Dynamic tubulation of mitochondria drives mitochondrial network formation.
Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li
2015-10-01
Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.
Incoherence-Mediated Remote Synchronization
NASA Astrophysics Data System (ADS)
Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi
2017-04-01
In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.
Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks
NASA Astrophysics Data System (ADS)
White, Forest M.; Wolf-Yadlin, Alejandro
2016-06-01
Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.
Rapid Neocortical Dynamics: Cellular and Network Mechanisms
Haider, Bilal; McCormick, David A.
2011-01-01
The highly interconnected local and large-scale networks of the neocortical sheet rapidly and dynamically modulate their functional connectivity according to behavioral demands. This basic operating principle of the neocortex is mediated by the continuously changing flow of excitatory and inhibitory synaptic barrages that not only control participation of neurons in networks but also define the networks themselves. The rapid control of neuronal responsiveness via synaptic bombardment is a fundamental property of cortical dynamics that may provide the basis of diverse behaviors, including sensory perception, motor integration, working memory, and attention. PMID:19409263
Event-based simulation of networks with pulse delayed coupling
NASA Astrophysics Data System (ADS)
Klinshov, Vladimir; Nekorkin, Vladimir
2017-10-01
Pulse-mediated interactions are common in networks of different nature. Here we develop a general framework for simulation of networks with pulse delayed coupling. We introduce the discrete map governing the dynamics of such networks and describe the computation algorithm for its numerical simulation.
NASA Astrophysics Data System (ADS)
Jablonski, Piotr; Poe, Gina; Zochowski, Michal
2007-03-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
NASA Astrophysics Data System (ADS)
Jablonski, Piotr; Poe, Gina R.; Zochowski, Michal
2007-01-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
Hultman, Rainbo; Mague, Stephen D.; Li, Qiang; Katz, Brittany M.; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K.; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D.; Dzirasa, Kafui
2016-01-01
Summary Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social-defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. PMID:27346529
Breen, Kristin J; DeBlase, Andrew F; Guasco, Timothy L; Voora, Vamsee K; Jordan, Kenneth D; Nagata, Takashi; Johnson, Mark A
2012-01-26
The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO(2)·(H(2)O)(6)(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.
Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E
2018-01-23
Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Hultman, Rainbo; Mague, Stephen D; Li, Qiang; Katz, Brittany M; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D; Dzirasa, Kafui
2016-07-20
Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1 Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Network structure, topology, and dynamics in generalized models of synchronization
NASA Astrophysics Data System (ADS)
Lerman, Kristina; Ghosh, Rumi
2012-08-01
Network structure is a product of both its topology and interactions between its nodes. We explore this claim using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, nodes synchronize in stages, revealing the network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process similar to diffusion. However, social and biological processes are often nonconservative. We propose a model of synchronization in a network of oscillators coupled via nonconservative processes. We study the dynamics of synchronization of a synthetic and real-world networks and show that the traditional and nonconservative models of synchronization reveal different structures within the same network.
Dynamic Trust Models between Users over Social Networks
2016-03-30
SUPPLEMENTARY NOTES 14. ABSTRACT In this project, by focusing on a number of word -of- mouth communication websites, we attempted to...analyzed evolution of trust networks in social media sites from a perspective of mediators. To this end, we proposed two stochastic models that...focusing on a number of word -of- mouth communication websites, we first attempt to construct dynamic trust models between users that enable to explain trust
Ni, Duan; Song, Kun; Zhang, Jian; Lu, Shaoyong
2017-10-26
Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras-NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.
Song, Kun; Zhang, Jian; Lu, Shaoyong
2017-01-01
Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras–NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras. PMID:29072601
Blankenship, Elise; Vahedi-Faridi, Ardeschir; Lodowski, David T
2015-12-01
Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. We present the 2.3-Å resolution structure of native source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent-mediated hydrogen-bonding network with the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When considered along with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins. PMID:24466147
Blacklock, Kristin; Verkhivker, Gennady M
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.
Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B
2014-05-01
High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of hyperpolarizing, post-inhibitory rebound is not elicited and factors i) and ii) dominate, yielding lower synchrony in GIF networks than in IF networks.
Baroni, Fabiano; Burkitt, Anthony N.; Grayden, David B.
2014-01-01
High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of hyperpolarizing, post-inhibitory rebound is not elicited and factors i) and ii) dominate, yielding lower synchrony in GIF networks than in IF networks. PMID:24784237
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Pastor-Satorras, Romualdo
2017-10-01
The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.
James, Kevin A.; Verkhivker, Gennady M.
2014-01-01
The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced “superacceptor” activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD) motif in the catalytic loop and the Asp-Phe-Gly (DFG) motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not limited to the ATP site, and may enhance allosteric cooperativity with the substrate binding region by increasing communication capabilities of mediating residues. PMID:25427151
ERIC Educational Resources Information Center
Snyder, Herbert; Kurtze, Douglas
1992-01-01
Discusses the use of chaos, or nonlinear dynamics, for investigating computer-mediated communication. A comparison between real, human-generated data from a computer network and similarly constructed random-generated data is made, and mathematical procedures for determining chaos are described. (seven references) (LRW)
Rhythmogenic neuronal networks, emergent leaders, and k-cores.
Schwab, David J; Bruinsma, Robijn F; Feldman, Jack L; Levine, Alex J
2010-11-01
Neuronal network behavior results from a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a simplified model, based on the proposal of Feldman and Del Negro (FDN) [Nat. Rev. Neurosci. 7, 232 (2006)], of the preBötzinger Complex, a small neuronal network that participates in the control of the mammalian breathing rhythm through periodic firing bursts. The dynamics of this randomly connected network of identical excitatory neurons differ from those of a uniformly connected one. Specifically, network connectivity determines the identity of emergent leader neurons that trigger the firing bursts. When neuronal desensitization is controlled by the number of input signals to the neurons (as proposed by FDN), the network's collective desensitization--required for successful burst termination--is mediated by k-core clusters of neurons.
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
MicroRNA-mediated regulatory circuits: outlook and perspectives
NASA Astrophysics Data System (ADS)
Cora', Davide; Re, Angela; Caselle, Michele; Bussolino, Federico
2017-08-01
MicroRNAs have been found to be necessary for regulating genes implicated in almost all signaling pathways, and consequently their dysfunction influences many diseases, including cancer. Understanding of the complexity of the microRNA-mediated regulatory network has grown in terms of size, connectivity and dynamics with the development of computational and, more recently, experimental high-throughput approaches for microRNA target identification. Newly developed studies on recurrent microRNA-mediated circuits in regulatory networks, also known as network motifs, have substantially contributed to addressing this complexity, and therefore to helping understand the ways by which microRNAs achieve their regulatory role. This review provides a summarizing view of the state-of-the-art, and perspectives of research efforts on microRNA-mediated regulatory motifs. In this review, we discuss the topological properties characterizing different types of circuits, and the regulatory features theoretically enabled by such properties, with a special emphasis on examples of circuits typifying their biological significance in experimentally validated contexts. Finally, we will consider possible future developments, in particular regarding microRNA-mediated circuits involving long non-coding RNAs and epigenetic regulators.
On the Dynamics of the Spontaneous Activity in Neuronal Networks
Bonifazi, Paolo; Ruaro, Maria Elisabetta; Torre, Vincent
2007-01-01
Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics. PMID:17502919
Foley, Elaine; Rippon, Gina; Thai, Ngoc Jade; Longe, Olivia; Senior, Carl
2012-02-01
Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223-233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.
Raimondo, Joseph V; Tomes, Hayley; Irkle, Agnese; Kay, Louise; Kellaway, Lauriston; Markram, Henry; Millar, Robert P; Akerman, Colin J
2016-06-29
Astrocytes can both sense and shape the evolution of neuronal network activity and are known to possess unique ion regulatory mechanisms. Here we explore the relationship between astrocytic intracellular pH dynamics and the synchronous network activity that occurs during seizure-like activity. By combining confocal and two-photon imaging of genetically encoded pH reporters with simultaneous electrophysiological recordings, we perform pH measurements in defined cell populations and relate these to ongoing network activity. This approach reveals marked differences in the intracellular pH dynamics between hippocampal astrocytes and neighboring pyramidal neurons in rodent in vitro models of epilepsy. With three different genetically encoded pH reporters, astrocytes are observed to alkalinize during epileptiform activity, whereas neurons are observed to acidify. In addition to the direction of pH change, the kinetics of epileptiform-associated intracellular pH transients are found to differ between the two cell types, with astrocytes displaying significantly more rapid changes in pH. The astrocytic alkalinization is shown to be highly correlated with astrocytic membrane potential changes during seizure-like events and mediated by an electrogenic Na(+)/HCO3 (-) cotransporter. Finally, comparisons across different cell-pair combinations reveal that astrocytic pH dynamics are more closely related to network activity than are neuronal pH dynamics. This work demonstrates that astrocytes exhibit distinct pH dynamics during periods of epileptiform activity, which has relevance to multiple processes including neurometabolic coupling and the control of network excitability. Dynamic changes in intracellular ion concentrations are central to the initiation and progression of epileptic seizures. However, it is not known how changes in intracellular H(+) concentration (ie, pH) differ between different cell types during seizures. Using recently developed pH-sensitive proteins, we demonstrate that astrocytes undergo rapid alkalinization during periods of seizure-like activity, which is in stark contrast to the acidification that occurs in neighboring neurons. Rapid astrocytic pH changes are highly temporally correlated with seizure activity, are mediated by an electrogenic Na(+)/HCO3- cotransporter, and are more tightly coupled to network activity than are neuronal pH changes. As pH has profound effects on signaling in the nervous system, this work has implications for our understanding of seizure dynamics. Copyright © 2016 the authors 0270-6474/16/367002-12$15.00/0.
Thermal fluctuations and elastic relaxation in the compressed exponential dynamics of colloidal gels
NASA Astrophysics Data System (ADS)
Bouzid, Mehdi; Colombo, Jader; Del Gado, Emanuela
Colloidal gels belong to the class of amorphous systems, they are disordered elastic solids that can form at very low volume fraction, via aggregation into a rich variety of networks. They exhibit a slow relaxation process in the aging regime similar to the glassy dynamics. A wide range of experiments on colloidal gels show unusual compressed exponential of the relaxation dynamical properties. We use molecular dynamics simulation to investigate how the dynamic change with the age of the system. Upon breaking and reorganization of the network structure, the system may display stretched or compressed exponential relaxation. We show that the transition between these two regimes is associated to the interplay between thermally activated rearrangements and the elastic relaxation of internal stresses. In particular, ballistic-like displacements emerge from the non local relaxation of internal stresses mediated by a series of ''micro-collapses''. When thermal fluctuations dominate, the gel restructuring involves instead more homogeneous displacements across the heterogeneous gel network, leading to a stretched exponential type of relaxation.
Construction of Injectable Double-Network Hydrogels for Cell Delivery.
Yan, Yan; Li, Mengnan; Yang, Di; Wang, Qian; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong
2017-07-10
Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol-gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix.
Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics
Pandini, Alessandro; Fornili, Arianna; Fraternali, Franca; Kleinjung, Jens
2012-01-01
Allostery offers a highly specific way to modulate protein function. Therefore, understanding this mechanism is of increasing interest for protein science and drug discovery. However, allosteric signal transmission is difficult to detect experimentally and to model because it is often mediated by local structural changes propagating along multiple pathways. To address this, we developed a method to identify communication pathways by an information-theoretical analysis of molecular dynamics simulations. Signal propagation was described as information exchange through a network of correlated local motions, modeled as transitions between canonical states of protein fragments. The method was used to describe allostery in two-component regulatory systems. In particular, the transmission from the allosteric site to the signaling surface of the receiver domain NtrC was shown to be mediated by a layer of hub residues. The location of hubs preferentially connected to the allosteric site was found in close agreement with key residues experimentally identified as involved in the signal transmission. The comparison with the networks of the homologues CheY and FixJ highlighted similarities in their dynamics. In particular, we showed that a preorganized network of fragment connections between the allosteric and functional sites exists already in the inactive state of all three proteins.—Pandini, A., Fornili, A., Fraternali, F., Kleinjung, J. Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics. PMID:22071506
MATHEMATICAL MODEL OF STERIODOGENESIS TO PREDICT DYNAMIC RESPONSE TO ENDOCRINE DISRUPTORS
WE ARE DEVELOPING A MECHANISTIC MATHEMATICAL MODEL OF THE INTRATESTICULAR AND INTRAOVARIAN METABOLIC NETWORK THAT MEDIATES STEROID SYNTHESIS, AND THE KINETICS FOR ENZYME INHIBITION BY EDCs TO PREDICT THE TIME AND DOSE-RESPONSE.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
NASA Astrophysics Data System (ADS)
Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.
2018-02-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.
Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E
2018-01-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Sivaramakrishnan, Sivaraj; Schneider, Jaime L.; Sitikov, Albert; Goldman, Robert D.
2009-01-01
Keratin intermediate filaments (KIFs) form a fibrous polymer network that helps epithelial cells withstand external mechanical forces. Recently, we established a correlation between the structure of the KIF network and its local mechanical properties in alveolar epithelial cells. Shear stress applied across the cell surface resulted in the structural remodeling of KIF and a substantial increase in the elastic modulus of the network. This study examines the mechanosignaling that regulates the structural remodeling of the KIF network. We report that the shear stress–mediated remodeling of the KIF network is facilitated by a twofold increase in the dynamic exchange rate of KIF subunits, which is regulated in a PKC ζ and 14-3-3–dependent manner. PKC ζ phosphorylates K18pSer33, and this is required for the structural reorganization because the KIF network in A549 cells transfected with a dominant negative PKC ζ, or expressing the K18Ser33Ala mutation, is unchanged. Blocking the shear stress–mediated reorganization results in reduced cellular viability and increased apoptotic levels. These data suggest that shear stress mediates the phosphorylation of K18pSer33, which is required for the reorganization of the KIF network, resulting in changes in mechanical properties of the cell that help maintain the integrity of alveolar epithelial cells. PMID:19357195
Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian
2017-04-10
Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more from network members than participation in a single network, as it involves health service professionals and consumers in a multi-network dynamic. This dynamic requires deliberations and collaborations to be flexible, and it increasingly positions members as "strategic hybrids" - people who have moved on from singular taken-as-given stances and identities, towards hybrid positionings and flexible perspectives. Originality/value This paper is novel in that it identifies a critical feature of health service reform and large system transformation: network governance is empowered through the dynamic co-location of and collaboration among healthcare networks, particularly when complemented with "enabler" teams of people specialising in programme implementation and evaluation.
