserved« less

  5. Open quantum generalisation of Hopfield neural networks

    NASA Astrophysics Data System (ADS)

    Rotondo, P.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.; Müller, M.

    2018-03-01

    We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent effects on the same footing. In particular, we propose an open quantum generalisation of the Hopfield neural network, the simplest toy model of associative memory. We determine its phase diagram and show that quantum fluctuations give rise to a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds that may be regarded as a generalisation of storage patterns to the quantum domain.

  6. Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study

    PubMed Central

    Borge-Holthoefer, Javier; Rivero, Alejandro; García, Iñigo; Cauhé, Elisa; Ferrer, Alfredo; Ferrer, Darío; Francos, David; Iñiguez, David; Pérez, María Pilar; Ruiz, Gonzalo; Sanz, Francisco; Serrano, Fermín; Viñas, Cristina; Tarancón, Alfonso; Moreno, Yamir

    2011-01-01

    The number of people using online social networks in their everyday life is continuously growing at a pace never saw before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th (15M) movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend modern societal dynamics. PMID:21886834

  7. Dynamics and control of diseases in networks with community structure.

    PubMed

    Salathé, Marcel; Jones, James H

    2010-04-08

    The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  8. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  9. Design of neural networks for fast convergence and accuracy: dynamics and control.

    PubMed

    Maghami, P G; Sparks, D R

    2000-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  10. Self-organizing hierarchies in sensor and communication networks.

    PubMed

    Prokopenko, Mikhail; Wang, Peter; Valencia, Philip; Price, Don; Foreman, Mark; Farmer, Anthony

    2005-01-01

    We consider a hierarchical multicellular sensing and communication network, embedded in an ageless aerospace vehicle that is expected to detect and react to multiple impacts and damage over a wide range of impact energies. In particular, we investigate self-organization of impact boundaries enclosing critically damaged areas, and impact networks connecting remote cells that have detected noncritical impacts. Each level of the hierarchy is shown to have distinct higher-order emergent properties, desirable in self-monitoring and self-repairing vehicles. In addition, cells and communication messages are shown to need memory (hysteresis) in order to retain desirable emergent behavior within and between various hierarchical levels. Spatiotemporal robustness of self-organizing hierarchies is quantitatively measured with graph-theoretic and information-theoretic techniques, such as the Shannon entropy. This allows us to clearly identify phase transitions separating chaotic dynamics from ordered and robust patterns.

  11. Species traits and network structure predict the success and impacts of pollinator invasions.

    PubMed

    Valdovinos, Fernanda S; Berlow, Eric L; Moisset de Espanés, Pablo; Ramos-Jiliberto, Rodrigo; Vázquez, Diego P; Martinez, Neo D

    2018-05-31

    Species invasions constitute a major and poorly understood threat to plant-pollinator systems. General theory predicting which factors drive species invasion success and subsequent effects on native ecosystems is particularly lacking. We address this problem using a consumer-resource model of adaptive behavior and population dynamics to evaluate the invasion success of alien pollinators into plant-pollinator networks and their impact on native species. We introduce pollinator species with different foraging traits into network models with different levels of species richness, connectance, and nestedness. Among 31 factors tested, including network and alien properties, we find that aliens with high foraging efficiency are the most successful invaders. Networks exhibiting high alien-native diet overlap, fraction of alien-visited plant species, most-generalist plant connectivity, and number of specialist pollinator species are the most impacted by invaders. Our results mimic several disparate observations conducted in the field and potentially elucidate the mechanisms responsible for their variability.

  12. Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity

    PubMed Central

    Effenberger, Felix; Jost, Jürgen; Levina, Anna

    2015-01-01

    Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425

  13. Joint physical and numerical modeling of water distribution networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.

    2009-01-01

    This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in somemore » cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.« less

  14. The importance of accurately modelling human interactions. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Rosati, Dora P.; Molina, Chai; Earn, David J. D.

    2015-12-01

    Human behaviour and disease dynamics can greatly influence each other. In particular, people often engage in self-protective behaviours that affect epidemic patterns (e.g., vaccination, use of barrier precautions, isolation, etc.). Self-protective measures usually have a mitigating effect on an epidemic [16], but can in principle have negative impacts at the population level [12,15,18]. The structure of underlying social and biological contact networks can significantly influence the specific ways in which population-level effects are manifested. Using a different contact network in a disease dynamics model-keeping all else equal-can yield very different epidemic patterns. For example, it has been shown that when individuals imitate their neighbours' vaccination decisions with some probability, this can lead to herd immunity in some networks [9], yet for other networks it can preserve clusters of susceptible individuals that can drive further outbreaks of infectious disease [12].

  15. The impact of awareness on epidemic spreading in networks.

    PubMed

    Wu, Qingchu; Fu, Xinchu; Small, Michael; Xu, Xin-Jian

    2012-03-01

    We explore the impact of awareness on epidemic spreading through a population represented by a scale-free network. Using a network mean-field approach, a mathematical model for epidemic spreading with awareness reactions is proposed and analyzed. We focus on the role of three forms of awareness including local, global, and contact awareness. By theoretical analysis and simulation, we show that the global awareness cannot decrease the likelihood of an epidemic outbreak while both the local awareness and the contact awareness can. Also, the influence degree of the local awareness on disease dynamics is closely related with the contact awareness.

  16. Dynamics and nature of support in the personal networks of people with type 2 diabetes living in Europe: qualitative analysis of network properties.

    PubMed

    Kennedy, Anne; Rogers, Anne; Vassilev, Ivaylo; Todorova, Elka; Roukova, Poli; Foss, Christina; Knutsen, Ingrid; Portillo, Mari Carmen; Mujika, Agurtzane; Serrano-Gil, Manuel; Lionis, Christos; Angelaki, Agapi; Ratsika, Nikoleta; Koetsenruijter, Jan; Wensing, Michel

    2015-12-01

    Living with and self-managing a long-term condition implicates a diversity of networked relationships. This qualitative study examines the personal communities of support of people with type 2 diabetes. We conducted 170 biographical interviews in six European countries (Bulgaria, Greece, the Netherlands, Norway, Spain and UK) to explore social support and networks. Analysis was framed with reference to three predetermined social support mechanisms: the negotiation of support enabling engagement with healthy practices, navigation to sources of support and collective efficacy. Each interview was summarized to describe navigation and negotiation of participants' networks and the degree of collective efficacy. Analysis highlighted the similarities and differences between countries and provided insights into capacities of networks to support self-management. The network support mechanisms were identified in all interviews, and losses and gains in networks impacted on diabetes management. There were contextual differences between countries, most notably the impact of financial austerity on network dynamics. Four types of network are suggested: generative, diverse and beneficial to individuals; proxy, network members undertook diabetes management work; avoidant, support not engaged with; and struggling, diabetes management a struggle or not prioritized. It is possible to differentiate types of network input to living with and managing diabetes. Recognizing the nature of active, generative aspects of networks support is likely to have relevance for self-management support interventions either through encouraging continuing development and maintenance of these contacts or intervening to address struggling networks through introducing the means to connect people to additional sources of support. © 2014 John Wiley & Sons Ltd.

  17. Integration of Structural Dynamics and Molecular Evolution via Protein Interaction Networks: A New Era in Genomic Medicine

    PubMed Central

    Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu

    2016-01-01

    Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487

  18. Dealing with uncertainty in modeling intermittent water supply

    NASA Astrophysics Data System (ADS)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  19. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    PubMed

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  20. Memory Dynamics in Cross-linked Actin Networks

    NASA Astrophysics Data System (ADS)

    Scheff, Danielle; Majumdar, Sayantan; Gardel, Margaret

    Cells demonstrate the remarkable ability to adapt to mechanical stimuli through rearrangement of the actin cytoskeleton, a cross-linked network of actin filaments. In addition to its importance in cell biology, understanding this mechanical response provides strategies for creation of novel materials. A recent study has demonstrated that applied stress can encode mechanical memory in these networks through changes in network geometry, which gives rise to anisotropic shear response. Under later shear, the network is stiffer in the direction of the previously applied stress. However, the dynamics behind the encoding of this memory are unknown. To address this question, we explore the effect of varying either the rigidity of the cross-linkers or the length of actin filament on the time scales required for both memory encoding and over which it later decays. While previous experiments saw only a long-lived memory, initial results suggest another mechanism where memories relax relatively quickly. Overall, our study is crucial for understanding the process by which an external stress can impact network arrangement and thus the dynamics of memory formation.

  1. The Potential for Altmetrics to Measure Other Types of Impact in Scientific Production: Academic and Social Impact Dynamics in Social Media and Networks

    ERIC Educational Resources Information Center

    Maricato, João de Melo; Vilan Filho, Jayme Leiro

    2018-01-01

    Introduction: Altmetrics is an area under construction, with a potential to study the impacts of academic products from social media data. It is believed that altmetrics can capture social and academic impacts, going beyond measures obtained using bibliometric and scientometric indicators. This research aimed to analyse aspects, characteristics…

  2. Propagation, cascades, and agreement dynamics in complex communication and social networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming

    Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.

  3. Mechanistic Representation of Soil C Dynamics: for Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Riley, W. J.; Bisht, G.

    2013-12-01

    Arctic and sub-Arctic soils store vast amounts of carbon, approximately 1700 billion metric tones of frozen organic carbon. This carbon is susceptible to release to the atmosphere due to environmental changes (e.g., rapidly evolving landscape, warming); however, the mechanisms responsible for this susceptibility of soil organic matter (SOM) are not well understood, and uncertainties exist in terms of their representation in Earth System models. The representation of SOM dynamics in Earth System Models is critical for future climate prediction. To investigate the impacts of various physical (e.g., multi-phase transport, sorption, desorption, temperature), chemical (e.g., pH), and biological (e.g., microbial activity, enzyme dynamics) factors on SOM stability, we have developed CENTURY-like (describing labile and recalcitrant pools) and complex (describing multiple archetypal polymers and monomers C substrate groups) reaction networks. These reaction networks are integrated in a three-dimensional, multi-phase reactive transport solver (PFLOTRAN) and include representations of bacterial and fungal activity as well as population dynamics, gaseous and aqueous advection, and adsorption and desorption. We test and compare these reaction networks in PFLOTRAN to accurately predict depth-resolved soil organic matter (SOM) in the subsurface. We present results showing impacts of abiotic controls (e.g., surface interactions and temperature) on the long-term stabilization of SOM under permafrost conditions.

  4. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah, E-mail: abdullah.ozkanlar@wsu.edu; Zhou, Tiecheng; Clark, Aurora E., E-mail: auclark@wsu.edu

    2014-12-07

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the usemore » of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.« less

  5. An integrated system model for evaluating the impact of the dynamic ICC toll policy on the regional network mobility.

    DOT National Transportation Integrated Search

    2011-12-01

    Road pricing has been advocated as an efficient travel demand management to alleviate congestion since the : seminal work by Pigou (1920) and Knight (1924) (see Lindsey, 2006, for recent reviews). More specifically, dynamic : toll pricing has receive...

  6. A spread willingness computing-based information dissemination model.

    PubMed

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  7. A Spread Willingness Computing-Based Information Dissemination Model

    PubMed Central

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  8. Epidemic transmission on random mobile network with diverse infection periods

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Yu, Hong; Zeng, Zhaorong; Ding, Yong; Ma, Zhongjun

    2015-05-01

    The heterogeneity of individual susceptibility and infectivity and time-varying topological structure are two realistic factors when we study epidemics on complex networks. Current research results have shown that the heterogeneity of individual susceptibility and infectivity can increase the epidemic threshold in a random mobile dynamical network with the same infection period. In this paper, we will focus on random mobile dynamical networks with diverse infection periods due to people's different constitutions and external circumstances. Theoretical results indicate that the epidemic threshold of the random mobile network with diverse infection periods is larger than the counterpart with the same infection period. Moreover, the heterogeneity of individual susceptibility and infectivity can play a significant impact on disease transmission. In particular, the homogeneity of individuals will avail to the spreading of epidemics. Numerical examples verify further our theoretical results very well.

  9. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Treesearch

    Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman

    2014-01-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...

  10. Quantifying Economic and Environmental Impacts of Transportation Network Disruptions with Dynamic Traffic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekar, Venkateswaran; Fiondella, Lance; Chatterjee, Samrat

    Several transportation network vulnerability models have been proposed. However, most only consider disruptions as a static snapshot in time and the impact on total travel time. These approaches cannot consider the time-varying nature of travel demand nor other undesirable outcomes that follow from transportation network disruptions. This paper proposes an algorithmic approach to assess the vulnerability of a transportation network that considers the time-varying demand with an open source dynamic transportation simulation tool. The open source nature of the tool allows us to systematically consider many disruption scenarios and quantitatively compare their relative criticality. This is far more efficient thanmore » traditional approaches which would require days or weeks of a transportation engineers time to manually set up, run, and assess these simulations. In addition to travel time, we also collect statistics on additional fuel consumed and the corresponding carbon dioxide emissions. Our approach, thus provides a more systematic approach that is both time-varying and can consider additional negative consequences of disruptions for decision makers to evaluate.« less

  11. The impact of cost and network topology on urban mobility: a study of public bicycle usage in 2 U.S. cities.

    PubMed

    Jurdak, Raja

    2013-01-01

    Understanding the drivers of urban mobility is vital for epidemiology, urban planning, and communication networks. Human movements have so far been studied by observing people's positions in a given space and time, though most recent models only implicitly account for expected costs and returns for movements. This paper explores the explicit impact of cost and network topology on mobility dynamics, using data from 2 city-wide public bicycle share systems in the USA. User mobility is characterized through the distribution of trip durations, while network topology is characterized through the pairwise distances between stations and the popularity of stations and routes. Despite significant differences in station density and physical layout between the 2 cities, trip durations follow remarkably similar distributions that exhibit cost sensitive trends around pricing point boundaries, particularly with long-term users of the system. Based on the results, recommendations for dynamic pricing and incentive schemes are provided to positively influence mobility patterns and guide improved planning and management of public bicycle systems to increase uptake.

  12. Flow-oriented dynamic assembly algorithm in TCP over OBS networks

    NASA Astrophysics Data System (ADS)

    Peng, Shuping; Li, Zhengbin; He, Yongqi; Xu, Anshi

    2008-11-01

    OBS is envisioned as a promising infrastructure for the next generation optical network, and TCP is likely to be the dominant transport protocol in the next generation network. Therefore, it is necessary to evaluate the performance of TCP over OBS networks. The assembly at the ingress edge nodes will impact the network performance. There have been several Fixed Assembly Period (FAP) algorithms proposed. However, the assembly period in FAP is fixed, and it can not be adjusted according to the network condition. Moreover, in FAP, the packets from different TCP sources are assembled into one burst. In that case, if such a burst is dropped, the TCP windows of the corresponding sources will shrink and the throughput will be reduced. In this paper, we introduced a flow-oriented Dynamic Assembly Period (DAP) algorithm for TCP over OBS networks. Through comparing the previous and current burst lengths, DAP can track the variation of TCP window, and update the assembly period dynamically for the next assembly. The performance of DAP is evaluated over a single TCP connection and multiple connections, respectively. The simulation results show that DAP performs better than FAP at almost the whole range of burst dropping probability.

  13. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  14. A network-base analysis of CMIP5 "historical" experiments

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Foudalis, I.; Dovrolis, C.

    2012-12-01

    In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.

  15. Reorganization of interaction networks modulates the persistence of species in late successional stages.

    PubMed

    Saavedra, Serguei; Cenci, Simone; Del-Val, Ek; Boege, Karina; Rohr, Rudolf P

    2017-09-01

    Ecological interaction networks constantly reorganize as interspecific interactions change across successional stages and environmental gradients. This reorganization can also be associated with the extent to which species change their preference for types of niches available in their local sites. Despite the pervasiveness of these interaction changes, previous studies have revealed that network reorganizations have a minimal or insignificant effect on global descriptors of network architecture, such as connectance, modularity and nestedness. However, little is known about whether these reorganizations may have an effect on community dynamics and composition. To answer the question above, we study the multi-year dynamics and reorganization of plant-herbivore interaction networks across secondary successional stages of a tropical dry forest. We develop new quantitative tools based on a structural stability approach to estimate the potential impact of network reorganization on species persistence. Then, we investigate whether this impact can explain the likelihood of persistence of herbivore species in the observed communities. We find that resident (early-arriving) herbivore species increase their likelihood of persistence across time and successional stages. Importantly, we demonstrate that, in late successional stages, the reorganization of interactions among resident species has a strong inhibitory effect on the likelihood of persistence of colonizing (late-arriving) herbivores. These findings support earlier predictions suggesting that, in mature communities, changes of species interactions can act as community-control mechanisms (also known as priority effects). Furthermore, our results illustrate that the dynamics and composition of ecological communities cannot be fully understood without attention to their reorganization processes, despite the invariability of global network properties. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  16. System Impact Study of the Eastern Grid of Sumba Island, Indonesia: Steady-State and Dynamic System Modeling for the Integration of One and Two 850-kW Wind Turbine Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oswal, R.; Jain, P.; Muljadi, Eduard

    2016-01-01

    The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.

  17. Reconstruction of an Immune Dynamic Model to Simulate the Contrasting Role of Auxin and Cytokinin in Plant Immunity.

    PubMed

    Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.

  18. Integration of structural dynamics and molecular evolution via protein interaction networks: a new era in genomic medicine.

    PubMed

    Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu

    2015-12-01

    Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of active links on epidemic transmission over social networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guanghu; Chen, Guanrong; Fu, Xinchu

    2017-02-01

    A new epidemic model with two infection periods is developed to account for the human behavior in social network, where newly infected individuals gradually restrict most of future contacts or are quarantined, causing infectivity change from a degree-dependent form to a constant. The corresponding dynamics are formulated by a set of ordinary differential equations (ODEs) via mean-field approximation. The effects of diverse infectivity on the epidemic dynamics ​are examined, with a behavioral interpretation of the basic reproduction number. Results show that such simple adaptive reactions largely determine the impact of network structure on epidemics. Particularly, a theorem proposed by Lajmanovich and Yorke in 1976 is generalized, so that it can be applied for the analysis of the epidemic models with multi-compartments especially network-coupled ODE systems.

  20. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  1. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  2. Infections on the move: how transient phases of host movement influence disease spread

    PubMed Central

    Fenton, A.; Dell, A. I.

    2017-01-01

    Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283

  3. Lessons from 15 years of monitoring sudden oak death and forest dynamics in California forests

    Treesearch

    Margaret Metz; J. Morgan Varner; Ross Meentemeyer; Kerri Frangioso; David Rizzo

    2017-01-01

    Monitoring host composition and disease impacts began 15 years ago in what would become a network of permanent forest monitoring plots throughout the known and predicted range of Phytophthora ramorum in California coastal forests. Stretching ~500 miles from Big Sur to the Oregon border, the network captures variation in interactions among...

  4. Modeling Epidemics Spreading on Social Contact Networks.

    PubMed

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  5. Modeling Epidemics Spreading on Social Contact Networks

    PubMed Central

    ZHANG, ZHAOYANG; WANG, HONGGANG; WANG, CHONGGANG; FANG, HUA

    2016-01-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion. PMID:27722037

  6. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  7. The spreading dynamics of sexually transmitted diseases with birth and death on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Cao, Jinde; Alsaedi, Ahmed; Hayat, Tasawar

    2017-02-01

    In this paper, we formulate a deterministic model by including the vacant sites, which represent inactive individuals or potential contacts, to investigate the spreading dynamics of sexually transmitted diseases in heterogeneous networks. We first analytically derive the basic reproduction number R 0, which completely determines global dynamics of the system in the long run. Specifically, if R 0  <  1, the disease-free equilibrium is globally asymptotically stable, i.e. disease disappears from the network irrespective of initial infected numbers and distributions, whereas if R 0  >  1, the system is uniformly persistent around a unique endemic equilibrium, i.e. disease persists in the network. Furthermore, by using a suitable Lyapunov function the global stability of endemic equilibrium for low/high-risk infected individuals only is proved. Finally, the effects of three immunization schemes are studied and compared, and extensive numerical simulations are performed to investigate the effect of network topology and population turnover on disease spread. Our results suggest that population turnover could have great impact on the sexually transmitted disease system in heterogeneous networks, including the basic reproduction number and infection prevalence.

  8. Dynamic spectrum management: an impact on EW systems

    NASA Astrophysics Data System (ADS)

    Gajewski, P.; Łopatka, J.; Suchanski, M.

    2017-04-01

    Rapid evolution of wireless systems caused an enormous growth of data streams transmitted through the networks and, as a consequence, an accompanying demand concerning spectrum resources (SR). An avoidance of advisable disturbances is one of the main demands in military communications. To solve the interference problems, dynamic spectrum management (DSM) techniques can be used. Two main techniques are possible: centralized Coordinated Dynamic Spectrum Access (CDSA) and distributed Opportunistic Spectrum Access (OSA). CDSA enables the wireless networks planning automation, and systems dynamic reaction to random changes of Radio Environment (RE). For OSA, cognitive radio (CR) is the most promising technology that enables avoidance of interference with the other spectrum users due to CR's transmission parameters adaptation to the current radio situation, according to predefined Radio Policies rules. If DSM techniques are used, the inherent changes in EW systems are also needed. On one hand, new techniques of jamming should be elaborated, on the other hand, the rules and protocols of cooperation between communication network and EW systems should be developed.

  9. Adaptation to sensory input tunes visual cortex to criticality

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf

    2015-08-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.

  10. Optimal deployment of resources for maximizing impact in spreading processes

    PubMed Central

    2017-01-01

    The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples. PMID:28900013

  11. Vehicle dynamic analysis using neuronal network algorithms

    NASA Astrophysics Data System (ADS)

    Oloeriu, Florin; Mocian, Oana

    2014-06-01

    Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus being a non-linear process identification algorithm. The common use of neuronal networks for non-linear processes is justified by the fact that both have the ability to organize by themselves. That is why the neuronal networks best define intelligent systems, thus the word `neuronal' is sending one's mind to the biological neuron cell. The paper presents how to better interpret data fed from the on-board computer and a new way of processing that data to better model the real life dynamic behavior of the vehicle.

  12. NATO Human View Architecture and Human Networks

    NASA Technical Reports Server (NTRS)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  13. Theory of rumour spreading in complex social networks

    NASA Astrophysics Data System (ADS)

    Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.

    2007-01-01

    We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.

  14. Which Brain Regions are Important for Seizure Dynamics in Epileptic Networks? Influence of Link Identification and EEG Recording Montage on Node Centralities.

    PubMed

    Geier, Christian; Lehnertz, Klaus

    2017-02-01

    Nodes in large-scale epileptic networks that are crucial for seizure facilitation and termination can be regarded as potential targets for individualized focal therapies. Graph-theoretical approaches based on centrality concepts can help to identify such important nodes, however, they may be influenced by the way networks are derived from empirical data. Here we investigate evolving functional epileptic brain networks during 82 focal seizures with different anatomical onset locations that we derive from multichannel intracranial electroencephalographic recordings from 51 patients. We demonstrate how the various methodological steps (from the recording montage via node and link inference to the assessment of node centralities) affect importance estimation and discuss their impact on the interpretability of findings in the context of pathophysiological aspects of seizure dynamics.

  15. Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.

    PubMed

    Huang, Chengdai; Cao, Jinde

    2018-02-01

    The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Using the Dynamic Model of Educational Effectiveness to Design Strategies and Actions to Face Bullying

    ERIC Educational Resources Information Center

    Kyriakides, Leonidas; Creemers, Bert P. M.; Muijs, Daniel; Rekers-Mombarg, Lyset; Papastylianou, Dona; Van Petegem, Peter; Pearson, Diana

    2014-01-01

    This project investigates the impact of the dynamic approach to school improvement (DASI) aiming to help schools face and reduce bullying through integrating research on bullying with educational effectiveness research (EER). A network of approximately 15 schools in each participating country (i.e., Belgium, Cyprus, England, Greece, and The…

  17. Optimal multi-community network modularity for information diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong

    2016-02-01

    Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.

  18. Extending Stability Through Hierarchical Clusters in Echo State Networks

    PubMed Central

    Jarvis, Sarah; Rotter, Stefan; Egert, Ulrich

    2009-01-01

    Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius. PMID:20725523

  19. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-05-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  20. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: an example from the Ethiopian Highlands.

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-04-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  1. Dynamical Networks Characterization of Space Weather Events

    NASA Astrophysics Data System (ADS)

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).

  2. The impact of personal experiences with infection and vaccination on behaviour-incidence dynamics of seasonal influenza.

    PubMed

    Wells, C R; Bauch, C T

    2012-08-01

    Personal experiences with past infection events, or perceived vaccine failures and complications, are known to drive vaccine uptake. We coupled a model of individual vaccinating decisions, influenced by these drivers, with a contact network model of influenza transmission dynamics. The impact of non-influenzal influenza-like illness (niILI) on decision-making was also incorporated: it was possible for individuals to mistake niILI for true influenza. Our objectives were to (1) evaluate the impact of personal experiences on vaccine coverage; (2) understand the impact of niILI on behaviour-incidence dynamics; (3) determine which factors influence vaccine coverage stability; and (4) determine whether vaccination strategies can become correlated on the network in the absence of social influence. We found that certain aspects of personal experience can significantly impact behaviour-incidence dynamics. For instance, longer term memory for past events had a strong stabilising effect on vaccine coverage dynamics, although it could either increase or decrease average vaccine coverage depending on whether memory of past infections or past vaccine failures dominated. When vaccine immunity wanes slowly, vaccine coverage is low and stable, and infection incidence is also very low, unless the effects of niILI are ignored. Strategy correlations can occur in the absence of imitation, on account of the neighbour-neighbour transmission of infection and history-dependent decision making. Finally, niILI weakens the behaviour-incidence coupling and therefore tends to stabilise dynamics, as well as breaking up strategy correlations. Behavioural feedbacks, and the quality of self-diagnosis of niILI, may need to be considered in future programs adopting "universal" flu vaccines conferring long-term immunity. Public health interventions that focus on reminding individuals about their previous influenza infections, as well as communicating facts about vaccine efficacy and the difference between influenza and niILI, may be an effective way to increase vaccine coverage and prevent unexpected drops in coverage. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Logical Modeling and Dynamical Analysis of Cellular Networks

    PubMed Central

    Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine

    2016-01-01

    The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle. PMID:27303434

  4. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics of convergence rate and call blocking. Genetic algorithms (GAs) are also considered in PCS networks as a means to overcome the known weakness of Hopfield NNAs in determining global minima. The resulting GAs for DCA in PCS networks are compared to improved DCA algorithms based on Hopfield NNs for stationary cellular networks. Algorithm performance is compared on the basis of rate of convergence, blocking probability, analytic complexity, and parametric sensitivity to transient traffic demands and channel interference.

  5. New technique for simulation of optical fiber amplifiers control schemes in dynamic WDM systems

    NASA Astrophysics Data System (ADS)

    Freitas, Marcio; Klein, Jackson; Givigi, Sidney, Jr.; Calmon, Luiz C.

    2005-04-01

    One topic that has attracted attention is related to the behavior of the optical amplifiers under dynamic conditions, specifically because amplifiers working in a saturated condition produce power transients in all-optical reconfigurable WDM networks, e.g. adding/dropping channels. The goal of this work is to introduce the multiwavelength time-driven simulations technique, capable of simulation and analysis of transient effects in all-optical WDM networks with optical amplifiers, and allow the use of control schemes to avoid or minimize the impacts of transient effects in the system performance.

  6. Analyzing the Dynamics of Communication in Online Social Networks

    NASA Astrophysics Data System (ADS)

    de Choudhury, Munmun; Sundaram, Hari; John, Ajita; Seligmann, Doree Duncan

    This chapter deals with the analysis of interpersonal communication dynamics in online social networks and social media. Communication is central to the evolution of social systems. Today, the different online social sites feature variegated interactional affordances, ranging from blogging, micro-blogging, sharing media elements (i.e., image, video) as well as a rich set of social actions such as tagging, voting, commenting and so on. Consequently, these communication tools have begun to redefine the ways in which we exchange information or concepts, and how the media channels impact our online interactional behavior. Our central hypothesis is that such communication dynamics between individuals manifest themselves via two key aspects: the information or concept that is the content of communication, and the channel i.e., the media via which communication takes place. We present computational models and discuss large-scale quantitative observational studies for both these organizing ideas. First, we develop a computational framework to determine the "interestingness" property of conversations cented around rich media. Second, we present user models of diffusion of social actions and study the impact of homophily on the diffusion process. The outcome of this research is twofold. First, extensive empirical studies on datasets from YouTube have indicated that on rich media sites, the conversations that are deemed "interesting" appear to have consequential impact on the properties of the social network they are associated with: in terms of degree of participation of the individuals in future conversations, thematic diffusion as well as emergent cohesiveness in activity among the concerned participants in the network. Second, observational and computational studies on large social media datasets such as Twitter have indicated that diffusion of social actions in a network can be indicative of future information cascades. Besides, given a topic, these cascades are often a function of attribute homophily existent among the participants. We believe that this chapter can make significant contribution into a better understanding of how we communicate online and how it is redefining our collective sociological behavior.

  7. Electrical Mapping of Silver Nanowire Networks: A Versatile Tool for Imaging Network Homogeneity and Degradation Dynamics during Failure.

    PubMed

    Sannicolo, Thomas; Charvin, Nicolas; Flandin, Lionel; Kraus, Silas; Papanastasiou, Dorina T; Celle, Caroline; Simonato, Jean-Pierre; Muñoz-Rojas, David; Jiménez, Carmen; Bellet, Daniel

    2018-05-22

    Electrical stability and homogeneity of silver nanowire (AgNW) networks are critical assets for increasing their robustness and reliability when integrated as transparent electrodes in devices. Our ability to distinguish defects, inhomogeneities, or inactive areas at the scale of the entire network is therefore a critical issue. We propose one-probe electrical mapping (1P-mapping) as a specific simple tool to study the electrical distribution in these discrete structures. 1P-mapping has allowed us to show that the tortuosity of the voltage equipotential lines of AgNW networks under bias decreases with increasing network density, leading to a better electrical homogeneity. The impact of the network fabrication technique on the electrical homogeneity of the resulting electrode has also been investigated. Then, by combining 1P-mapping with electrical resistance measurements and IR thermography, we propose a comprehensive analysis of the evolution of the electrical distribution in AgNW networks when subjected to increasing voltage stresses. We show that AgNW networks experience three distinctive stages: optimization, degradation, and breakdown. We also demonstrate that the failure dynamics of AgNW networks at high voltages occurs through a highly correlated and spatially localized mechanism. In particular the in situ formation of cracks could be clearly visualized. It consists of two steps: creation of a crack followed by propagation nearly parallel to the equipotential lines. Finally, we show that current can dynamically redistribute during failure, by following partially damaged secondary pathways through the crack.

  8. Quantification of Road Network Vulnerability and Traffic Impacts to Regional Landslide Hazards.

    NASA Astrophysics Data System (ADS)

    Postance, Benjamin; Hillier, John; Dixon, Neil; Dijkstra, Tom

    2015-04-01

    Slope instability represents a prevalent hazard to transport networks. In the UK regional road networks are frequently disrupted by multiple slope failures triggered during intense precipitation events; primarily due to a degree of regional homogeneity of slope materials, geomorphology and weather conditions. It is of interest to examine how different locations and combinations of slope failure impact road networks, particularly in the context of projected climate change and a 40% increase in UK road demand by 2040. In this study an extensive number (>50 000) of multiple failure event scenarios are simulated within a dynamic micro simulation to assess traffic impacts during peak flow (7 - 10 AM). Possible failure locations are selected within the county of Gloucestershire (3150 km2) using historic failure sites and British Geological Survey GeoSure data. Initial investigations employ a multiple linear regression analyses to consider the severity of traffic impacts, as measured by time, in respect of spatial and topographical network characteristics including connectivity, density and capacity in proximity to failure sites; the network distance between disruptions in multiple failure scenarios is used to consider the effects of spatial clustering. The UK Department of Transport road travel demand and UKCP09 weather projection data to 2080 provide a suitable basis for traffic simulations and probabilistic slope stability assessments. Future work will thus focus on the development of a catastrophe risk model to simulate traffic impacts under various narratives of future travel demand and slope instability under climatic change. The results of this investigation shall contribute to the understanding of road network vulnerabilities and traffic impacts from climate driven slope hazards.

  9. Impact of symmetry breaking in networks of globally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2015-05-01

    We analyze the consequences of symmetry breaking in the coupling in a network of globally coupled identical Stuart-Landau oscillators. We observe that symmetry breaking leads to increased disorderliness in the dynamical behavior of oscillatory states and consequently results in a rich variety of dynamical states. Depending on the strength of the nonisochronicity parameter, we find various dynamical states such as amplitude chimera, amplitude cluster, frequency chimera, and frequency cluster states. In addition we also find disparate transition routes to recently observed chimera death states in the presence of symmetry breaking even with global coupling. We also analytically verify the chimera death region, which corroborates the numerical results. These results are compared with that of the symmetry-preserving case as well.

  10. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds.

    PubMed

    Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-04-20

    Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenova, N.; Anishchenko, V.; Zakharova, A.

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  12. Global value chains: Building blocks and network dynamics

    NASA Astrophysics Data System (ADS)

    Tsekeris, Theodore

    2017-12-01

    The paper employs measures and tools from complex network analysis to enhance the understanding and interpretation of structural characteristics pertaining to the Global Value Chains (GVCs) during the period 1995-2011. The analysis involves the country, sector and country-sector value chain networks to identify main drivers of structural change. The results indicate significant intertemporal changes, mirroring the increased globalization in terms of network size, strength and connectivity. They also demonstrate higher clustering and increased concentration of the most influential countries and country-sectors relative to all others in the GVC network, with the geographical dimension to prevail over the sectoral dimension in the formation of value chains. The regionalization and less hierarchical organization drive country-sector production sharing, while the sectoral value chain network has become more integrated and more competitive over time. The findings suggest that the impact of country-sector policies and/or shocks may vary with the own-group and network-wide influence of each country, take place in multiple geographical scales, as GVCs have a block structure, and involve time dynamics.

  13. Optimal network modification for spectral radius dependent phase transitions

    NASA Astrophysics Data System (ADS)

    Rosen, Yonatan; Kirsch, Lior; Louzoun, Yoram

    2016-09-01

    The dynamics of contact processes on networks is often determined by the spectral radius of the networks adjacency matrices. A decrease of the spectral radius can prevent the outbreak of an epidemic, or impact the synchronization among systems of coupled oscillators. The spectral radius is thus tightly linked to network dynamics and function. As such, finding the minimal change in network structure necessary to reach the intended spectral radius is important theoretically and practically. Given contemporary big data resources such as large scale communication or social networks, this problem should be solved with a low runtime complexity. We introduce a novel method for the minimal decrease in weights of edges required to reach a given spectral radius. The problem is formulated as a convex optimization problem, where a global optimum is guaranteed. The method can be easily adjusted to an efficient discrete removal of edges. We introduce a variant of the method which finds optimal decrease with a focus on weights of vertices. The proposed algorithm is exceptionally scalable, solving the problem for real networks of tens of millions of edges in a short time.

  14. The Dynamics of Avian Influenza: Individual-Based Model with Intervention Strategies in Traditional Trade Networks in Phitsanulok Province, Thailand.

    PubMed

    Wilasang, Chaiwat; Wiratsudakul, Anuwat; Chadsuthi, Sudarat

    2016-01-01

    Avian influenza virus subtype H5N1 is endemic to Southeast Asia. In Thailand, avian influenza viruses continue to cause large poultry stock losses. The spread of the disease has a serious impact on poultry production especially among rural households with backyard chickens. The movements and activities of chicken traders result in the spread of the disease through traditional trade networks. In this study, we investigate the dynamics of avian influenza in the traditional trade network in Phitsanulok Province, Thailand. We also propose an individual-based model with intervention strategies to control the spread of the disease. We found that the dynamics of the disease mainly depend on the transmission probability and the virus inactivation period. This study also illustrates the appropriate virus disinfection period and the target for intervention strategies on traditional trade network. The results suggest that good hygiene and cleanliness among household traders and trader of trader areas and ensuring that any equipment used is clean can lead to a decrease in transmission and final epidemic size. These results may be useful to epidemiologists, researchers, and relevant authorities in understanding the spread of avian influenza through traditional trade networks.

  15. Towards understanding the behavior of physical systems using information theory

    NASA Astrophysics Data System (ADS)

    Quax, Rick; Apolloni, Andrea; Sloot, Peter M. A.

    2013-09-01

    One of the goals of complex network analysis is to identify the most influential nodes, i.e., the nodes that dictate the dynamics of other nodes. In the case of autonomous systems or transportation networks, highly connected hubs play a preeminent role in diffusing the flow of information and viruses; in contrast, in language evolution most linguistic norms come from the peripheral nodes who have only few contacts. Clearly a topological analysis of the interactions alone is not sufficient to identify the nodes that drive the state of the network. Here we show how information theory can be used to quantify how the dynamics of individual nodes propagate through a system. We interpret the state of a node as a storage of information about the state of other nodes, which is quantified in terms of Shannon information. This information is transferred through interactions and lost due to noise, and we calculate how far it can travel through a network. We apply this concept to a model of opinion formation in a complex social network to calculate the impact of each node by measuring how long its opinion is remembered by the network. Counter-intuitively we find that the dynamics of opinions are not determined by the hubs or peripheral nodes, but rather by nodes with an intermediate connectivity.

  16. Dynamics of Research Team Formation in Complex Networks

    NASA Astrophysics Data System (ADS)

    Sun, Caihong; Wan, Yuzi; Chen, Yu

    Most organizations encourage the formation of teams to accomplish complicated tasks, and vice verse, effective teams could bring lots benefits and profits for organizations. Network structure plays an important role in forming teams. In this paper, we specifically study the dynamics of team formation in large research communities in which knowledge of individuals plays an important role on team performance and individual utility. An agent-based model is proposed, in which heterogeneous agents from research communities are described and empirically tested. Each agent has a knowledge endowment and a preference for both income and leisure. Agents provide a variable input (‘effort’) and their knowledge endowments to production. They could learn from others in their team and those who are not in their team but have private connections in community to adjust their own knowledge endowment. They are allowed to join other teams or work alone when it is welfare maximizing to do so. Various simulation experiments are conducted to examine the impacts of network topology, knowledge diffusion among community network, and team output sharing mechanisms on the dynamics of team formation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jialin Frank; Martínez, Maria Gabriela; Anderson, C Lindsay

    This work presents a preliminary analysis considering impact of a grid-connected microgrid on network transmission of the power system. The locational marginal prices of the power system are used to strategically place the microgrid to avoid congestion problems. In addition, a Monte Carlo simulation approach is implemented to confirm that network congestion can be attenuated if appropriate price-based signals are set to define the import and export dynamic between the two systems.

  18. Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation

    PubMed Central

    Zhang, Shaowei; Yu, Jiancheng; Zhang, Aiqun; Yang, Lei; Shu, Yeqiang

    2012-01-01

    The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results. PMID:22368475

  19. Synchronisation and stability in river metapopulation networks.

    PubMed

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Modeling socio-cultural processes in network-centric environments

    NASA Astrophysics Data System (ADS)

    Santos, Eunice E.; Santos, Eugene, Jr.; Korah, John; George, Riya; Gu, Qi; Kim, Keumjoo; Li, Deqing; Russell, Jacob; Subramanian, Suresh

    2012-05-01

    The major focus in the field of modeling & simulation for network centric environments has been on the physical layer while making simplifications for the human-in-the-loop. However, the human element has a big impact on the capabilities of network centric systems. Taking into account the socio-behavioral aspects of processes such as team building, group decision-making, etc. are critical to realistically modeling and analyzing system performance. Modeling socio-cultural processes is a challenge because of the complexity of the networks, dynamism in the physical and social layers, feedback loops and uncertainty in the modeling data. We propose an overarching framework to represent, model and analyze various socio-cultural processes within network centric environments. The key innovation in our methodology is to simultaneously model the dynamism in both the physical and social layers while providing functional mappings between them. We represent socio-cultural information such as friendships, professional relationships and temperament by leveraging the Culturally Infused Social Network (CISN) framework. The notion of intent is used to relate the underlying socio-cultural factors to observed behavior. We will model intent using Bayesian Knowledge Bases (BKBs), a probabilistic reasoning network, which can represent incomplete and uncertain socio-cultural information. We will leverage previous work on a network performance modeling framework called Network-Centric Operations Performance and Prediction (N-COPP) to incorporate dynamism in various aspects of the physical layer such as node mobility, transmission parameters, etc. We validate our framework by simulating a suitable scenario, incorporating relevant factors and providing analyses of the results.

  1. Disentangling the role of floral sensory stimuli in pollination networks.

    PubMed

    Kantsa, Aphrodite; Raguso, Robert A; Dyer, Adrian G; Olesen, Jens M; Tscheulin, Thomas; Petanidou, Theodora

    2018-03-12

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role for sensory bias and diffuse coevolution in structuring plant-pollinator networks. This knowledge of floral sensory diversity, by identifying the most influential phenotypes, could help prioritize efforts for plant-pollinator community restoration.

  2. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network

    PubMed Central

    López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449

  3. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network.

    PubMed

    López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.

  4. Epidemic spreading in weighted networks: an edge-based mean-field solution.

    PubMed

    Yang, Zimo; Zhou, Tao

    2012-05-01

    Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.

  5. Integrated situational awareness for cyber attack detection, analysis, and mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Sagduyu, Yalin; Deng, Julia; Li, Jason; Liu, Peng

    2012-06-01

    Real-time cyberspace situational awareness is critical for securing and protecting today's enterprise networks from various cyber threats. When a security incident occurs, network administrators and security analysts need to know what exactly has happened in the network, why it happened, and what actions or countermeasures should be taken to quickly mitigate the potential impacts. In this paper, we propose an integrated cyberspace situational awareness system for efficient cyber attack detection, analysis and mitigation in large-scale enterprise networks. Essentially, a cyberspace common operational picture will be developed, which is a multi-layer graphical model and can efficiently capture and represent the statuses, relationships, and interdependencies of various entities and elements within and among different levels of a network. Once shared among authorized users, this cyberspace common operational picture can provide an integrated view of the logical, physical, and cyber domains, and a unique visualization of disparate data sets to support decision makers. In addition, advanced analyses, such as Bayesian Network analysis, will be explored to address the information uncertainty, dynamic and complex cyber attack detection, and optimal impact mitigation issues. All the developed technologies will be further integrated into an automatic software toolkit to achieve near real-time cyberspace situational awareness and impact mitigation in large-scale computer networks.

  6. Statistical physics of balance theory

    PubMed Central

    Belaza, Andres M.; Hoefman, Kevin; Bramson, Aaron; van den Heuvel, Milan; Schoors, Koen

    2017-01-01

    Triadic relationships are accepted to play a key role in the dynamics of social and political networks. Building on insights gleaned from balance theory in social network studies and from Boltzmann-Gibbs statistical physics, we propose a model to quantitatively capture the dynamics of the four types of triadic relationships in a network. Central to our model are the triads’ incidence rates and the idea that those can be modeled by assigning a specific triadic energy to each type of triadic relation. We emphasize the role of the degeneracy of the different triads and how it impacts the degree of frustration in the political network. In order to account for a persistent form of disorder in the formation of the triadic relationships, we introduce the systemic variable temperature. In order to learn about the dynamics and motives, we propose a generic Hamiltonian with three terms to model the triadic energies. One term is connected with a three-body interaction that captures balance theory. The other terms take into account the impact of heterogeneity and of negative edges in the triads. The validity of our model is tested on four datasets including the time series of triadic relationships for the standings between two classes of alliances in a massively multiplayer online game (MMOG). We also analyze real-world data for the relationships between the “agents” involved in the Syrian civil war, and in the relations between countries during the Cold War era. We find emerging properties in the triadic relationships in a political network, for example reflecting itself in a persistent hierarchy between the four triadic energies, and in the consistency of the extracted parameters from comparing the model Hamiltonian to the data. PMID:28846726

  7. Statistical physics of balance theory.

    PubMed

    Belaza, Andres M; Hoefman, Kevin; Ryckebusch, Jan; Bramson, Aaron; van den Heuvel, Milan; Schoors, Koen

    2017-01-01

    Triadic relationships are accepted to play a key role in the dynamics of social and political networks. Building on insights gleaned from balance theory in social network studies and from Boltzmann-Gibbs statistical physics, we propose a model to quantitatively capture the dynamics of the four types of triadic relationships in a network. Central to our model are the triads' incidence rates and the idea that those can be modeled by assigning a specific triadic energy to each type of triadic relation. We emphasize the role of the degeneracy of the different triads and how it impacts the degree of frustration in the political network. In order to account for a persistent form of disorder in the formation of the triadic relationships, we introduce the systemic variable temperature. In order to learn about the dynamics and motives, we propose a generic Hamiltonian with three terms to model the triadic energies. One term is connected with a three-body interaction that captures balance theory. The other terms take into account the impact of heterogeneity and of negative edges in the triads. The validity of our model is tested on four datasets including the time series of triadic relationships for the standings between two classes of alliances in a massively multiplayer online game (MMOG). We also analyze real-world data for the relationships between the "agents" involved in the Syrian civil war, and in the relations between countries during the Cold War era. We find emerging properties in the triadic relationships in a political network, for example reflecting itself in a persistent hierarchy between the four triadic energies, and in the consistency of the extracted parameters from comparing the model Hamiltonian to the data.

  8. Quantitative Assessment of Transportation Network Vulnerability with Dynamic Traffic Simulation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekar, Venkateswaran; Fiondella, Lance; Chatterjee, Samrat

    Transportation networks are critical to the social and economic function of nations. Given the continuing increase in the populations of cities throughout the world, the criticality of transportation infrastructure is expected to increase. Thus, it is ever more important to mitigate congestion as well as to assess the impact disruptions would have on individuals who depend on transportation for their work and livelihood. Moreover, several government organizations are responsible for ensuring transportation networks are available despite the constant threat of natural disasters and terrorist activities. Most of the previous transportation network vulnerability research has been performed in the context ofmore » static traffic models, many of which are formulated as traditional optimization problems. However, transportation networks are dynamic because their usage varies over time. Thus, more appropriate methods to characterize the vulnerability of transportation networks should consider their dynamic properties. This paper presents a quantitative approach to assess the vulnerability of a transportation network to disruptions with methods from traffic simulation. Our approach can prioritize the critical links over time and is generalizable to the case where both link and node disruptions are of concern. We illustrate the approach through a series of examples. Our results demonstrate that the approach provides quantitative insight into the time varying criticality of links. Such an approach could be used as the objective function of less traditional optimization methods that use simulation and other techniques to evaluate the relative utility of a particular network defense to reduce vulnerability and increase resilience.« less

  9. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.

    PubMed

    Fung, C C Alan; Wong, K Y Michael; Wang, He; Wu, Si

    2012-05-01

    Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity: short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning and may serve as substrates for neural systems manipulating temporal information on relevant timescales. This study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors: the network that is initially being stimulated to an active state decays to a silent state very slowly on the timescale of STD rather than on that of neuralsignaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.

  10. Optimal deployment of resources for maximizing impact in spreading processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokhov, Andrey Y.; Saad, David

    The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less

  11. Optimal deployment of resources for maximizing impact in spreading processes

    DOE PAGES

    Lokhov, Andrey Y.; Saad, David

    2017-09-12

    The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less

  12. The impact of land use change and hydroclimatic variability on landscape connectivity dynamics across surface water networks at subcontinental scale

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Bishop-Taylor, R.; Broich, M.

    2017-12-01

    Land use (LU) change and hydroclimatic variability affect spatiotemporal landscape connectivity dynamics, important for species movement and dispersal. Despite the fact that LU change can strongly influence dispersal potential over time, prior research has only focused on the impacts of dynamic changes in the distribution of potential habitats. We used 8 time-steps of historical LU together with a Landsat-derived time-series of surface water habitat dynamics (1986-2011) over the Murray-Darling Basin (MDB), a region with extreme hydroclimatic variability, impacted by LU changes. To assess how changing LU and hydroclimatic variability affect landscape connectivity across time, we compared 4 scenarios, namely one where both climate and LU are dynamic over time, one where climate is kept steady (i.e. a median surface water extent layer), and two scenarios where LU is kept steady (i.e. resistance values associated with the most recent or the first LU layer). We used circuit theory to assign landscape features with `resistance' costs and graph theory network analysis, with surface water habitats as `nodes' connected by dispersal paths or `edges' Findings comparing a dry and an average season show high differences in number of nodes (14581 vs 21544) and resistance distances. The combined effect of LU change and landscape wetness was lower than expected, likely a function of the large, MDB-wide, aggregation scale. Spatially explicit analyses are expected to identify areas where the synergistic effect of LU change and landscape wetness greatly reduce or increase landscape connectivity, as well as areas where the two effects cancel each other out.

  13. Animal transportation networks

    PubMed Central

    Perna, Andrea; Latty, Tanya

    2014-01-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598

  14. Structural analysis of behavioral networks from the Internet

    NASA Astrophysics Data System (ADS)

    Meiss, M. R.; Menczer, F.; Vespignani, A.

    2008-06-01

    In spite of the Internet's phenomenal growth and social impact, many aspects of the collective communication behavior of its users are largely unknown. Understanding the structure and dynamics of the behavioral networks that connect users with each other and with services across the Internet is key to modeling the network and designing future applications. We present a characterization of the properties of the behavioral networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. For example, we find that the structure of the behavioral network associated with Web activity is characterized by such extreme heterogeneity as to challenge any simple attempt to model Web server traffic.

  15. Modeling the effects of social impact on epidemic spreading in complex networks

    NASA Astrophysics Data System (ADS)

    Ni, Shunjiang; Weng, Wenguo; Zhang, Hui

    2011-11-01

    We investigate by mean-field analysis and extensive simulations the effects of social impact on epidemic spreading in various typical networks with two types of nodes: active nodes and passive nodes, of which the behavior patterns are modeled according to the social impact theory. In this study, nodes are not only the media to spread the virus, but also disseminate their opinions on the virus-whether there is a need for certain self-protection measures to be taken to reduce the risk of being infected. Our results indicate that the interaction between epidemic spreading and opinion dynamics can have significant influences on the spreading of infectious diseases and related applications, such as the implementation of prevention and control measures against the infectious diseases.

  16. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE PAGES

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron; ...

    2017-11-21

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  17. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  18. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model

    NASA Astrophysics Data System (ADS)

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2016-05-01

    Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.

  19. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.

    PubMed

    Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim

    2016-12-07

    Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks

    DOE PAGES

    Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan

    2016-10-17

    We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less

  2. Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan

    We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less

  3. Distrubtion Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  4. Distribution Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  5. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    DTIC Science & Technology

    2010-09-30

    photodiodes. IMPACT/APPLICATIONS More frequent and more rapidly developing jellyfish blooms, especially Mnemiopsis leidyi as well as Harmful Algal...To meet the need for a bioluminescent jellyfish monitoring and forecasting system, predictive models will depend upon dense networks of sensor

  6. Topological resilience in non-normal networked systems

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Carletti, Timoteo

    2018-04-01

    The network of interactions in complex systems strongly influences their resilience and the system capability to resist external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests itself in different domains, e.g., parasitic species invasion in ecosystems or cascade failures in human-made networks. Understanding the topological features of the networks that affect the resilience phenomenon remains a challenging goal for the design of robust complex systems. We hereby introduce the concept of non-normal networks, namely networks whose adjacency matrices are non-normal, propose a generating model, and show that such a feature can drastically change the global dynamics through an amplification of the system response to exogenous disturbances and eventually impact the system resilience. This early stage transient period can induce the formation of inhomogeneous patterns, even in systems involving a single diffusing agent, providing thus a new kind of dynamical instability complementary to the Turing one. We provide, first, an illustrative application of this result to ecology by proposing a mechanism to mute the Allee effect and, second, we propose a model of virus spreading in a population of commuters moving using a non-normal transport network, the London Tube.

  7. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    PubMed Central

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  8. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges

    PubMed Central

    Ahmad, Javaid; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539

  9. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.

    PubMed

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.

  10. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses.

    PubMed

    Bonifazi, Paolo; Difato, Francesco; Massobrio, Paolo; Breschi, Gian L; Pasquale, Valentina; Levi, Timothée; Goldin, Miri; Bornat, Yannick; Tedesco, Mariateresa; Bisio, Marta; Kanner, Sivan; Galron, Ronit; Tessadori, Jacopo; Taverna, Stefano; Chiappalone, Michela

    2013-01-01

    Brain-machine interfaces (BMI) were born to control "actions from thoughts" in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI-a neuromorphic chip for brain repair-to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary "bottom-up" approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of "finite size networks" which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented.

  11. Effects of Seasonal Land Surface Conditions on Hydrometeorological Dynamics in South-western North America

    DTIC Science & Technology

    2015-09-21

    vehicles, environmental sensor networks, distributed hydrologic modeling, vegetation dynamics, soil moisture, evapotranspiration , remote sensing, North...Received Paper 1.00 5.00 3.00 8.00 9.00 E. Vivoni, J. Rodriguez, C. Watts. On the spatiotemporal variability of soil moisture and evapotranspiration ...Vegetation Impacts on Evapotranspiration and Its Partitioning at the Catchment Scale during SMEX04–NAME, Journal of Hydrometeorology, (10 2012

  12. A Study on Standard Competition with Network Effect Based on Evolutionary Game Model

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Wang, Bingdong; Li, Kangning

    Owing to networks widespread in modern society, standard competition with network effect is now endowed with new connotation. This paper aims to study the impact of network effect on standard competition; it is organized in the mode of "introduction-model setup-equilibrium analysis-conclusion". Starting from a well-structured model of evolutionary game, it is then extended to a dynamic analysis. This article proves both theoretically and empirically that whether or not a standard can lead the market trends depends on the utility it would bring, and the author also discusses some advisable strategies revolving around the two factors of initial position and border break.

  13. DebtRank: A Microscopic Foundation for Shock Propagation.

    PubMed

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2015-01-01

    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical "microscopic" theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008-2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks.

  14. DebtRank: A Microscopic Foundation for Shock Propagation

    PubMed Central

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2015-01-01

    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical “microscopic” theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008–2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks. PMID:26091013

  15. Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.

    2014-05-01

    Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.

  16. Public health impact of disease-behavior dynamics. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Wells, Chad R.; Galvani, Alison P.

    2015-12-01

    In a loop of dynamic feedback, behavior such as the decision to vaccinate, hand washing, or avoidance influences the progression of the epidemic, yet behavior is driven by the individual's and population's perceived risk of infection during an outbreak. In what we believe will become a seminal paper that stimulates future research as well as an informative teaching aid, Wang et. al. comprehensively review methodological advances that have been used to incorporate human behavior into epidemiological models on the effects of coupling disease transmission and behavior on complex social networks [1]. As illustrated by the recent outbreaks of measles and Middle Eastern Respiratory Syndrome (MERS), here we highlight the importance of coupling behavior and disease transmission that Wang et al. address.

  17. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    PubMed Central

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404

  18. The evolving cobweb of relations among partially rational investors

    PubMed Central

    DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco

    2017-01-01

    To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents’ behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors. PMID:28196144

  19. The evolving cobweb of relations among partially rational investors.

    PubMed

    DeLellis, Pietro; DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco

    2017-01-01

    To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors.

  20. Stream Width Dynamics in a Small Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  1. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.

    PubMed

    Binzer, Amrei; Guill, Christian; Rall, Björn C; Brose, Ulrich

    2016-01-01

    Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors. © 2015 John Wiley & Sons Ltd.

  2. Adaptive contact networks change effective disease infectiousness and dynamics.

    PubMed

    Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M

    2010-08-19

    Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).

  3. Dynamical analysis of the global business-cycle synchronization

    PubMed Central

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies. PMID:29408909

  4. Dynamical analysis of the global business-cycle synchronization.

    PubMed

    Lopes, António M; Tenreiro Machado, J A; Huffstot, John S; Mata, Maria Eugénia

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies.

  5. The impact of competing zealots on opinion dynamics

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Swami, Ananthram; Chan, Kevin

    2014-02-01

    An individual’s opinion on an issue is greatly impacted by others in his or her social network. Most people are open-minded and ready to change their opinion when presented evidence; however, some are zealots or inflexibles, that is, individuals who refuse to change their opinion while staunchly advocating an opinion in hopes of convincing others. Zealotry is present in opinions of significant personal investment, such as political, religious or corporate affiliation; it tends to be less commonplace in opinions involving rumors or fashion trends. In this paper, we examine the effect that zealots have in a population whose opinion dynamics obey the naming game model. We present numerical and analytical results about the number and nature of steady state solutions, demonstrating the existence of a bifurcation in the space of zealot fractions. Our analysis indicates conditions under which a minority zealot opinion ultimately prevails, and conditions under which neither opinion attains a majority. We also present numerical and simulation analysis of finite populations and on networks with partial connectivity.