SH3 interactome conserves general function over specific form
Xin, Xiaofeng; Gfeller, David; Cheng, Jackie; Tonikian, Raffi; Sun, Lin; Guo, Ailan; Lopez, Lianet; Pavlenco, Alevtina; Akintobi, Adenrele; Zhang, Yingnan; Rual, Jean-François; Currell, Bridget; Seshagiri, Somasekar; Hao, Tong; Yang, Xinping; Shen, Yun A; Salehi-Ashtiani, Kourosh; Li, Jingjing; Cheng, Aaron T; Bouamalay, Dryden; Lugari, Adrien; Hill, David E; Grimes, Mark L; Drubin, David G; Grant, Barth D; Vidal, Marc; Boone, Charles; Sidhu, Sachdev S; Bader, Gary D
2013-01-01
Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form. PMID:23549480
NASA Astrophysics Data System (ADS)
Bellesia, Giovanni; Bales, Benjamin B.
2016-10-01
We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.
Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso
2016-12-24
Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.
Vargas, Diego A.; Sun, Meng; Sadykov, Khikmet; Kukuruzinska, Maria A.; Zaman, Muhammad H.
2016-01-01
The cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction. Here we present the first numerical model of this network in MDCK cells. Since the network comprises a large number of molecules with varying cell context and time-dependent levels of expression, it can give rise to a wide range of plausible cellular states that are difficult to track. Using known kinetic parameters for individual reactions in the component pathways, we have developed a theoretical framework and gained new insights into cellular regulation of the network. Specifically, we developed a mathematical model to quantify the fold-change in concentration of any molecule included in the mathematical representation of the network in response to a simulated activation of the Wnt/ β-catenin pathway with Wnt3a under different conditions. We quantified the importance of protein N-glycosylation and synthesis of the DPAGT1 encoded enzyme, GPT, in determining the abundance of cytoplasmic β-catenin. We confirmed the role of axin in β-catenin degradation. Finally, our data suggest that cell-cell adhesion is insensitive to E-cadherin recycling in the cell. We validate the model by inhibiting β-catenin-mediated activation of DPAGT1 expression and predicting changes in cytoplasmic β-catenin concentration and stability of E-cadherin junctions in response to DPAGT1 inhibition. We show the impact of pathway dysregulation through measurements of cell migration in scratch-wound assays. Collectively, our results highlight the importance of numerical analyses of cellular networks dynamics to gain insights into physiological processes and potential design of therapeutic strategies to prevent epithelial cell invasion in cancer. PMID:27427963
Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.
Popov, Tzvetan; Westner, Britta U; Silton, Rebecca L; Sass, Sarah M; Spielberg, Jeffrey M; Rockstroh, Brigitte; Heller, Wendy; Miller, Gregory A
2018-05-02
Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color-word Stroop task. Time-frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal-parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation. SIGNIFICANCE STATEMENT Hemodynamic neuroimaging research has recently clarified regional structures in brain networks supporting inhibitory control. However, due to inherent methodological constraints, much of this research has been unable to characterize the temporal dynamics of such networks (e.g., direction of information flow between nodes). Guided by fMRI research identifying the structure of brain networks supporting inhibitory control, results of EEG source analysis in a test sample ( n = 96) and replication sample ( n = 237) using effective connectivity and predictive analytics strategies advance a model of inhibitory control by characterizing the precise temporal dynamics by which this network operates and exemplify an approach by which mechanistic models can be developed for other key psychological processes. Copyright © 2018 the authors 0270-6474/18/384348-09$15.00/0.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Snijders, Tom A.B.; Lomi, Alessandro; Torló, Vanina Jasmine
2012-01-01
We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency. The empirical value of the model is demonstrated by examining how employment preferences co-evolve with friendship and advice relations in a group of seventy-five MBA students. The analysis shows that activity in the two-mode network, as expressed by number of employment preferences, is related to activity in the friendship network, as expressed by outdegrees. Further, advice ties between students lead to agreement with respect to employment preferences. In addition, considering the multiplexity of advice and friendship ties yields a better understanding of the dynamics of the advice relation: tendencies to reciprocation and homophily in advice relations are mediated to an important extent by friendship relations. The discussion pays attention to the implications of this study in the broader context of current efforts to model the co-evolutionary dynamics of social networks and individual behavior. PMID:23690653
Suicide clusters among young Kenyan men.
Goodman, Michael L; Puffer, Eve S; Keiser, Philip H; Gitari, Stanley
2017-11-01
Suicide is a leading cause of global mortality. Suicide clusters have recently been identified among peer networks in high-income countries. This study investigates dynamics of suicide clustering within social networks of young Kenya men ( n = 532; 18-34 years). We found a strong, statistically significant association between reported number of friends who previously attempted suicide and present suicide ideation (odds ratio = 1.9; 95% confidence interval (1.42, 2.54); p < 0.001). This association was mediated by lower collective self-esteem (23% of total effect). Meaning in life further mediated the association between collective self-esteem and suicide ideation. Survivors of peer suicide should be evaluated for suicide risk.
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.
Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L
2012-05-29
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.
Williamson, Cait M.; Franks, Becca; Curley, James P.
2016-01-01
Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression. PMID:27540359
Dynamic Interactions for Network Visualization and Simulation
2009-03-01
projects.htm, Site accessed January 5, 2009. 12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with Visualization ( MUSIC -V). Master’s...Computing Sciences in Colleges, December 2005). 14. Enrique Campos -Nanez, “nscript user manual,” Department of System Engineer- ing University of
Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks
Picton, Laurence D.; Nascimento, Filipe; Broadhead, Matthew J.; Sillar, Keith T.
2017-01-01
Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more “natural” locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT The sodium pump is ubiquitously expressed and responsible for at least half of total brain energy consumption. The pumps maintain ionic gradients and the resting membrane potential of neurons, but increasing evidence suggests that activity- and state-dependent changes in pump activity also influence neuronal firing. Here we demonstrate that changes in sodium pump activity regulate locomotor output in the spinal cord of neonatal mice. We describe a sodium pump-mediated afterhyperpolarization in spinal neurons, mediated by spike-dependent increases in pump activity, which is affected by dopamine. Understanding how sodium pumps contribute to network regulation and are targeted by neuromodulators, including dopamine, has clinical relevance due to the role of the sodium pump in diseases, including amyotrophic lateral sclerosis, parkinsonism, epilepsy, and hemiplegic migraine. PMID:28123025
Theory of rumour spreading in complex social networks
NASA Astrophysics Data System (ADS)
Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.
2007-01-01
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.
Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O
2015-05-01
Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.
Liu, Youtao; Lacal, Jesus; Firtel, Richard A; Kortholt, Arjan
2018-07-04
The directional movement toward extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.
Disentangling the role of floral sensory stimuli in pollination networks.
Kantsa, Aphrodite; Raguso, Robert A; Dyer, Adrian G; Olesen, Jens M; Tscheulin, Thomas; Petanidou, Theodora
2018-03-12
Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role for sensory bias and diffuse coevolution in structuring plant-pollinator networks. This knowledge of floral sensory diversity, by identifying the most influential phenotypes, could help prioritize efforts for plant-pollinator community restoration.
Mnemonic convergence in social networks: The emergent properties of cognition at a collective level.
Coman, Alin; Momennejad, Ida; Drach, Rae D; Geana, Andra
2016-07-19
The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members' memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals.
Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis
Hellesøy, Monica; Lorens, James B.
2015-01-01
The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089
USDA-ARS?s Scientific Manuscript database
The endoplasmic reticulum (ER) is a dynamic network that consists of numerous regions or subdomains with discrete morphological features and functional properties, including those involved in protein and oil-body formation, anterograde transport of secretory proteins, the exchange of macromolecules ...
Bellesia, Giovanni; Bales, Benjamin B.
2016-10-10
Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2012-01-01
Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718
Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso
2016-01-01
Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay. DOI: http://dx.doi.org/10.7554/eLife.20362.001 PMID:28012274
In-silico studies of neutral drift for functional protein interaction networks
NASA Astrophysics Data System (ADS)
Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
We have developed a minimal physically-motivated model of protein-protein interaction networks. Our system consists of two classes of enzymes, activators (e.g. kinases) and deactivators (e.g. phosphatases), and the enzyme-mediated activation/deactivation rates are determined by sequence-dependent binding strengths between enzymes and their targets. The network is evolved by introducing random point mutations in the binding sequences where we assume that each new mutation is either fixed or entirely lost. We apply this model to studies of neutral drift in networks that yield oscillatory dynamics, where we start, for example, with a relatively simple network and allow it to evolve by adding nodes and connections while requiring that dynamics be conserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. Surprisingly, in addition to this redistribution time we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains.
Lesnicki, Dominika; Sulpizi, Marialore
2018-06-13
What happens when extra vibrational energy is added to water? Using nonequilibrium molecular dynamics simulations, also including the full electronic structure, and novel descriptors, based on projected vibrational density of states, we are able to follow the flow of excess vibrational energy from the excited stretching and bending modes. We find that the energy relaxation, mostly mediated by a stretching-stretching coupling in the first solvation shell, is highly heterogeneous and strongly depends on the local environment, where a strong hydrogen bond network can transport energy with a time scale of 200 fs, whereas a weaker network can slow down the transport by a factor 2-3.
Learners' Agency in a Facebook-Mediated Community
ERIC Educational Resources Information Center
Wu, Greg Chung-Hsien; Chao, Yu-Chuan Joni
2015-01-01
Agency, defined by Gao (2013) as learners' "dynamic strategic behavior" (p. 29) in response to contextual realities, has been central to educational undertakings. While the affordances of social networking sites like Facebook have been extensively examined in a number of educational studies, there has been a scarcity of research on…
Antiqueira, Lucas; Janga, Sarath Chandra; Costa, Luciano da Fontoura
2012-11-01
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.
Makhouri, Farahnaz Rezaei; Ghasemi, Jahan B
2018-06-04
The acetylated inclusions containing TDP-43 are found in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, suggesting that aberrant TDP-43 acetylation and resulting disruption of RNA binding are linked to onset and progression of TDP-43 proteinopathy. Here, the consequences of TDP-43 acetylation at Lys145 within the RRM1 domain and Lys192 within the RRM2 domain were studied using experimentally verifiable molecular models, in which lysine residues (K) were substituted with glutamine (Q) as an acetylation mimic (K→Q) and with arginine (R) as a non-mimic (K→R) mutant. We used a series of computer simulations to characterize the impact of lysine acetylation on TDP-43 function and TDP-43 association with target RNA. Using snapshots collected from the MD simulation trajectories, the cross-correlation and principal component analyses (PCA) were applied to shed light on the dynamic discrepancy among the ten studied systems and to discern TDP-43 subdomains that exhibit conformational plasticity in response to acetylation mimic and non-mimic mutations. Moreover, we also investigated the global network parameter, betweenness, to model communication pathways and identify a network of critical mediating nodes involved in long-range signaling. These nodes describe the functionally significant TDP-43 residues involved in TDP-43 regulation. The identification of the critical nodes and optimal path mediating the dynamical network communication could offer new strategies to manipulate TDP-43 function. Disrupting a specific network communication could represent a rational approach to the design of drugs with improved potency and selectivity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Analysis of the dynamic co-expression network of heart regeneration in the zebrafish
Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco
2016-01-01
The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. PMID:27241320
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2014-01-01
Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261
Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks
Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.
2013-01-01
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888
Analysis of the dynamic co-expression network of heart regeneration in the zebrafish
NASA Astrophysics Data System (ADS)
Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco
2016-05-01
The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.
Innovation diffusion on time-varying activity driven networks
NASA Astrophysics Data System (ADS)
Rizzo, Alessandro; Porfiri, Maurizio
2016-01-01
Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.
Krishnan, Giri P.; Filatov, Gregory; Shilnikov, Andrey
2015-01-01
Ionic concentrations fluctuate significantly during epileptic seizures. In this study, using a combination of in vitro electrophysiology, computer modeling, and dynamical systems analysis, we demonstrate that changes in the potassium and sodium intra- and extracellular ion concentrations ([K+] and [Na+], respectively) during seizure affect the neuron dynamics by modulating the outward Na+/K+ pump current. First, we show that an increase of the outward Na+/K+ pump current mediates termination of seizures when there is a progressive increase in the intracellular [Na+]. Second, we show that the Na+/K+ pump current is crucial in maintaining the stability of the physiological network state; a reduction of this current leads to the onset of seizures via a positive-feedback loop. We then present a novel dynamical mechanism for bursting in neurons with a reduced Na+/K+ pump. Overall, our study demonstrates the profound role of the current mediated by Na+/K+ ATPase on the stability of neuronal dynamics that was previously unknown. PMID:25589588
Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene
2010-01-01
The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645
Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M Teresa; Martinez, Jose C; Luque, Irene
2010-01-22
The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design.
Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.
Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B
2014-03-19
Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior
Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.
2014-01-01
Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252
Extracellular matrix structure.
Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K
2016-02-01
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis
NASA Astrophysics Data System (ADS)
Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie
2011-01-01
Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.
Mnemonic convergence in social networks: The emergent properties of cognition at a collective level
Coman, Alin; Momennejad, Ida; Drach, Rae D.; Geana, Andra
2016-01-01
The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members’ memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals. PMID:27357678
Spellmon, Nicholas; Sun, Xiaonan; Sirinupong, Nualpun; Edwards, Brian; Li, Chunying; Yang, Zhe
2015-01-01
SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open-closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.
Mindfulness and dynamic functional neural connectivity in children and adolescents.
Marusak, Hilary A; Elrahal, Farrah; Peters, Craig A; Kundu, Prantik; Lombardo, Michael V; Calhoun, Vince D; Goldberg, Elimelech K; Cohen, Cindy; Taub, Jeffrey W; Rabinak, Christine A
2018-01-15
Interventions that promote mindfulness consistently show salutary effects on cognition and emotional wellbeing in adults, and more recently, in children and adolescents. However, we lack understanding of the neurobiological mechanisms underlying mindfulness in youth that should allow for more judicious application of these interventions in clinical and educational settings. Using multi-echo multi-band fMRI, we examined dynamic (i.e., time-varying) and conventional static resting-state connectivity between core neurocognitive networks (i.e., salience/emotion, default mode, central executive) in 42 children and adolescents (ages 6-17). We found that trait mindfulness in youth relates to dynamic but not static resting-state connectivity. Specifically, more mindful youth transitioned more between brain states over the course of the scan, spent overall less time in a certain connectivity state, and showed a state-specific reduction in connectivity between salience/emotion and central executive networks. The number of state transitions mediated the link between higher mindfulness and lower anxiety, providing new insights into potential neural mechanisms underlying benefits of mindfulness on psychological health in youth. Our results provide new evidence that mindfulness in youth relates to functional neural dynamics and interactions between neurocognitive networks, over time. Copyright © 2017 Elsevier B.V. All rights reserved.
You, Hongzhi; Wang, Da-Hui
2017-01-01
Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems. PMID:28223913
You, Hongzhi; Wang, Da-Hui
2017-01-01
Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems.
Untangling the web: Mechanisms underlying ER network formation
Goyal, Uma; Blackstone, Craig
2013-01-01
The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca2+dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. PMID:23602970
Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.
2008-01-01
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371
Construction and Deciphering of Human Phosphorylation-Mediated Signaling Transduction Networks.
Zhang, Menghuan; Li, Hong; He, Ying; Sun, Han; Xia, Li; Wang, Lishun; Sun, Bo; Ma, Liangxiao; Zhang, Guoqing; Li, Jing; Li, Yixue; Xie, Lu
2015-07-02
Protein phosphorylation is the most abundant reversible covalent modification. Human protein kinases participate in almost all biological pathways, and approximately half of the kinases are associated with disease. PhoSigNet was designed to store and display human phosphorylation-mediated signal transduction networks, with additional information related to cancer. It contains 11 976 experimentally validated directed edges and 216 871 phosphorylation sites. Moreover, 3491 differentially expressed proteins in human cancer from dbDEPC, 18 907 human cancer variation sites from CanProVar, and 388 hyperphosphorylation sites from PhosphoSitePlus were collected as annotation information. Compared with other phosphorylation-related databases, PhoSigNet not only takes the kinase-substrate regulatory relationship pairs into account, but also extends regulatory relationships up- and downstream (e.g., from ligand to receptor, from G protein to kinase, and from transcription factor to targets). Furthermore, PhoSigNet allows the user to investigate the impact of phosphorylation modifications on cancer. By using one set of in-house time series phosphoproteomics data, the reconstruction of a conditional and dynamic phosphorylation-mediated signaling network was exemplified. We expect PhoSigNet to be a useful database and analysis platform benefiting both proteomics and cancer studies.
Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael
2015-02-01
Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.
Millisecond-timescale local network coding in the rat primary somatosensory cortex.
Eldawlatly, Seif; Oweiss, Karim G
2011-01-01
Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic bayesian networks over many repeated trials, with network similarity of 83.3±6% within whisker, compared to only 50.3±18% across whiskers. These networks further provided information about whisker identity that was approximately 6 times higher than what was provided by the latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined separately. Furthermore, prediction of individual neurons' precise firing conditioned on knowledge of putative pre-synaptic cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest the presence of a temporally precise network coding mechanism that integrates information across neighboring columns within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by layer V.
Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.
Khan, Sheraz; Hashmi, Javeria A; Mamashli, Fahimeh; Michmizos, Konstantinos; Kitzbichler, Manfred G; Bharadwaj, Hari; Bekhti, Yousra; Ganesan, Santosh; Garel, Keri-Lee A; Whitfield-Gabrieli, Susan; Gollub, Randy L; Kong, Jian; Vaina, Lucia M; Rana, Kunjan D; Stufflebeam, Steven M; Hämäläinen, Matti S; Kenet, Tal
2018-07-01
The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development. Copyright © 2018. Published by Elsevier Inc.
CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis.
Vrahatis, Aristidis G; Dimitrakopoulou, Konstantina; Balomenos, Panos; Tsakalidis, Athanasios K; Bezerianos, Anastasios
2016-03-15
In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time. To address these challenges, we developed time-vaRying enriCHment integrOmics Subpathway aNalysis tOol (CHRONOS) by integrating time series mRNA/microRNA expression data with KEGG pathway maps and microRNA-target interactions. Specifically, microRNA-mediated subpathway topologies are extracted and evaluated based on the temporal transition and the fold change activity of the linked genes/microRNAs. Further, we provide measures that capture the structural and functional features of subpathways in relation to the complete organism pathway atlas. Our application to synthetic and real data shows that CHRONOS outperforms current subpathway-based methods into unraveling the inherent dynamic properties of pathways. CHRONOS is freely available at http://biosignal.med.upatras.gr/chronos/ tassos.bezerianos@nus.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination.
Sun, Xiaoqiang; Bao, Jiguang; You, Zhuhong; Chen, Xing; Cui, Jun
2016-09-27
The efficacy of pharmacological perturbation to the signaling transduction network depends on the network topology. However, whether and how signaling dynamics mediated by crosstalk contributes to the drug resistance are not fully understood and remain to be systematically explored. In this study, motivated by a realistic signaling network linked by crosstalk between EGF/EGFR/Ras/MEK/ERK pathway and HGF/HGFR/PI3K/AKT pathway, we develop kinetic models for several small networks with typical crosstalk modules to investigate the role of the architecture of crosstalk in inducing drug resistance. Our results demonstrate that crosstalk inhibition diminishes the response of signaling output to the external stimuli. Moreover, we show that signaling crosstalk affects the relative sensitivity of drugs, and some types of crosstalk modules that could yield resistance to the targeted drugs were identified. Furthermore, we quantitatively evaluate the relative efficacy and synergism of drug combinations. For the modules that are resistant to the targeted drug, we identify drug targets that can not only increase the relative drug efficacy but also act synergistically. In addition, we analyze the role of the strength of crosstalk in switching a module between drug-sensitive and drug-resistant. Our study provides mechanistic insights into the signaling crosstalk-mediated mechanisms of drug resistance and provides implications for the design of synergistic drug combinations to reduce drug resistance.
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. PMID:24922508
Blacklock, Kristin; Verkhivker, Gennady M
2014-06-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks.
Vrahatis, Aristidis G; Dimitrakopoulos, Georgios N; Tsakalidis, Athanasios K; Bezerianos, Anastasios
2015-01-01
In the road for network medicine the newly emerged systems-level subpathway-based analysis methods offer new disease genes, drug targets and network-based biomarkers. In parallel, paired miRNA/mRNA expression data enable simultaneously monitoring of the micronome effect upon the signaling pathways. Towards this orientation, we present a methodological pipeline for the identification of differentially expressed subpathways along with their miRNA regulators by using KEGG signaling pathway maps, miRNA-target interactions and expression profiles from paired miRNA/mRNA experiments. Our pipeline offered new biological insights on a real application of paired miRNA/mRNA expression profiles with respect to the dynamic changes from colostrum to mature milk whey; several literature supported genes and miRNAs were recontextualized through miRNA-mediated differentially expressed subpathways.
Stetz, Gabrielle; Verkhivker, Gennady M
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Stetz, Gabrielle; Verkhivker, Gennady M.
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280
Zhang, Hong-Yan; Sillar, Keith T
2012-03-20
Brain networks memorize previous performance to adjust their output in light of past experience. These activity-dependent modifications generally result from changes in synaptic strengths or ionic conductances, and ion pumps have only rarely been demonstrated to play a dynamic role. Locomotor behavior is produced by central pattern generator (CPG) networks and modified by sensory and descending signals to allow for changes in movement frequency, intensity, and duration, but whether or how the CPG networks recall recent activity is largely unknown. In Xenopus frog tadpoles, swim bout duration correlates linearly with interswim interval, suggesting that the locomotor network retains a short-term memory of previous output. We discovered an ultraslow, minute-long afterhyperpolarization (usAHP) in network neurons following locomotor episodes. The usAHP is mediated by an activity- and sodium spike-dependent enhancement of electrogenic Na(+)/K(+) pump function. By integrating spike frequency over time and linking the membrane potential of spinal neurons to network performance, the usAHP plays a dynamic role in short-term motor memory. Because Na(+)/K(+) pumps are ubiquitously expressed in neurons of all animals and because sodium spikes inevitably accompany network activity, the usAHP may represent a phylogenetically conserved but largely overlooked mechanism for short-term memory of neural network function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian
2017-01-01
T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087
Liu, Yingting; Purvis, Jeremy; Shih, Andrew; Weinstein, Joshua; Agrawal, Neeraj; Radhakrishnan, Ravi
2007-06-01
We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these consequences in light of how the network topology and signaling characteristics of altered (mutant) cell lines are shaped differently in relationship to native cell lines.
Controlling Complex Systems and Developing Dynamic Technology
NASA Astrophysics Data System (ADS)
Avizienis, Audrius Victor
In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit complex dynamics (e.g. both short- and long-term changes in conductivity) in response to applied voltage signals. Characterization of these atomic switch networks (ASNs) brought out interesting parallels to biological neural networks, including power-law scaling in the statistics of electrical signal propagation and dynamic self-organization of differentiated subnetworks. A reservoir computing (RC) strategy was employed to utilize measurements of electrical signals dynamically generated in ASNs to perform time-series memory and manipulation tasks including a parity test and arbitrary waveform generation. These results represent the useful integration of a complex network into a dynamic physical RC device.
Structure and function of complex brain networks
Sporns, Olaf
2013-01-01
An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898
Ladepeche, Laurent; Yang, Luting; Bouchet, Delphine; Groc, Laurent
2013-01-01
Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR) have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R) laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.
2017-01-01
Abstract RNA transcriptional regulators are emerging as versatile components for genetic network construction. However, these regulators suffer from incomplete repression in their OFF state, making their dynamic range less than that of their protein counterparts. This incomplete repression causes expression leak, which impedes the construction of larger synthetic regulatory networks as leak propagation can interfere with desired network function. To address this, we demonstrate how naturally derived antisense RNA-mediated transcriptional regulators can be configured to regulate both transcription and translation in a single compact RNA mechanism that functions in Escherichia coli. Using in vivo gene expression assays, we show that a combination of transcriptional termination and ribosome binding site sequestration increases repression from 85% to 98%, or activation from 10-fold to over 900-fold, in response to cognate antisense RNAs. We also show that orthogonal repressive versions of this mechanism can be created through engineering minimal antisense RNAs. Finally, to demonstrate the utility of this mechanism, we use it to reduce network leak in an RNA-only cascade. We anticipate these regulators will find broad use as synthetic biology moves beyond parts engineering to the design and construction of more sophisticated regulatory networks. PMID:28387839
Wieters, Evie A.; Navarrete, Sergio A.
2016-01-01
Species are linked to each other by a myriad of positive and negative interactions. This complex spectrum of interactions constitutes a network of links that mediates ecological communities’ response to perturbations, such as exploitation and climate change. In the last decades, there have been great advances in the study of intricate ecological networks. We have, nonetheless, lacked both the data and the tools to more rigorously understand the patterning of multiple interaction types between species (i.e., “multiplex networks”), as well as their consequences for community dynamics. Using network statistical modeling applied to a comprehensive ecological network, which includes trophic and diverse non-trophic links, we provide a first glimpse at what the full “entangled bank” of species looks like. The community exhibits clear multidimensional structure, which is taxonomically coherent and broadly predictable from species traits. Moreover, dynamic simulations suggest that this non-random patterning of how diverse non-trophic interactions map onto the food web could allow for higher species persistence and higher total biomass than expected by chance and tends to promote a higher robustness to extinctions. PMID:27487303
Dynamic self-guiding analysis of Alzheimer's disease
Kurakin, Alexei; Bredesen, Dale E.
2015-01-01
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885
Tse, Amanda; Verkhivker, Gennady M.
2016-01-01
The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment. PMID:27861609
NASA Technical Reports Server (NTRS)
Sundermier, Amy (Inventor)
2002-01-01
A method for acquiring and assembling software components at execution time into a client program, where the components may be acquired from remote networked servers is disclosed. The acquired components are assembled according to knowledge represented within one or more acquired mediating components. A mediating component implements knowledge of an object model. A mediating component uses its implemented object model knowledge, acquired component class information and polymorphism to assemble components into an interacting program at execution time. The interactions or abstract relationships between components in the object model may be implemented by the mediating component as direct invocations or indirect events or software bus exchanges. The acquired components may establish communications with remote servers. The acquired components may also present a user interface representing data to be exchanged with the remote servers. The mediating components may be assembled into layers, allowing arbitrarily complex programs to be constructed at execution time.
Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.
Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut
2017-11-13
Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.
Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations
NASA Astrophysics Data System (ADS)
Srivastava, Abhinav; Debnath, Ananya
2018-03-01
Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.
Williams, Alex H; Kim, Tony Hyun; Wang, Forea; Vyas, Saurabh; Ryu, Stephen I; Shenoy, Krishna V; Schnitzer, Mark; Kolda, Tamara G; Ganguli, Surya
2018-06-27
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Network Dynamics Underlying Speed-Accuracy Trade-Offs in Response to Errors
Agam, Yigal; Carey, Caitlin; Barton, Jason J. S.; Dyckman, Kara A.; Lee, Adrian K. C.; Vangel, Mark; Manoach, Dara S.