  6. The Impact of Heterogeneity and Awareness in Modeling Epidemic Spreading on Multiplex Networks

    PubMed Central

    Scatà, Marialisa; Di Stefano, Alessandro; Liò, Pietro; La Corte, Aurelio

    2016-01-01

    In the real world, dynamic processes involving human beings are not disjoint. To capture the real complexity of such dynamics, we propose a novel model of the coevolution of epidemic and awareness spreading processes on a multiplex network, also introducing a preventive isolation strategy. Our aim is to evaluate and quantify the joint impact of heterogeneity and awareness, under different socioeconomic conditions. Considering, as case study, an emerging public health threat, Zika virus, we introduce a data-driven analysis by exploiting multiple sources and different types of data, ranging from Big Five personality traits to Google Trends, related to different world countries where there is an ongoing epidemic outbreak. Our findings demonstrate how the proposed model allows delaying the epidemic outbreak and increasing the resilience of nodes, especially under critical economic conditions. Simulation results, using data-driven approach on Zika virus, which has a growing scientific research interest, are coherent with the proposed analytic model. PMID:27848978

  7. A new method for solving routing and wavelength assignment problems under inaccurate routing information in optical networks with conversion capability

    NASA Astrophysics Data System (ADS)

    Luo, Yanting; Zhang, Yongjun; Gu, Wanyi

    2009-11-01

    In large dynamic networks it is extremely difficult to maintain accurate routing information on all network nodes. The existing studies have illustrated the impact of imprecise state information on the performance of dynamic routing and wavelength assignment (RWA) algorithms. An algorithm called Bypass Based Optical Routing (BBOR) proposed by Xavier Masip-Bruin et al can reduce the effects of having inaccurate routing information in networks operating under the wavelength-continuity constraint. Then they extended the BBOR mechanism (for convenience it's called EBBOR mechanism below) to be applied to the networks with sparse and limited wavelength conversion. But it only considers the characteristic of wavelength conversion in the step of computing the bypass-paths so that its performance may decline with increasing the degree of wavelength translation (this concept will be explained in the section of introduction again). We will demonstrate the issue through theoretical analysis and introduce a novel algorithm which modifies both the lightpath selection and the bypass-paths computation in comparison to EBBOR algorithm. Simulations show that the Modified EBBOR (MEBBOR) algorithm improves the blocking performance significantly in optical networks with Conversion Capability.

  8. Actin assembly factors regulate the gelation kinetics and architecture of F-actin networks.

    PubMed

    Falzone, Tobias T; Oakes, Patrick W; Sees, Jennifer; Kovar, David R; Gardel, Margaret L

    2013-04-16

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318

  10. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    PubMed

    Gibbs, David L; Shmulevich, Ilya

    2017-06-01

    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.

  11. From in silico astrocyte cell models to neuron-astrocyte network models: A review.

    PubMed

    Oschmann, Franziska; Berry, Hugues; Obermayer, Klaus; Lenk, Kerstin

    2018-01-01

    The idea that astrocytes may be active partners in synaptic information processing has recently emerged from abundant experimental reports. Because of their spatial proximity to neurons and their bidirectional communication with them, astrocytes are now considered as an important third element of the synapse. Astrocytes integrate and process synaptic information and by doing so generate cytosolic calcium signals that are believed to reflect neuronal transmitter release. Moreover, they regulate neuronal information transmission by releasing gliotransmitters into the synaptic cleft affecting both pre- and postsynaptic receptors. Concurrent with the first experimental reports of the astrocytic impact on neural network dynamics, computational models describing astrocytic functions have been developed. In this review, we give an overview over the published computational models of astrocytic functions, from single-cell dynamics to the tripartite synapse level and network models of astrocytes and neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals

    PubMed Central

    Jercog, Pablo; Rogerson, Thomas; Schnitzer, Mark J.

    2016-01-01

    During long-term memory formation, cellular and molecular processes reshape how individual neurons respond to specific patterns of synaptic input. It remains poorly understood how such changes impact information processing across networks of mammalian neurons. To observe how networks encode, store, and retrieve information, neuroscientists must track the dynamics of large ensembles of individual cells in behaving animals, over timescales commensurate with long-term memory. Fluorescence Ca2+-imaging techniques can monitor hundreds of neurons in behaving mice, opening exciting avenues for studies of learning and memory at the network level. Genetically encoded Ca2+ indicators allow neurons to be targeted by genetic type or connectivity. Chronic animal preparations permit repeated imaging of neural Ca2+ dynamics over multiple weeks. Together, these capabilities should enable unprecedented analyses of how ensemble neural codes evolve throughout memory processing and provide new insights into how memories are organized in the brain. PMID:27048190

  13. Adaptive dynamical networks

    NASA Astrophysics Data System (ADS)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  14. Optimal topologies for maximizing network transmission capacity

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.

    2018-04-01

    It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.

  15. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change.

    PubMed

    Anderson-Teixeira, Kristina J; Davies, Stuart J; Bennett, Amy C; Gonzalez-Akre, Erika B; Muller-Landau, Helene C; Wright, S Joseph; Abu Salim, Kamariah; Almeyda Zambrano, Angélica M; Alonso, Alfonso; Baltzer, Jennifer L; Basset, Yves; Bourg, Norman A; Broadbent, Eben N; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Burslem, David F R P; Butt, Nathalie; Cao, Min; Cardenas, Dairon; Chuyong, George B; Clay, Keith; Cordell, Susan; Dattaraja, Handanakere S; Deng, Xiaobao; Detto, Matteo; Du, Xiaojun; Duque, Alvaro; Erikson, David L; Ewango, Corneille E N; Fischer, Gunter A; Fletcher, Christine; Foster, Robin B; Giardina, Christian P; Gilbert, Gregory S; Gunatilleke, Nimal; Gunatilleke, Savitri; Hao, Zhanqing; Hargrove, William W; Hart, Terese B; Hau, Billy C H; He, Fangliang; Hoffman, Forrest M; Howe, Robert W; Hubbell, Stephen P; Inman-Narahari, Faith M; Jansen, Patrick A; Jiang, Mingxi; Johnson, Daniel J; Kanzaki, Mamoru; Kassim, Abdul Rahman; Kenfack, David; Kibet, Staline; Kinnaird, Margaret F; Korte, Lisa; Kral, Kamil; Kumar, Jitendra; Larson, Andrew J; Li, Yide; Li, Xiankun; Liu, Shirong; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Maddalena, Damian M; Makana, Jean-Remy; Malhi, Yadvinder; Marthews, Toby; Mat Serudin, Rafizah; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Mi, Xiangcheng; Mizuno, Takashi; Morecroft, Michael; Myers, Jonathan A; Novotny, Vojtech; de Oliveira, Alexandre A; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; den Ouden, Jan; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sainge, Moses N; Sang, Weiguo; Sri-Ngernyuang, Kriangsak; Sukumar, Raman; Sun, I-Fang; Sungpalee, Witchaphart; Suresh, Hebbalalu Sathyanarayana; Tan, Sylvester; Thomas, Sean C; Thomas, Duncan W; Thompson, Jill; Turner, Benjamin L; Uriarte, Maria; Valencia, Renato; Vallejo, Marta I; Vicentini, Alberto; Vrška, Tomáš; Wang, Xihua; Wang, Xugao; Weiblen, George; Wolf, Amy; Xu, Han; Yap, Sandra; Zimmerman, Jess

    2015-02-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change. © 2014 John Wiley & Sons Ltd.

  16. Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.

    PubMed

    Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong

    2013-01-01

    In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a cultured neural network.

  17. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by supporting STATCOM with bulk energy storage devices. Two types of energy storage system (ESS) have been considered---battery energy storage system, and supercapacitor based energy storage system. A decoupled P -- Q control strategy has been implemented on STATCOM/ESS. It is observed that wind generators when supported by STATCOM/ESS can achieve significant withstand capability in the presence of grid fault of reasonable duration. It experiences almost negligible rotor speed variation, maintains constant terminal voltage, and resumes delivery of smoothed (almost transient free) power to the grid immediately after the fault is cleared. Keywords: Wind energy, induction generator, dynamic performance of wind generators, energy storage system, decoupled P -- Q control, multimachine system.

  18. Synergistic effects in threshold models on networks.

    PubMed

    Juul, Jonas S; Porter, Mason A

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can-depending on a parameter-either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  19. Synergistic effects in threshold models on networks

    NASA Astrophysics Data System (ADS)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  20. Limited static and dynamic delivering capacity allocations in scale-free networks

    NASA Astrophysics Data System (ADS)

    Haddou, N. Ben; Ez-Zahraouy, H.; Rachadi, A.

    In traffic networks, it is quite important to assign proper packet delivering capacities to the routers with minimum cost. In this respect, many allocation models based on static and dynamic properties have been proposed. In this paper, we are interested in the impact of limiting the packet delivering capacities already allocated to the routers; each node is assigned a packet delivering capacity limited by the maximal capacity Cmax of the routers. To study the limitation effect, we use two basic delivering capacity allocation models; static delivering capacity allocation (SDCA) and dynamic delivering capacity allocation (DDCA). In the SDCA, the capacity allocated is proportional to the node degree, and for DDCA, it is proportional to its queue length. We have studied and compared the limitation of both allocation models under the shortest path (SP) routing strategy as well as the efficient path (EP) routing protocol. In the SP case, we noted a similarity in the results; the network capacity increases with increasing Cmax. For the EP scheme, the network capacity stops increasing for relatively small packet delivering capability limit Cmax for both allocation strategies. However, it reaches high values under the limited DDCA before the saturation. We also find that in the DDCA case, the network capacity remains constant when the traffic information available to each router was updated after long period times τ.

  1. A Novel ex vivo Mouse Mesometrium Culture Model for Investigating Angiogenesis in Microvascular Networks.

    PubMed

    Suarez-Martinez, Ariana D; Bierschenk, Susanne; Huang, Katie; Kaplan, Dana; Bayer, Carolyn L; Meadows, Stryder M; Sperandio, Markus; Murfee, Walter L

    2018-05-18

    The development of models that incorporate intact microvascular networks enables the investigation of multicellular dynamics during angiogenesis. Our laboratory introduced the rat mesentery culture model as such a tool, which would be enhanced with mouse tissue. Since mouse mesentery is avascular, an alternative is mouse mesometrium, the connective tissue of uterine horns. The study's objective was to demonstrate that mouse mesometrium contains microvascular networks that can be cultured to investigate multicellular dynamics during angiogenesis. Harvested mesometrium tissues from C57Bl/6 female mice were cultured in media with serum for up to 7 days. PECAM, NG2, αSMA, and LYVE-1 labeling identified endothelial cells, pericytes, smooth muscle cells, and lymphatic endothelial cells, respectively. These cells comprised microvascular networks with arterioles, venules, and capillaries. Compared to day 0, capillary sprouts per vascular length were increased by 3 and 5 days in culture (day 0, 0.08 ± 0.01; day 3, 3.19 ± 0.78; day 5, 2.49 ± 0.05 sprouts/mm; p < 0.05). Time-lapse imaging of cultured tissues from FlkEGFP mice showcases the use of the model for lineage studies. The impact is supported by the identification of endothelial cell jumping from one sprout to another. These results introduce a novel culture model for investigating multicellular dynamics during angiogenesis in real-time ex vivo microvascular networks. © 2018 S. Karger AG, Basel.

  2. Anger Modulates Influence Hierarchies Within and Between Emotional Reactivity and Regulation Networks

    PubMed Central

    Jacob, Yael; Gilam, Gadi; Lin, Tamar; Raz, Gal; Hendler, Talma

    2018-01-01

    Emotion regulation is hypothesized to be mediated by the interactions between emotional reactivity and regulation networks during the dynamic unfolding of the emotional episode. Yet, it remains unclear how to delineate the effective relationships between these networks. In this study, we examined the aforementioned networks’ information flow hierarchy during viewing of an anger provoking movie excerpt. Anger regulation is particularly essential for averting individuals from aggression and violence, thus improving prosocial behavior. Using subjective ratings of anger intensity we differentiated between low and high anger periods of the film. We then applied the Dependency Network Analysis (DEPNA), a newly developed graph theory method to quantify networks’ node importance during the two anger periods. The DEPNA analysis revealed that the impact of the ventromedial prefrontal cortex (vmPFC) was higher in the high anger condition, particularly within the regulation network and on the connections between the reactivity and regulation networks. We further showed that higher levels of vmPFC impact on the regulation network were associated with lower subjective anger intensity during the high-anger cinematic period, and lower trait anger levels. Supporting and replicating previous findings, these results emphasize the previously acknowledged central role of vmPFC in modulating negative affect. We further show that the impact of the vmPFC relies on its correlational influence on the connectivity between reactivity and regulation networks. More importantly, the hierarchy network analysis revealed a link between connectivity patterns of the vmPFC and individual differences in anger reactivity and trait, suggesting its potential therapeutic role. PMID:29681803

  3. Learning in the Age of Networked Intelligence

    ERIC Educational Resources Information Center

    Tuomi, Ilkka

    2007-01-01

    The article presents ten theoretically substantiated "theses" on future education and learning, highlighting emerging trends that will shape educational systems. The focus is on the impact of innovation economy and knowledge society on learning. Specifically, the article elaborates the changing dynamics of production models since the first…

  4. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  5. Detecting malicious chaotic signals in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Kumari, Sangeeta

    2018-02-01

    In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.

  6. The impact of socio-technical communication styles on the diversity and innovation potential of global science collaboratories

    DOE PAGES

    Ozmen, Ozgur; Yilmaz, Levent; Smith, Jeffrey

    2016-02-09

    Emerging cyber-infrastructure tools are enabling scientists to transparently co-develop, share, and communicate about real-time diverse forms of knowledge artifacts. In these environments, communication preferences of scientists are posited as an important factor affecting innovation capacity and robustness of social and knowledge network structures. Scientific knowledge creation in such communities is called global participatory science (GPS). Recently, using agent-based modeling and collective action theory as a basis, a complex adaptive social communication network model (CollectiveInnoSim) is implemented. This work leverages CollectiveInnoSim implementing communication preferences of scientists. Social network metrics and knowledge production patterns are used as proxy metrics to infer innovationmore » potential of emergent knowledge and collaboration networks. The objective is to present the underlying communication dynamics of GPS in a form of computational model and delineate the impacts of various communication preferences of scientists on innovation potential of the collaboration network. Ultimately, the insight gained can help policy-makers to design GPS environments and promote innovation.« less

  7. The impact of socio-technical communication styles on the diversity and innovation potential of global science collaboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Yilmaz, Levent; Smith, Jeffrey

    Emerging cyber-infrastructure tools are enabling scientists to transparently co-develop, share, and communicate about real-time diverse forms of knowledge artifacts. In these environments, communication preferences of scientists are posited as an important factor affecting innovation capacity and robustness of social and knowledge network structures. Scientific knowledge creation in such communities is called global participatory science (GPS). Recently, using agent-based modeling and collective action theory as a basis, a complex adaptive social communication network model (CollectiveInnoSim) is implemented. This work leverages CollectiveInnoSim implementing communication preferences of scientists. Social network metrics and knowledge production patterns are used as proxy metrics to infer innovationmore » potential of emergent knowledge and collaboration networks. The objective is to present the underlying communication dynamics of GPS in a form of computational model and delineate the impacts of various communication preferences of scientists on innovation potential of the collaboration network. Ultimately, the insight gained can help policy-makers to design GPS environments and promote innovation.« less

  8. Dynamic Optical Networks for Future Internet Environments

    NASA Astrophysics Data System (ADS)

    Matera, Francesco

    2014-05-01

    This article reports an overview on the evolution of the optical network scenario taking into account the exponential growth of connected devices, big data, and cloud computing that is driving a concrete transformation impacting the information and communication technology world. This hyper-connected scenario is deeply affecting relationships between individuals, enterprises, citizens, and public administrations, fostering innovative use cases in practically any environment and market, and introducing new opportunities and new challenges. The successful realization of this hyper-connected scenario depends on different elements of the ecosystem. In particular, it builds on connectivity and functionalities allowed by converged next-generation networks and their capacity to support and integrate with the Internet of Things, machine-to-machine, and cloud computing. This article aims at providing some hints of this scenario to contribute to analyze impacts on optical system and network issues and requirements. In particular, the role of the software-defined network is investigated by taking into account all scenarios regarding data centers, cloud computing, and machine-to-machine and trying to illustrate all the advantages that could be introduced by advanced optical communications.

  9. Modelling information dissemination under privacy concerns in social media

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Huang, Cheng; Lu, Rongxing; Li, Hui

    2016-05-01

    Social media has recently become an important platform for users to share news, express views, and post messages. However, due to user privacy preservation in social media, many privacy setting tools are employed, which inevitably change the patterns and dynamics of information dissemination. In this study, a general stochastic model using dynamic evolution equations was introduced to illustrate how privacy concerns impact the process of information dissemination. Extensive simulations and analyzes involving the privacy settings of general users, privileged users, and pure observers were conducted on real-world networks, and the results demonstrated that user privacy settings affect information differently. Finally, we also studied the process of information diffusion analytically and numerically with different privacy settings using two classic networks.

  10. Processing and Dynamic Failure Characterization of Novel Impact Absorbing Transparent Interpenetrating Polymer Networks (t-IPN)

    DTIC Science & Technology

    2013-07-05

    oven for the same curing treatment as before. The scanning electron microscope (SEM) photo in Figure 19 shows a typical sample with TMSPM and IPTES...Methacrylate-based Polymers,’ S. A . Bird , PhD Dissertation, Department of Polymer and Fiber Engineering, Auburn University, Summer 2013. ’Fracture Behavior...Polymer Networks with Polyurethane-poly(methyl methacrylate),’ K. C. Jajam, S. A . Bird , M. L. Auad, and H. V. Tippur, Polymer Testing, Vol. 32, pp

  11. Processing and Dynamic Failure Characterization of Novel Impact Absorbing Transparent Interpenetrating Polymer Networks (t-IPN)

    DTIC Science & Technology

    2014-02-01

    samples were placed into the oven for the same curing treatment as before. The scanning electron microscope (SEM) photo in Figure 19 shows a typical...Interpenetrating Polymer Networks with Polyurethane and Methacrylate-based Polymers,’ S. A . Bird , PhD Dissertation, Department of Polymer and Fiber Engineering...Jajam, H. V. Tippur, S. A . Bird , and M. L. Auad, Proceedings of the 50th SES Annual Technical Meeting and ASME-AMD Summer Meeting, Providence, RI

  12. Bipartite graphs as models of population structures in evolutionary multiplayer games.

    PubMed

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.

  13. Modal Frequency Detection in Composite Beams Using Fiber Optic Sensors

    DTIC Science & Technology

    1997-04-18

    Structures 4, 270-280 (1995). [35] Chen-Jung Li and Ray Asok , "Neural Network Representation of Fatigue Damage Dynamics," Smart Materials and Structures 3...37] Roland Ray Kilcher, "Modal Analysis and Impact Damage Assessment of Composite Laminates: an Experimental Study," M.S. thesis, University of

  14. Laptops in Classroom Interaction: The Dynamic Reach of the Laptoped Situation

    ERIC Educational Resources Information Center

    Lindroth, Tomas; Lundin, Johan; Svensson, Lars

    2013-01-01

    Laptops and other networked technologies are commonplace at university campuses. While a range of studies researches the negative effects of multitasking, screenpeeking and other laptop related side effects this article emphasize the situational impact of student-laptop interaction. Departing from Goffman's framework on unfocused interaction and…

  15. Patient safety problem identification and solution sharing among rural community pharmacists.

    PubMed

    Galt, Kimberly A; Fuji, Kevin T; Faber, Jennifer

    2013-01-01

    To implement a communication network for safety problem identification and solution sharing among rural community pharmacists and to report participating pharmacists' perceived value and impact of the network on patient safety after 1 year of implementation. Action research study. Rural community pharmacies in Nebraska from January 2010 to April 2011. Rural community pharmacists who voluntarily agreed to join the Pharmacists for Patient Safety Network in Nebraska. Pharmacists reported errors, near misses, and safety concerns through Web-based event reporting. A rapid feedback process was used to provide patient safety solutions to consider implementing across the network. Qualitative interviews were conducted 1 year after program implementation with participating pharmacists to assess use of the reporting system, value of the disseminated safety solutions, and perceived impact on patient safety in pharmacies. 30 of 38 pharmacists participating in the project completed the interviews. The communication network improved pharmacist awareness, promoted open discussion and knowledge sharing, contributed to practice vigilance, and led to incorporation of proactive safety prevention practices. Despite low participation in error and near-miss reporting, a dynamic communication network designed to rapidly disseminate evidence-based patient safety strategies to reduce risk was valued and effective at improving patient safety practices in rural community pharmacies.

  16. How has climate change altered network connectivity in a mountain stream network?

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish migration) and indirectly (e.g., stream temperature modeling). Additionally, our results inform management and regulatory needs such as estimating connectivity for entire river networks as a basis for regulation, and identifying the complexity of a shifting baseline in identifying a regulatory basis.

  17. Availability: A Metric for Nucleic Acid Strand Displacement Systems.

    PubMed

    Olson, Xiaoping; Kotani, Shohei; Padilla, Jennifer E; Hallstrom, Natalya; Goltry, Sara; Lee, Jeunghoon; Yurke, Bernard; Hughes, William L; Graugnard, Elton

    2017-01-20

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks.

  18. Exploring the networking behaviors of hospital organizations.

    PubMed

    Di Vincenzo, Fausto

    2018-05-08

    Despite an extensive body of knowledge exists on network outcomes and on how hospital network structures may contribute to the creation of outcomes at different levels of analysis, less attention has been paid to understanding how and why hospital organizational networks evolve and change. The aim of this paper is to study the dynamics of networking behaviors of hospital organizations. Stochastic actor-based model for network dynamics was used to quantitatively examine data covering six-years of patient transfer relations among 35 hospital organizations. Specifically, the study investigated about determinants of patient transfer evolution modeling partner selection choice as a combination of multiple organizational attributes and endogenous network-based processes. The results indicate that having overlapping specialties and treating patients with the same case-mix decrease the likelihood of observing network ties between hospitals. Also, results revealed as geographical proximity and membership of the same LHA have a positive impact on the networking behavior of hospitals organizations, there is a propensity in the network to choose larger hospitals as partners, and to transfer patients between hospitals facing similar levels of operational uncertainty. Organizational attributes (overlapping specialties and case-mix), institutional factors (LHA), and geographical proximity matter in the formation and shaping of hospital networks over time. Managers can benefit from the use of these findings by clearly identifying the role and strategic positioning of their hospital with respect to the entire network. Social network analysis can yield novel information and also aid policy makers in the formation of interventions, encouraging alliances among providers as well as planning health system restructuring.

  19. Discovery of Intramolecular Signal Transduction Network Based on a New Protein Dynamics Model of Energy Dissipation

    PubMed Central

    Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping

    2012-01-01

    A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins. PMID:22363664

  20. Maximizing synchronizability of duplex networks

    NASA Astrophysics Data System (ADS)

    Wei, Xiang; Emenheiser, Jeffrey; Wu, Xiaoqun; Lu, Jun-an; D'Souza, Raissa M.

    2018-01-01

    We study the synchronizability of duplex networks formed by two randomly generated network layers with different patterns of interlayer node connections. According to the master stability function, we use the smallest nonzero eigenvalue and the eigenratio between the largest and the second smallest eigenvalues of supra-Laplacian matrices to characterize synchronizability on various duplexes. We find that the interlayer linking weight and linking fraction have a profound impact on synchronizability of duplex networks. The increasingly large inter-layer coupling weight is found to cause either decreasing or constant synchronizability for different classes of network dynamics. In addition, negative node degree correlation across interlayer links outperforms positive degree correlation when most interlayer links are present. The reverse is true when a few interlayer links are present. The numerical results and understanding based on these representative duplex networks are illustrative and instructive for building insights into maximizing synchronizability of more realistic multiplex networks.

  1. Neural network submodel as an abstraction tool: relating network performance to combat outcome

    NASA Astrophysics Data System (ADS)

    Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.

    2000-06-01

    Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.

  2. Functional Network Disruption in the Degenerative Dementias

    PubMed Central

    Pievani, Michela; de Haan, Willem; Wu, Tao; Seeley, William W; Frisoni, Giovanni B

    2011-01-01

    Despite considerable advances toward understanding the molecular pathophysiology of the neurodegenerative dementias, the mechanisms linking molecular changes to neuropathology and the latter to clinical symptoms remain largely obscure. Connectivity is a distinctive feature of the brain and the integrity of functional network dynamics is critical for normal functioning. A better understanding of network disruption in the neurodegenerative dementias may help bridge the gap between molecular changes, pathology and symptoms. Recent findings on functional network disruption as assessed with “resting-state” or intrinsic connectivity fMRI and EEG/MEG have shown distinct patterns of network disruption across the major neurodegenerative diseases. These network abnormalities are relatively specific to the clinical syndromes, and in Alzheimer's disease and frontotemporal dementia network disruption tracks the pattern of pathological changes. These findings may have a practical impact on diagnostic accuracy, allowing earlier detection of neurodegenerative diseases even at the pre-symptomatic stage, and tracking of disease progression. PMID:21778116

  3. An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine.

    PubMed

    Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2014-08-01

    The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.

  4. Comparative empirical analysis of flow-weighted transit route networks in R-space and evolution modeling

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei

    2017-05-01

    Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.

  5. Evolution of cooperation under social pressure in multiplex networks

    NASA Astrophysics Data System (ADS)

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  6. Evolution of cooperation under social pressure in multiplex networks.

    PubMed

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  7. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    NASA Astrophysics Data System (ADS)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  8. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2016-08-22

    Although molecular mechanisms of allosteric regulation in the Hsp70 chaperones have been extensively studied at both structural and functional levels, the current understanding of allosteric inhibition of chaperone activities by small molecules is still lacking. In the current study, using a battery of computational approaches, we probed allosteric inhibition mechanisms of E. coli Hsp70 (DnaK) and human Hsp70 proteins by small molecule inhibitors PET-16 and novolactone. Molecular dynamics simulations and binding free energy analysis were combined with network-based modeling of residue interactions and allosteric communications to systematically characterize and compare molecular signatures of the apo form, substrate-bound, and inhibitor-bound chaperone complexes. The results suggested a mechanism by which the allosteric inhibitors may leverage binding energy hotspots in the interaction networks to stabilize a specific conformational state and impair the interdomain allosteric control. Using the network-based centrality analysis and community detection, we demonstrated that substrate binding may strengthen the connectivity of local interaction communities, leading to a dense interaction network that can promote an efficient allosteric communication. In contrast, binding of PET-16 to DnaK may induce significant dynamic changes and lead to a fractured interaction network and impaired allosteric communications in the DnaK complex. By using a mechanistic-based analysis of distance fluctuation maps and allosteric propensities of protein residues, we determined that the allosteric network in the PET-16 complex may be small and localized due to the reduced communication and low cooperativity of the substrate binding loops, which may promote the higher rates of substrate dissociation and the decreased substrate affinity. In comparison with the significant effect of PET-16, binding of novolactone to HSPA1A may cause only moderate network changes and preserve allosteric coupling between the allosteric pocket and the substrate binding region. The impact of novolactone on the conformational dynamics and allosteric communications in the HSPA1A complex was comparable to the substrate effect, which is consistent with the experimental evidence that PET-16, but not novolactone binding, can significantly decrease substrate affinity. We argue that the unique dynamic and network signatures of PET-16 and novolactone may be linked with the experimentally observed functional effects of these inhibitors on allosteric regulation and substrate binding.

  9. Importance of tie strengths in the prisoner's dilemma game on social networks

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Liu, Lu; You, Weijia

    2011-06-01

    Though numerous researches have shown that tie strengths play a key role in the formation of collective behavior in social networks, little work has been done to explore their impact on the outcome of evolutionary games. In this Letter, we studied the effect of tie strength in the dynamics of evolutionary prisoner's dilemma games by using online social network datasets. The results show that the fraction of cooperators has a non-trivial dependence on tie strength. Weak ties, just like previous researches on epidemics and information diffusion have shown, play a key role by the maintenance of cooperators in evolutionary prisoner's dilemma games.

  10. Energy-saving framework for passive optical networks with ONU sleep/doze mode.

    PubMed

    Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine

    2015-02-09

    This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.