2013-01-01
The ability to dynamically and rapidly adjust task performance based on its outcome is fundamental to adaptive, flexible behavior. Over trials of a task, responses speed up until an error is committed and after the error responses slow down. These dynamic adjustments serve to optimize performance and are well-described by the speed-accuracy trade-off (SATO) function. We hypothesized that SATOs based on outcomes reflect reciprocal changes in the allocation of attention between the internal milieu and the task-at-hand, as indexed by reciprocal changes in activity between the default and dorsal attention brain networks. We tested this hypothesis using functional MRI to examine the pattern of network activation over a series of trials surrounding and including an error. We further hypothesized that these reciprocal changes in network activity are coordinated by the posterior cingulate cortex (PCC) and would rely on the structural integrity of its white matter connections. Using diffusion tensor imaging, we examined whether fractional anisotropy of the posterior cingulum bundle correlated with the magnitude of reciprocal changes in network activation around errors. As expected, reaction time (RT) in trials surrounding errors was consistent with predictions from the SATO function. Activation in the default network was: (i) inversely correlated with RT, (ii) greater on trials before than after an error and (iii) maximal at the error. In contrast, activation in the right intraparietal sulcus of the dorsal attention network was (i) positively correlated with RT and showed the opposite pattern: (ii) less activation before than after an error and (iii) the least activation on the error. Greater integrity of the posterior cingulum bundle was associated with greater reciprocity in network activation around errors. These findings suggest that dynamic changes in attention to the internal versus external milieu in response to errors underlie SATOs in RT and are mediated by the PCC. PMID:24069223
Common modulation of limbic network activation underlies musical emotions as they unfold.
Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma
2016-11-01
Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuwae, Tomohiro; Miyoshi, Eiichi; Hosokawa, Shinya; Ichimi, Kazuhiko; Hosoya, Jun; Amano, Tatsuya; Moriya, Toshifumi; Kondoh, Michio; Ydenberg, Ronald C; Elner, Robert W
2012-04-01
Food webs are comprised of a network of trophic interactions and are essential to elucidating ecosystem processes and functions. However, the presence of unknown, but critical networks hampers understanding of complex and dynamic food webs in nature. Here, we empirically demonstrate a missing link, both critical and variable, by revealing that direct predator-prey relationships between shorebirds and biofilm are widespread and mediated by multiple ecological and evolutionary determinants. Food source mixing models and energy budget estimates indicate that the strength of the missing linkage is dependent on predator traits (body mass and foraging action rate) and the environment that determines food density. Morphological analyses, showing that smaller bodied species possess more developed feeding apparatus to consume biofilm, suggest that the linkage is also phylogenetically dependent and affords a compelling re-interpretation of niche differentiation. We contend that exploring missing links is a necessity for revealing true network structure and dynamics. © 2012 Blackwell Publishing Ltd/CNRS.
Sensitivity of marine protected area network connectivity to atmospheric variability
NASA Astrophysics Data System (ADS)
Fox, Alan D.; Henry, Lea-Anne; Corne, David W.; Roberts, J. Murray
2016-11-01
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
Liu, Yuelu; Hong, Xiangfei; Bengson, Jesse J; Kelley, Todd A; Ding, Mingzhou; Mangun, George R
2017-08-15
The neural mechanisms by which intentions are transformed into actions remain poorly understood. We investigated the network mechanisms underlying spontaneous voluntary decisions about where to focus visual-spatial attention (willed attention). Graph-theoretic analysis of two independent datasets revealed that regions activated during willed attention form a set of functionally-distinct networks corresponding to the frontoparietal network, the cingulo-opercular network, and the dorsal attention network. Contrasting willed attention with instructed attention (where attention is directed by external cues), we observed that the dorsal anterior cingulate cortex was allied with the dorsal attention network in instructed attention, but shifted connectivity during willed attention to interact with the cingulo-opercular network, which then mediated communications between the frontoparietal network and the dorsal attention network. Behaviorally, greater connectivity in network hubs, including the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the inferior parietal lobule, was associated with faster reaction times. These results, shown to be consistent across the two independent datasets, uncover the dynamic organization of functionally-distinct networks engaged to support intentional acts. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellesia, Giovanni; Bales, Benjamin B.
Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less
Responses to auxin signals: an operating principle for dynamical sensitivity yet high resilience
Bravi, B.; Martin, O. C.
2018-01-01
Plants depend on the signalling of the phytohormone auxin for their development and for responding to environmental perturbations. The associated biomolecular signalling network involves a negative feedback on Aux/IAA proteins which mediate the influence of auxin (the signal) on the auxin response factor (ARF) transcription factors (the drivers of the response). To probe the role of this feedback, we consider alternative in silico signalling networks implementing different operating principles. By a comparative analysis, we find that the presence of a negative feedback allows the system to have a far larger sensitivity in its dynamical response to auxin and that this sensitivity does not prevent the system from being highly resilient. Given this insight, we build a new biomolecular signalling model for quantitatively describing such Aux/IAA and ARF responses. PMID:29410878
Li, Yixue
2016-01-01
Increasing evidence has indicated that lncRNAs acting as competing endogenous RNAs (ceRNAs) play crucial roles in tumorigenesis, metastasis and diagnosis of cancer. However, the function of lncRNAs as ceRNAs involved in esophageal squamous cell carcinoma (ESCC) is still largely unknown. In this study, clinical implications of two intrinsic subtypes of ESCC were identified based on expression profiles of lncRNA and mRNA. ESCC subtype-specific differential co-expression networks between mRNAs and lncRNAs were constructed to reveal dynamic changes of their crosstalks mediated by miRNAs during tumorigenesis. Several well-known cancer-associated lncRNAs as the hubs of the two networks were firstly proposed in ESCC. Based on the ceRNA mechanism, we illustrated that the“loss” of miR-186-mediated PVT1-mRNA and miR-26b-mediated LINC00240-mRNA crosstalks were related to the two ESCC subtypes respectively. In addition, crosstalks between LINC00152 and EGFR, LINC00240 and LOX gene family were identified, which were associated with the function of “response to wounding” and “extracellular matrix-receptor interaction”. Furthermore, functional cooperation of multiple lncRNAs was discovered in the two differential mRNA-lncRNA crosstalk networks. These together systematically uncovered the roles of lncRNAs as ceRNAs implicated in ESCC. PMID:27966444
Metabolic gene regulation in a dynamically changing environment.
Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff
2008-08-28
Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment.
Elementary signaling modes predict the essentiality of signal transduction network components
2011-01-01
Background Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. Results In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. Conclusions This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms developed in this study can be found at http://www.phys.psu.edu/~ralbert/ESM. PMID:21426566
Adaptive-network models of collective dynamics
NASA Astrophysics Data System (ADS)
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.
The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt
Harrington, Heather A.; Dale, Trevor; Gavaghan, David J.
2017-01-01
The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch’s interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain its neighbours in mitotically active states. PMID:28245235
Wang, Xiang; Öngür, Dost; Auerbach, Randy P.; Yao, Shuqiao
2016-01-01
Abstract Although it is generally accepted that cognitive factors contribute to the pathogenesis of major depressive disorder (MDD), there are missing links between behavioral and biological models of depression. Nevertheless, research employing neuroimaging technologies has elucidated some of the neurobiological mechanisms related to cognitive-vulnerability factors, especially from a whole-brain, dynamic perspective. In this review, we integrate well-established cognitive-vulnerability factors for MDD and corresponding neural mechanisms in intrinsic networks using a dual-process framework. We propose that the dynamic alteration and imbalance among the intrinsic networks, both in the resting-state and the rest-task transition stages, contribute to the development of cognitive vulnerability and MDD. Specifically, we propose that abnormally increased resting-state default mode network (DMN) activity and connectivity (mainly in anterior DMN regions) contribute to the development of cognitive vulnerability. Furthermore, when subjects confront negative stimuli in the period of rest-to-task transition, the following three kinds of aberrant network interactions have been identified as facilitators of vulnerability and dysphoric mood, each through a different cognitive mechanism: DMN dominance over the central executive network (CEN), an impaired salience network–mediated switching between the DMN and CEN, and ineffective CEN modulation of the DMN. This focus on interrelated networks and brain-activity changes between rest and task states provides a neural-system perspective for future research on cognitive vulnerability and resilience, and may potentially guide the development of new intervention strategies for MDD. PMID:27148911
An ELMO2-RhoG-ILK network modulates microtubule dynamics
Jackson, Bradley C.; Ivanova, Iordanka A.; Dagnino, Lina
2015-01-01
ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin–dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca2+-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. PMID:25995380
Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.
Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G
2016-07-01
We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.
Sweeney, Yann; Hellgren Kotaleski, Jeanette; Hennig, Matthias H.
2015-01-01
Gaseous neurotransmitters such as nitric oxide (NO) provide a unique and often overlooked mechanism for neurons to communicate through diffusion within a network, independent of synaptic connectivity. NO provides homeostatic control of intrinsic excitability. Here we conduct a theoretical investigation of the distinguishing roles of NO-mediated diffusive homeostasis in comparison with canonical non-diffusive homeostasis in cortical networks. We find that both forms of homeostasis provide a robust mechanism for maintaining stable activity following perturbations. However, the resulting networks differ, with diffusive homeostasis maintaining substantial heterogeneity in activity levels of individual neurons, a feature disrupted in networks with non-diffusive homeostasis. This results in networks capable of representing input heterogeneity, and linearly responding over a broader range of inputs than those undergoing non-diffusive homeostasis. We further show that these properties are preserved when homeostatic and Hebbian plasticity are combined. These results suggest a mechanism for dynamically maintaining neural heterogeneity, and expose computational advantages of non-local homeostatic processes. PMID:26158556
Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.
Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao
2008-06-17
The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.
Plasticity of brain wave network interactions and evolution across physiologic states
Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.
2015-01-01
Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891
Chudasama, Vaishali L.; Ovacik, Meric A.; Abernethy, Darrell R.
2015-01-01
Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens. PMID:26163548
Mahita, Jarjapu; Sowdhamini, Ramanathan
2018-04-01
The Toll-like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen-associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain-containing proteins. Mutations in the BB loop of the Toll-like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lps d mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain-containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein-protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild-type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways. © 2018 Wiley Periodicals, Inc.
Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.
Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D
2017-07-01
The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.
Terrain and subsurface influences on runoff generation in a steep, deep, highly weathered system
NASA Astrophysics Data System (ADS)
Mallard, J. M.; McGlynn, B. L.; Richter, D. D., Jr.
2017-12-01
Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete, despite the prevalence occupation of these landscapes worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA, a region that extends east of the Appalachians from Maryland to Alabama, and home to some of the most rapid population growth in the country. Although regionally the relief is modest, the landscape is often highly dissected and local slopes can be steep and highly varied. The typical soils of the region are kaolinite dominated ultisols, with hydrologic properties controlled by argillic Bt horizons, often with >50% clay-size fraction. The humid subtropical climate creates relatively consistent precipitation intra-annually and seasonally variable energy availability. Consequently, the mixed deciduous and coniferous tree cover creates a strong evapotranspiration-mediated hydrologic dynamic. While moist soils and extended stream networks are typical from late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. Here, we seek to elucidate the relative influence of the vertical soil and spatial terrain structure of this region on watershed hillslope hydrology and subsequent runoff generation. We installed a network of nested, shallow groundwater wells and soil water content probes within an ephemeral to first-order watershed to continuously measure soil and groundwater dynamics across soil horizons and landscape position. We also recorded local precipitation and discharge from this watershed. Most landscape positions exhibited minimal water table response to precipitation throughout dry summer periods, with infrequently observed responses rarely coincident with streamflow generation. In contrast, during the wetter late fall through early spring period, streamflow was driven by the interaction between transient perched water tables and topographically mediated redistribution of shallow groundwater downslope. Our findings suggest that understanding streamflow generation in regions possessing both complex terrain and complex vertical soil structure requires synchronous characterization of terrain mediated water redistribution and subsurface soil hydrology.
Neural network approach to time-dependent dividing surfaces in classical reaction dynamics.
Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2018-04-01
In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.
Neural network approach to time-dependent dividing surfaces in classical reaction dynamics
NASA Astrophysics Data System (ADS)
Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2018-04-01
In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.
Sánchez-Soriano, Natalia; Gonçalves-Pimentel, Catarina; Beaven, Robin; Haessler, Ulrike; Ofner-Ziegenfuss, Lisa; Ballestrem, Christoph; Prokop, Andreas
2010-01-01
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.
Effects of Heterogeneous Social Interactions on Flocking Dynamics
NASA Astrophysics Data System (ADS)
Miguel, M. Carmen; Parley, Jack T.; Pastor-Satorras, Romualdo
2018-02-01
Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions are mediated by an empirically motivated scale-free topology that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered state, while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient external noise. Our results challenge the previously accepted equivalence between the static Vicsek model and the equilibrium X Y model on the network of connections, and point towards a possible equivalence with models exhibiting a different symmetry.
Dynamical states, possibilities and propagation of stress signal
Malik, Md. Zubbair; Ali, Shahnawaz; Singh, Soibam Shyamchand; Ishrat, Romana; Singh, R. K. Brojen
2017-01-01
The stress driven dynamics of Notch-Wnt-p53 cross-talk is subjected to a few possible dynamical states governed by simple fractal rules, and allowed to decide its own fate by choosing one of these states which are contributed from long range correlation with varied fluctuations due to active molecular interaction. The topological properties of the networks corresponding to these dynamical states have hierarchical features with assortive structure. The stress signal driven by nutlin and modulated by mediator GSK3 acts as anti-apoptotic signal in this system, whereas, the stress signal driven by Axin and modulated by GSK3 behaves as anti-apoptotic for a certain range of Axin and GSK3 interaction, and beyond which the signal acts as favor-apoptotic signal. However, this stress system prefers to stay in an active dynamical state whose counterpart complex network is closest to hierarchical topology with exhibited roles of few interacting hubs. During the propagation of stress signal, the system allows the propagator pathway to inherit all possible properties of the state to the receiver pathway/pathways with slight modifications, indicating efficient information processing and democratic sharing of responsibilities in the system via cross-talk. The increase in the number of cross-talk pathways in the system favors to establish self-organization. PMID:28106087
Dynamical states, possibilities and propagation of stress signal.
Malik, Md Zubbair; Ali, Shahnawaz; Singh, Soibam Shyamchand; Ishrat, Romana; Singh, R K Brojen
2017-01-20
The stress driven dynamics of Notch-Wnt-p53 cross-talk is subjected to a few possible dynamical states governed by simple fractal rules, and allowed to decide its own fate by choosing one of these states which are contributed from long range correlation with varied fluctuations due to active molecular interaction. The topological properties of the networks corresponding to these dynamical states have hierarchical features with assortive structure. The stress signal driven by nutlin and modulated by mediator GSK3 acts as anti-apoptotic signal in this system, whereas, the stress signal driven by Axin and modulated by GSK3 behaves as anti-apoptotic for a certain range of Axin and GSK3 interaction, and beyond which the signal acts as favor-apoptotic signal. However, this stress system prefers to stay in an active dynamical state whose counterpart complex network is closest to hierarchical topology with exhibited roles of few interacting hubs. During the propagation of stress signal, the system allows the propagator pathway to inherit all possible properties of the state to the receiver pathway/pathways with slight modifications, indicating efficient information processing and democratic sharing of responsibilities in the system via cross-talk. The increase in the number of cross-talk pathways in the system favors to establish self-organization.
Digital photocontrol of the network of live excitable cells
NASA Astrophysics Data System (ADS)
Erofeev, I. S.; Magome, N.; Agladze, K. I.
2011-11-01
Recent development of tissue engineering techniques allows creating and maintaining almost indefinitely networks of excitable cells with desired architecture. We coupled the network of live excitable cardiac cells with a common computer by sensitizing them to light, projecting a light pattern on the layer of cells, and monitoring excitation with the aid of fluorescent probes (optical mapping). As a sensitizing substance we used azobenzene trimethylammonium bromide (AzoTAB). This substance undergoes cis-trans-photoisomerization and trans-isomer of AzoTAB inhibits excitation in the cardiac cells, while cis-isomer does not. AzoTAB-mediated sensitization allows, thus, reversible and dynamic control of the excitation waves through the entire cardiomyocyte network either uniformly, or in a preferred spatial pattern. Technically, it was achieved by coupling a common digital projector with a macroview microscope and using computer graphic software for creating the projected pattern of conducting pathways. This approach allows real time interactive photocontrol of the heart tissue.
Computer Mediated Social Network Approach to Software Support and Maintenance
2010-06-01
Page 1 Computer Mediated Social Network Approach to Software Support and Maintenance LTC J. Carlos Vega *Student Paper* Point...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Computer Mediated Social Network Approach to Software Support and Maintenance...This research highlights the preliminary findings on the potential of computer mediated social networks . This research focused on social networks as
Neural pathways in processing of sexual arousal: a dynamic causal modeling study.
Seok, J-W; Park, M-S; Sohn, J-H
2016-09-01
Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.
Crunelli, Vincenzo; Errington, Adam C.; Hughes, Stuart W.; Tóth, Tibor I.
2011-01-01
During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located. PMID:21893530
Template-mediated nano-crystallite networks in semiconducting polymers.
Kwon, Sooncheol; Yu, Kilho; Kweon, Kyoungchun; Kim, Geunjin; Kim, Junghwan; Kim, Heejoo; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Jehan; Lee, Seoung Ho; Lee, Kwanghee
2014-06-18
Unlike typical inorganic semiconductors with a crystal structure, the charge dynamics of π-conjugated polymers (π-CPs) are severely limited by the presence of amorphous portions between the ordered crystalline regions. Thus, the formation of interconnected pathways along crystallites of π-CPs is desired to ensure highly efficient charge transport in printable electronics. Here we report the formation of nano-crystallite networks in π-CP films by employing novel template-mediated crystallization (TMC) via polaron formation and electrostatic interaction. The lateral and vertical charge transport of TMC-treated films increased by two orders of magnitude compared with pristine π-CPs. In particular, because of the unprecedented room temperature and solution-processing advantages of our TMC method, we achieve a field-effect mobility of 0.25 cm(2) V(-1) s(-1) using a plastic substrate, which corresponds to the highest value reported thus far. Because our findings can be applied to various π-conjugated semiconductors, our approach is universal and is expected to yield high-performance printable electronics.
Inhibition of Bcl-xL sensitizes cells to mitotic blockers, but not mitotic drivers
Bennett, Ailsa; Sloss, Olivia; Topham, Caroline; Nelson, Louisa; Tighe, Anthony
2016-01-01
Cell fate in response to an aberrant mitosis is governed by two competing networks: the spindle assembly checkpoint (SAC) and the intrinsic apoptosis pathway. The mechanistic interplay between these two networks is obscured by functional redundancy and the ability of cells to die either in mitosis or in the subsequent interphase. By coupling time-lapse microscopy with selective pharmacological agents, we systematically probe pro-survival Bcl-xL in response to various mitotic perturbations. Concentration matrices show that BH3-mimetic-mediated inhibition of Bcl-xL synergises with perturbations that induce an SAC-mediated mitotic block, including drugs that dampen microtubule dynamics, and inhibitors targeting kinesins and kinases required for spindle assembly. By contrast, Bcl-xL inhibition does not synergize with drugs which drive cells through an aberrant mitosis by overriding the SAC. This differential effect, which is explained by compensatory Mcl-1 function, provides opportunities for patient stratification and combination treatments in the context of cancer chemotherapy. PMID:27512141
Phosphoproteomics analyses show subnetwork systems in T-cell receptor signaling.
Hatano, Atsushi; Matsumoto, Masaki; Nakayama, Keiichi I
2016-10-01
A key issue in the study of signal transduction is how multiple signaling pathways are systematically integrated into the cell. We have now performed multiple phosphoproteomics analyses focused on the dynamics of the T-cell receptor (TCR) signaling network and its subsystem mediated by the Ca 2+ signaling pathway. Integration of these phosphoproteomics data sets and extraction of components of the TCR signaling network dependent on Ca 2+ signaling showed unexpected phosphorylation kinetics for candidate substrates of the Ca 2+ -dependent phosphatase calcineurin (CN) during TCR stimulation. Detailed characterization of the TCR-induced phosphorylation of a novel CN substrate, Itpkb, showed that phosphorylation of this protein is regulated by both CN and the mitogen-activated protein kinase Erk in a competitive manner. Phosphorylation of additional CN substrates was also found to be regulated by Erk and CN in a similar manner. The combination of multiple phosphoproteomics approaches thus showed two major subsystems mediated by Erk and CN in the TCR signaling network, with these subsystems regulating the phosphorylation of a group of proteins in a competitive manner. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
2010-01-01
Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. Conclusions Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space. PMID:20230643
Naegle, Kristen M.; White, Forest M.; Lauffenburger, Douglas A.; Yaffe, Michael B.
2012-01-01
Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein–protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein–protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein–protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein–protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein–protein interactions in a dynamic context- and phosphorylation site-specific manner. PMID:22851037
Relationships between cortical myeloarchitecture and electrophysiological networks
Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Mougin, Olivier E.; Geades, Nicolas; Singh, Krish D.; Morris, Peter G.; Gowland, Penny A.; Brookes, Matthew J.
2016-01-01
The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology. PMID:27830650
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Hazelbauer, Gerald L; Falke, Joseph J; Parkinson, John S
2008-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.
Bacterial chemoreceptors: high-performance signaling in networked arrays
Hazelbauer, Gerald L.; Falke, Joseph J.; Parkinson, John S.
2010-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on–off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device. PMID:18165013
Dynamics of hate based Internet user networks
NASA Astrophysics Data System (ADS)
Sobkowicz, P.; Sobkowicz, A.
2010-02-01
We present a study of the properties of network of political discussions on one of the most popular Polish Internet forums. This provides the opportunity to study the computer mediated human interactions in strongly bipolar environment. The comments of the participants are found to be mostly disagreements, with strong percentage of invective and provocative ones. Binary exchanges (quarrels) play significant role in the network growth and topology. Statistical analysis shows that the growth of the discussions depends on the degree of controversy of the subject and the intensity of personal conflict between the participants. This is in contrast to most previously studied social networks, for example networks of scientific citations, where the nature of the links is much more positive and based on similarity and collaboration rather than opposition and abuse. The work discusses also the implications of the findings for more general studies of consensus formation, where our observations of increased conflict contradict the usual assumptions that interactions between people lead to averaging of opinions and agreement.
A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes
Bun, Philippe; Dmitrieff, Serge; Belmonte, Julio M
2018-01-01
While contraction of sarcomeric actomyosin assemblies is well understood, this is not the case for disordered networks of actin filaments (F-actin) driving diverse essential processes in animal cells. For example, at the onset of meiosis in starfish oocytes a contractile F-actin network forms in the nuclear region transporting embedded chromosomes to the assembling microtubule spindle. Here, we addressed the mechanism driving contraction of this 3D disordered F-actin network by comparing quantitative observations to computational models. We analyzed 3D chromosome trajectories and imaged filament dynamics to monitor network behavior under various physical and chemical perturbations. We found no evidence of myosin activity driving network contractility. Instead, our observations are well explained by models based on a disassembly-driven contractile mechanism. We reconstitute this disassembly-based contractile system in silico revealing a simple architecture that robustly drives chromosome transport to prevent aneuploidy in the large oocyte, a prerequisite for normal embryonic development. PMID:29350616
Wright, Nathaniel C; Wessel, Ralf
2017-10-01
A primary goal of systems neuroscience is to understand cortical function, typically by studying spontaneous and stimulus-modulated cortical activity. Mounting evidence suggests a strong and complex relationship exists between the ongoing and stimulus-modulated cortical state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope: it records the activity of a minority of neurons and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but stable recordings are difficult to obtain in vivo. Here, we recorded subthreshold cortical visual responses in the ex vivo turtle eye-attached whole brain preparation, which is ideally suited for such a study. We found that, in the absence of visual stimulation, the network was "synchronous"; neurons displayed network-mediated transitions between hyperpolarized (Down) and depolarized (Up) membrane potential states. The prevalence of these slow-wave transitions varied across turtles and recording sessions. Visual stimulation evoked similar Up states, which were on average larger and less reliable when the ongoing state was more synchronous. Responses were muted when immediately preceded by large, spontaneous Up states. Evoked spiking was sparse, highly variable across trials, and mediated by concerted synaptic inputs that were, in general, only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons. NEW & NOTEWORTHY Most studies of cortical activity focus on spikes. Subthreshold membrane potential recordings can provide complementary insight, but stable recordings are difficult to obtain in vivo. Here, we recorded the membrane potentials of cortical neurons during ongoing and visually evoked activity. We observed a strong relationship between network and single-neuron evoked activity spanning multiple temporal scales. The membrane potential perspective of cortical dynamics thus highlights the influence of intrinsic network properties on visual processing. Copyright © 2017 the American Physiological Society.
Blacklock, Kristin; Verkhivker, Gennady M.
2013-01-01
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide “molecular brakes” that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90. PMID:23977182
Dynamic multiprotein assemblies shape the spatial structure of cell signaling.
Nussinov, Ruth; Jang, Hyunbum
2014-01-01
Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zwicker, J D; Rajani, V; Hahn, L B; Funk, G D
2011-01-01
Abstract ATP signalling in the CNS is mediated by a three-part system comprising the actions of ATP (and ADP) at P2 receptors (P2Rs), adenosine (ADO) at P1 receptors (P1Rs), and ectonucleotidases that degrade ATP into ADO. ATP excites preBötzinger complex (preBötC) inspiratory rhythm-generating networks where its release attenuates the hypoxic depression of breathing. Its metabolite, ADO, inhibits breathing through unknown mechanisms that may involve the preBötC. Our objective is to understand the dynamics of this signalling system and its influence on preBötC networks. We show that the preBötC of mouse and rat is sensitive to P2Y1 purinoceptor (P2Y1R) activation, responding with a >2-fold increase in frequency. Remarkably, the mouse preBötC is insensitive to ATP. Only after block of A1 ADORs is the ATP-evoked, P2Y1R-mediated frequency increase observed. This demonstrates that ATP is rapidly degraded to ADO, which activates inhibitory A1Rs, counteracting the P2Y1R-mediated excitation. ADO sensitivity of mouse preBötC was confirmed by a frequency decrease that was absent in rat. Differential ectonucleotidase activities are likely to contribute to the negligible ATP sensitivity of mouse preBötC. Real-time PCR analysis of ectonucleotidase isoforms in preBötC punches revealed TNAP (degrades ATP to ADO) or ENTPDase2 (favours production of excitatory ADP) as the primary constituent in mouse and rat, respectively. These data further establish the sensitivity of this vital network to P2Y1R-mediated excitation, emphasizing that individual components of the three-part signalling system dramatically alter network responses to ATP. Data also suggest therapeutic potential may derive from methods that alter the ATP–ADO balance to favour the excitatory actions of ATP. PMID:21788352
Two-photon imaging and analysis of neural network dynamics
NASA Astrophysics Data System (ADS)
Lütcke, Henry; Helmchen, Fritjof
2011-08-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Bayesian dynamic mediation analysis.
Huang, Jing; Yuan, Ying
2017-12-01
Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Zaharakis, Nikola; Mason, Michael J; Mennis, Jeremy; Light, John; Rusby, Julie C; Westling, Erika; Crewe, Stephanie; Flay, Brian R; Way, Thomas
2018-02-01
The school environment is extremely salient in young adolescents' lives. Adolescents who have unfavorable attitudes toward school and teachers are at elevated risk for dropping out of school and engaging in behavioral health risks. Peer network health-a summation of the positive and negative behaviors in which one's close friend group engages-may be one way by which attitudes toward school exert influence on youth substance use. Utilizing a sample of 248 primarily African-American young urban adolescents, we tested a moderated mediation model to determine if the indirect effect of attitude to school on cannabis involvement through peer network health was conditioned on gender. Attitude toward school measured at baseline was the predictor (X), peer network health measured at 6 months was the mediator (M), cannabis involvement (including use, offers to use, and refusals to use) measured at 24 months was the outcome (Y), and gender was the moderator (W). Results indicated that negative attitudes toward school were indirectly associated with increased cannabis involvement through peer network health. This relationship was not moderated by gender. Adolescents in our sample with negative attitudes toward school were more likely to receive more offers to use cannabis and to use cannabis more frequently through the perceived health behaviors of their close friends. Implications from these results point to opportunities to leverage the dynamic associations among school experiences, friends, and cannabis involvement, such as offers and use.
The Robustness of a Signaling Complex to Domain Rearrangements Facilitates Network Evolution
Sato, Paloma M.; Yoganathan, Kogulan; Jung, Jae H.; Peisajovich, Sergio G.
2014-01-01
The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering. PMID:25490747
Controlling nosocomial infection based on structure of hospital social networks.