  11. Impact of individual interest shift on information dissemination in modular networks

    NASA Astrophysics Data System (ADS)

    Zhao, Narisa; Cui, Xuelian

    2017-01-01

    Social networks exhibit strong community structure. Many researches have been done to explore the impacts of community structure on information diffusion but few combined with human behaviors together. In this paper, we focus on how the individual interests' changing behavior impacts the dynamics of information propagation. Firstly, we propose an information dissemination model considering both the community structure and individual interest shift where social reinforcement and time decaying are taken into account. The accuracy of the model is evaluated by comparing the simulation and theoretical results. Further, the numerical results illustrate that both the community structure and the interests changing behavior have effects on the outbreak size of the information dissemination. Specially, lower modularity and higher community connection density will accelerate the speed of information propagation especially when the information maximal lifetime is shorter. In addition, the changes of individual interests in the message have a great impact on the final density of the received through increasing or decreasing the number of satisfied individuals directly. What is more, our findings suggest that when the modularity of the network is higher and the community clustering coefficient is lower individual interest shift behavior will have a heavier effect on the spread scope.

  12. Impacts of clustering on interacting epidemics.

    PubMed

    Wang, Bing; Cao, Lang; Suzuki, Hideyuki; Aihara, Kazuyuki

    2012-07-07

    Since community structures in real networks play a major role for the epidemic spread, we therefore explore two interacting diseases spreading in networks with community structures. As a network model with community structures, we propose a random clique network model composed of different orders of cliques. We further assume that each disease spreads only through one type of cliques; this assumption corresponds to the issue that two diseases spread inside communities and outside them. Considering the relationship between the susceptible-infected-recovered (SIR) model and the bond percolation theory, we apply this theory to clique random networks under the assumption that the occupation probability is clique-type dependent, which is consistent with the observation that infection rates inside a community and outside it are different, and obtain a number of statistical properties for this model. Two interacting diseases that compete the same hosts are also investigated, which leads to a natural generalization of analyzing an arbitrary number of infectious diseases. For two-disease dynamics, the clustering effect is hypersensitive to the cohesiveness and concentration of cliques; this illustrates the impacts of clustering and the composition of subgraphs in networks on epidemic behavior. The analysis of coexistence/bistability regions provides significant insight into the relationship between the network structure and the potential epidemic prevalence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    PubMed

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Dynamic fair node spectrum allocation for ad hoc networks using random matrices

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry

    2015-05-01

    Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.

  15. A general modeling framework for describing spatially structured population dynamics

    USGS Publications Warehouse

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles

  16. Dynamic strength, particle deformation, and fracture within fluids with impact-activated microstructures

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Ouellet, Simon

    2017-07-01

    The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.

  17. Transcriptional regulatory dynamics of the hypothalamic-pituitary-gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor Trilostane in zebrafish (Danio rerio)

    EPA Science Inventory

    To identify transcription factors (TFs), members of hypothalamic-pituitary- gonadal axis (HPG-axis), TF networks and signaling pathways underlying generalized effects of 3-beta hydroxysteroid dehydrogenase (HSD3B) inhibition, reproductively mature zebrafish (Danio rerio) were exp...

  18. Opinion Dynamics with Heterogeneous Interactions and Information Assimilation

    ERIC Educational Resources Information Center

    Mir Tabatabaei, Seydeh Anahita

    2013-01-01

    In any modern society, individuals interact to form opinions on various topics, including economic, political, and social aspects. Opinions evolve as the result of the continuous exchange of information among individuals and of the assimilation of information distributed by media. The impact of individuals' opinions on each other forms a network,…

  19. The Reciprocal Relationship Between Social Connectedness and Mental Health Among Older European Adults: A SHARE-Based Analysis.

    PubMed

    Schwartz, Ella; Litwin, Howard

    2017-11-04

    The current study aimed to understand the reciprocal relationship between social networks and mental health in old age. It explored the dynamic aspects of that relationship and assessed the influence of social networks on mental health, as well as a concurrent influence of mental health on change in social connectedness. The data came from two measurement points in the Survey of Health, Aging and Retirement in Europe (SHARE). The analytic sample was composed of adults aged 65 years and above (N = 14,706). Analyses were conducted via latent change score models. Analyses showed a reciprocal association between social networks and mental health; baseline social connectedness led to mental health improvements and a better initial mental state led to richer social networks. The results further indicated that the relative effect of mental health on change in social network connectedness was greater than the corresponding effect of social network connectedness on change in mental health. No gender differences were found regarding the reciprocal associations. The results of this study demonstrate the dynamic inter-relationship of social networks and mental health. It highlights the need to take into account both directions of influence when studying the impact of social relationships on mental health. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks

    PubMed Central

    Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhang, Hai-Feng

    2016-01-01

    Information diffusion and disease spreading in communication-contact layered network are typically asymmetrically coupled with each other, in which disease spreading can be significantly affected by the way an individual being aware of disease responds to the disease. Many recent studies have demonstrated that human behavioral adoption is a complex and non-Markovian process, where the probability of behavior adoption is dependent on the cumulative times of information received and the social reinforcement effect of the cumulative information. In this paper, the impacts of such a non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are explored. It is found that this complex adoption behavior in the communication layer can significantly enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-field theory is developed to verify the correctness of simulation results. PMID:27156574

  1. Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks.

    PubMed

    Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhang, Hai-Feng

    2016-05-09

    Information diffusion and disease spreading in communication-contact layered network are typically asymmetrically coupled with each other, in which disease spreading can be significantly affected by the way an individual being aware of disease responds to the disease. Many recent studies have demonstrated that human behavioral adoption is a complex and non-Markovian process, where the probability of behavior adoption is dependent on the cumulative times of information received and the social reinforcement effect of the cumulative information. In this paper, the impacts of such a non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are explored. It is found that this complex adoption behavior in the communication layer can significantly enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-field theory is developed to verify the correctness of simulation results.

  2. State-Space Analysis of Granger-Geweke Causality Measures with Application to fMRI.

    PubMed

    Solo, Victor

    2016-05-01

    The recent interest in the dynamics of networks and the advent, across a range of applications, of measuring modalities that operate on different temporal scales have put the spotlight on some significant gaps in the theory of multivariate time series. Fundamental to the description of network dynamics is the direction of interaction between nodes, accompanied by a measure of the strength of such interactions. Granger causality and its associated frequency domain strength measures (GEMs) (due to Geweke) provide a framework for the formulation and analysis of these issues. In pursuing this setup, three significant unresolved issues emerge. First, computing GEMs involves computing submodels of vector time series models, for which reliable methods do not exist. Second, the impact of filtering on GEMs has never been definitively established. Third, the impact of downsampling on GEMs has never been established. In this work, using state-space methods, we resolve all these issues and illustrate the results with some simulations. Our analysis is motivated by some problems in (fMRI) brain imaging, to which we apply it, but it is of general applicability.

  3. State-Space Analysis of Granger-Geweke Causality Measures with Application to fMRI

    PubMed Central

    Solo, Victor

    2017-01-01

    The recent interest in the dynamics of networks and the advent, across a range of applications, of measuring modalities that operate on different temporal scales have put the spotlight on some significant gaps in the theory of multivariate time series. Fundamental to the description of network dynamics is the direction of interaction between nodes, accompanied by a measure of the strength of such interactions. Granger causality and its associated frequency domain strength measures (GEMs) (due to Geweke) provide a framework for the formulation and analysis of these issues. In pursuing this setup, three significant unresolved issues emerge. First, computing GEMs involves computing submodels of vector time series models, for which reliable methods do not exist. Second, the impact of filtering on GEMs has never been definitively established. Third, the impact of downsampling on GEMs has never been established. In this work, using state-space methods, we resolve all these issues and illustrate the results with some simulations. Our analysis is motivated by some problems in (fMRI) brain imaging, to which we apply it, but it is of general applicability. PMID:26942749

  4. World citation and collaboration networks: uncovering the role of geography in science

    PubMed Central

    Pan, Raj Kumar; Kaski, Kimmo; Fortunato, Santo

    2012-01-01

    Modern information and communication technologies, especially the Internet, have diminished the role of spatial distances and territorial boundaries on the access and transmissibility of information. This has enabled scientists for closer collaboration and internationalization. Nevertheless, geography remains an important factor affecting the dynamics of science. Here we present a systematic analysis of citation and collaboration networks between cities and countries, by assigning papers to the geographic locations of their authors’ affiliations. The citation flows as well as the collaboration strengths between cities decrease with the distance between them and follow gravity laws. In addition, the total research impact of a country grows linearly with the amount of national funding for research & development. However, the average impact reveals a peculiar threshold effect: the scientific output of a country may reach an impact larger than the world average only if the country invests more than about 100,000 USD per researcher annually. PMID:23198092

  5. World citation and collaboration networks: uncovering the role of geography in science

    NASA Astrophysics Data System (ADS)

    Pan, Raj Kumar; Kaski, Kimmo; Fortunato, Santo

    2012-11-01

    Modern information and communication technologies, especially the Internet, have diminished the role of spatial distances and territorial boundaries on the access and transmissibility of information. This has enabled scientists for closer collaboration and internationalization. Nevertheless, geography remains an important factor affecting the dynamics of science. Here we present a systematic analysis of citation and collaboration networks between cities and countries, by assigning papers to the geographic locations of their authors' affiliations. The citation flows as well as the collaboration strengths between cities decrease with the distance between them and follow gravity laws. In addition, the total research impact of a country grows linearly with the amount of national funding for research & development. However, the average impact reveals a peculiar threshold effect: the scientific output of a country may reach an impact larger than the world average only if the country invests more than about 100,000 USD per researcher annually.

  6. Hybrid function projective synchronization in complex dynamical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng

    2014-02-15

    This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.

  7. Dendritic Slow Dynamics Enables Localized Cortical Activity to Switch between Mobile and Immobile Modes with Noisy Background Input

    PubMed Central

    Kurashige, Hiroki; Câteau, Hideyuki

    2011-01-01

    Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability. PMID:21931635

  8. Online Networks and the Diffusion of Protests

    NASA Astrophysics Data System (ADS)

    Moreno, Yamir

    2013-03-01

    Undoubtedly, online social networks have an enormous impact on opinions and cultural trends. Also, these platforms have revealed as a fundamental organizing mechanism in country-wide social movements. Recent events in the Middle East and North Africa (the wave of protests in the Arab world), across Europe (in the form of anti-cuts demonstrations or riots) and United States (the OWS movement) have generated much discussion on how digital media is connected to the diffusion of protests. In this talk, we investigate the mechanisms driving the emergence, development and stabilization of unrest movements in Spain and the USA by analyzing data from Twitter. Messages related to the protests are analyzed at both static and dynamic levels. We show that the online trace of the protests provides a unique opportunity to tackle central issues like recruitment patterns, information cascades and their spatiotemporal dynamics. Our findings shed light on the connection between online networks and social movements, and offer an empirical test to elusive sociological questions about collective action.

  9. Modeling and simulation of consumer response to dynamic pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenzuela, J.; Thimmapuram, P.; Kim, J

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets.more » We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.« less

  10. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  11. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  12. Direct Imaging of Lipid-Ion Network Formation under Physiological Conditions by Frequency Modulation Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.

    2007-03-01

    Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.

  13. Scenario analysis and disaster preparedness for port and maritime logistics risk management.

    PubMed

    Kwesi-Buor, John; Menachof, David A; Talas, Risto

    2016-08-01

    System Dynamics (SD) modelling is used to investigate the impacts of policy interventions on industry actors' preparedness to mitigate risks and to recover from disruptions along the maritime logistics and supply chain network. The model suggests a bi-directional relation between regulation and industry actors' behaviour towards Disaster Preparedness (DP) in maritime logistics networks. The model also showed that the level of DP is highly contingent on forecast accuracy, technology change, attitude to risk prevention, port activities, and port environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Energy model for rumor propagation on social networks

    NASA Astrophysics Data System (ADS)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  15. Quantifying the propagation of distress and mental disorders in social networks.

    PubMed

    Scatà, Marialisa; Di Stefano, Alessandro; La Corte, Aurelio; Liò, Pietro

    2018-03-22

    Heterogeneity of human beings leads to think and react differently to social phenomena. Awareness and homophily drive people to weigh interactions in social multiplex networks, influencing a potential contagion effect. To quantify the impact of heterogeneity on spreading dynamics, we propose a model of coevolution of social contagion and awareness, through the introduction of statistical estimators, in a weighted multiplex network. Multiplexity of networked individuals may trigger propagation enough to produce effects among vulnerable subjects experiencing distress, mental disorder, which represent some of the strongest predictors of suicidal behaviours. The exposure to suicide is emotionally harmful, since talking about it may give support or inadvertently promote it. To disclose the complex effect of the overlapping awareness on suicidal ideation spreading among disordered people, we also introduce a data-driven approach by integrating different types of data. Our modelling approach unveils the relationship between distress and mental disorders propagation and suicidal ideation spreading, shedding light on the role of awareness in a social network for suicide prevention. The proposed model is able to quantify the impact of overlapping awareness on suicidal ideation spreading and our findings demonstrate that it plays a dual role on contagion, either reinforcing or delaying the contagion outbreak.

  16. Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Lai, Ying-Cheng

    2018-03-01

    Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.

  17. Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics.

    PubMed

    Chen, Yu-Zhong; Lai, Ying-Cheng

    2018-03-01

    Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.

  18. Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks

    PubMed Central

    Shelton, Christian; Mednick, Sara C.

    2018-01-01

    The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep. PMID:29641599

  19. Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks.

    PubMed

    Yetton, Benjamin D; McDevitt, Elizabeth A; Cellini, Nicola; Shelton, Christian; Mednick, Sara C

    2018-01-01

    The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep.

  20. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    PubMed Central

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  1. A few bad apples: a model of disease influenced agent behaviour in a heterogeneous contact environment.

    PubMed

    Enright, Jessica; Kao, Rowland R

    2015-01-01

    For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent's disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence.

  2. DSGRN: Examining the Dynamics of Families of Logical Models.

    PubMed

    Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin

    2018-01-01

    We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.

  3. Spatial Patterns of Road-Induced Backwater Sediment Storage Across A Rural to Urban Gradient

    NASA Astrophysics Data System (ADS)

    Copeland, M.; Bain, D.

    2017-12-01

    Road networks dominate many landscapes and often interact with stream networks to alter basin sediment dynamics. Currently, conceptual models of catchment-scale sediment fluxes remain at a coarse scale (i.e., the entire catchment) and are unable to resolve important human-driven sediment storage processes. The spatio-temporal complexity of the interactions between road networks and streams has made it challenging to infer the fine-scale impacts of road crossings on fluvial systems. Here, road crossings in multiple drainage networks and the associated backwater sediment accumulations are examined along a rural to urban gradient around Pittsburgh, PA. Preliminary results indicate that upstream drainage area, channel slope, and human activities control stream crossing type and therefore drive associated sediment accumulation, particularly in urban headwater channels. The data indicate that the combination of land use intensity and infrastructure age influences the volume of sediment trapped in road-induced backwaters. Clarification of the coupled human, road-building, and natural stream adjustments will allow for more effective treatments of fluvial impacts, such as the "urban stream syndrome."

  4. DAWN: Dynamic Ad-hoc Wireless Network

    DTIC Science & Technology

    2016-06-19

    DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or

  5. Message survival and decision dynamics in a class of reactive complex systems subject to external fields

    NASA Astrophysics Data System (ADS)

    Rodriguez Lucatero, C.; Schaum, A.; Alarcon Ramos, L.; Bernal-Jaquez, R.

    2014-07-01

    In this study, the dynamics of decisions in complex networks subject to external fields are studied within a Markov process framework using nonlinear dynamical systems theory. A mathematical discrete-time model is derived using a set of basic assumptions regarding the convincement mechanisms associated with two competing opinions. The model is analyzed with respect to the multiplicity of critical points and the stability of extinction states. Sufficient conditions for extinction are derived in terms of the convincement probabilities and the maximum eigenvalues of the associated connectivity matrices. The influences of exogenous (e.g., mass media-based) effects on decision behavior are analyzed qualitatively. The current analysis predicts: (i) the presence of fixed-point multiplicity (with a maximum number of four different fixed points), multi-stability, and sensitivity with respect to the process parameters; and (ii) the bounded but significant impact of exogenous perturbations on the decision behavior. These predictions were verified using a set of numerical simulations based on a scale-free network topology.

  6. Network approach to patterns in stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Glassmeier, Franziska; Feingold, Graham

    2017-10-01

    Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.

  7. Network approach to patterns in stratocumulus clouds.

    PubMed

    Glassmeier, Franziska; Feingold, Graham

    2017-10-03

    Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth's climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis's Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.

  8. Network approach to patterns in stratocumulus clouds

    PubMed Central

    Feingold, Graham

    2017-01-01

    Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav–Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes. PMID:28904097

  9. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabral, Joana; Department of Psychiatry, University of Oxford, Oxford OX3 7JX; Fernandes, Henrique M.

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the rolemore » of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.« less

  10. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    NASA Astrophysics Data System (ADS)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo

    2013-12-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  11. Opinion formation in a social network: The role of human activity

    NASA Astrophysics Data System (ADS)

    Grabowski, Andrzej

    2009-03-01

    The model of opinion formation in human population based on social impact theory is investigated numerically. On the basis of a database received from the on-line game server, we examine the structure of social network and human dynamics. We calculate the activity of individuals, i.e. the relative time devoted daily to interactions with others in the artificial society. We study the influence of correlation between the activity of an individual and its connectivity on the process of opinion formation. We find that such correlations have a significant influence on the temperature of the phase transition and the effect of the mass media, modeled as an external stimulation acting on the social network.

  12. How heart rate variability affects emotion regulation brain networks.

    PubMed

    Mather, Mara; Thayer, Julian

    2018-02-01

    Individuals with high heart rate variability tend to have better emotional well-being than those with low heart rate variability, but the mechanisms of this association are not yet clear. In this paper, we propose the novel hypothesis that by inducing oscillatory activity in the brain, high amplitude oscillations in heart rate enhance functional connectivity in brain networks associated with emotion regulation. Recent studies using daily biofeedback sessions to increase the amplitude of heart rate oscillations suggest that high amplitude physiological oscillations have a causal impact on emotional well-being. Because blood flow timing helps determine brain network structure and function, slow oscillations in heart rate have the potential to strengthen brain network dynamics, especially in medial prefrontal regulatory regions that are particularly sensitive to physiological oscillations.

  13. Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output.

    PubMed

    Nochomovitz, Yigal D; Li, Hao

    2006-03-14

    Deciphering the design principles for regulatory networks is fundamental to an understanding of biological systems. We have explored the mapping from the space of network topologies to the space of dynamical phenotypes for small networks. Using exhaustive enumeration of a simple model of three- and four-node networks, we demonstrate that certain dynamical phenotypes can be generated by an atypically broad spectrum of network topologies. Such dynamical outputs are highly designable, much like certain protein structures can be designed by an unusually broad spectrum of sequences. The network topologies that encode a highly designable dynamical phenotype possess two classes of connections: a fully conserved core of dedicated connections that encodes the stable dynamical phenotype and a partially conserved set of variable connections that controls the transient dynamical flow. By comparing the topologies and dynamics of the three- and four-node network ensembles, we observe a large number of instances of the phenomenon of "mutational buffering," whereby addition of a fourth node suppresses phenotypic variation amongst a set of three-node networks.

  14. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  15. The Impact of Technology-Enhanced Curriculum on Learning Advanced Algebra in US High School Classrooms

    ERIC Educational Resources Information Center

    Hegedus, Stephen J.; Dalton, Sara; Tapper, John R.

    2015-01-01

    We report on two large studies conducted in advanced algebra classrooms in the US, which evaluated the effect of replacing traditional algebra 2 curriculum with an integrated suite of dynamic interactive software, wireless networks and technology-enhanced curriculum on student learning. The first study was a cluster randomized trial and the second…

  16. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    PubMed

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  17. Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa.

    PubMed

    Caranica, C; Al-Omari, A; Deng, Z; Griffith, J; Nilsen, R; Mao, L; Arnold, J; Schüttler, H-B

    2018-01-01

    A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.

  18. The cell wall of Arabidopsis thaliana influences actin network dynamics.

    PubMed

    Tolmie, Frances; Poulet, Axel; McKenna, Joseph; Sassmann, Stefan; Graumann, Katja; Deeks, Michael; Runions, John

    2017-07-20

    In plant cells, molecular connections link the cell wall-plasma membrane-actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)-fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP-Lifeact-labelled network that appeared much more sparse with thick bundles that underwent 'simple movement', in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, 'pairwise image subtraction', was applied to measurement of the more rapidly remodelling actin network labelled with GFP-FABD2, while the second, 'cumulative fluorescence intensity', was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP-Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall-plasma membrane-actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Which fireballs are meteorites - A study of the Prairie Network photographic meteor data

    NASA Astrophysics Data System (ADS)

    Wetherill, G. W.; Revelle, D. O.

    1981-11-01

    With the exception of three recovered meteorites with photographic fireball data (Pribram, Lost City, Innisfree), there is generally little information regarding the location of meteorites in the solar system prior to their impact on the earth. An investigation is conducted with the objective to identify those fireballs (bright meteor) data from the Prairie Network. The investigation is based on the belief that many small ordinary chondrites must be present among the photographed bright fireballs. Observations of the recovered fireballs are used to identify characteristics of their dynamics while passing through the atmosphere. In this way criteria are established for identifying those fireballs with similar dynamical characteristics. On the basis of the studies, a catalog is provided of fireballs which have a high probability of being ordinary chondrites or other strong meteorites.

  20. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.

    PubMed

    Fang, Yan; Yashin, Victor V; Dickerson, Samuel J; Balazs, Anna C

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  1. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  2. Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?

    PubMed Central

    Li, Dong; Zhou, Changsong

    2011-01-01

    Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576

  3. Availability: A Metric for Nucleic Acid Strand Displacement Systems

    PubMed Central

    2016-01-01

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks. PMID:26875531

  4. Impact of amylases on biopolymer dynamics during storage of straight-dough wheat bread.

    PubMed

    Bosmans, Geertrui M; Lagrain, Bert; Fierens, Ellen; Delcour, Jan A

    2013-07-03

    When Bacillus stearothermophilus α-amylase (BStA), Pseudomonas saccharophila α-amylase (PSA), or Bacillus subtilis α-amylase (BSuA) was added to a bread recipe to impact bread firming, amylose crystal formation was facilitated, leading to lower initial crumb resilience. Bread loaves that best retained their quality were those obtained when BStA was used. The enzyme hindered formation of an extended starch network, resulting in less water immobilization and smaller changes in crumb firmness and resilience. BSuA led to extensive degradation of the starch network during bread storage with release of immobilized water, eventually resulting in partial structure collapse and poor crumb resilience. The most important effect of PSA was an increased bread volume, resulting in smaller changes in crumb firmness and resilience. A negative linear relation was found between NMR proton mobilities of water and biopolymers in the crumb and crumb firmness. The slope of that relation gave an indication of the strength of the starch network.

  5. Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET.

    PubMed

    Dutta, Sangya; Kumar, Vinay; Shukla, Aditya; Mohapatra, Nihar R; Ganguly, Udayan

    2017-08-15

    Neuro-biology inspired Spiking Neural Network (SNN) enables efficient learning and recognition tasks. To achieve a large scale network akin to biology, a power and area efficient electronic neuron is essential. Earlier, we had demonstrated an LIF neuron by a novel 4-terminal impact ionization based n+/p/n+ with an extended gate (gated-INPN) device by physics simulation. Excellent improvement in area and power compared to conventional analog circuit implementations was observed. In this paper, we propose and experimentally demonstrate a compact conventional 3-terminal partially depleted (PD) SOI- MOSFET (100 nm gate length) to replace the 4-terminal gated-INPN device. Impact ionization (II) induced floating body effect in SOI-MOSFET is used to capture LIF neuron behavior to demonstrate spiking frequency dependence on input. MHz operation enables attractive hardware acceleration compared to biology. Overall, conventional PD-SOI-CMOS technology enables very-large-scale-integration (VLSI) which is essential for biology scale (~10 11 neuron based) large neural networks.

  6. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  7. Dynamic Trust Management for Mobile Networks and Its Applications

    ERIC Educational Resources Information Center

    Bao, Fenye

    2013-01-01

    Trust management in mobile networks is challenging due to dynamically changing network environments and the lack of a centralized trusted authority. In this dissertation research, we "design" and "validate" a class of dynamic trust management protocols for mobile networks, and demonstrate the utility of dynamic trust management…

  8. Opinion evolution in different social acquaintance networks.

    PubMed

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion p h and variation proportion p v are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve p v +2p h =2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.

  9. Opinion evolution in different social acquaintance networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion ph and variation proportion pv are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve pv+2 ph=2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.

  10. Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuche; Gonder, Jeffrey; Young, Stanley

    Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less

  11. Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach

    DOE PAGES

    Chen, Yuche; Gonder, Jeffrey; Young, Stanley; ...

    2017-11-06

    Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less

  12. The Structural Underpinnings of Policy Learning: A Classroom Policy Simulation

    NASA Astrophysics Data System (ADS)

    Bird, Stephen

    This paper investigates the relationship between the centrality of individual actors in a social network structure and their policy learning performance. In a dynamic comparable to real-world policy networks, results from a classroom simulation demonstrate a strong relationship between centrality in social learning networks and grade performance. Previous research indicates that social network centrality should have a positive effect on learning in other contexts and this link is tested in a policy learning context. Second, the distinction between collaborative learning versus information diffusion processes in policy learning is examined. Third, frequency of interaction is analyzed to determine whether consistent, frequent tics have a greater impact on the learning process. Finally, the data arc analyzed to determine if the benefits of centrality have limitations or thresholds when benefits no longer accrue. These results demonstrate the importance of network structure, and support a collaborative conceptualization of the policy learning process.

  13. Mining protein-protein interaction networks: denoising effects

    NASA Astrophysics Data System (ADS)

    Marras, Elisabetta; Capobianco, Enrico

    2009-01-01

    A typical instrument to pursue analysis in complex network studies is the analysis of the statistical distributions. They are usually computed for measures which characterize network topology, and are aimed at capturing both structural and dynamics aspects. Protein-protein interaction networks (PPIN) have also been studied through several measures. It is in general observed that a power law is expected to characterize scale-free networks. However, mixing the original noise cover with outlying information and other system-dependent fluctuations makes the empirical detection of the power law a difficult task. As a result the uncertainty level increases when looking at the observed sample; in particular, one may wonder whether the computed features may be sufficient to explain the interactome. We then address noise problems by implementing both decomposition and denoising techniques that reduce the impact of factors known to affect the accuracy of power law detection.

  14. Detailed analysis of routing protocols with different network limitations

    NASA Astrophysics Data System (ADS)

    Masood, Mohsin; Abuhelala, Mohamed; Glesk, Ivan

    2016-12-01

    In network communication field, routing protocols have got a significant role which are not only used in networks to handle the user data but also to monitor the different network environments. Dynamic routing protocols such as OSPF, EIGRP and RIP are used for forwarding user data to its destination by instantly detecting the dynamic changes across the network. The dynamic changes in the network can be in the form of topological changes, congestions, links failure etc. Therefore, it becomes a challenge to develop and implement dynamic routing protocols that fulfills the network requirements. Hence, each routing protocol has its own characteristics such as convergence activity, routing metric, routing table etc. and will perform differently in various network environments. This paper presents a comprehensive study of static and dynamic routing, along with dynamic routing protocols. Experiments that are conducted under various network limitations are presented using the OPNET tool. The performance of each of dynamic routing protocols are monitored and explained in the form of simulated results using network parameters. The results are analyzed, in order to provide a clear understanding of each protocol performance for the selection of the proper protocol for a given network environment.

  15. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  16. Optimal Objective-Based Experimental Design for Uncertain Dynamical Gene Networks with Experimental Error.

    PubMed

    Mohsenizadeh, Daniel N; Dehghannasiri, Roozbeh; Dougherty, Edward R

    2018-01-01

    In systems biology, network models are often used to study interactions among cellular components, a salient aim being to develop drugs and therapeutic mechanisms to change the dynamical behavior of the network to avoid undesirable phenotypes. Owing to limited knowledge, model uncertainty is commonplace and network dynamics can be updated in different ways, thereby giving multiple dynamic trajectories, that is, dynamics uncertainty. In this manuscript, we propose an experimental design method that can effectively reduce the dynamics uncertainty and improve performance in an interaction-based network. Both dynamics uncertainty and experimental error are quantified with respect to the modeling objective, herein, therapeutic intervention. The aim of experimental design is to select among a set of candidate experiments the experiment whose outcome, when applied to the network model, maximally reduces the dynamics uncertainty pertinent to the intervention objective.