Ueno, Taro; Masuda, Naoki
2008-10-07
Nosocomial infection (i.e. infection in healthcare facilities) raises a serious public health problem, as implied by the existence of pathogens characteristic to healthcare facilities such as methicillin-resistant Staphylococcus aureus and hospital-mediated outbreaks of influenza and severe acute respiratory syndrome. For general communities, epidemic modeling based on social networks is being recognized as a useful tool. However, disease propagation may occur in a healthcare facility in a manner different from that in a urban community setting due to different network architecture. We simulate stochastic susceptible-infected-recovered dynamics on social networks, which are based on observations in a hospital in Tokyo, to explore effective containment strategies against nosocomial infection. The observed social networks in the hospital have hierarchical and modular structure in which dense substructure such as departments, wards, and rooms, are globally but only loosely connected, and do not reveal extremely right-skewed distributions of the number of contacts per individual. We show that healthcare workers, particularly medical doctors, are main vectors (i.e. transmitters) of diseases on these networks. Intervention methods that restrict interaction between medical doctors and their visits to different wards shrink the final epidemic size more than intervention methods that directly protect patients, such as isolating patients in single rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more effective. Finally, vaccinating individuals with large betweenness centrality (frequency of mediating connection between pairs of individuals along the shortest paths) is superior to vaccinating ones with large connectedness to others or randomly chosen individuals, which was suggested by previous model studies.
Ellender, Tommas J.; Raimondo, Joseph V.; Irkle, Agnese; Lamsa, Karri P.
2014-01-01
Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks. Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs). Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity. Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity. First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity. We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl−) reversal potential. The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity. To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV+) interneurons. Channelrhodopsin-2-mediated activation of PV+ interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network. Finally, archaerhodopsin-mediated selective silencing of PV+ interneurons reduced the occurrence of ADs during the clonic phase. Therefore, we propose that activity-dependent Cl− accumulation subverts the actions of PV+ interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures. PMID:25392490
Reid, Allecia E; Carey, Kate B
2018-06-01
Level of drinking in the social network is strongly associated with college students' alcohol use. However, mechanisms through which networks are associated with personal drinking have been underexplored thus far. The present study examined theoretically derived constructs-sociability outcome expectancies, attitudes toward heavy drinking, self-efficacy for use of protective strategies, and descriptive norms-as potential mediators of the association between egocentric social network drinking and personal consumption. College students (N = 274) self-reported their social network's level of alcohol consumption, all mediators, drinks per week, and consequences at both baseline (Time 1) and a 1-month follow-up (Time 2). Autoregressive mediation models focused on the longitudinal associations between Time 1 network drinking and the Time 2 mediators and between the Time 1 mediators and the Time 2 outcomes. Consistent with hypotheses, Time 1 social network drinking was significantly associated with Time 2 drinks per week and consequences. Only attitudes significantly mediated social network associations with drinks per week and consequences, though the proportion of the total effects accounted for by attitudes was small. After accounting for the stability of constructs over time, social network drinking was generally un- or weakly related to sociability expectancies, self-efficacy, and descriptive norms. Results support reducing attitudes toward heavy drinking as a potential avenue for mitigating network effects, but also highlight the need to evaluate additional potential mechanisms of network effects. Intervention efforts that aim to address the social network have the potential to substantially reduce alcohol consumption, thereby enhancing the overall efficacy of alcohol risk-reduction interventions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Dimensions and dynamics of citizen observatories: The case of online amateur weather networks
NASA Astrophysics Data System (ADS)
Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter
2016-04-01
Crowd-sourced environmental observations are being increasingly considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public (so-called citizen science) and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated citizen observatories as one of the oldest and most widely practiced citizen science activities. The objective of this paper is to introduce a conceptual framework that enables a systematic review of different dimensions of these mushrooming/expanding networks. These dimensions include the geographic scope and types of network participants; the network's establishment mechanism, revenue stream(s) and existing communication paradigm; efforts required by citizens and support offered by platform providers; and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run these networks, sustainability of the platforms, data ownership and level of transparency of each network. This framework is then utilized to perform a critical and normative review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) There are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks. (2) The revenue stream(s) of online amateur weather networks is one of the least discussed but most important dimensions that is crucial for the sustainability of these networks. (3) Although all of the networks included in this study have one or more explicit pattern of two-way communications, there is no sign (yet) of interactive information exchange among the triangle of weather observers, data aggregators and policy makers. KEYWORDS Citizen Science, Citizen Observatories, ICT-enabled citizen participation, online amateur weather networks
Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin
2017-06-16
Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC 50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.
Dynamic Divisive Normalization Predicts Time-Varying Value Coding in Decision-Related Circuits
LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W.
2014-01-01
Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. PMID:25429145
Active site dynamics of ribonuclease.
Brünger, A T; Brooks, C L; Karplus, M
1985-01-01
The stochastic boundary molecular dynamics method is used to study the structure, dynamics, and energetics of the solvated active site of bovine pancreatic ribonuclease A. Simulations of the native enzyme and of the enzyme complexed with the dinucleotide substrate CpA and the transition-state analog uridine vanadate are compared. Structural features and dynamical couplings for ribonuclease residues found in the simulation are consistent with experimental data. Water molecules, most of which are not observed in crystallographic studies, are shown to play an important role in the active site. Hydrogen bonding of residues with water molecules in the free enzyme is found to mimic the substrate-enzyme interactions of residues involved in binding. Networks of water stabilize the cluster of positively charged active site residues. Correlated fluctuations between the uridine vanadate complex and the distant lysine residues are mediated through water and may indicate a possible role for these residues in stabilizing the transition state. Images PMID:3866234
The Membrane Skeleton Controls Diffusion Dynamics and Signaling through the B Cell Receptor
Treanor, Bebhinn; Depoil, David; Gonzalez-Granja, Aitor; Barral, Patricia; Weber, Michele; Dushek, Omer; Bruckbauer, Andreas; Batista, Facundo D.
2010-01-01
Summary Early events of B cell activation after B cell receptor (BCR) triggering have been well characterized. However, little is known about the steady state of the BCR on the cell surface. Here, we simultaneously visualize single BCR particles and components of the membrane skeleton. We show that an ezrin- and actin-defined network influenced steady-state BCR diffusion by creating boundaries that restrict BCR diffusion. We identified the intracellular domain of Igβ as important in mediating this restriction in diffusion. Importantly, alteration of this network was sufficient to induce robust intracellular signaling and concomitant increase in BCR mobility. Moreover, by using B cells deficient in key signaling molecules, we show that this signaling was most probably initiated by the BCR. Thus, our results suggest the membrane skeleton plays a crucial function in controlling BCR dynamics and thereby signaling, in a way that could be important for understanding tonic signaling necessary for B cell development and survival. PMID:20171124
Wolf, Steffen; Jovancevic, Nikolina; Gelis, Lian; Pietsch, Sebastian; Hatt, Hanns; Gerwert, Klaus
2017-11-22
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Dynamics of bloggers’ communities: Bipartite networks from empirical data and agent-based modeling
NASA Astrophysics Data System (ADS)
Mitrović, Marija; Tadić, Bosiljka
2012-11-01
We present an analysis of the empirical data and the agent-based modeling of the emotional behavior of users on the Web portals where the user interaction is mediated by posted comments, like Blogs and Diggs. We consider the dataset of discussion-driven popular Diggs, in which all comments are screened by machine-learning emotion detection in the text, to determine positive and negative valence (attractiveness and aversiveness) of each comment. By mapping the data onto a suitable bipartite network, we perform an analysis of the network topology and the related time-series of the emotional comments. The agent-based model is then introduced to simulate the dynamics and to capture the emergence of the emotional behaviors and communities. The agents are linked to posts on a bipartite network, whose structure evolves through their actions on the posts. The emotional states (arousal and valence) of each agent fluctuate in time, subject to the current contents of the posts to which the agent is exposed. By an agent’s action on a post its current emotions are transferred to the post. The model rules and the key parameters are inferred from the considered empirical data to ensure their realistic values and mutual consistency. The model assumes that the emotional arousal over posts drives the agent’s action. The simulations are preformed for the case of constant flux of agents and the results are analyzed in full analogy with the empirical data. The main conclusions are that the emotion-driven dynamics leads to long-range temporal correlations and emergent networks with community structure, that are comparable with the ones in the empirical system of popular posts. In view of pure emotion-driven agents actions, this type of comparisons provide a quantitative measure for the role of emotions in the dynamics on real blogs. Furthermore, the model reveals the underlying mechanisms which relate the post popularity with the emotion dynamics and the prevalence of negative emotions (critique). We also demonstrate how the community structure is tuned by varying a relevant parameter in the model. All data used in these works are fully anonymized.
Effective connectivity during processing of facial affect: evidence for multiple parallel pathways.
Dima, Danai; Stephan, Klaas E; Roiser, Jonathan P; Friston, Karl J; Frangou, Sophia
2011-10-05
The perception of facial affect engages a distributed cortical network. We used functional magnetic resonance imaging and dynamic causal modeling to characterize effective connectivity during explicit (conscious) categorization of affective stimuli in the human brain. Specifically, we examined the modulation of connectivity from posterior regions of the face-processing network to the lateral ventral prefrontal cortex (VPFC) during affective categorization and we tested for a potential role of the amygdala (AMG) in mediating this modulation. We found that explicit processing of facial affect led to prominent modulation (increase) in the effective connectivity from the inferior occipital gyrus (IOG) to the VPFC, while there was less evidence for modulation of the afferent connections from fusiform gyrus and AMG to VPFC. More specifically, the forward connection from IOG to the VPFC exhibited a selective increase under anger (as opposed to fear or sadness). Furthermore, Bayesian model comparison suggested that the modulation of afferent connections to the VPFC was mediated directly by facial affect, as opposed to an indirect modulation mediated by the AMG. Our results thus suggest that affective information is conveyed to the VPFC along multiple parallel pathways and that AMG activity is not sufficient to account for the gating of information transfer to the VPFC during explicit emotional processing.
Competitive intransitivity, population interaction structure, and strategy coexistence.
Laird, Robert A; Schamp, Brandon S
2015-01-21
Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather form loops-as in the game rock-paper-scissors. Due to its cyclic competitive replacement, competitive intransitivity promotes strategy coexistence, both in rock-paper-scissors and in higher-richness communities. Previous work has shown that this intransitivity-mediated coexistence is strongly influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we extend and broaden this line of research and examine the impact on coexistence of intransitive competition taking place on a continuum of small-world networks linking spatial lattices and regular random graphs. We use simulations to show that the positive effect of competitive intransitivity on strategy coexistence holds when competition occurs on networks toward the spatial end of the continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that the degree of disorder that leads to the transition between these two regimes is positively dependent on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may even be possible in regular graphs with completely random connections. Our results emphasize the importance of interaction structure in determining strategy dynamics and diversity. Copyright © 2014 Elsevier Ltd. All rights reserved.
A common neural network differentially mediates direct and social fear learning.
Lindström, Björn; Haaker, Jan; Olsson, Andreas
2018-02-15
Across species, fears often spread between individuals through social learning. Yet, little is known about the neural and computational mechanisms underlying social learning. Addressing this question, we compared social and direct (Pavlovian) fear learning showing that they showed indistinguishable behavioral effects, and involved the same cross-modal (self/other) aversive learning network, centered on the amygdala, the anterior insula (AI), and the anterior cingulate cortex (ACC). Crucially, the information flow within this network differed between social and direct fear learning. Dynamic causal modeling combined with reinforcement learning modeling revealed that the amygdala and AI provided input to this network during direct and social learning, respectively. Furthermore, the AI gated learning signals based on surprise (associability), which were conveyed to the ACC, in both learning modalities. Our findings provide insights into the mechanisms underlying social fear learning, with implications for understanding common psychological dysfunctions, such as phobias and other anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
An ELMO2-RhoG-ILK network modulates microtubule dynamics.
Jackson, Bradley C; Ivanova, Iordanka A; Dagnino, Lina
2015-07-15
ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin-dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca(2+)-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. © 2015 Jackson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy
2017-02-01
The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.
Design of optimal nonlinear network controllers for Alzheimer's disease.
Sanchez-Rodriguez, Lazaro M; Iturria-Medina, Yasser; Baines, Erica A; Mallo, Sabela C; Dousty, Mehdy; Sotero, Roberto C
2018-05-01
Brain stimulation can modulate the activity of neural circuits impaired by Alzheimer's disease (AD), having promising clinical benefit. However, all individuals with the same condition currently receive identical brain stimulation, with limited theoretical basis for this generic approach. In this study, we introduce a control theory framework for obtaining exogenous signals that revert pathological electroencephalographic activity in AD at a minimal energetic cost, while reflecting patients' biological variability. We used anatomical networks obtained from diffusion magnetic resonance images acquired by the Alzheimer's Disease Neuroimaging Initiative (ADNI) as mediators for the interaction between Duffing oscillators. The nonlinear nature of the brain dynamics is preserved, given that we extend the so-called state-dependent Riccati equation control to reflect the stimulation objective in the high-dimensional neural system. By considering nonlinearities in our model, we identified regions for which control inputs fail to correct abnormal activity. There are changes to the way stimulated regions are ranked in terms of the energetic cost of controlling the entire network, from a linear to a nonlinear approach. We also found that limbic system and basal ganglia structures constitute the top target locations for stimulation in AD. Patients with highly integrated anatomical networks-namely, networks having low average shortest path length, high global efficiency-are the most suitable candidates for the propagation of stimuli and consequent success on the control task. Other diseases associated with alterations in brain dynamics and the self-control mechanisms of the brain can be addressed through our framework.
Multi-Relational Characterization of Dynamic Social Network Communities
NASA Astrophysics Data System (ADS)
Lin, Yu-Ru; Sundaram, Hari; Kelliher, Aisling
The emergence of the mediated social web - a distributed network of participants creating rich media content and engaging in interactive conversations through Internet-based communication technologies - has contributed to the evolution of powerful social, economic and cultural change. Online social network sites and blogs, such as Facebook, Twitter, Flickr and LiveJournal, thrive due to their fundamental sense of "community". The growth of online communities offers both opportunities and challenges for researchers and practitioners. Participation in online communities has been observed to influence people's behavior in diverse ways ranging from financial decision-making to political choices, suggesting the rich potential for diverse applications. However, although studies on the social web have been extensive, discovering communities from online social media remains challenging, due to the interdisciplinary nature of this subject. In this article, we present our recent work on characterization of communities in online social media using computational approaches grounded on the observations from social science.
The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism1
Sheen, Jen
2014-01-01
The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functions and dynamic regulation of the TOR kinase in photosynthetic plants. TOR signaling plays fundamental roles in embryogenesis, meristem activation, root and leaf growth, flowering, senescence, and life span determination. The molecular mechanisms underlying TOR-mediated ribosomal biogenesis, translation promotion, readjustment of metabolism, and autophagy inhibition are now being uncovered. Moreover, monitoring photosynthesis-derived Glc and bioenergetics relays has revealed that TOR orchestrates unprecedented transcriptional networks that wire central metabolism and biosynthesis for energy and biomass production. In addition, these networks integrate localized stem/progenitor cell proliferation through interorgan nutrient coordination to control developmental transitions and growth. PMID:24385567
Pritchard, Leighton; Birch, Paul
2011-04-01
Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Shanker, Sudhanshu; Bandyopadhyay, Pradipta
2017-08-01
The non-Watson-Crick (non-WC) base pairs of Escherichia coli loop E of 5S rRNA are stabilized by Mg 2+ ions through water-mediated interaction. It is important to know the synergic role of Mg 2+ and the water network surrounding Mg 2+ in stabilizing the non-WC base pairs of RNA. For this purpose, free energy change of the system is calculated using molecular dynamics (MD) simulation as Mg 2+ is pulled from RNA, which causes disturbance of the water network. It was found that Mg 2+ remains hexahydrated unless it is close to or far from RNA. In the pentahydrated form, Mg 2+ interacts directly with RNA. Water network has been identified by two complimentary methods; MD followed by a density-based clustering algorithm and three-dimensional-reference interaction site model. These two methods gave similar results. Identification of water network around Mg 2+ and non-WC base pairs gives a clue to the strong effect of water network on the stability of this RNA. Based on sequence analysis of all Eubacteria 5s rRNA, we propose that hexahydrated Mg 2+ is an integral part of this RNA and geometry of base pairs surrounding it adjust to accommodate the [Formula: see text]. Overall the findings from this work can help in understanding the basis of the complex structure and stability of RNA with non-WC base pairs.
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2017-10-01
Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.
Formation and rupture of Ca(2+) induced pectin biopolymer gels.
Basak, Rajib; Bandyopadhyay, Ranjini
2014-10-07
When calcium salts are added to an aqueous solution of polysaccharide pectin, ionic cross-links form between pectin chains, giving rise to a gel network in dilute solution. In this work, dynamic light scattering (DLS) is employed to study the microscopic dynamics of the fractal aggregates (flocs) that constitute the gels, while rheological measurements are carried out to study the process of gel rupture. As the calcium salt concentration is increased, DLS experiments reveal that the polydispersity of the flocs increase simultaneously with the characteristic relaxation times of the gel network. Above a critical salt concentration, the flocs become interlinked to form a reaction-limited fractal gel network. Rheological studies demonstrate that the limits of the linear rheological response and the critical stresses required to rupture these networks both decrease with the increase in salt concentration. These features indicate that the ion-mediated pectin gels studied here lie in a 'strong link' regime that is characterised by inter-floc links that are stronger than intra-floc links. A scaling analysis of the experimental data presented here demonstrates that the elasticities of the individual fractal flocs exhibit power-law dependences on the added salt concentration. We conclude that when both pectin and salt concentrations are increased, the number of fractal flocs of pectin increases simultaneously with the density of crosslinks, giving rise to very large values of the bulk elastic modulus.
A Social Operational Model of Urban Adolescents' Tobacco and Substance Use: A Mediational Analysis
ERIC Educational Resources Information Center
Mason, Michael J.; Mennis, Jeremy; Schmidt, Christopher D.
2011-01-01
This study tested a mediation model of the relationship with tobacco use, social network quality (level of risk or protection in a network), and substance use (alcohol and/or illicit drugs) with a sample of 301 urban adolescents. It was theorized that social network quality would mediate the effect of tobacco use, accounting for PTSD symptoms and…
Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal
2014-12-06
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Optimization of return electrodes in neurostimulating arrays
NASA Astrophysics Data System (ADS)
Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel
2016-06-01
Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.
Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.
Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W
2014-11-26
Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.
Margaron, Yoran; Fradet, Nadine; Côté, Jean-François
2013-01-11
ELMO and DOCK180 proteins form an evolutionarily conserved module controlling Rac GTPase signaling during cell migration, phagocytosis, and myoblast fusion. Here, we identified the microtubule and actin-binding spectraplakin ACF7 as a novel ELMO-interacting partner. A C-terminal polyproline segment in ELMO and the last spectrin repeat of ACF7 mediate a direct interaction between these proteins. Co-expression of ELMO1 with ACF7 promoted the formation of long membrane protrusions during integrin-mediated cell spreading. Quantification of membrane dynamics established that coupling of ELMO and ACF7 increases the persistence of the protruding activity. Mechanistically, we uncovered a role for ELMO in the recruitment of ACF7 to the membrane to promote microtubule capture and stability. Functionally, these effects of ELMO and ACF7 on cytoskeletal dynamics required the Rac GEF DOCK180. In conclusion, our findings support a role for ELMO in protrusion stability by acting at the interface between the actin cytoskeleton and the microtubule network.
Fang, Qiang; Huang, Shuangquan
2016-05-01
Plant-pollinator interactions can be highly variable across years in natural communities. Although variation in the species composition and its basic structure has been investigated to understand the dynamic nature of pollination networks, little is known about the temporal dynamic of interaction strength between the same plant and pollinator species in any natural community. Pollinator-mediated selection on the evolution of floral traits could be diminished if plant-pollinator interactions vary temporally. To quantify the temporal variation in plant-pollinator interactions and the interaction strength (observed visits), we compared weighted networks between plants and pollinators in a biodiverse alpine meadow in Shangri-La, southwest China for 3 consecutive years. Although plant-pollinator interactions were highly dynamic such that identical interactions only accounted for 10.7% of the total between pair years, the diversity of interactions was stable. These identical interactions contributed 41.2% of total visits and were similar in strength and weighted nestedness. For plant species, 72.6% of species were visited by identical pollinator species between pair years, accounting for over half of the total visits and three-quarters at the functional group level. More generalized pollinators contributed more connectiveness and were more central in networks across years. However, there was no similar or even opposite trend for plant species, which suggested that specialized plant species may also be central in pollinator networks. The variation in pollinator composition decreased as pollinator species numbers increased, suggesting that generalized plants experienced stable pollinator partition. The stable, tight interactions between generalized pollinators and specialized plants represent cornerstones of the studied community. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Coyle, Scott M; Lim, Wendell A
2016-01-14
The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.
Robustness of Oscillatory Behavior in Correlated Networks
Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki
2015-01-01
Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574
Contextualization of drug-mediator relations using evidence networks.
Tran, Hai Joey; Speyer, Gil; Kiefer, Jeff; Kim, Seungchan
2017-05-31
Genomic analysis of drug response can provide unique insights into therapies that can be used to match the "right drug to the right patient." However, the process of discovering such therapeutic insights using genomic data is not straightforward and represents an area of active investigation. EDDY (Evaluation of Differential DependencY), a statistical test to detect differential statistical dependencies, is one method that leverages genomic data to identify differential genetic dependencies. EDDY has been used in conjunction with the Cancer Therapeutics Response Portal (CTRP), a dataset with drug-response measurements for more than 400 small molecules, and RNAseq data of cell lines in the Cancer Cell Line Encyclopedia (CCLE) to find potential drug-mediator pairs. Mediators were identified as genes that showed significant change in genetic statistical dependencies within annotated pathways between drug sensitive and drug non-sensitive cell lines, and the results are presented as a public web-portal (EDDY-CTRP). However, the interpretability of drug-mediator pairs currently hinders further exploration of these potentially valuable results. In this study, we address this challenge by constructing evidence networks built with protein and drug interactions from the STITCH and STRING interaction databases. STITCH and STRING are sister databases that catalog known and predicted drug-protein interactions and protein-protein interactions, respectively. Using these two databases, we have developed a method to construct evidence networks to "explain" the relation between a drug and a mediator. RESULTS: We applied this approach to drug-mediator relations discovered in EDDY-CTRP analysis and identified evidence networks for ~70% of drug-mediator pairs where most mediators were not known direct targets for the drug. Constructed evidence networks enable researchers to contextualize the drug-mediator pair with current research and knowledge. Using evidence networks, we were able to improve the interpretability of the EDDY-CTRP results by linking the drugs and mediators with genes associated with both the drug and the mediator. We anticipate that these evidence networks will help inform EDDY-CTRP results and enhance the generation of important insights to drug sensitivity that will lead to improved precision medicine applications.
NASA Astrophysics Data System (ADS)
McGlynn, B. L.; Nippgen, F.; Jencso, K. G.; Emanuel, R. E.
2013-12-01
Congress enacted the Clean Water Act (CWA) 'to restore and maintain the chemical, physical, and biological integrity of the Nation's waters'. A recent Supreme Court decision further described protection for waters with 'a significant nexus to navigable waters" if they are in the same watershed and have an effect on the chemical, physical, or biological integrity of traditional navigable waters or interstate waters that is more than 'speculative or insubstantial.' Evolving interpretation of the CWA and 'significant nexus' (connectivity) requires investigation and understanding of the spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks that mediate streamflow magnitude and composition. While hydrologic connectivity is a continuum, strong non-linearities including the shift from unsaturated to saturated flow conditions lead to threshold or transient connectivity behavior and orders of magnitude changes in flow velocities and source water compositions. Here we illustrate the spatial and temporal dynamics of hydrologic connectivity between upland landscapes and stream networks that provide direct and proximate links between streamflow composition and its watershed sources. We suggest that adjacency alone does not determine influence on hydrologic response and streamwater composition and that new understanding and communication of the temporal and spatial dynamics of watershed connectivity are required to address urgent needs at the interface of the CWA, science, and society.
Stetz, Gabrielle; Tse, Amanda
2017-01-01
The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies—from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired signaling in the client kinase. According to our results, these network features may uniquely define chaperone dependencies of CDK clients. The perturbation response scanning and rigidity decomposition approaches identified regulatory hotspots that mediate differences in stability and cooperativity of allosteric interaction networks in the CDK structures. By combining these synergistic approaches, our study revealed dynamic and network signatures that can differentiate kinase clients and rationalize subtle divergences in the activation mechanisms of CDK family members. The therapeutic implications of these results are illustrated by identifying structural hotspots of pathogenic mutations that preferentially target regions of the increased flexibility to enable modulation of activation changes. Our study offers a network-based perspective on dynamic kinase mechanisms and drug design by unravelling relationships between protein kinase dynamics, allosteric communications and chaperone dependencies. PMID:29095844
Vernon, Lynette; Modecki, Kathryn L; Barber, Bonnie L
2017-01-01
Concerns are growing about adolescents' problematic social networking and possible links to depressed mood and externalizing behavior. Yet there remains little understanding of underlying processes that may account for these associations, including the mediating role of sleep disruption. This study tests this putative mediating process and examines change in problematic social networking investment and disrupted sleep, in relation to change in depressed mood and externalizing behavior. A sample of 874 students (41% male; 57.2% Caucasian; baseline M age = 14.4 years) from 27 high schools were surveyed. Participants' problematic social networking, sleep disruption, and psychopathology (depressed mood, externalizing behaviors) were measured annually over 3 years. Longitudinal mediation was tested using latent trajectories of problematic social networking use, sleep disruption, and psychopathology. Both problematic social networking and sleep disruption underwent positive linear growth over time. Adolescents who increasingly invested in social networking reported increased depressed mood, with around 53% of this association explained by the indirect effect of increased sleep disruptions. Further, adolescents who increasingly invested in social networking also reported increased externalizing behavior; some of this relation was explained (13%) via increased sleep disruptions. However an alternative model in which increased externalizing was associated with increased social networking, mediated by sleep disruptions, indicated a reciprocal relation of similar magnitude. It is important for parents, teachers, and psychologists to minimize the negative effects of social networking on adolescents' psychopathology. Interventions should potentially target promoting healthy sleep habits through reductions in social networking investment and rescheduling usage away from bedtime.
Toutounji, Hazem; Pasemann, Frank
2014-01-01
The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot.
Toutounji, Hazem; Pasemann, Frank
2014-01-01
The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403
Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins.
Yao, Xin-Qiu; Malik, Rabia U; Griggs, Nicholas W; Skjærven, Lars; Traynor, John R; Sivaramakrishnan, Sivaraj; Grant, Barry J
2016-02-26
G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Metastable neural dynamics mediates expectation
NASA Astrophysics Data System (ADS)
Mazzucato, Luca; La Camera, Giancarlo; Fontanini, Alfredo
Sensory stimuli are processed faster when their presentation is expected compared to when they come as a surprise. We previously showed that, in multiple single-unit recordings from alert rat gustatory cortex, taste stimuli can be decoded faster from neural activity if preceded by a stimulus-predicting cue. However, the specific computational process mediating this anticipatory neural activity is unknown. Here, we propose a biologically plausible model based on a recurrent network of spiking neurons with clustered architecture. In the absence of stimulation, the model neural activity unfolds through sequences of metastable states, each state being a population vector of firing rates. We modeled taste stimuli and cue (the same for all stimuli) as two inputs targeting subsets of excitatory neurons. As observed in experiment, stimuli evoked specific state sequences, characterized in terms of `coding states', i.e., states occurring significantly more often for a particular stimulus. When stimulus presentation is preceded by a cue, coding states show a faster and more reliable onset, and expected stimuli can be decoded more quickly than unexpected ones. This anticipatory effect is unrelated to changes of firing rates in stimulus-selective neurons and is absent in homogeneous balanced networks, suggesting that a clustered organization is necessary to mediate the expectation of relevant events. Our results demonstrate a novel mechanism for speeding up sensory coding in cortical circuits. NIDCD K25-DC013557 (LM); NIDCD R01-DC010389 (AF); NSF IIS-1161852 (GL).