  17. False Beliefs in Unreliable Knowledge Networks

    NASA Astrophysics Data System (ADS)

    Ioannidis, Evangelos; Varsakelis, Nikos; Antoniou, Ioannis

    2017-03-01

    The aims of this work are: (1) to extend knowledge dynamics analysis in order to assess the influence of false beliefs and unreliable communication channels, (2) to investigate the impact of selection rule-policy for knowledge acquisition, (3) to investigate the impact of targeted link attacks ("breaks" or "infections") of certain "healthy" communication channels. We examine the knowledge dynamics analytically, as well as by simulations on both artificial and real organizational knowledge networks. The main findings are: (1) False beliefs have no significant influence on knowledge dynamics, while unreliable communication channels result in non-monotonic knowledge updates ("wild" knowledge fluctuations may appear) and in significant elongation of knowledge attainment. Moreover, false beliefs may emerge during knowledge evolution, due to the presence of unreliable communication channels, even if they were not present initially, (2) Changing the selection rule-policy, by raising the awareness of agents to avoid the selection of unreliable communication channels, results in monotonic knowledge upgrade and in faster knowledge attainment, (3) "Infecting" links is more harmful than "breaking" links, due to "wild" knowledge fluctuations and due to the elongation of knowledge attainment. Moreover, attacking even a "small" percentage of links (≤5%) with high knowledge transfer, may result in dramatic elongation of knowledge attainment (over 100%), as well as in delays of the onset of knowledge attainment. Hence, links of high knowledge transfer should be protected, because in Information Warfare and Disinformation, these links are the "best targets".

  18. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins

    NASA Astrophysics Data System (ADS)

    Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia

    2015-04-01

    Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.

  19. Organization of excitable dynamics in hierarchical biological networks.

    PubMed

    Müller-Linow, Mark; Hilgetag, Claus C; Hütt, Marc-Thorsten

    2008-09-26

    This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.

  20. A methodology for the efficient integration of transient constraints in the design of aircraft dynamic systems

    NASA Astrophysics Data System (ADS)

    Phan, Leon L.

    The motivation behind this thesis mainly stems from previous work performed at Hispano-Suiza (Safran Group) in the context of the European research project "Power Optimised Aircraft". Extensive testing on the COPPER Bird RTM, a test rig designed to characterize aircraft electrical networks, demonstrated the relevance of transient regimes in the design and development of dynamic systems. Transient regimes experienced by dynamic systems may have severe impacts on the operation of the aircraft. For example, the switching on of a high electrical load might cause a network voltage drop inducing a loss of power available to critical aircraft systems. These transient behaviors are thus often regulated by dynamic constraints, requiring the dynamic signals to remain within bounds whose values vary with time. The verification of these peculiar types of constraints, which generally requires high-fidelity time-domain simulation, intervenes late in the system development process, thus potentially causing costly design iterations. The research objective of this thesis is to develop a methodology that integrates the verification of dynamic constraints in the early specification of dynamic systems. In order to circumvent the inefficiencies of time-domain simulation, multivariate dynamic surrogate models of the original time-domain simulation models are generated, building on a nonlinear system identification technique using wavelet neural networks (or wavenets), which allow the multiscale nature of transient signals to be captured. However, training multivariate wavenets can become computationally prohibitive as the number of design variables increases. Therefore, an alternate approach is formulated, in which dynamic surrogate models using sigmoid-based neural networks are used to emulate the transient behavior of the envelopes of the time-domain response. Thus, in order to train the neural network, the envelopes are extracted by first separating the scales of the dynamic response, using a multiresolution analysis (MRA) based on the discrete wavelet transform. The MRA separates the dynamic response into a trend and a noise signal (ripple). The envelope of the noise is then computed with a windowing method, and recombined with the trend in order to reconstruct the global envelope of the dynamic response. The run-time efficiency of the resulting dynamic surrogate models enable the implementation of a data farming approach, in which a Monte-Carlo simulation generates time-domain behaviors of transient responses for a vast set of design and operation scenarios spanning the design and operation space. An interactive visualization environment, enabling what-if analyses, will be developed; the user can thereby instantaneously comprehend the transient response of the system (or its envelope) and its sensitivities to design and operation variables, as well as filter the design space to have it exhibit only the design scenarios verifying the dynamic constraints. The proposed methodology, along with its foundational hypotheses, are tested on the design and optimization of a 350VDC network, where a generator and its control system are concurrently designed in order to minimize the electrical losses, while ensuring that the transient undervoltage induced by peak demands in the consumption of a motor does not violate transient power quality constraints.

  1. Ecological networks to unravel the routes to horizontal transposon transfers.

    PubMed

    Venner, Samuel; Miele, Vincent; Terzian, Christophe; Biémont, Christian; Daubin, Vincent; Feschotte, Cédric; Pontier, Dominique

    2017-02-01

    Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.

  2. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.

  3. Networks of energetic and metabolic interactions define dynamics in microbial communities.

    PubMed

    Embree, Mallory; Liu, Joanne K; Al-Bassam, Mahmoud M; Zengler, Karsten

    2015-12-15

    Microorganisms form diverse communities that have a profound impact on the environment and human health. Recent technological advances have enabled elucidation of community diversity at high resolution. Investigation of microbial communities has revealed that they often contain multiple members with complementing and seemingly redundant metabolic capabilities. An understanding of the communal impacts of redundant metabolic capabilities is currently lacking; specifically, it is not known whether metabolic redundancy will foster competition or motivate cooperation. By investigating methanogenic populations, we identified the multidimensional interspecies interactions that define composition and dynamics within syntrophic communities that play a key role in the global carbon cycle. Species-specific genomes were extracted from metagenomic data using differential coverage binning. We used metabolic modeling leveraging metatranscriptomic information to reveal and quantify a complex intertwined system of syntrophic relationships. Our results show that amino acid auxotrophies create additional interdependencies that define community composition and control carbon and energy flux through the system while simultaneously contributing to overall community robustness. Strategic use of antimicrobials further reinforces this intricate interspecies network. Collectively, our study reveals the multidimensional interactions in syntrophic communities that promote high species richness and bolster community stability during environmental perturbations.

  4. Qualitative modeling of normal blood coagulation and its pathological states using stochastic activity networks.

    PubMed

    Mounts, W M; Liebman, M N

    1997-07-01

    We have developed a method for representing biological pathways and simulating their behavior based on the use of stochastic activity networks (SANs). SANs, an extension of the original Petri net, have been used traditionally to model flow systems including data-communications networks and manufacturing processes. We apply the methodology to the blood coagulation cascade, a biological flow system, and present the representation method as well as results of simulation studies based on published experimental data. In addition to describing the dynamic model, we also present the results of its utilization to perform simulations of clinical states including hemophilia's A and B as well as sensitivity analysis of individual factors and their impact on thrombin production.

  5. Reconstruction of network topology using status-time-series data

    NASA Astrophysics Data System (ADS)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  6. System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Sokol, Benjamin; Mukhopadhyay, Shomeek; Maharjan, Rijan; Brown, Eric

    2018-05-01

    We experimentally characterize the structure of concentrated suspensions of cornstarch and water in response to impact. Using surface imaging and particle tracking at the boundary opposite the impactor, we observed that a visible structure and particle flow at the boundary occur with a delay after impact. We show the delay time is about the same time as the strong stress response, confirming that the strong stress response results from deformation of the dynamically jammed structure once it spans between the impactor and a solid boundary. A characterization of this strong stress response is reported in a companion paper [Maharjan, Mukhopadhyay, Allen, Storz, and Brown, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. We observed particle flow in the outer part of the dynamically jammed region at the bottom boundary, with a net transverse displacement of up to about 5% of the impactor displacement, indicating shear at the boundary. Direct imaging of the surface of the outer part of the dynamically jammed region reveals a change in surface structure that appears the same as the result of dilation in other cornstarch suspensions. Imaging also reveals cracks, like a brittle solid. These observations suggest the dynamically jammed structure can temporarily support stress according to an effective modulus, like a soil or dense granular material, along a network of frictional contacts between the impactor and solid boundary.

  7. Quantitative Assessment of Heart Rate Dynamics during Meditation: An ECG Based Study with Multi-Fractality and Visibility Graph

    PubMed Central

    Bhaduri, Anirban; Ghosh, Dipak

    2016-01-01

    The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation. PMID:26909045

  8. Quantitative Assessment of Heart Rate Dynamics during Meditation: An ECG Based Study with Multi-Fractality and Visibility Graph.

    PubMed

    Bhaduri, Anirban; Ghosh, Dipak

    2016-01-01

    The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation.

  9. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics.

    PubMed

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.

  10. Linking Structural Equation Modelling with Bayesian Network and Coastal Phytoplankton Dynamics in Bohai Bay

    NASA Astrophysics Data System (ADS)

    Chu, Jiangtao; Yang, Yue

    2018-06-01

    Bayesian networks (BN) have many advantages over other methods in ecological modelling and have become an increasingly popular modelling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modelling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, despite the Redfield ratio indicating that phosphorus should be the primary nutrient limiting factor, our results indicate that silicate plays the most important role in regulating phytoplankton dynamics in Bohai Bay.

  11. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks

    PubMed Central

    Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy

    2013-01-01

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial. PMID:23563395

  12. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    PubMed

    Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy

    2013-01-01

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.

  13. Habitat fragmentation alters the properties of a host-parasite network: rodents and their helminths in South-East Asia.

    PubMed

    Bordes, Frédéric; Morand, Serge; Pilosof, Shai; Claude, Julien; Krasnov, Boris R; Cosson, Jean-François; Chaval, Yannick; Ribas, Alexis; Chaisiri, Kittipong; Blasdell, Kim; Herbreteau, Vincent; Dupuy, Stéphane; Tran, Annelise

    2015-09-01

    1. While the effects of deforestation and habitat fragmentation on parasite prevalence or richness are well investigated, host-parasite networks are still understudied despite their importance in understanding the mechanisms of these major disturbances. Because fragmentation may negatively impact species occupancy, abundance and co-occurrence, we predict a link between spatiotemporal changes in habitat and the architecture of host-parasite networks. 2. For this, we used an extensive data set on 16 rodent species and 29 helminth species from seven localities of South-East Asia. We analysed the effects of rapid deforestation on connectance and modularity of helminth-parasite networks. We estimated both the degree of fragmentation and the rate of deforestation through the development of land uses and their changes through the last 20 to 30 years in order to take into account the dynamics of habitat fragmentation in our statistical analyses. 3. We found that rapid fragmentation does not affect helminth species richness per se but impacts host-parasite interactions as the rodent-helminth network becomes less connected and more modular. 4. Our results suggest that parasite sharing among host species may become more difficult to maintain with the increase of habitat disturbance. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  14. Dynamic tubulation of mitochondria drives mitochondrial network formation.

    PubMed

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-10-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.

  15. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  16. Measures of node centrality in mobile social networks

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxiang; Shi, Yan; Chen, Shanzhi

    2015-02-01

    Mobile social networks exploit human mobility and consequent device-to-device contact to opportunistically create data paths over time. While links in mobile social networks are time-varied and strongly impacted by human mobility, discovering influential nodes is one of the important issues for efficient information propagation in mobile social networks. Although traditional centrality definitions give metrics to identify the nodes with central positions in static binary networks, they cannot effectively identify the influential nodes for information propagation in mobile social networks. In this paper, we address the problems of discovering the influential nodes in mobile social networks. We first use the temporal evolution graph model which can more accurately capture the topology dynamics of the mobile social network over time. Based on the model, we explore human social relations and mobility patterns to redefine three common centrality metrics: degree centrality, closeness centrality and betweenness centrality. We then employ empirical traces to evaluate the benefits of the proposed centrality metrics, and discuss the predictability of nodes' global centrality ranking by nodes' local centrality ranking. Results demonstrate the efficiency of the proposed centrality metrics.

  17. Efficient data communication protocols for wireless networks

    NASA Astrophysics Data System (ADS)

    Zeydan, Engin

    In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to converge to pure strategy Nash equilibrium with high probability throughout the iterations in the interference impaired network. On the other hand, the regret-matching learning algorithm is noncooperative and requires minimum amount of overhead. The proposed cooperative and regret-matching based distributed algorithms are also compared with centralized solutions through simulation results.

  18. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory

    PubMed Central

    Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors’ long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests. PMID:27218468

  19. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory.

    PubMed

    Xing, Lizhi; Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors' long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests.

  20. Urban retail location: Insights from percolation theory and spatial interaction modeling.

    PubMed

    Piovani, Duccio; Molinero, Carlos; Wilson, Alan

    2017-01-01

    Characterising road networks has been the focus of a large body of research due to it being the main driver of activities in an urban ecosystem and the structuring factor in the dynamics of the city. One of these activities, and one with the largest economical impact in a city, is retail dynamics and its evolution. Therefore, the mathematical modeling of the location of retail activities and of the emergence of clustering in retail centers has as well generated a large number of works. Despite these two interwoven components strongly depending on one another and their fundamental importance in understanding cities, little work has been done in order to compare their local and global properties. Here we compare the road network's hierarchical structure, unveiled through a percolation analysis of the network, with the retail location distribution defined by exploiting a gravity-based retail model. We interpret the great agreement in the city's organizations as it emerges from both methodologies as new evidence of the interdependence of these two crucial dimensions of a city's life.

  1. Asynchronous networks: modularization of dynamics theorem

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  2. The etiology of social change.

    PubMed

    Carley, Kathleen M; Martin, Michael K; Hirshman, Brian R

    2009-10-01

    A fundamental aspect of human beings is that they learn. The process of learning and what is learned are impacted by a number of factors, both cognitive and social; that is, humans are boundedly rational. Cognitive and social limitations interact, making it difficult to reason about how to provide information to impact what humans know, believe, and do. Herein, we use a multi-agent dynamic-network simulation system, Construct, to conduct such reasoning. In particular, we ask, What media should be used to provide information to most impact what people know, believe, and do, given diverse social structures? All simulated agents are boundedly rational both at the cognitive and social level, and so are subject to factors such as literacy, education, and the breadth of their social network. We find that there is no one most effective intervention; rather, to be effective, messages and the media used to spread the message need to be selected for the population being addressed. Typically, a multimedia campaign is critical. Copyright © 2009 Cognitive Science Society, Inc.

  3. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A network approach to the geometric structure of shallow cloud fields

    NASA Astrophysics Data System (ADS)

    Glassmeier, F.; Feingold, G.

    2017-12-01

    The representation of shallow clouds and their radiative impact is one of the largest challenges for global climate models. While the bulk properties of cloud fields, including effects of organization, are a very active area of research, the potential of the geometric arrangement of cloud fields for the development of new parameterizations has hardly been explored. Self-organized patterns are particularly evident in the cellular structure of Stratocumulus (Sc) clouds so readily visible in satellite imagery. Inspired by similar patterns in biology and physics, we approach pattern formation in Sc fields from the perspective of natural cellular networks. Our network analysis is based on large-eddy simulations of open- and closed-cell Sc cases. We find the network structure to be neither random nor characteristic to natural convection. It is independent of macroscopic cloud fields properties like the Sc regime (open vs closed) and its typical length scale (boundary layer height). The latter is a consequence of entropy maximization (Lewis's Law with parameter 0.16). The cellular pattern is on average hexagonal, where non-6 sided cells occur according to a neighbor-number distribution variance of about 2. Reflecting the continuously renewing dynamics of Sc fields, large (many-sided) cells tend to neighbor small (few-sided) cells (Aboav-Weaire Law with parameter 0.9). These macroscopic network properties emerge independent of the Sc regime because the different processes governing the evolution of closed as compared to open cells correspond to topologically equivalent network dynamics. By developing a heuristic model, we show that open and closed cell dynamics can both be mimicked by versions of cell division and cell disappearance and are biased towards the expansion of smaller cells. This model offers for the first time a fundamental and universal explanation for the geometric pattern of Sc clouds. It may contribute to the development of advanced Sc parameterizations. As an outlook, we discuss how a similar network approach can be applied to describe and quantify the geometric structure of shallow cumulus cloud fields.

  5. Dynamic reconfiguration of frontal brain networks during executive cognition in humans

    PubMed Central

    Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.

    2015-01-01

    The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898

  6. International Space Station Future Correlation Analysis Improvements

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael

    2018-01-01

    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.

  7. Study of the Dynamics of Meteoroids Through the Earth's Atmosphere and Retrieval of Meteorites: The Mexican Meteor Network

    NASA Astrophysics Data System (ADS)

    Cordero Tercero, M. G.; Farah Simon, A.; Velazquez-Villegas, F.

    2016-12-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f) recover and study meteorites. During this meeting, the progress of the project will be presented.

  8. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Adachi, Aya; Nakamura, Masahito; Tajima, Takuro; Ajito, Katsuhiro; Ogawa, Yuichi

    2017-03-01

    Modification of the water hydrogen bond network imposed by disaccharides is known to serve as a bioprotective agent in living organisms, though its comprehensive understanding is still yet to be reached. In this study, aiming to characterize the dynamical slowing down and destructuring effect of disaccharides, we performed broadband dielectric spectroscopy, ranging from 0.5 GHz to 12 THz, of sucrose and trehalose aqueous solutions. The destructuring effect was examined in two ways (the hydrogen bond fragmentation and disordering) and our result showed that both sucrose and trehalose exhibit an obvious destructuring effect with a similar strength, by fragmenting hydrogen bonds and distorting the tetrahedral-like structure of water. This observation strongly supports a chaotropic (structure-breaking) aspect of disaccharides on the water structure. At the same time, hydration water was found to exhibit slower dynamics and a greater reorientational cooperativity than bulk water because of the strengthened hydrogen bonds. These results lead to the conclusion that strong disaccharide-water hydrogen bonds structurally incompatible with native water-water bonds lead to the rigid but destructured hydrogen bond network around disaccharides. Another important finding in this study is that the greater dynamical slowing down of trehalose was found compared with that of sucrose, at variance with the destructuring effect where no solute dependent difference was observed. This discovery suggests that the exceptionally greater bioprotective impact especially of trehalose among disaccharides is mainly associated with the dynamical slowing down (rather than the destructuring effect).

  9. Self-organization of complex networks as a dynamical system

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  10. Dynamic information routing in complex networks

    PubMed Central

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  11. Self-organization of complex networks as a dynamical system.

    PubMed

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  12. A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks.

    PubMed

    Perisic, Ana; Bauch, Chris T

    2009-05-28

    Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. We simulate transmission of a vaccine-preventable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled.

  13. A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks

    PubMed Central

    2009-01-01

    Background Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. Methods We simulate transmission of a vaccine-prevetable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. Results We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. Conclusion For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled. PMID:19476616

  14. Dynamics of Intersubject Brain Networks during Anxious Anticipation

    PubMed Central

    Najafi, Mahshid; Kinnison, Joshua; Pessoa, Luiz

    2017-01-01

    How do large-scale brain networks reorganize during the waxing and waning of anxious anticipation? Here, threat was dynamically modulated during human functional MRI as two circles slowly meandered on the screen; if they touched, an unpleasant shock was delivered. We employed intersubject correlation analysis, which allowed the investigation of network-level functional connectivity across brains, and sought to determine how network connectivity changed during periods of approach (circles moving closer) and periods of retreat (circles moving apart). Analysis of positive connection weights revealed that dynamic threat altered connectivity within and between the salience, executive, and task-negative networks. For example, dynamic functional connectivity increased within the salience network during approach and decreased during retreat. The opposite pattern was found for the functional connectivity between the salience and task-negative networks: decreases during approach and increases during approach. Functional connections between subcortical regions and the salience network also changed dynamically during approach and retreat periods. Subcortical regions exhibiting such changes included the putative periaqueductal gray, putative habenula, and putative bed nucleus of the stria terminalis. Additional analysis of negative functional connections revealed dynamic changes, too. For example, negative weights within the salience network decreased during approach and increased during retreat, opposite what was found for positive weights. Together, our findings unraveled dynamic features of functional connectivity of large-scale networks and subcortical regions across participants while threat levels varied continuously, and demonstrate the potential of characterizing emotional processing at the level of dynamic networks. PMID:29209184

  15. Minimal Increase Network Coding for Dynamic Networks.

    PubMed

    Zhang, Guoyin; Fan, Xu; Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery.

  16. Minimal Increase Network Coding for Dynamic Networks

    PubMed Central

    Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery. PMID:26867211

  17. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote sensing data and the reasons of deviations and uncertainties are unbiased. The probability of changes and impact of sediment drift over ocean dynamic model over the long running of years is estimated.

  18. Major component analysis of dynamic networks of physiologic organ interactions

    NASA Astrophysics Data System (ADS)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  19. Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.

    PubMed

    Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter

    2017-07-11

    The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Resilience and Controllability of Dynamic Collective Behaviors

    PubMed Central

    Komareji, Mohammad; Bouffanais, Roland

    2013-01-01

    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics. PMID:24358209

  1. On the number of different dynamics in Boolean networks with deterministic update schedules.

    PubMed

    Aracena, J; Demongeot, J; Fanchon, E; Montalva, M

    2013-04-01

    Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  3. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    PubMed

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  4. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses.

    PubMed

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2017-01-01

    Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  5. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.

    Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less

  6. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic

    DOE PAGES

    Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.; ...

    2016-08-11

    Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less

  7. Decision support for green supply chain operations by integrating dynamic simulation and LCA indicators: diaper case study.

    PubMed

    Adhitya, Arief; Halim, Iskandar; Srinivasan, Rajagopalan

    2011-12-01

    As the issue of environmental sustainability is becoming an important business factor, companies are now looking for decision support tools to assess the fuller picture of the environmental impacts associated with their manufacturing operations and supply chain (SC) activities. Lifecycle assessment (LCA) is widely used to measure the environmental consequences assignable to a product. However, it is usually limited to a high-level snapshot of the environmental implications over the product value chain without consideration of the dynamics arising from the multitiered structure and the interactions along the SC. This paper proposes a framework for green supply chain management by integrating a SC dynamic simulation and LCA indicators to evaluate both the economic and environmental impacts of various SC decisions such as inventories, distribution network configuration, and ordering policy. The advantages of this framework are demonstrated through an industrially motivated case study involving diaper production. Three distinct scenarios are evaluated to highlight how the proposed approach enables integrated decision support for green SC design and operation.

  8. Beyond Risk Compensation: Clusters of Antiretroviral Treatment (ART) Users in Sexual Networks Can Modify the Impact of ART on HIV Incidence

    PubMed Central

    Delva, Wim; Helleringer, Stéphane

    2016-01-01

    Introduction Concerns about risk compensation—increased risk behaviours in response to a perception of reduced HIV transmission risk—after the initiation of ART have largely been dispelled in empirical studies, but other changes in sexual networking patterns may still modify the effects of ART on HIV incidence. Methods We developed an exploratory mathematical model of HIV transmission that incorporates the possibility of ART clusters, i.e. subsets of the sexual network in which the density of ART patients is much higher than in the rest of the network. Such clusters may emerge as a result of ART homophily—a tendency for ART patients to preferentially form and maintain relationships with other ART patients. We assessed whether ART clusters may affect the impact of ART on HIV incidence, and how the influence of this effect-modifying variable depends on contextual variables such as HIV prevalence, HIV serosorting, coverage of HIV testing and ART, and adherence to ART. Results ART homophily can modify the impact of ART on HIV incidence in both directions. In concentrated epidemics and generalized epidemics with moderate HIV prevalence (≈ 10%), ART clusters can enhance the impact of ART on HIV incidence, especially when adherence to ART is poor. In hyperendemic settings (≈ 35% HIV prevalence), ART clusters can reduce the impact of ART on HIV incidence when adherence to ART is high but few people living with HIV (PLWH) have been diagnosed. In all contexts, the effects of ART clusters on HIV epidemic dynamics are distinct from those of HIV serosorting. Conclusions Depending on the programmatic and epidemiological context, ART clusters may enhance or reduce the impact of ART on HIV incidence, in contrast to serosorting, which always leads to a lower impact of ART on HIV incidence. ART homophily and the emergence of ART clusters should be measured empirically and incorporated into more refined models used to plan and evaluate ART programmes. PMID:27657492

  9. Beyond Risk Compensation: Clusters of Antiretroviral Treatment (ART) Users in Sexual Networks Can Modify the Impact of ART on HIV Incidence.

    PubMed

    Delva, Wim; Helleringer, Stéphane

    Concerns about risk compensation-increased risk behaviours in response to a perception of reduced HIV transmission risk-after the initiation of ART have largely been dispelled in empirical studies, but other changes in sexual networking patterns may still modify the effects of ART on HIV incidence. We developed an exploratory mathematical model of HIV transmission that incorporates the possibility of ART clusters, i.e. subsets of the sexual network in which the density of ART patients is much higher than in the rest of the network. Such clusters may emerge as a result of ART homophily-a tendency for ART patients to preferentially form and maintain relationships with other ART patients. We assessed whether ART clusters may affect the impact of ART on HIV incidence, and how the influence of this effect-modifying variable depends on contextual variables such as HIV prevalence, HIV serosorting, coverage of HIV testing and ART, and adherence to ART. ART homophily can modify the impact of ART on HIV incidence in both directions. In concentrated epidemics and generalized epidemics with moderate HIV prevalence (≈ 10%), ART clusters can enhance the impact of ART on HIV incidence, especially when adherence to ART is poor. In hyperendemic settings (≈ 35% HIV prevalence), ART clusters can reduce the impact of ART on HIV incidence when adherence to ART is high but few people living with HIV (PLWH) have been diagnosed. In all contexts, the effects of ART clusters on HIV epidemic dynamics are distinct from those of HIV serosorting. Depending on the programmatic and epidemiological context, ART clusters may enhance or reduce the impact of ART on HIV incidence, in contrast to serosorting, which always leads to a lower impact of ART on HIV incidence. ART homophily and the emergence of ART clusters should be measured empirically and incorporated into more refined models used to plan and evaluate ART programmes.

  10. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control

    PubMed Central

    Ardell, Jeffrey L.; Shivkumar, Kalyanam; Armour, J. Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as ‘free-floating’ in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease. PMID:28692680

  11. Enabling information management systems in tactical network environments

    NASA Astrophysics Data System (ADS)

    Carvalho, Marco; Uszok, Andrzej; Suri, Niranjan; Bradshaw, Jeffrey M.; Ceccio, Philip J.; Hanna, James P.; Sinclair, Asher

    2009-05-01

    Net-Centric Information Management (IM) and sharing in tactical environments promises to revolutionize forward command and control capabilities by providing ubiquitous shared situational awareness to the warfighter. This vision can be realized by leveraging the tactical and Mobile Ad hoc Networks (MANET) which provide the underlying communications infrastructure, but, significant technical challenges remain. Enabling information management in these highly dynamic environments will require multiple support services and protocols which are affected by, and highly dependent on, the underlying capabilities and dynamics of the tactical network infrastructure. In this paper we investigate, discuss, and evaluate the effects of realistic tactical and mobile communications network environments on mission-critical information management systems. We motivate our discussion by introducing the Advanced Information Management System (AIMS) which is targeted for deployment in tactical sensor systems. We present some operational requirements for AIMS and highlight how critical IM support services such as discovery, transport, federation, and Quality of Service (QoS) management are necessary to meet these requirements. Our goal is to provide a qualitative analysis of the impact of underlying assumptions of availability and performance of some of the critical services supporting tactical information management. We will also propose and describe a number of technologies and capabilities that have been developed to address these challenges, providing alternative approaches for transport, service discovery, and federation services for tactical networks.

  12. Effects of individual popularity on information spreading in complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin

    2018-01-01

    In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.

  13. Collapse of an ecological network in Ancient Egypt

    PubMed Central

    Yeakel, Justin D.; Pires, Mathias M.; Rudolf, Lars; Koch, Paul L.; Guimarães, Paulo R.; Gross, Thilo

    2014-01-01

    The dynamics of ecosystem collapse are fundamental to determining how and why biological communities change through time, as well as the potential effects of extinctions on ecosystems. Here, we integrate depictions of mammals from Egyptian antiquity with direct lines of paleontological and archeological evidence to infer local extinctions and community dynamics over a 6,000-y span. The unprecedented temporal resolution of this dataset enables examination of how the tandem effects of human population growth and climate change can disrupt mammalian communities. We show that the extinctions of mammals in Egypt were nonrandom and that destabilizing changes in community composition coincided with abrupt aridification events and the attendant collapses of some complex societies. We also show that the roles of species in a community can change over time and that persistence is predicted by measures of species sensitivity, a function of local dynamic stability. To our knowledge, our study is the first high-resolution analysis of the ecological impacts of environmental change on predator–prey networks over millennial timescales and sheds light on the historical events that have shaped modern animal communities. PMID:25201967

  14. Northern long-eared bat day-roosting and prescribed fire in the central Appalachians

    USGS Publications Warehouse

    Ford, W. Mark; Silvis, Alexander; Johnson, Joshua B.; Edwards, John W.; Karp, Milu

    2016-01-01

    The northern long-eared bat (Myotis septentrionalis Trovessart) is a cavity-roosting species that forages in cluttered upland and riparian forests throughout the oak-dominated Appalachian and Central Hardwoods regions. Common prior to white-nose syndrome, the population of this bat species has declined to functional extirpation in some regions in the Northeast and Mid-Atlantic, including portions of the central Appalachians. Our long-term research in the central Appalachians has shown that maternity colonies of this species form non-random assorting networks in patches of suitable trees that result from long- and short-term forest disturbance processes, and that roost loss can occur with these disturbances. Following two consecutive prescribed burns on the Fernow Experimental Forest in the central Appalachians, West Virginia, USA, in 2007 to 2008, post-fire counts of suitable black locust (Robinia pseudoacacia L.; the most selected species for roosting) slightly decreased by 2012. Conversely, post-fire numbers of suitable maple (Acer spp. L.), primarily red maple (Acer rubrum L.), increased by a factor of three, thereby ameliorating black locust reduction. Maternity colony network metrics such as roost degree (use) and network density for two networks in the burned compartment were similar to the single network observed in unburned forest. However, roost clustering and degree of roost centralization was greater for the networks in the burned forest area. Accordingly, the short-term effects of prescribed fire are slightly or moderately positive in impact to day-roost habitat for the northern long-eared bat in the central Appalachians from a social dynamic perspective. Listing of northern long-eared bats as federally threatened will bring increased scrutiny of immediate fire impacts from direct take as well as indirect impacts from long-term changes to roosting and foraging habitat in stands being returned to historic fire-return conditions. Unfortunately, definitive impacts will remain speculative owing to the species’ current rarity and the paucity of forest stand data that considers tree condition or that adequately tracks snags spatially and temporally.

  15. Modeling, Analysis and Mitigation of Sub-Synchronous Interactions between Full- and Partial-Scale Voltage-Source Converters and Power Networks

    NASA Astrophysics Data System (ADS)

    Alawasa, Khaled Mohammad

    Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.

  16. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  17. Alignment of dynamic networks.

    PubMed

    Vijayan, V; Critchlow, D; Milenkovic, T

    2017-07-15

    Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Alignment of dynamic networks

    PubMed Central

    Vijayan, V.; Critchlow, D.; Milenković, T.

    2017-01-01

    Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980

  19. Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses

    NASA Astrophysics Data System (ADS)

    Batista, C. A. S.; Viana, R. L.; Lopes, S. R.; Batista, A. M.

    2014-09-01

    According to Stevens' law the relationship between stimulus and response is a power-law within an interval called the dynamic range. The dynamic range of sensory organs is found to be larger than that of a single neuron, suggesting that the network structure plays a key role in the behavior of both the scaling exponent and the dynamic range of neuron assemblies. In order to verify computationally the relationships between stimulus and response for spiking neurons, we investigate small-world networks of neurons described by the Hodgkin-Huxley equations connected by chemical synapses. We found that the dynamic range increases with the network size, suggesting that the enhancement of the dynamic range observed in sensory organs, with respect to single neurons, is an emergent property of complex network dynamics.

  20. Seasonality and pathogen transmission in pastoral cattle contact networks.

    PubMed

    VanderWaal, Kimberly; Gilbertson, Marie; Okanga, Sharon; Allan, Brian F; Craft, Meggan E

    2017-12-01

    Capturing heterogeneity in contact patterns in animal populations is essential for understanding the spread of infectious diseases. In contrast to other regions of the world in which livestock movement networks are integral to pathogen prevention and control policies, contact networks are understudied in pastoral regions of Africa due to the challenge of measuring contact among mobile herds of cattle whose movements are driven by access to resources. Furthermore, the extent to which seasonal changes in the distribution of water and resources impacts the structure of contact networks in cattle is uncertain. Contact networks may be more conducive to pathogen spread in the dry season due to congregation at limited water sources. Alternatively, less abundant forage may result in decreased pathogen transmission due to competitive avoidance among herds, as measured by reduced contact rates. Here, we use GPS technology to concurrently track 49 free-roaming cattle herds within a semi-arid region of Kenya, and use these data to characterize seasonal contact networks and model the spread of a highly infectious pathogen. This work provides the first empirical data on the local contact network structure of mobile herds based on quantifiable contact events. The contact network demonstrated high levels of interconnectivity. An increase in contacts near to water resources in the dry season resulted in networks with both higher contact rates and higher potential for pathogen spread than in the wet season. Simulated disease outbreaks were also larger in the dry season. Results support the hypothesis that limited water resources enhance connectivity and transmission within contact networks, as opposed to reducing connectivity as a result of competitive avoidance. These results cast light on the impact of seasonal heterogeneity in resource availability on predicting pathogen transmission dynamics, which has implications for other free-ranging wild and domestic populations.

  1. Coevolution of dynamical states and interactions in dynamic networks

    NASA Astrophysics Data System (ADS)

    Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi

    2004-06-01

    We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.

  2. Boolean dynamics of genetic regulatory networks inferred from microarray time series data

    DOE PAGES

    Martin, Shawn; Zhang, Zhaoduo; Martino, Anthony; ...

    2007-01-31

    Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this paper we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our methodmore » first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation–inhibition networks to match the discretized data. In conclusion, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.« less

  3. Mean-field equations for neuronal networks with arbitrary degree distributions.

    PubMed

    Nykamp, Duane Q; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  4. Mean-field equations for neuronal networks with arbitrary degree distributions

    NASA Astrophysics Data System (ADS)

    Nykamp, Duane Q.; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  5. Dynamic Evolution Model Based on Social Network Services

    NASA Astrophysics Data System (ADS)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  6. Impact of Tile Drainage on the Distribution of Concentration and Age of Inorganic Soil Nitrogen.

    NASA Astrophysics Data System (ADS)

    Woo, D.; Kumar, P.

    2017-12-01

    Extensive network of tile drainage network across the Midwestern United States, northern Europe and other regions of the world have enhanced agricultural productivity. Because of its impact on sub-surface flow patterns and moisture and temperature dynamics, it controls the nitrogen cycle in agricultural systems, and its influence on nitrogen dynamics plays a key role in determining the short- and long-term evolution of soil inorganic nitrogen concentration and age. The spatial mapping of nitrogen concentration and age under tile-drained fields has, therefore, the potential to open up novel solution to the vexing challenge of reducing environmental impacts while at the same time maintaining agricultural productivity. The objective of this study is to explore the impacts of tile drains on the age dynamics of nitrate, immobile ammonium, mobile ammonia/um, and non-reactive tracer (such as chloride) by implementing two mobile interacting pore domains to capture matrix and preferential flow paths in a coupled ecohydrology and biogeochemistry model, Dhara. We applied this model to an agricultural farm supporting a corn-soybean rotation in the Midwestern United States. It should be expected that the installation of tile drains decrease the age of soil nutrient due to nutrient losses through tile drainage. However, an increase in the age of mobile ammonia/um is observed in contrast to the cases for nitrate, immobile ammonium, and non-reactive tracer. These results arise because the depletion of mobile ammonia/um due to tile drainage causes a high mobility flux from immobile ammonium to mobile ammonia/um, which also carries a considerable amount of relatively old age of immobile ammonium to mobile ammonia/um. In addition, the ages of nitrate and mobile ammonia/um in tile drainage range from 1 to 3 years, and less than a year, respectively, implying that not considering age transformations between nitrogen species would result in substantial underestimation of nitrogen ages, possibly leading to an erroneous conclusion.

  7. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    USGS Publications Warehouse

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson

    2017-01-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  8. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    NASA Astrophysics Data System (ADS)

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson W.

    2017-07-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a "biotic filter," shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  9. Diminished neural network dynamics after moderate and severe traumatic brain injury.

    PubMed

    Gilbert, Nicholas; Bernier, Rachel A; Calhoun, Vincent D; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M; Hillary, Frank G

    2018-01-01

    Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain's subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network "states" that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics.

  10. Diminished neural network dynamics after moderate and severe traumatic brain injury

    PubMed Central

    Gilbert, Nicholas; Bernier, Rachel A.; Calhoun, Vincent D.; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M.

    2018-01-01

    Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain’s subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network “states” that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics. PMID:29883447

  11. Qualitative dynamics semantics for SBGN process description.

    PubMed

    Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc

    2016-06-16

    Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.

  12. A Game-Theoretic Response Strategy for Coordinator Attack in Wireless Sensor Networks

    PubMed Central

    Liu, Jianhua; Yue, Guangxue; Shang, Huiliang; Li, Hongjie

    2014-01-01

    The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security. PMID:25105171

  13. A game-theoretic response strategy for coordinator attack in wireless sensor networks.

    PubMed

    Liu, Jianhua; Yue, Guangxue; Shen, Shigen; Shang, Huiliang; Li, Hongjie

    2014-01-01

    The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security.

  14. Large-scale coupling dynamics of instructed reversal learning.

    PubMed

    Mohr, Holger; Wolfensteller, Uta; Ruge, Hannes

    2018-02-15

    The ability to rapidly learn from others by instruction is an important characteristic of human cognition. A recent study found that the rapid transfer from initial instructions to fluid behavior is supported by changes of functional connectivity between and within several large-scale brain networks, and particularly by the coupling of the dorsal attention network (DAN) with the cingulo-opercular network (CON). In the present study, we extended this approach to investigate how these brain networks interact when stimulus-response mappings are altered by novel instructions. We hypothesized that residual stimulus-response associations from initial practice might negatively impact the ability to implement novel instructions. Using functional imaging and large-scale connectivity analysis, we found that functional coupling between the CON and DAN was generally at a higher level during initial than reversal learning. Examining the learning-related connectivity dynamics between the CON and DAN in more detail by means of multivariate patterns analyses, we identified a specific subset of connections which showed a particularly high increase in connectivity during initial learning compared to reversal learning. This finding suggests that the CON-DAN connections can be separated into two functionally dissociable yet spatially intertwined subsystems supporting different aspects of short-term task automatization. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Queues on a Dynamically Evolving Graph

    NASA Astrophysics Data System (ADS)

    Mandjes, Michel; Starreveld, Nicos J.; Bekker, René

    2018-04-01

    This paper considers a population process on a dynamically evolving graph, which can be alternatively interpreted as a queueing network. The queues are of infinite-server type, entailing that at each node all customers present are served in parallel. The links that connect the queues have the special feature that they are unreliable, in the sense that their status alternates between `up' and `down'. If a link between two nodes is down, with a fixed probability each of the clients attempting to use that link is lost; otherwise the client remains at the origin node and reattempts using the link (and jumps to the destination node when it finds the link restored). For these networks we present the following results: (a) a system of coupled partial differential equations that describes the joint probability generating function corresponding to the queues' time-dependent behavior (and a system of ordinary differential equations for its stationary counterpart), (b) an algorithm to evaluate the (time-dependent and stationary) moments, and procedures to compute user-perceived performance measures which facilitate the quantification of the impact of the links' outages, (c) a diffusion limit for the joint queue length process. We include explicit results for a series relevant special cases, such as tandem networks and symmetric fully connected networks.

  16. Wireless remote monitoring of toxic gases in shipbuilding.

    PubMed

    Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S

    2014-02-14

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness).

  17. Wireless Remote Monitoring of Toxic Gases in Shipbuilding

    PubMed Central

    Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  18. A social activity and physical contact-based routing algorithm in mobile opportunistic networks for emergency response to sudden disasters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Lin, Yaguang; Zhang, Shanshan; Cai, Zhipeng

    2017-05-01

    Sudden disasters such as earthquake, flood and hurricane necessitate the employment of communication networks to carry out emergency response activities. Routing has a significant impact on the functionality, performance and flexibility of communication networks. In this article, the routing problem is studied considering the delivery ratio of messages, the overhead ratio of messages and the average delay of messages in mobile opportunistic networks (MONs) for enterprise-level emergency response communications in sudden disaster scenarios. Unlike the traditional routing methods for MONS, this article presents a new two-stage spreading and forwarding dynamic routing algorithm based on the proposed social activity degree and physical contact factor for mobile customers. A new modelling method for describing a dynamic evolving process of the topology structure of a MON is first proposed. Then a multi-copy spreading strategy based on the social activity degree of nodes and a single-copy forwarding strategy based on the physical contact factor between nodes are designed. Compared with the most relevant routing algorithms such as Epidemic, Prophet, Labelled-sim, Dlife-comm and Distribute-sim, the proposed routing algorithm can significantly increase the delivery ratio of messages, and decrease the overhead ratio and average delay of messages.

  19. Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks.

    PubMed

    Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia

    2018-07-14

    In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Blocking probability in the hose-model optical VPN with different number of wavelengths

    NASA Astrophysics Data System (ADS)

    Roslyakov, Alexander V.

    2017-04-01

    Connection setup with guaranteed quality of service (QoS) in the optical virtual private network (OVPN) is a major goal for the network providers. In order to support this we propose a QoS based OVPN connection set up mechanism over WDM network to the end customer. The proposed WDM network model can be specified in terms of QoS parameter such as blocking probability. We estimated this QoS parameter based on the hose-model OVPN. In this mechanism the OVPN connections also can be created or deleted according to the availability of the wavelengths in the optical path. In this paper we have considered the impact of the number of wavelengths on the computation of blocking probability. The goal of the work is to dynamically provide a best OVPN connection during frequent arrival of connection requests with QoS requirements.

  1. Incorporating spatial constraint in co-activation pattern analysis to explore the dynamics of resting-state networks: An application to Parkinson's disease.

    PubMed

    Zhuang, Xiaowei; Walsh, Ryan R; Sreenivasan, Karthik; Yang, Zhengshi; Mishra, Virendra; Cordes, Dietmar

    2018-05-15

    The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.

    PubMed

    Battelli, Lorella; Grossman, Emily D; Plow, Ela B

    The interhemispheric competition hypothesis attributes the distribution of selective attention to a balance of mutual inhibition between homotopic, interhemispheric connections in parietal cortex (Kinsbourne 1977; Battelli et al., 2009). In support of this hypothesis, repetitive inhibitory TMS over right parietal cortex in healthy individuals rapidly induces interhemispheric imbalance in cortical activity that spreads beyond the site of stimulation (Plow et al., 2014). Behaviorally, the impacts of inhibitory rTMS may be long delayed from the onset of stimulation, as much as 30 minutes (Agosta et al., 2014; Hubl et al., 2008). In this study, we examine the temporal dynamics of inhibitory rTMS on cortical network integrity that supports sustained visual attention. Healthy individuals received 15 min of 1 Hz offline, inhibitory rTMS (or sham) over left parietal cortex, and then immediately engaged in a bilateral visual tracking task while we recorded brain activity with fMRI. We computed functional connectivity (FC) between three nodes of the attention network engaged by visual tracking: the intraparietal sulcus (IPS), frontal eye fields (FEF) and human MT+ (hMT+). FC immediately and significantly decreased between the stimulation site (left IPS) and all other regions, then recovered to normal levels within 30 minutes. rTMS increased FC between left and right FEF at approximately 36 min following stimulation, and between sites in the unstimulated hemisphere approximately 48 min after stimulation. These findings demonstrate large-scale changes in cortical organization following inhibitory rTMS. The immediate impact of rTMS on connectivity to the stimulation site dovetails with the putative role of interhemispheric balance for bilateral visual sustained attention. The delayed, compensatory increases in functional connectivity have implications for models of dynamic reorganization in networks supporting spatial and nonspatial selective attention, and compensatory mechanisms within these networks that may be stabilized in chronic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The influence of network structure upon sediment routing in two disturbed catchments, East Cape, New Zealand

    NASA Astrophysics Data System (ADS)

    Walley, Yasmin; Tunnicliffe, Jon; Brierley, Gary

    2018-04-01

    Lateral inputs from hillslopes and tributaries exert a variable impact upon the longitudinal connectivity of sediment transfer in river systems with differing drainage network configurations. Network topology influences channel slope and confinement at confluence zones, thereby affecting patterns of sediment storage and the conveyance of sediments through catchments. Rates of disturbance response, patterns of sediment propagation, and the implications for connectivity and recovery were assessed in two neighbouring catchments with differing network configurations on the East Cape of New Zealand. Both catchments were subject to forest clearing in the late 1940s and a major cyclonic storm in 1988. However, reconstruction of landslide runout pathways, and characterization of connectivity using a Tokunaga framework, demonstrates different patterns and rates of sediment transfer and storage in a dendritic network relative to a more elongate, herringbone drainage network. The dendritic network has a higher rate of sediment transfer between storage sites in successive Strahler orders, whereas longitudinal connectivity along the fourth-order mainstem is disrupted by lateral sediment inputs from multiple low-order tributaries in the more elongate, herringbone network. In both cases the most dynamic ('hotspot') reaches are associated with a high degree of network side-branching.

  4. A Tribute to J. C. Sprott

    NASA Astrophysics Data System (ADS)

    Nazarimehr, Fahimeh; Jafari, Sajad; Chen, Guanrong; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Li, Chunbiao; Wei, Zhouchao

    2017-12-01

    In honor of his 75th birthday, we review the prominent works of Professor Julien Clinton Sprott in chaos and nonlinear dynamics. We categorize his works into three important groups. The first and most important group is identifying new dynamical systems with special properties. He has proposed different chaotic maps, flows, complex variable systems, nonautonomous systems, partial differential equations, fractional-order systems, delay differential systems, spatiotemporal systems, artificial neural networks, and chaotic electrical circuits. He has also studied dynamical properties of complex systems such as bifurcations and basins of attraction. He has done work on generating fractal art. He has examined models of real-world systems that exhibit chaos. The second group of his works comprise control and synchronization of chaos. Finally, the third group is extracting dynamical properties of systems using time-series analysis. This paper highlights the impact of Sprott’s work on the promotion of nonlinear dynamics.

  5. A general stochastic model for studying time evolution of transition networks

    NASA Astrophysics Data System (ADS)

    Zhan, Choujun; Tse, Chi K.; Small, Michael

    2016-12-01

    We consider a class of complex networks whose nodes assume one of several possible states at any time and may change their states from time to time. Such networks represent practical networks of rumor spreading, disease spreading, language evolution, and so on. Here, we derive a model describing the dynamics of this kind of network and a simulation algorithm for studying the network evolutionary behavior. This model, derived at a microscopic level, can reveal the transition dynamics of every node. A numerical simulation is taken as an ;experiment; or ;realization; of the model. We use this model to study the disease propagation dynamics in four different prototypical networks, namely, the regular nearest-neighbor (RN) network, the classical Erdös-Renyí (ER) random graph, the Watts-Strogátz small-world (SW) network, and the Barabási-Albert (BA) scalefree network. We find that the disease propagation dynamics in these four networks generally have different properties but they do share some common features. Furthermore, we utilize the transition network model to predict user growth in the Facebook network. Simulation shows that our model agrees with the historical data. The study can provide a useful tool for a more thorough understanding of the dynamics networks.

  6. Revealing networks from dynamics: an introduction

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Casadiego, Jose

    2014-08-01

    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

  7. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks

    PubMed Central

    Miconi, Thomas

    2017-01-01

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528

  8. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    PubMed

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  9. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.

    PubMed

    Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L

    2017-10-11

    Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.

  10. Network structure impacts global commodity trade growth and resilience.

    PubMed

    Kharrazi, Ali; Rovenskaya, Elena; Fath, Brian D

    2017-01-01

    Global commodity trade networks are critical to our collective sustainable development. Their increasing interconnectedness pose two practical questions: (i) Do the current network configurations support their further growth? (ii) How resilient are these networks to economic shocks? We analyze the data of global commodity trade flows from 1996 to 2012 to evaluate the relationship between structural properties of the global commodity trade networks and (a) their dynamic growth, as well as (b) the resilience of their growth with respect to the 2009 global economic shock. Specifically, we explore the role of network efficiency and redundancy using the information theory-based network flow analysis. We find that, while network efficiency is positively correlated with growth, highly efficient systems appear to be less resilient, losing more and gaining less growth following an economic shock. While all examined networks are rather redundant, we find that network redundancy does not hinder their growth. Moreover, systems exhibiting higher levels of redundancy lose less and gain more growth following an economic shock. We suggest that a strategy to support making global trade networks more efficient via, e.g., preferential trade agreements and higher specialization, can promote their further growth; while a strategy to increase the global trade networks' redundancy via e.g., more abundant free-trade agreements, can improve their resilience to global economic shocks.

  11. Impact of reduced scale free network on wireless sensor network

    NASA Astrophysics Data System (ADS)

    Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar

    2016-12-01

    In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.

  12. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  13. Highly localized laser-induced vascular responses

    NASA Astrophysics Data System (ADS)

    Stiukhina, Elena S.; Kurochkin, Maxim A.; Fedosov, Ivan V.; Postnov, Dmitry E.

    2018-04-01

    The assessment of functioning microcirculatory network implies usage of adequate tools for testing the network responses on local changes of vessels state. While there are well-developed and widely used methods, such as focal application of vasoactive substances, or electric stimulation, there is a need for a non-destructive (and ideally - non-contact) and local method of impact a single vessel in order to trigger the network responce. In this paper, we investigate the possibility of applying the effect of a reversible change in the diameter of a blood vessel caused by laser radiation as a functional test of a microcirculatory system. For this purpose, we combine this effect with the method of micro-PIV (particle image velocimetry), which provides information on both the dynamics of blood flow in neighboring segments and the changes in their diameters.

  14. Effects of Heterogeneous Social Interactions on Flocking Dynamics

    NASA Astrophysics Data System (ADS)

    Miguel, M. Carmen; Parley, Jack T.; Pastor-Satorras, Romualdo

    2018-02-01

    Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions are mediated by an empirically motivated scale-free topology that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered state, while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient external noise. Our results challenge the previously accepted equivalence between the static Vicsek model and the equilibrium X Y model on the network of connections, and point towards a possible equivalence with models exhibiting a different symmetry.

  15. Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)

    NASA Astrophysics Data System (ADS)

    Newman, David

    2015-03-01

    Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.

  16. Final Report. Analysis and Reduction of Complex Networks Under Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef M.; Coles, T.; Spantini, A.

    2013-09-30

    The project was a collaborative effort among MIT, Sandia National Laboratories (local PI Dr. Habib Najm), the University of Southern California (local PI Prof. Roger Ghanem), and The Johns Hopkins University (local PI Prof. Omar Knio, now at Duke University). Our focus was the analysis and reduction of large-scale dynamical systems emerging from networks of interacting components. Such networks underlie myriad natural and engineered systems. Examples important to DOE include chemical models of energy conversion processes, and elements of national infrastructure—e.g., electric power grids. Time scales in chemical systems span orders of magnitude, while infrastructure networks feature both local andmore » long-distance connectivity, with associated clusters of time scales. These systems also blend continuous and discrete behavior; examples include saturation phenomena in surface chemistry and catalysis, and switching in electrical networks. Reducing size and stiffness is essential to tractable and predictive simulation of these systems. Computational singular perturbation (CSP) has been effectively used to identify and decouple dynamics at disparate time scales in chemical systems, allowing reduction of model complexity and stiffness. In realistic settings, however, model reduction must contend with uncertainties, which are often greatest in large-scale systems most in need of reduction. Uncertainty is not limited to parameters; one must also address structural uncertainties—e.g., whether a link is present in a network—and the impact of random perturbations, e.g., fluctuating loads or sources. Research under this project developed new methods for the analysis and reduction of complex multiscale networks under uncertainty, by combining computational singular perturbation (CSP) with probabilistic uncertainty quantification. CSP yields asymptotic approximations of reduceddimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty in this context raised fundamentally new issues, e.g., how is the topology of slow manifolds transformed by parametric uncertainty? How to construct dynamical models on these uncertain manifolds? To address these questions, we used stochastic spectral polynomial chaos (PC) methods to reformulate uncertain network models and analyzed them using CSP in probabilistic terms. Finding uncertain manifolds involved the solution of stochastic eigenvalue problems, facilitated by projection onto PC bases. These problems motivated us to explore the spectral properties stochastic Galerkin systems. We also introduced novel methods for rank-reduction in stochastic eigensystems—transformations of a uncertain dynamical system that lead to lower storage and solution complexity. These technical accomplishments are detailed below. This report focuses on the MIT portion of the joint project.« less

  17. Individual, network, and neighborhood correlates of exchange sex among female non-injection drug users in Baltimore, MD (2005–2007)

    PubMed Central

    Rudolph, Abby E; Linton, Sabriya; Dyer, Typhanye Penniman; Latkin, Carl

    2012-01-01

    The “HIV risk environment” has been characterized as a dynamic interplay between structural and network factors. However, most HIV prevention research has not examined the independent and combined impact of network and structural factors. We aimed to identify individual, network, and neighborhood correlates of exchange sex (≥1 exchange sex partner, past 90 days) among female non-injection drug users (NIDUs). We used baseline data from 417 NIDUs enrolled in a randomized HIV prevention trial in Baltimore (2005–2007). Surveys ascertained demographic variables, drug/sex risk behaviors, neighborhood perceptions, and social/sexual network characteristics. Correlates of exchange sex were identified with descriptive statistics and log-binomial regression. Our findings suggest that sex and drug relationships among female NIDUs are interlinked and may be difficult to modify without altering social norms. Strengthening ties that provide social support but not drug support and reducing ties that provide both drug and social support may facilitate reductions in individual-level HIV-risk behaviors. PMID:22983502

  18. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks.

    PubMed

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-12-24

    Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.

  19. Quantitative learning strategies based on word networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  20. Synthesis of recurrent neural networks for dynamical system simulation.

    PubMed

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS

    PubMed Central

    Almquist, Zack W.; Butts, Carter T.

    2015-01-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218

  2. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    PubMed

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  3. Dynamic Visualization of Co-expression in Systems Genetics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Huang, Jian; Chesler, Elissa J

    2008-01-01

    Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less

  4. Role of the plurality rule in multiple choices

    NASA Astrophysics Data System (ADS)

    Calvão, A. M.; Ramos, M.; Anteneodo, C.

    2016-02-01

    People are often challenged to select one among several alternatives. This situation is present not only in decisions about complex issues, e.g. political or academic choices, but also about trivial ones, such as in daily purchases at a supermarket. We tackle this scenario by means of the tools of statistical mechanics. Following this approach, we introduce and analyse a model of opinion dynamics, using a Potts-like state variable to represent the multiple choices, including the ‘undecided state’, which represents the individuals who do not make a choice. We investigate the dynamics over Erdös-Rényi and Barabási-Albert networks, two paradigmatic classes with the small-world property, and we show the impact of the type of network on the opinion dynamics. Depending on the number of available options q and on the degree distribution of the network of contacts, different final steady states are accessible: from a wide distribution of choices to a state where a given option largely dominates. The abrupt transition between them is consistent with the sudden viral dominance of a given option over many similar ones. Moreover, the probability distributions produced by the model are validated by real data. Finally, we show that the model also contemplates the real situation of overchoice, where a large number of similar alternatives makes the choice process harder and indecision prevail.

  5. Approximating frustration scores in complex networks via perturbed Laplacian spectra

    NASA Astrophysics Data System (ADS)

    Savol, Andrej J.; Chennubhotla, Chakra S.

    2015-12-01

    Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network's users are fully appreciated beforehand. In pursuit of a kinetically interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400 % with low error (<3 % ).

  6. From social integration to health: Durkheim in the new millennium.

    PubMed

    Berkman, L F; Glass, T; Brissette, I; Seeman, T E

    2000-09-01

    It is widely recognized that social relationships and affiliation have powerful effects on physical and mental health. When investigators write about the impact of social relationships on health, many terms are used loosely and interchangeably including social networks, social ties and social integration. The aim of this paper is to clarify these terms using a single framework. We discuss: (1) theoretical orientations from diverse disciplines which we believe are fundamental to advancing research in this area; (2) a set of definitions accompanied by major assessment tools; and (3) an overarching model which integrates multilevel phenomena. Theoretical orientations that we draw upon were developed by Durkheim whose work on social integration and suicide are seminal and John Bowlby, a psychiatrist who developed attachment theory in relation to child development and contemporary social network theorists. We present a conceptual model of how social networks impact health. We envision a cascading causal process beginning with the macro-social to psychobiological processes that are dynamically linked together to form the processes by which social integration effects health. We start by embedding social networks in a larger social and cultural context in which upstream forces are seen to condition network structure. Serious consideration of the larger macro-social context in which networks form and are sustained has been lacking in all but a small number of studies and is almost completely absent in studies of social network influences on health. We then move downstream to understand the influences network structure and function have on social and interpersonal behavior. We argue that networks operate at the behavioral level through four primary pathways: (1) provision of social support; (2) social influence; (3) on social engagement and attachment; and (4) access to resources and material goods.

  7. Temporal node centrality in complex networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungshick; Anderson, Ross

    2012-02-01

    Many networks are dynamic in that their topology changes rapidly—on the same time scale as the communications of interest between network nodes. Examples are the human contact networks involved in the transmission of disease, ad hoc radio networks between moving vehicles, and the transactions between principals in a market. While we have good models of static networks, so far these have been lacking for the dynamic case. In this paper we present a simple but powerful model, the time-ordered graph, which reduces a dynamic network to a static network with directed flows. This enables us to extend network properties such as vertex degree, closeness, and betweenness centrality metrics in a very natural way to the dynamic case. We then demonstrate how our model applies to a number of interesting edge cases, such as where the network connectivity depends on a small number of highly mobile vertices or edges, and show that our centrality definition allows us to track the evolution of connectivity. Finally we apply our model and techniques to two real-world dynamic graphs of human contact networks and then discuss the implication of temporal centrality metrics in the real world.

  8. Dynamic characterisation of the specific surface area for fracture networks

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.

    2017-12-01

    One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide attenuation. Effects of internal fracture heterogeneity vs fracture network heterogeneity, and of rock deformation, on the statistical properties of SSA are briefly discussed.

  9. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  10. Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.

    PubMed

    Rothkegel, Alexander; Lehnertz, Klaus

    2009-03-01

    We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.

  11. Noise-induced relations between network connectivity and dynamics

    NASA Astrophysics Data System (ADS)

    Ching, Emily Sc

    Many biological systems of interest can be represented as networks of many nodes that are interacting with one another. Often these systems are subject to external influence or noise. One of the central issues is to understand the relation between dynamics and the interaction pattern of the system or the connectivity structure of the network. In particular, a challenging problem is to infer the network connectivity structure from the dynamics. In this talk, we show that for stochastic dynamical systems subjected to noise, the presence of noise gives rise to mathematical relations between the network connectivity structure and quantities that can be calculated using solely the time-series measurements of the dynamics of the nodes. We present these relations for both undirected networks with bidirectional coupling and directed networks with directional coupling and discuss how such relations can be utilized to infer the network connectivity structure of the systems. Work supported by the Hong Kong Research Grants Council under Grant No. CUHK 14300914.

  12. Active influence in dynamical models of structural balance in social networks

    NASA Astrophysics Data System (ADS)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  13. Conflict and convention in dynamic networks.

    PubMed

    Foley, Michael; Forber, Patrick; Smead, Rory; Riedl, Christoph

    2018-03-01

    An important way to resolve games of conflict (snowdrift, hawk-dove, chicken) involves adopting a convention: a correlated equilibrium that avoids any conflict between aggressive strategies. Dynamic networks allow individuals to resolve conflict via their network connections rather than changing their strategy. Exploring how behavioural strategies coevolve with social networks reveals new dynamics that can help explain the origins and robustness of conventions. Here, we model the emergence of conventions as correlated equilibria in dynamic networks. Our results show that networks have the tendency to break the symmetry between the two conventional solutions in a strongly biased way. Rather than the correlated equilibrium associated with ownership norms (play aggressive at home, not away), we usually see the opposite host-guest norm (play aggressive away, not at home) evolve on dynamic networks, a phenomenon common to human interaction. We also show that learning to avoid conflict can produce realistic network structures in a way different than preferential attachment models. © 2017 The Author(s).

  14. Network structure impacts global commodity trade growth and resilience

    PubMed Central

    Rovenskaya, Elena; Fath, Brian D.

    2017-01-01

    Global commodity trade networks are critical to our collective sustainable development. Their increasing interconnectedness pose two practical questions: (i) Do the current network configurations support their further growth? (ii) How resilient are these networks to economic shocks? We analyze the data of global commodity trade flows from 1996 to 2012 to evaluate the relationship between structural properties of the global commodity trade networks and (a) their dynamic growth, as well as (b) the resilience of their growth with respect to the 2009 global economic shock. Specifically, we explore the role of network efficiency and redundancy using the information theory-based network flow analysis. We find that, while network efficiency is positively correlated with growth, highly efficient systems appear to be less resilient, losing more and gaining less growth following an economic shock. While all examined networks are rather redundant, we find that network redundancy does not hinder their growth. Moreover, systems exhibiting higher levels of redundancy lose less and gain more growth following an economic shock. We suggest that a strategy to support making global trade networks more efficient via, e.g., preferential trade agreements and higher specialization, can promote their further growth; while a strategy to increase the global trade networks’ redundancy via e.g., more abundant free-trade agreements, can improve their resilience to global economic shocks. PMID:28207790

  15. Enabling SDN in VANETs: What is the Impact on Security?

    PubMed Central

    Di Maio, Antonio; Palattella, Maria Rita; Soua, Ridha; Lamorte, Luca; Vilajosana, Xavier; Alonso-Zarate, Jesus; Engel, Thomas

    2016-01-01

    The demand for safe and secure journeys over roads and highways has been growing at a tremendous pace over recent decades. At the same time, the smart city paradigm has emerged to improve citizens’ quality of life by developing the smart mobility concept. Vehicular Ad hoc NETworks (VANETs) are widely recognized to be instrumental in realizing such concept, by enabling appealing safety and infotainment services. Such networks come with their own set of challenges, which range from managing high node mobility to securing data and user privacy. The Software Defined Networking (SDN) paradigm has been identified as a suitable solution for dealing with the dynamic network environment, the increased number of connected devices, and the heterogeneity of applications. While some preliminary investigations have been already conducted to check the applicability of the SDN paradigm to VANETs, and its presumed benefits for managing resources and mobility, it is still unclear what impact SDN will have on security and privacy. Security is a relevant issue in VANETs, because of the impact that threats can have on drivers’ behavior and quality of life. This paper opens a discussion on the security threats that future SDN-enabled VANETs will have to face, and investigates how SDN could be beneficial in building new countermeasures. The analysis is conducted in real use cases (smart parking, smart grid of electric vehicles, platooning, and emergency services), which are expected to be among the vehicular applications that will most benefit from introducing an SDN architecture. PMID:27929443

  16. Enabling SDN in VANETs: What is the Impact on Security?

    PubMed

    Di Maio, Antonio; Palattella, Maria Rita; Soua, Ridha; Lamorte, Luca; Vilajosana, Xavier; Alonso-Zarate, Jesus; Engel, Thomas

    2016-12-06

    The demand for safe and secure journeys over roads and highways has been growing at a tremendous pace over recent decades. At the same time, the smart city paradigm has emerged to improve citizens' quality of life by developing the smart mobility concept. Vehicular Ad hoc NETworks (VANETs) are widely recognized to be instrumental in realizing such concept, by enabling appealing safety and infotainment services. Such networks come with their own set of challenges, which range from managing high node mobility to securing data and user privacy. The Software Defined Networking (SDN) paradigm has been identified as a suitable solution for dealing with the dynamic network environment, the increased number of connected devices, and the heterogeneity of applications. While some preliminary investigations have been already conducted to check the applicability of the SDN paradigm to VANETs, and its presumed benefits for managing resources and mobility, it is still unclear what impact SDN will have on security and privacy. Security is a relevant issue in VANETs, because of the impact that threats can have on drivers' behavior and quality of life. This paper opens a discussion on the security threats that future SDN-enabled VANETs will have to face, and investigates how SDN could be beneficial in building new countermeasures. The analysis is conducted in real use cases (smart parking, smart grid of electric vehicles, platooning, and emergency services), which are expected to be among the vehicular applications that will most benefit from introducing an SDN architecture.

  17. NetFlow Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet Jr., Thomas F; Beyeler, Walter E; Vanwestrienen, Dirk

    NetFlow Dynamics is a web-accessible analysis environment for simulating dynamic flows of materials on model networks. Performing a simulation requires both the NetFlow Dynamics application and a network model which is a description of the structure of the nodes and edges of a network including the flow capacity of each edge and the storage capacity of each node, and the sources and sinks of the material flowing on the network. NetFlow Dynamics consists of databases for storing network models, algorithms to calculate flows on networks, and a GIS-based graphical interface for performing simulations and viewing simulation results. Simulated flows aremore » dynamic in the sense that flows on each edge of the network and inventories at each node change with time and can be out of equilibrium with boundary conditions. Any number of network models could be simulated using Net Flow Dynamics. To date, the models simulated have been models of petroleum infrastructure. The main model has been the National Transportation Fuels Model (NTFM), a network of U.S. oil fields, transmission pipelines, rail lines, refineries, tank farms, and distribution terminals. NetFlow Dynamics supports two different flow algorithms, the Gradient Flow algorithm and the Inventory Control algorithm, that were developed specifically for the NetFlow Dynamics application. The intent is to add additional algorithms in the future as needed. The ability to select from multiple algorithms is desirable because a single algorithm never covers all analysis needs. The current algorithms use a demand-driven capacity-constrained formulation which means that the algorithms strive to use all available capacity and stored inventory to meet desired flows to sinks, subject to the capacity constraints of each network component. The current flow algorithms are best suited for problems in which a material flows on a capacity-constrained network representing a supply chain in which the material supplied can be stored at each node of the network. In the petroleum models, the flowing materials are crude oil and refined products that can be stored at tank farms, refineries, or terminals (i.e. the nodes of the network). Examples of other network models that could be simulated are currency flowing in a financial network, agricultural products moving to market, or natural gas flowing on a pipeline network.« less

  18. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  19. Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays.

    PubMed

    Eide, Ragna M; Krause, Andrew L; Fadai, Nabil T; Van Gorder, Robert A

    2018-08-14

    We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Emergence, evolution and scaling of online social networks.

    PubMed

    Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng

    2014-01-01

    Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.

  1. A geometrical approach to control and controllability of nonlinear dynamical networks

    PubMed Central

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  2. Dendritic Connectivity, Heterogeneity, and Scaling in Urban Stormwater Networks: Implications for Socio-Hydrology

    NASA Astrophysics Data System (ADS)

    Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.

    2017-12-01

    Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.

  3. On the Role of Hyper-arid Regions within the Virtual Water Trade Network

    NASA Astrophysics Data System (ADS)

    Aggrey, James; Alshamsi, Aamena; Molini, Annalisa

    2016-04-01

    Climate change, economic development, and population growth are bound to increasingly impact global water resources, posing a significant threat to the sustainable development of arid regions, where water consumption highly exceeds the natural carrying capacity, population growth rate is high, and climate variability is going to impact both water consumption and availability. Virtual Water Trade (VWT) - i.e. the international trade network of water-intensive products - has been proposed as a possible solution to optimize the allocation of water resources on the global scale. By increasing food availability and lowering food prices it may in fact help the rapid development of water-scarce regions. The structure of the VWT network has been analyzed by a number of authors both in connection with trade policies, socioeconomic constrains and agricultural efficiency. However a systematic analysis of the structure and the dynamics of the VWT network conditional to aridity, climatic forcing and energy availability, is still missing. Our goal is hence to analyze the role of arid and hyper-arid regions within the VWN under diverse climatic, demographic, and energy constraints with an aim to contribute to the ongoing Energy-Water-Food nexus discussion. In particular, we focus on the hyper-arid lands of the Arabian Peninsula, the role they play in the global network and the assessment of their specific criticalities, as reflected in the VWN resilience.

  4. Counting and classifying attractors in high dimensional dynamical systems.

    PubMed

    Bagley, R J; Glass, L

    1996-12-07

    Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.

  5. Representing perturbed dynamics in biological network models

    NASA Astrophysics Data System (ADS)

    Stoll, Gautier; Rougemont, Jacques; Naef, Felix

    2007-07-01

    We study the dynamics of gene activities in relatively small size biological networks (up to a few tens of nodes), e.g., the activities of cell-cycle proteins during the mitotic cell-cycle progression. Using the framework of deterministic discrete dynamical models, we characterize the dynamical modifications in response to structural perturbations in the network connectivities. In particular, we focus on how perturbations affect the set of fixed points and sizes of the basins of attraction. Our approach uses two analytical measures: the basin entropy H and the perturbation size Δ , a quantity that reflects the distance between the set of fixed points of the perturbed network and that of the unperturbed network. Applying our approach to the yeast-cell-cycle network introduced by Li [Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004)] provides a low-dimensional and informative fingerprint of network behavior under large classes of perturbations. We identify interactions that are crucial for proper network function, and also pinpoint functionally redundant network connections. Selected perturbations exemplify the breadth of dynamical responses in this cell-cycle model.

  6. Exploring complex networks.

    PubMed

    Strogatz, S H

    2001-03-08

    The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

  7. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Estimating Topology of Discrete Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Guo, Shu-Juan; Fu, Xin-Chu

    2010-07-01

    In this paper, by applying Lasalle's invariance principle and some results about the trace of a matrix, we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamical evolution of the network. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, two examples, including a Hénon map and a central network, are illustrated to verify the theoretical results.

  8. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  9. Framework based on communicability and flow to analyze complex network dynamics

    NASA Astrophysics Data System (ADS)

    Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.

    2018-05-01

    Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.

  10. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    PubMed Central

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  11. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.

    PubMed

    Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki

    2017-09-08

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  12. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

    NASA Astrophysics Data System (ADS)

    Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki

    2017-09-01

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  13. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.

  14. Computer architecture evaluation for structural dynamics computations: Project summary

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1989-01-01

    The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.

  15. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    PubMed Central

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-01-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314

  16. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    NASA Astrophysics Data System (ADS)

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-09-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.

  17. Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type.

    PubMed

    Zhou, Douglas; Sun, Yi; Rangan, Aaditya V; Cai, David

    2010-04-01

    We discuss how to characterize long-time dynamics of non-smooth dynamical systems, such as integrate-and-fire (I&F) like neuronal network, using Lyapunov exponents and present a stable numerical method for the accurate evaluation of the spectrum of Lyapunov exponents for this large class of dynamics. These dynamics contain (i) jump conditions as in the firing-reset dynamics and (ii) degeneracy such as in the refractory period in which voltage-like variables of the network collapse to a single constant value. Using the networks of linear I&F neurons, exponential I&F neurons, and I&F neurons with adaptive threshold, we illustrate our method and discuss the rich dynamics of these networks.

  18. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  19. Hamiltonian dynamics for complex food webs

    NASA Astrophysics Data System (ADS)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2016-03-01

    We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.

  20. Optimizing the process of recovery after road network break-up

    NASA Astrophysics Data System (ADS)

    Bíl, Michal; Vodák, Rostislav; Křivánková, Zuzana

    2016-04-01

    A functioning road network provides accessibility to municipalities, important services and facilities. This basic role of the network can be disrupted by natural disasters which usually affect large areas and cause temporal blockages or even destruction of many roads at the same time. This often leads to road network break-up, when a number of disconnected parts emerge. These parts are often of varying importance to society. Some of them may contain large cities or important facilities such as hospitals. This should be reflected during reconnection works when the most important parts of the network should be reconnected among the first in order to reduce the impact of the event. Decision makers and crisis managers, however, do still not have any dynamic tool which might help them with prioritizing the necessary steps. In our presentation we introduce an algorithm and examples of suitable loss functions which enable us to rapidly identify isolated parts of the network, evaluate them and consequently establish an optimal ranked sequence of interrupted links which have to be repaired to reduce the consequences of the disasters.

  1. Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology

    NASA Astrophysics Data System (ADS)

    Zhu, Linhe; Zhao, Hongyong

    2017-07-01

    A series of online rumours have seriously influenced the normal production and living of people. This paper aims to study the combined impact of psychological factor, propagation delay, network topology and control strategy on rumour diffusion over the online social networks. Based on an online social network, which is seen as a scale-free network, we model the spread of rumours by using a delayed SIS (Susceptible and Infected) epidemic-like model with consideration of psychological factor and network topology. First, through theoretical analysis, we illustrate the boundedness of the density of rumour-susceptible individuals and rumour-infected individuals. Second, we obtain the basic reproduction number R0 and prove the stability of the non-rumour equilibrium point and the rumour-spreading equilibrium point. Third, control strategies, such as uniform immunisation control, proportional immunisation control, targeted immunisation control and optimum control, are put forward to restrain rumour diffusion. Meanwhile, we have compared the differences of these control strategies. Finally, some representative numerical simulations are performed to verify the theoretical analysis results.

  2. Epidemic spreading on one-way-coupled networks

    NASA Astrophysics Data System (ADS)

    Wang, Lingna; Sun, Mengfeng; Chen, Shanshan; Fu, Xinchu

    2016-09-01

    Numerous real-world networks (e.g., social, communicational, and biological networks) have been observed to depend on each other, and this results in interconnected networks with different topology structures and dynamics functions. In this paper, we focus on the scenario of epidemic spreading on one-way-coupled networks comprised of two subnetworks, which can manifest the transmission of some zoonotic diseases. By proposing a mathematical model through mean-field approximation approach, we prove the global stability of the disease-free and endemic equilibria of this model. Through the theoretical and numerical analysis, we obtain interesting results: the basic reproduction number R0 of the whole network is the maximum of the basic reproduction numbers of the two subnetworks; R0 is independent of the cross-infection rate and cross contact pattern; R0 increases rapidly with the growth of inner infection rate if the inner contact pattern is scale-free; in order to eradicate zoonotic diseases from human beings, we must simultaneously eradicate them from animals; bird-to-bird infection rate has bigger impact on the human's average infected density than bird-to-human infection rate.

  3. Characterizing system dynamics with a weighted and directed network constructed from time series data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaoran, E-mail: sxr0806@gmail.com; School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009; Small, Michael, E-mail: michael.small@uwa.edu.au

    In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the timemore » series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.« less

  4. Highly dynamic animal contact network and implications on disease transmission

    PubMed Central

    Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina

    2014-01-01

    Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241

  5. Linking dynamics of the inhibitory network to the input structure

    PubMed Central

    Komarov, Maxim

    2017-01-01

    Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865

  6. Dynamics of social balance on networks

    NASA Astrophysics Data System (ADS)

    Antal, T.; Krapivsky, P. L.; Redner, S.

    2005-09-01

    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad—a triangular loop with one or three unfriendly links—is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to “paradise”—all links are friendly—as the propensity p for friendly links in an update event passes through 1/2 . A finite network always falls into a socially balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network not increase in an update is imposed, then the network quickly reaches a balanced final state.

  7. Bellman Ford algorithm - in Routing Information Protocol (RIP)

    NASA Astrophysics Data System (ADS)

    Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah

    2018-04-01

    In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.

  8. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  9. Dynamic model of time-dependent complex networks.

    PubMed

    Hill, Scott A; Braha, Dan

    2010-10-01

    The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.

  10. Application of dynamic recurrent neural networks in nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  11. Hotspot Mutations in KIT Receptor Differentially Modulate Its Allosterically Coupled Conformational Dynamics: Impact on Activation and Drug Sensitivity

    PubMed Central

    Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba

    2014-01-01

    Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768

  12. Recovery time after localized perturbations in complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.

    2017-10-01

    Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed concept.

  13. Models, Entropy and Information of Temporal Social Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Márton; Bianconi, Ginestra

    Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

  14. Challenges to inferring causality from viral information dispersion in dynamic social networks

    NASA Astrophysics Data System (ADS)

    Ternovski, John

    2014-06-01

    Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.

  15. Pleistocene megafaunal interaction networks became more vulnerable after human arrival.

    PubMed

    Pires, Mathias M; Koch, Paul L; Fariña, Richard A; de Aguiar, Marcus A M; dos Reis, Sérgio F; Guimarães, Paulo R

    2015-09-07

    The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. © 2015 The Author(s).

  16. Pleistocene megafaunal interaction networks became more vulnerable after human arrival

    PubMed Central

    Pires, Mathias M.; Koch, Paul L.; Fariña, Richard A.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Guimarães, Paulo R.

    2015-01-01

    The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. PMID:26336175

  17. Hopf bifurcation in a nonlocal nonlinear transport equation stemming from stochastic neural dynamics

    NASA Astrophysics Data System (ADS)

    Drogoul, Audric; Veltz, Romain

    2017-02-01

    In this work, we provide three different numerical evidences for the occurrence of a Hopf bifurcation in a recently derived [De Masi et al., J. Stat. Phys. 158, 866-902 (2015) and Fournier and löcherbach, Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)] mean field limit of a stochastic network of excitatory spiking neurons. The mean field limit is a challenging nonlocal nonlinear transport equation with boundary conditions. The first evidence relies on the computation of the spectrum of the linearized equation. The second stems from the simulation of the full mean field. Finally, the last evidence comes from the simulation of the network for a large number of neurons. We provide a "recipe" to find such bifurcation which nicely complements the works in De Masi et al. [J. Stat. Phys. 158, 866-902 (2015)] and Fournier and löcherbach [Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)]. This suggests in return to revisit theoretically these mean field equations from a dynamical point of view. Finally, this work shows how the noise level impacts the transition from asynchronous activity to partial synchronization in excitatory globally pulse-coupled networks.

  18. Sensitivity of proxies on non-linear interactions in the climate system

    PubMed Central

    Schultz, Johannes A.; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas

    2015-01-01

    Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics. PMID:26686001

  19. Analyzing the evolutionary mechanisms of the Air Transportation System-of-Systems using network theory and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Kotegawa, Tatsuya

    Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.

  20. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.

    PubMed

    Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio

    2018-05-30

    Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.

  1. Gender asymmetry in concurrent partnerships and HIV prevalence.

    PubMed

    Leung, Ka Yin; Powers, Kimberly A; Kretzschmar, Mirjam

    2017-06-01

    The structure of the sexual network of a population plays an essential role in the transmission of HIV. Concurrent partnerships, i.e. partnerships that overlap in time, are important in determining this network structure. Men and women may differ in their concurrent behavior, e.g. in the case of polygyny where women are monogamous while men may have concurrent partnerships. Polygyny has been shown empirically to be negatively associated with HIV prevalence, but the epidemiological impacts of other forms of gender-asymmetric concurrency have not been formally explored. Here we investigate how gender asymmetry in concurrency, including polygyny, can affect the disease dynamics. We use a model for a dynamic network where individuals may have concurrent partners. The maximum possible number of simultaneous partnerships can differ for men and women, e.g. in the case of polygyny. We control for mean partnership duration, mean lifetime number of partners, mean degree, and sexually active lifespan. We assess the effects of gender asymmetry in concurrency on two epidemic phase quantities (R 0 and the contribution of the acute HIV stage to R 0 ) and on the endemic HIV prevalence. We find that gender asymmetry in concurrent partnerships is associated with lower levels of all three epidemiological quantities, especially in the polygynous case. This effect on disease transmission can be attributed to changes in network structure, where increasing asymmetry leads to decreasing network connectivity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Simulating drinking in social networks to inform alcohol prevention and treatment efforts.

    PubMed

    Hallgren, Kevin A; McCrady, Barbara S; Caudell, Thomas P; Witkiewitz, Katie; Tonigan, J Scott

    2017-11-01

    Adolescent drinking influences, and is influenced by, peer alcohol use. Several efficacious adolescent alcohol interventions include elements aimed at reducing susceptibility to peer influence. Modeling these interventions within dynamically changing social networks may improve our understanding of how such interventions work and for whom they work best. We used stochastic actor-based models to simulate longitudinal drinking and friendship formation within social networks using parameters obtained from a meta-analysis of real-world 10th grade adolescent social networks. Levels of social influence (i.e., friends affecting changes in one's drinking) and social selection (i.e., drinking affecting changes in one's friendships) were manipulated at several levels, which directly impacted the degree of clustering in friendships based on similarity in drinking behavior. Midway through each simulation, one randomly selected heavy-drinking actor from each network received an "intervention" that either (a) reduced their susceptibility to social influence, (b) reduced their susceptibility to social selection, (c) eliminated a friendship with a heavy drinker, or (d) initiated a friendship with a nondrinker. Only the intervention that eliminated targeted actors' susceptibility to social influence consistently reduced that actor's drinking. Moreover, this was only effective in networks with social influence and social selection that were at higher levels than what was found in the real-world reference study. Social influence and social selection are dynamic processes that can lead to complex systems that may moderate the effectiveness of network-based interventions. Interventions that reduce susceptibility to social influence may be most effective among adolescents with high susceptibility to social influence and heavier-drinking friends. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Impact of 36 h of total sleep deprivation on resting-state dynamic functional connectivity.

    PubMed

    Xu, Huaze; Shen, Hui; Wang, Lubin; Zhong, Qi; Lei, Yu; Yang, Liu; Zeng, Ling-Li; Zhou, Zongtan; Hu, Dewen; Yang, Zheng

    2018-06-01

    Resting-state functional magnetic resonance imaging (fMRI) studies using static functional connectivity (sFC) measures have shown that the brain function is severely disrupted after long-term sleep deprivation (SD). However, increasing evidence has suggested that resting-state functional connectivity (FC) is dynamic and exhibits spontaneous fluctuation on a smaller timescale. The process by which long-term SD can influence dynamic functional connectivity (dFC) remains unclear. In this study, 37 healthy subjects participated in the SD experiment, and they were scanned both during rested wakefulness (RW) and after 36 h of SD. A sliding-window based approach and a spectral clustering algorithm were used to evaluate the effects of SD on dFC based on the 26 qualified subjects' data. The outcomes showed that time-averaging FC across specific regions as well as temporal properties of the FC states, such as the dwell time and transition probability, was strongly influenced after SD in contrast to the RW condition. Based on the occurrences of FC states, we further identified some RW-dominant states characterized by anti-correlation between the default mode network (DMN) and other cortices, and some SD-dominant states marked by significantly decreased thalamocortical connectivity. In particular, the temporal features of these FC states were negatively correlated with the correlation coefficients between the DMN and dorsal attention network (dATN) and demonstrated high potential in classification of sleep state (with 10-fold cross-validation accuracy of 88.6% for dwell time and 88.1% for transition probability). Collectively, our results suggested that the temporal properties of the FC states greatly account for changes in the resting-state brain networks following SD, which provides new insights into the impact of SD on the resting-state functional organization in the human brain. Copyright © 2017. Published by Elsevier B.V.

  4. Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Bucholz, Eric W.; Haskins, Justin B.; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2017-01-01

    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of phenolic chain structure and solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered, ethylene glycol (EGL) and H2O. In addition, three phenolic chain structures were considered including two novolac-type chains with either an ortho-ortho (OON) or ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through structural analysis of the solvation shell and hydrogen bonding environment as well as through quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of the simulations and analyses indicate that EGL provides a larger solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, phenolic chain structure significantly impacts solvation performance with OON having limited intermolecular hydrogen bond formations while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents.

  5. A case study predicting environmental impacts of urban transport planning in China.

    PubMed

    Chen, Chong; Shao, Li-guo; Xu, Ling; Shang, Jin-cheng

    2009-10-01

    Predicting environmental impacts is essential when performing an environmental assessment on urban transport planning. System dynamics (SD) is usually used to solve complex nonlinear problems. In this study, we utilized system dynamics (SD) to evaluate the environmental impacts associated with urban transport planning in Jilin City, China with respect to the local economy, society, transport, the environment and resources. To accomplish this, we generated simulation models comprising interrelated subsystems designed to utilize changes in the economy, society, road construction, changes in the number of vehicles, the capacity of the road network capacity, nitrogen oxides emission, traffic noise, land used for road construction and fuel consumption associated with traffic to estimate dynamic trends in the environmental impacts associated with Jilin's transport planning. Two simulation scenarios were then analyzed comparatively. The results of this study indicated that implementation of Jilin transport planning would improve the current urban traffic conditions and boost the local economy and development while benefiting the environment in Jilin City. In addition, comparative analysis of the two scenarios provided additional information that can be used to aid in scientific decision-making regarding which aspects of the transport planning to implement in Jilin City. This study demonstrates that our application of the SD method, which is referred to as the Strategic Environmental Assessment (SEA), is feasible for use in urban transport planning.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.

    Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less

  7. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    PubMed

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Exploring the structure and function of temporal networks with dynamic graphlets

    PubMed Central

    Hulovatyy, Y.; Chen, H.; Milenković, T.

    2015-01-01

    Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/∼cone/DG. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072480

  9. Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models

    PubMed Central

    Snijders, Tom A.B.; Steglich, Christian E.G.

    2014-01-01

    Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of generalized linear statistical models they aim to be realistic detailed representations of network dynamics in empirical data sets. Statistical parallels to micro-macro considerations can be found in the estimation of parameters determining local actor behavior from empirical data, and the assessment of goodness of fit from the correspondence with network-level descriptives. This article studies several network-level consequences of dynamic actor-based models applied to represent cross-sectional network data. Two examples illustrate how network-level characteristics can be obtained as emergent features implied by micro-specifications of actor-based models. PMID:25960578

  10. Using Network Dynamical Influence to Drive Consensus

    NASA Astrophysics Data System (ADS)

    Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.

    2016-05-01

    Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.

  11. Dynamic defense and network randomization for computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.

    The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissancemore » stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.« less

  12. A catalyst for system change: a case study of child health network formation, evolution and sustainability in Canada.

    PubMed

    McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy

    2017-02-01

    The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.

  13. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  14. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  15. Markov State Models of gene regulatory networks.

    PubMed

    Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L

    2017-02-06

    Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.

  16. Disease dynamics in a dynamic social network

    NASA Astrophysics Data System (ADS)

    Christensen, Claire; Albert, István; Grenfell, Bryan; Albert, Réka

    2010-07-01

    We develop a framework for simulating a realistic, evolving social network (a city) into which a disease is introduced. We compare our results to prevaccine era measles data for England and Wales, and find that they capture the quantitative and qualitative features of epidemics in populations spanning two orders of magnitude. Our results provide unique insight into how and why the social topology of the contact network influences the propagation of the disease through the population. We argue that network simulation is suitable for concurrently probing contact network dynamics and disease dynamics in ways that prior modeling approaches cannot and it can be extended to the study of less well-documented diseases.

  17. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  18. Embedding dynamical networks into distributed models

    NASA Astrophysics Data System (ADS)

    Innocenti, Giacomo; Paoletti, Paolo

    2015-07-01

    Large networks of interacting dynamical systems are well-known for the complex behaviours they are able to display, even when each node features a quite simple dynamics. Despite examples of such networks being widespread both in nature and in technological applications, the interplay between the local and the macroscopic behaviour, through the interconnection topology, is still not completely understood. Moreover, traditional analytical methods for dynamical response analysis fail because of the intrinsically large dimension of the phase space of the network which makes the general problem intractable. Therefore, in this paper we develop an approach aiming to condense all the information in a compact description based on partial differential equations. By focusing on propagative phenomena, rigorous conditions under which the original network dynamical properties can be successfully analysed within the proposed framework are derived as well. A network of Fitzhugh-Nagumo systems is finally used to illustrate the effectiveness of the proposed method.

  19. Clustering promotes switching dynamics in networks of noisy neurons

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Klinshov, Vladimir

    2018-02-01

    Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.

  20. Collective relaxation dynamics of small-world networks

    NASA Astrophysics Data System (ADS)

    Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc

    2015-05-01

    Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k , and topological randomness q . We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q , including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.

  1. Collective relaxation dynamics of small-world networks.

    PubMed

    Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc

    2015-05-01

    Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k, and topological randomness q. We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.

  2. On-line training of recurrent neural networks with continuous topology adaptation.

    PubMed

    Obradovic, D

    1996-01-01

    This paper presents an online procedure for training dynamic neural networks with input-output recurrences whose topology is continuously adjusted to the complexity of the target system dynamics. This is accomplished by changing the number of the elements of the network hidden layer whenever the existing topology cannot capture the dynamics presented by the new data. The training mechanism is based on the suitably altered extended Kalman filter (EKF) algorithm which is simultaneously used for the network parameter adjustment and for its state estimation. The network consists of a single hidden layer with Gaussian radial basis functions (GRBF), and a linear output layer. The choice of the GRBF is induced by the requirements of the online learning. The latter implies the network architecture which permits only local influence of the new data point in order not to forget the previously learned dynamics. The continuous topology adaptation is implemented in our algorithm to avoid memory and computational problems of using a regular grid of GRBF'S which covers the network input space. Furthermore, we show that the resulting parameter increase can be handled "smoothly" without interfering with the already acquired information. If the target system dynamics are changing over time, we show that a suitable forgetting factor can be used to "unlearn" the no longer-relevant dynamics. The quality of the recurrent network training algorithm is demonstrated on the identification of nonlinear dynamic systems.

  3. Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks

    NASA Astrophysics Data System (ADS)

    Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie

    2015-12-01

    Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.

  4. Epidemic spreading in metapopulation networks with heterogeneous infection rates

    NASA Astrophysics Data System (ADS)

    Gong, Yong-Wang; Song, Yu-Rong; Jiang, Guo-Ping

    2014-12-01

    In this paper, we study epidemic spreading in metapopulation networks wherein each node represents a subpopulation symbolizing a city or an urban area and links connecting nodes correspond to the human traveling routes among cities. Differently from previous studies, we introduce a heterogeneous infection rate to characterize the effect of nodes' local properties, such as population density, individual health habits, and social conditions, on epidemic infectivity. By means of a mean-field approach and Monte Carlo simulations, we explore how the heterogeneity of the infection rate affects the epidemic dynamics, and find that large fluctuations of the infection rate have a profound impact on the epidemic threshold as well as the temporal behavior of the prevalence above the epidemic threshold. This work can refine our understanding of epidemic spreading in metapopulation networks with the effect of nodes' local properties.

  5. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  6. Flory-Stockmayer analysis on reprocessable polymer networks

    NASA Astrophysics Data System (ADS)

    Li, Lingqiao; Chen, Xi; Jin, Kailong; Torkelson, John

    Reprocessable polymer networks can undergo structure rearrangement through dynamic chemistries under proper conditions, making them a promising candidate for recyclable crosslinked materials, e.g. tires. This research field has been focusing on various chemistries. However, there has been lacking of an essential physical theory explaining the relationship between abundancy of dynamic linkages and reprocessability. Based on the classical Flory-Stockmayer analysis on network gelation, we developed a similar analysis on reprocessable polymer networks to quantitatively predict the critical condition for reprocessability. Our theory indicates that it is unnecessary for all bonds to be dynamic to make the resulting network reprocessable. As long as there is no percolated permanent network in the system, the material can fully rearrange. To experimentally validate our theory, we used a thiol-epoxy network model system with various dynamic linkage compositions. The stress relaxation behavior of resulting materials supports our theoretical prediction: only 50 % of linkages between crosslinks need to be dynamic for a tri-arm network to be reprocessable. Therefore, this analysis provides the first fundamental theoretical platform for designing and evaluating reprocessable polymer networks. We thank McCormick Research Catalyst Award Fund and ISEN cluster fellowship (L. L.) for funding support.

  7. Complete characterization of the stability of cluster synchronization in complex dynamical networks.

    PubMed

    Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi

    2016-04-01

    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.

  8. Random Evolution of Idiotypic Networks: Dynamics and Architecture

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.

  9. Resumption of dynamism in damaged networks of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kundu, Srilena; Majhi, Soumen; Ghosh, Dibakar

    2018-05-01

    Deterioration in dynamical activities may come up naturally or due to environmental influences in a massive portion of biological and physical systems. Such dynamical degradation may have outright effect on the substantive network performance. This requires us to provide some proper prescriptions to overcome undesired circumstances. In this paper, we present a scheme based on external feedback that can efficiently revive dynamism in damaged networks of active and inactive oscillators and thus enhance the network survivability. Both numerical and analytical investigations are performed in order to verify our claim. We also provide a comparative study on the effectiveness of this mechanism for feedbacks to the inactive group or to the active group only. Most importantly, resurrection of dynamical activity is realized even in time-delayed damaged networks, which are considered to be less persistent against deterioration in the form of inactivity in the oscillators. Furthermore, prominence in our approach is substantiated by providing evidence of enhanced network persistence in complex network topologies taking small-world and scale-free architectures, which makes the proposed remedy quite general. Besides the study in the network of Stuart-Landau oscillators, affirmative influence of external feedback has been justified in the network of chaotic Rössler systems as well.

  10. Study protocol for a prospective cohort study examining the predictive potential of dynamic symptom networks for the onset and progression of psychosis: the Mapping Individual Routes of Risk and Resilience (Mirorr) study.

    PubMed

    Booij, Sanne H; Wichers, Marieke; de Jonge, Peter; Sytema, Sjoerd; van Os, Jim; Wunderink, Lex; Wigman, Johanna T W

    2018-01-21

    Our current ability to predict the course and outcome of early psychotic symptoms is limited, hampering timely treatment. To improve our understanding of the development of psychosis, a different approach to psychopathology may be productive. We propose to reconceptualise psychopathology from a network perspective, according to which symptoms act as a dynamic, interconnected system, impacting on each other over time and across diagnostic boundaries to form symptom networks. Adopting this network approach, the Mapping Individual Routes of Risk and Resilience study aims to determine whether characteristics of symptom networks can predict illness course and outcome of early psychotic symptoms. The sample consists of n=100 participants aged 18-35 years, divided into four subgroups (n=4×25) with increasing levels of severity of psychopathology, representing successive stages of clinical progression. Individuals representing the initial stage have a relatively low expression of psychotic experiences (general population), whereas individuals representing the end stage are help seeking and display a psychometric expression of psychosis, putting them at ultra-high risk for transition to psychotic disorder. At baseline and 1-year follow-up, participants report their symptoms, affective states and experiences for three consecutive months in short, daily questionnaires on their smartphone, which will be used to map individual networks. Network parameters, including the strength and directionality of symptom connections and centrality indices, will be estimated and associated to individual differences in and within-individual progression through stages of clinical severity and functioning over the next 3 years. The study has been approved by the local medical ethical committee (ABR no. NL52974.042.15). The results of the study will be published in (inter)national peer-reviewed journals, presented at research, clinical and general public conferences. The results will assist in improving and fine-tuning dynamic models of psychopathology, stimulating both clinical and scientific progress. NTR6205 ; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    PubMed Central

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-01-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched ‘on' and ‘off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication. PMID:27941924

  12. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.

  13. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity

    PubMed Central

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  14. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-05-23

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.

  15. Dynamics of subway networks based on vehicles operation timetable

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  16. Discrete Dynamics Lab

    NASA Astrophysics Data System (ADS)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  17. Dynamics of comb-of-comb-network polymers in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  18. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  19. Geocenter motion estimated from GRACE orbits: The impact of F10.7 solar flux

    NASA Astrophysics Data System (ADS)

    Tseng, Tzu-Pang; Hwang, Cheinway; Sośnica, Krzysztof; Kuo, Chung-Yen; Liu, Ya-Chi; Yeh, Wen-Hao

    2017-06-01

    We assess the impact of orbit modeling on the origin offsets between GRACE kinematic and reduced-dynamic orbits. The origin of the kinematic orbit is the center of IGS network (CN), whereas the origin of the reduced-dynamic orbit is assumed to be the center of mass of the Earth (CM). Theoretically, the origin offset between these two orbits is associated with the geocenter motion. However, the dynamic property of the reduced-dynamic orbit is highly related to orbit parameterizations. The assessment of the F10.7 impact on the geocenter motion is implemented by using different orbit parameterization setups in the reduced-dynamic method. We generate two types of reduced-dynamic orbits using 15 and 240 empirical parameters per day from 2005 to 2012. The empirical parameter used in Bernese GNSS Software is called piece-wise constant empirical acceleration (PCA) and is mainly to absorb the non-gravitational forces mostly related to the atmospheric drag and solar radiation pressure. The differences between kinematic and dynamic orbits can serve as a measurement for geocenter. The RMS value of the geocenter measurement in the 15-PCA case is approximately 3.5 cm and approximately 2 cm in the 240-PCA case. The correlation between the orbit difference and F10.7 is about 0.90 in the 15-PCA case and -0.10 to 0 in the 240-PCA case. This implies that the reduced-dynamic orbit modeled with 240 PCAs absorbs the F10.7 variation, which aliases to the 15-PCA orbit solution. The annual amplitudes of the geocenter motion are 3.1, 3.1 and 2.5 mm in the 15-PCA case, compared to 0.9, 2.0 and 1.3 mm in the 240-PCA case in the X, Y and Z components, respectively. The 15-PCA solution is thus closer to the geocenter motions derived from other space-geodetic techniques. The proposed method is limited to the parameterizations in the reduced-dynamic approach.

  20. Simulation Tools and Techniques for Analyzing the Impacts of Photovoltaic System Integration

    NASA Astrophysics Data System (ADS)

    Hariri, Ali

    Solar photovoltaic (PV) energy integration in distribution networks is one of the fastest growing sectors of distributed energy integration. The growth in solar PV integration is incentivized by various clean power policies, global interest in solar energy, and reduction in manufacturing and installation costs of solar energy systems. The increase in solar PV integration has raised a number of concerns regarding the potential impacts that might arise as a result of high PV penetration. Some impacts have already been recorded in networks with high PV penetration such as in China, Germany, and USA (Hawaii and California). Therefore, network planning is becoming more intricate as new technologies are integrated into the existing electric grid. The integrated new technologies pose certain compatibility concerns regarding the existing electric grid infrastructure. Therefore, PV integration impact studies are becoming more essential in order to have a better understanding of how to advance the solar PV integration efforts without introducing adverse impacts into the network. PV impact studies are important for understanding the nature of the new introduced phenomena. Understanding the nature of the potential impacts is a key factor for mitigating and accommodating for said impacts. Traditionally, electric power utilities relied on phasor-based power flow simulations for planning their electric networks. However, the conventional, commercially available, phasor-based simulation tools do not provide proper visibility across a wide spectrum of electric phenomena. Moreover, different types of simulation approaches are suitable for specific types of studies. For instance, power flow software cannot be used for studying time varying phenomena. At the same time, it is not practical to use electromagnetic transient (EMT) tools to perform power flow solutions. Therefore, some electric phenomena caused by the variability of PV generation are not visible using the conventional utility simulation software. On the other hand, EMT simulation tools provide high accuracy and visibility over a wide bandwidth of frequencies at the expense of larger processing and memory requirements, limited network size, and long simulation time. Therefore, there is a gap in simulation tools and techniques that can efficiently and effectively identify potential PV impact. New planning simulation tools are needed in order to accommodate for the simulation requirements of new integrated technologies in the electric grid. The dissertation at hand starts by identifying some of the potential impacts that are caused by high PV penetration. A phasor-based quasi-static time series (QSTS) analysis tool is developed in order to study the slow dynamics that are caused by the variations in the PV generation that lead to voltage fluctuations. Moreover, some EMT simulations are performed in order to study the impacts of PV systems on the electric network harmonic levels. These studies provide insights into the type and duration of certain impacts, as well as the conditions that may lead to adverse phenomena. In addition these studies present an idea about the type of simulation tools that are sufficient for each type of study. After identifying some of the potential impacts, certain planning tools and techniques are proposed. The potential PV impacts may cause certain utilities to refrain from integrating PV systems into their networks. However, each electric network has a certain limit beyond which the impacts become substantial and may adversely interfere with the system operation and the equipment along the feeder; this limit is referred to as the hosting limit (or hosting capacity). Therefore, it is important for utilities to identify the PV hosting limit on a specific electric network in order to safely and confidently integrate the maximum possible PV systems. In the following dissertation, two approaches have been proposed for identifying the hosing limit: 1. Analytical approach: this is a theoretical mathematical approach that demonstrated the understanding of the fundamentals of electric power system operation. It provides an easy way to estimate the maximum amount of PV power that can be injected at each node in the network. This approach has been tested and validated. 2. Stochastic simulation software approach: this approach provides a comprehensive simulation software that can be used in order to identify the PV hosting limit. The software performs a large number of stochastic simulation while varying the PV system size and location. The collected data is then analyzed for violations in the voltage levels, voltage fluctuations and reverse power flow. (Abstract shortened by ProQuest.).

  1. Digging into construction: social networks and their potential impact on knowledge transfer.

    PubMed

    Carlan, N A; Kramer, D M; Bigelow, P; Wells, R; Garritano, E; Vi, P

    2012-01-01

    A six-year study is exploring the most effective ways to disseminate ideas to reduce musculoskeletal disorders (MSDs) in the construction sector. The sector was targeted because MSDs account for 35% of all lost time injuries. This paper reports on the organization of the construction sector, and maps potential pathways of communication, including social networks, to set the stage for future dissemination. The managers, health and safety specialists, union health and safety representatives, and 28 workers from small, medium and large construction companies participated. Over a three-year period, data were collected from 47 qualitative interviews. Questions were guided by the PARIHS (Promoting Action on Research Implementation in Health Services) knowledge-transfer conceptual framework and adapted for the construction sector. The construction sector is a complex and dynamic sector, with non-linear reporting relationships, and divided and diluted responsibilities. Four networks were identified that can potentially facilitate the dissemination of new knowledge: worksite-project networks; union networks; apprenticeship program networks; and networks established by the Construction Safety Association/Infrastructure Health and Safety Association. Flexible and multi-directional lines of communication must be used in this complex environment. This has implications for the future choice of knowledge transfer strategies.

  2. Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant

    NASA Astrophysics Data System (ADS)

    Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing

    2015-02-01

    Traders develop and adopt different trading strategies attempting to maximize their profits in financial markets. These trading strategies not only result in specific topological structures in trading networks, which connect the traders with the pairwise buy-sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 rolling time windows with a length of 5 min, construct a trading network within each window, and obtain a time series of over 11,600 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the system's performance.

  3. Hydrodynamically induced oscillations and traffic dynamics in 1D microfludic networks

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Jeanneret, Raphael

    2011-03-01

    We report on the traffic dynamics of particles driven through a minimal microfluidic network. Even in the minimal network consisting in a single loop, the traffic dynamics has proven to yield complex temporal patterns, including periodic, multi-periodic or chaotic sequences. This complex dynamics arises from the strongly nonlinear hydrodynamic interactions between the particles, that takes place at a junction. To better understand the consequences of this nontrivial coupling, we combined theoretical, numerical and experimental efforts and solved the 3-body problem in a 1D loop network. This apparently simple dynamical system revealed a rich and unexpected dynamics, including coherent spontaneous oscillations along closed orbits. Striking similarities between Hamiltonian systems and this driven dissipative system will be explained.

  4. Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.

    PubMed

    Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun

    2017-12-21

    Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.

  5. The impact of vaccine success and awareness on epidemic dynamics

    NASA Astrophysics Data System (ADS)

    Juang, Jonq; Liang, Yu-Hao

    2016-11-01

    The role of vaccine success is introduced into an epidemic spreading model consisting of three states: susceptible, infectious, and vaccinated. Moreover, the effect of three types, namely, contact, local, and global, of infection awareness and immunization awareness is also taken into consideration. The model generalizes those considered in Pastor-Satorras and Vespignani [Phys. Rev. E 63, 066117 (2001)], Pastor-Satorras and Vespignani [Phys. Rev. E 65, 036104 (2002)], Moreno et al. [Eur. Phys. J. B 26, 521-529 (2002)], Wu et al. [Chaos 22, 013101 (2012)], and Wu et al. [Chaos 24, 023108 (2014)]. Our main results contain the following. First, the epidemic threshold is explicitly obtained. In particular, we show that, for any initial conditions, the epidemic eventually dies out regardless of what other factors are whenever some type of immunization awareness is considered, and vaccination has a perfect success. Moreover, the threshold is independent of the global type of awareness. Second, we compare the effect of contact and local types of awareness on the epidemic thresholds between heterogeneous networks and homogeneous networks. Specifically, we find that the epidemic threshold for the homogeneous network can be lower than that of the heterogeneous network in an intermediate regime for intensity of contact infection awareness while it is higher otherwise. In summary, our results highlight the important and crucial roles of both vaccine success and contact infection awareness on epidemic dynamics.

  6. Microtubule catastrophe and rescue.

    PubMed

    Gardner, Melissa K; Zanic, Marija; Howard, Jonathon

    2013-02-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The dynamics of meaningful social interactions and the emergence of collective knowledge

    PubMed Central

    Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka

    2015-01-01

    Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games. PMID:26174482

  8. The dynamics of meaningful social interactions and the emergence of collective knowledge

    NASA Astrophysics Data System (ADS)

    Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka

    2015-07-01

    Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.

  9. The dynamics of meaningful social interactions and the emergence of collective knowledge.

    PubMed

    Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka

    2015-07-15

    Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions &Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor's expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.

  10. Counting motifs in dynamic networks.

    PubMed

    Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer

    2018-04-11

    A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.

  11. Dynamics and control of state-dependent networks for probing genomic organization

    PubMed Central

    Rajapakse, Indika; Groudine, Mark; Mesbahi, Mehran

    2011-01-01

    A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we examine various aspects of a genomic state-dependent dynamic network. In particular, we elaborate on one of the important ramifications of viewing genomic networks as being state-dependent, namely, their controllability during processes of genomic reorganization such as in cell differentiation. PMID:21911407

  12. Dynamic burstiness of word-occurrence and network modularity in textbook systems

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Mei; Yoon, Chang No; Youn, Hyejin; Lee, Sang Hoon; Jung, Jean S.; Han, Seung Kee

    2017-12-01

    We show that the dynamic burstiness of word occurrence in textbook systems is attributed to the modularity of the word association networks. At first, a measure of dynamic burstiness is introduced to quantify burstiness of word occurrence in a textbook. The advantage of this measure is that the dynamic burstiness is decomposable into two contributions: one coming from the inter-event variance and the other from the memory effects. Comparing network structures of physics textbook systems with those of surrogate random textbooks without the memory or variance effects are absent, we show that the network modularity increases systematically with the dynamic burstiness. The intra-connectivity of individual word representing the strength of a tie with which a node is bound to a module accordingly increases with the dynamic burstiness, suggesting individual words with high burstiness are strongly bound to one module. Based on the frequency and dynamic burstiness, physics terminology is classified into four categories: fundamental words, topical words, special words, and common words. In addition, we test the correlation between the dynamic burstiness of word occurrence and network modularity using a two-state model of burst generation.

  13. The CD4+ T cell regulatory network mediates inflammatory responses during acute hyperinsulinemia: a simulation study.

    PubMed

    Martinez-Sanchez, Mariana E; Hiriart, Marcia; Alvarez-Buylla, Elena R

    2017-06-26

    Obesity is frequently linked to insulin resistance, high insulin levels, chronic inflammation, and alterations in the behaviour of CD4+ T cells. Despite the biomedical importance of this condition, the system-level mechanisms that alter CD4+ T cell differentiation and plasticity are not well understood. We model how hyperinsulinemia alters the dynamics of the CD4+ T regulatory network, and this, in turn, modulates cell differentiation and plasticity. Different polarizing microenvironments are simulated under basal and high levels of insulin to assess impacts on cell-fate attainment and robustness in response to transient perturbations. In the presence of high levels of insulin Th1 and Th17 become more stable to transient perturbations, and their basin sizes are augmented, Tr1 cells become less stable or disappear, while TGFβ producing cells remain unaltered. Hence, the model provides a dynamic system-level framework and explanation to further understand the documented and apparently paradoxical role of TGFβ in both inflammation and regulation of immune responses, as well as the emergence of the adipose Treg phenotype. Furthermore, our simulations provide new predictions on the impact of the microenvironment in the coexistence of the different cell types, suggesting that in pro-Th1, pro-Th2 and pro-Th17 environments effector and regulatory cells can coexist, but that high levels of insulin severely diminish regulatory cells, especially in a pro-Th17 environment. This work provides a first step towards a system-level formal and dynamic framework to integrate further experimental data in the study of complex inflammatory diseases.

  14. A Mathematical Model to study the Dynamics of Epithelial Cellular Networks

    PubMed Central

    Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D.; Tomlin, Claire J.

    2013-01-01

    Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction). PMID:23221083

  15. Assessing Socioeconomic Impacts of Cascading Infrastructure Disruptions in a Dynamic Human-Infrastructure Network

    DTIC Science & Technology

    2016-07-01

    CAC common access card DoD Department of Defense FOUO For Official Use Only GIS geographic information systems GUI graphical user interface HISA...as per requirements of this project, is UNCLASS/For Official Use Only (FOUO), with access re- stricted to DOD common access card (CAC) users. Key...Boko Haram Fuel Dump Discovered in Maiduguru.” Available: http://saharareporters.com/2015/10/01/another-boko-haram-fuel- dump - discovered-maiduguri

  16. Health and demographic surveillance systems: contributing to an understanding of the dynamics in migration and health

    PubMed Central

    Gerritsen, Annette; Bocquier, Philippe; White, Michael; Mbacké, Cheikh; Alam, Nurul; Beguy, Donatien; Odhiambo, Frank; Sacoor, Charfudin; Phuc, Ho Dang; Punpuing, Sureeporn; Collinson, Mark A.

    2013-01-01

    Background Migration is difficult to measure because it is highly repeatable. Health and Demographic Surveillance Systems (HDSSs) provide a unique opportunity to study migration as multiple episodes of migration are captured over time. A conceptual framework is needed to show the public health implications of migration. Objective/design Research conducted in seven HDSS centres [International Network for the Demographic Evaluation of Populations and Their Health (INDEPTH) Network], published in a peer-reviewed volume in 2009, is summarised focussing on the age–sex profile of migrants, the relation between migration and livelihoods, and the impact of migration on health. This illustrates the conceptual structure of the implications of migration. The next phase is described, the Multi-centre Analysis of the Dynamics In Migration And Health (MADIMAH) project, consisting of workshops focussed on preparing data and conducting the analyses for comparative studies amongst HDSS centres in Africa and Asia. The focus here is on the (standardisation of) determinants of migration and the impact of migration on adult mortality. Results The findings in the volume showed a relatively regular age structure for migration among all HDSS centres. Furthermore, migration generally contributes to improved living conditions at the place of origin. However, there are potential negative consequences of migration on health. It was concluded that there is a need to compare results from multiple centres using uniform covariate definitions as well as longitudinal analysis techniques. This was the starting point for the on-going MADIMAH initiative, which has increased capacity at the participating HDSS centres to produce the required datasets and conduct the analyses. Conclusions HDSS centres brought together within INDEPTH Network have already provided strong evidence of the potential negative consequences of migration on health, which contrast with the beneficial impacts of migration on livelihoods. Future comparative evidence using standardised tools will help design policies for mitigating the negative effects, and enhancing the positive effects, of migration on health. PMID:23849188

  17. Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences.

    PubMed

    Raz, Gal; Touroutoglou, Alexandra; Wilson-Mendenhall, Christine; Gilam, Gadi; Lin, Tamar; Gonen, Tal; Jacob, Yael; Atzil, Shir; Admon, Roee; Bleich-Cohen, Maya; Maron-Katz, Adi; Hendler, Talma; Barrett, Lisa Feldman

    2016-08-01

    Recent theoretical and empirical work has highlighted the role of domain-general, large-scale brain networks in generating emotional experiences. These networks are hypothesized to process aspects of emotional experiences that are not unique to a specific emotional category (e.g., "sadness," "happiness"), but rather that generalize across categories. In this article, we examined the dynamic interactions (i.e., changing cohesiveness) between specific domain-general networks across time while participants experienced various instances of sadness, fear, and anger. We used a novel method for probing the network connectivity dynamics between two salience networks and three amygdala-based networks. We hypothesized, and found, that the functional connectivity between these networks covaried with the intensity of different emotional experiences. Stronger connectivity between the dorsal salience network and the medial amygdala network was associated with more intense ratings of emotional experience across six different instances of the three emotion categories examined. Also, stronger connectivity between the dorsal salience network and the ventrolateral amygdala network was associated with more intense ratings of emotional experience across five out of the six different instances. Our findings demonstrate that a variety of emotional experiences are associated with dynamic interactions of domain-general neural systems.

  18. Predicting the Lifetime of Dynamic Networks Experiencing Persistent Random Attacks.

    PubMed

    Podobnik, Boris; Lipic, Tomislav; Horvatic, Davor; Majdandzic, Antonio; Bishop, Steven R; Eugene Stanley, H

    2015-09-21

    Estimating the critical points at which complex systems abruptly flip from one state to another is one of the remaining challenges in network science. Due to lack of knowledge about the underlying stochastic processes controlling critical transitions, it is widely considered difficult to determine the location of critical points for real-world networks, and it is even more difficult to predict the time at which these potentially catastrophic failures occur. We analyse a class of decaying dynamic networks experiencing persistent failures in which the magnitude of the overall failure is quantified by the probability that a potentially permanent internal failure will occur. When the fraction of active neighbours is reduced to a critical threshold, cascading failures can trigger a total network failure. For this class of network we find that the time to network failure, which is equivalent to network lifetime, is inversely dependent upon the magnitude of the failure and logarithmically dependent on the threshold. We analyse how permanent failures affect network robustness using network lifetime as a measure. These findings provide new methodological insight into system dynamics and, in particular, of the dynamic processes of networks. We illustrate the network model by selected examples from biology, and social science.

  19. Structurally Dynamic Spin Market Networks

    NASA Astrophysics Data System (ADS)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  20. Improving resolution of dynamic communities in human brain networks through targeted node removal

    PubMed Central

    Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2017-01-01

    Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662

Top