Tiedemann, Hendrik B; Schneltzer, Elida; Beckers, Johannes; Przemeck, Gerhard K H; Hrabě de Angelis, Martin
2017-10-07
During pancreas development, Neurog3 positive endocrine progenitors are specified by Delta/Notch (D/N) mediated lateral inhibition in the growing ducts. During neurogenesis, genes that determine the transition from the proneural state to neuronal or glial lineages are oscillating before their expression is sustained. Although the basic gene regulatory network is very similar, cycling gene expression in pancreatic development was not investigated yet, and previous simulations of lateral inhibition in pancreas development excluded by design the possibility of oscillations. To explore this possibility, we developed a dynamic model of a growing duct that results in an oscillatory phase before the determination of endocrine progenitors by lateral inhibition. The basic network (D/N + Hes1 + Neurog3) shows scattered, stable Neurog3 expression after displaying transient expression. Furthermore, we included the Hes1 negative feedback as previously discussed in neurogenesis and show the consequences for Neurog3 expression in pancreatic duct development. Interestingly, a weakened HES1 action on the Hes1 promoter allows the coexistence of stable patterning and oscillations. In conclusion, cycling gene expression and lateral inhibition are not mutually exclusive. In this way, we argue for a unified mode of D/N mediated lateral inhibition in neurogenic and pancreatic progenitor specification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma
2015-04-29
Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention.
Mental Health, School Problems, and Social Networks: Modeling Urban Adolescent Substance Use
ERIC Educational Resources Information Center
Mason, Michael J.
2010-01-01
This study tested a mediation model of the relationship with school problems, social network quality, and substance use with a primary care sample of 301 urban adolescents. It was theorized that social network quality (level of risk or protection in network) would mediate the effects of school problems, accounting for internalizing problems and…
Time-resolved observation of protein allosteric communication
Buchenberg, Sebastian; Sittel, Florian; Stock, Gerhard
2017-01-01
Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response (≲0.1 ns), inelastic reorganization (∼100 ns), and structural relaxation (≳1μs). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed. PMID:28760989
Chimera states and the interplay between initial conditions and non-local coupling
NASA Astrophysics Data System (ADS)
Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard
2017-03-01
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.
Chimera states and the interplay between initial conditions and non-local coupling.
Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard
2017-03-01
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.
An Acetylation Switch Regulates SUMO-Dependent Protein Interaction Networks
Ullmann, Rebecca; Chien, Christopher D.; Avantaggiati, Maria Laura; Muller, Stefan
2013-01-01
SUMMARY The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions. PMID:22578841
The smell of change: warming affects species interactions mediated by chemical information.
Sentis, Arnaud; Ramon-Portugal, Felipe; Brodeur, Jacques; Hemptinne, Jean-Louis
2015-10-01
Knowledge of how temperature influences an organism's physiology and behaviour is of paramount importance for understanding and predicting the impacts of climate change on species' interactions. While the behaviour of many organisms is driven by chemical information on which they rely on to detect resources, conspecifics, natural enemies and competitors, the effects of temperature on infochemical-mediated interactions remain largely unexplored. Here, we experimentally show that temperature strongly influences the emission of infochemicals by ladybeetle larvae, which, in turn, modifies the oviposition behaviour of conspecific females. Temperature also directly affects female perception of infochemicals and their oviposition behaviour. Our results suggest that temperature-mediated effects on chemical communication can influence flows across system boundaries (e.g. immigration and emigration) and thus alter the dynamics and stability of ecological networks. We therefore argue that investigating the effects of temperature on chemical communication is a crucial step towards a better understanding of the functioning of ecological communities facing rapid environmental changes. © 2015 John Wiley & Sons Ltd.
Leveraging percolation theory to single out influential spreaders in networks
NASA Astrophysics Data System (ADS)
Radicchi, Filippo; Castellano, Claudio
2016-06-01
Among the consequences of the disordered interaction topology underlying many social, technological, and biological systems, a particularly important one is that some nodes, just because of their position in the network, may have a disproportionate effect on dynamical processes mediated by the complex interaction pattern. For example, the early adoption of a commercial product by an opinion leader in a social network may change its fate or just a few superspreaders may determine the virality of a meme in social media. Despite many recent efforts, the formulation of an accurate method to optimally identify influential nodes in complex network topologies remains an unsolved challenge. Here, we present the exact solution of the problem for the specific, but highly relevant, case of the susceptible-infected-removed (SIR) model for epidemic spreading at criticality. By exploiting the mapping between bond percolation and the static properties of the SIR model, we prove that the recently introduced nonbacktracking centrality is the optimal criterion for the identification of influential spreaders in locally tree-like networks at criticality. By means of simulations on synthetic networks and on a very extensive set of real-world networks, we show that the nonbacktracking centrality is a highly reliable metric to identify top influential spreaders also in generic graphs not embedded in space and for noncritical spreading.
Glucocorticoid Administration Improves Aberrant Fear-Processing Networks in Spider Phobia
Nakataki, Masahito; Soravia, Leila M; Schwab, Simon; Horn, Helge; Dierks, Thomas; Strik, Werner; Wiest, Roland; Heinrichs, Markus; de Quervain, Dominique J-F; Federspiel, Andrea; Morishima, Yosuke
2017-01-01
Glucocorticoids reduce phobic fear in patients with anxiety disorders. Previous studies have shown that fear-related activation of the amygdala can be mediated through the visual cortical pathway, which includes the fusiform gyrus, or through other pathways. However, it is not clear which of the pathways that activate the amygdala is responsible for the pathophysiology of a specific phobia and how glucocorticoid treatment alleviates fear processing in these neural networks. We recorded the brain activity with functional magnetic resonance imaging in patients with spider phobia, who received either 20 mg of cortisol or a placebo while viewing pictures of spiders. We also tested healthy participants who did not receive any medication during the same task. We performed dynamic causal modelling (DCM), a connectivity analysis, to examine the effects of cortisol on the networks involved in processing fear and to examine if there was an association between these networks and the symptoms of the phobia. Cortisol administration suppressed the phobic stimuli-related amygdala activity to levels comparable to the healthy participants and reduced subjective phobic fear. The DCM analysis revealed that cortisol administration suppressed the aberrant inputs into the amygdala that did not originate from the visual cortical pathway, but rather from a fast subcortical pathway mediated by the pulvinar nucleus, and suppressed the interactions between the amygdala and fusiform gyrus. This network changes were distinguishable from healthy participants and considered the residual changes under cortisol administration. We also found that the strengths of the aberrant inputs into the amygdala were positively correlated with the severity of spider phobia. This study demonstrates that patients with spider phobia show an aberrant functional connectivity of the amygdala when they are exposed to phobia-related stimuli and that cortisol administration can alleviate this fear-specific neural connectivity. PMID:27644128
Glucocorticoid Administration Improves Aberrant Fear-Processing Networks in Spider Phobia.
Nakataki, Masahito; Soravia, Leila M; Schwab, Simon; Horn, Helge; Dierks, Thomas; Strik, Werner; Wiest, Roland; Heinrichs, Markus; de Quervain, Dominique J-F; Federspiel, Andrea; Morishima, Yosuke
2017-01-01
Glucocorticoids reduce phobic fear in patients with anxiety disorders. Previous studies have shown that fear-related activation of the amygdala can be mediated through the visual cortical pathway, which includes the fusiform gyrus, or through other pathways. However, it is not clear which of the pathways that activate the amygdala is responsible for the pathophysiology of a specific phobia and how glucocorticoid treatment alleviates fear processing in these neural networks. We recorded the brain activity with functional magnetic resonance imaging in patients with spider phobia, who received either 20 mg of cortisol or a placebo while viewing pictures of spiders. We also tested healthy participants who did not receive any medication during the same task. We performed dynamic causal modelling (DCM), a connectivity analysis, to examine the effects of cortisol on the networks involved in processing fear and to examine if there was an association between these networks and the symptoms of the phobia. Cortisol administration suppressed the phobic stimuli-related amygdala activity to levels comparable to the healthy participants and reduced subjective phobic fear. The DCM analysis revealed that cortisol administration suppressed the aberrant inputs into the amygdala that did not originate from the visual cortical pathway, but rather from a fast subcortical pathway mediated by the pulvinar nucleus, and suppressed the interactions between the amygdala and fusiform gyrus. This network changes were distinguishable from healthy participants and considered the residual changes under cortisol administration. We also found that the strengths of the aberrant inputs into the amygdala were positively correlated with the severity of spider phobia. This study demonstrates that patients with spider phobia show an aberrant functional connectivity of the amygdala when they are exposed to phobia-related stimuli and that cortisol administration can alleviate this fear-specific neural connectivity.
Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter
2016-01-01
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks. PMID:26745498
Deficient GABAergic gliotransmission may cause broader sensory tuning in schizophrenia.
Hoshino, Osamu
2013-12-01
We examined how the depression of intracortical inhibition due to a reduction in ambient GABA concentration impairs perceptual information processing in schizophrenia. A neural network model with a gliotransmission-mediated ambient GABA regulatory mechanism was simulated. In the network, interneuron-to-glial-cell and principal-cell-to-glial-cell synaptic contacts were made. The former hyperpolarized glial cells and let their transporters import (remove) GABA from the extracellular space, thereby lowering ambient GABA concentration, reducing extrasynaptic GABAa receptor-mediated tonic inhibitory current, and thus exciting principal cells. In contrast, the latter depolarized the glial cells and let the transporters export GABA into the extracellular space, thereby elevating the ambient GABA concentration and thus inhibiting the principal cells. A reduction in ambient GABA concentration was assumed for a schizophrenia network. Multiple dynamic cell assemblies were organized as sensory feature columns. Each cell assembly responded to one specific feature stimulus. The tuning performance of the network to an applied feature stimulus was evaluated in relation to the level of ambient GABA. Transporter-deficient glial cells caused a deficit in GABAergic gliotransmission and reduced ambient GABA concentration, which markedly deteriorated the tuning performance of the network, broadening the sensory tuning. Interestingly, the GABAergic gliotransmission mechanism could regulate local ambient GABA levels: it augmented ambient GABA around stimulus-irrelevant principal cells, while reducing ambient GABA around stimulus-relevant principal cells, thereby ensuring their selective responsiveness to the applied stimulus. We suggest that a deficit in GABAergic gliotransmission may cause a reduction in ambient GABA concentration, leading to a broadening of sensory tuning in schizophrenia. The GABAergic gliotransmission mechanism proposed here may have an important role in the regulation of local ambient GABA levels, thereby improving the sensory tuning performance of the cortex.
Bharatham, Nagakumar; Slavish, Peter J; Shadrick, William R; Young, Brandon M; Shelat, Anang A
2018-05-01
The Bromodomain and Extra-Terminal domain (BET) family of proteins are involved in the regulation of gene transcription, and their dysregulation is implicated in several diseases including cancer. BET proteins contain two tandem bromodomains (BD1 and BD2) that independently recognize acetylated-lysine residues and appear to have distinct biological roles. We compared several published co-crystal structures and found five positions near the substrate binding pocket that vary between BET bromodomains. One position located in the ZA loop has unique properties. In BRD2-4, this residue is glutamine in BD1 and lysine in BD2; in BRDT, this residue is arginine in BD1 and asparagine in BD2. Using molecular modeling, we identified differences in the water-mediated network at this position between bromodomains. Molecular dynamics simulations helped rationalize the observed bromodomain selectivity for exemplar BET inhibitors and a congeneric series of tetrahydroquinolines (THQ) that differed by a single heteroatom near the ZA channel. The 2-furan SJ830599, the most BD2-selective THQ analog, did not disrupt the water-mediated networks in either domain, but was electrostatically-repulsed by the specific arrangement of the W5 water dipole in BD1. Our work underscores the value of exploring water-mediated interactions to study ligand binding, and highlights the difficulty of optimizing polar interactions due to high desolvation penalties. Finally, we suggest further modifications to THQ-based BET inhibitors that would increase BD2-selectivity in BRD2-4, while minimizing affinity for one or both bromodomains of BRDT. Copyright © 2018 Elsevier Inc. All rights reserved.
Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna
2018-01-01
The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893
Gilbert, Jessica R; Yarrington, Julia S; Wills, Kathleen E; Nugent, Allison C; Zarate, Carlos A
2018-04-13
The glutamatergic modulator ketamine has rapid antidepressant effects in individuals with major depressive disorder (MDD) and bipolar depression. Thus, modulating glutamatergic transmission may be critical to effectively treating depression, though the mechanisms by which this occurs are not fully understood. This double-blind, crossover, placebo-controlled study analyzed data from 18 drug-free MDD subjects and 18 heathy controls who received a single intravenous infusion of ketamine hydrochloride (0.5 mg/kg) as well as an intravenous saline placebo. Magnetoencephalographic (MEG) recordings were collected prior to the first infusion and six to nine hours after both ketamine and placebo infusions. During scanning, participants passively received tactile stimulation to the right index finger. Antidepressant response was assessed across timepoints using the Montgomery-Asberg Depression Rating Scale (MADRS). Dynamic causal modeling (DCM) was used to measure changes in -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-mediated connectivity estimates in MDD subjects and controls using a simple model of somatosensory evoked responses. Both MDD and healthy subjects showed ketamine-mediated NMDA-blockade sensitization, with MDD subjects showing enhanced NMDA connectivity estimates in backward connections, and controls showing enhanced NMDA connectivity estimates in forward connections in our model. Within our MDD subject group, ketamine efficacy-as measured by improved mood ratings-correlated with reduced NMDA and AMPA connectivity estimates in discrete extrinsic connections within the somatosensory cortical network. These findings suggest that AMPA- and NMDA-mediated glutamatergic signaling play a key role in antidepressant response to ketamine and, further, that DCM is a powerful tool for modeling AMPA- and NMDA-mediated connectivity in vivo. NCT#00088699.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells
He, Feng; Chen, Hairong; Probst-Kepper, Michael; Geffers, Robert; Eifes, Serge; del Sol, Antonio; Schughart, Klaus; Zeng, An-Ping; Balling, Rudi
2012-01-01
Human FOXP3+CD25+CD4+ regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes directly from an undirected correlation network which we reconstruct from a very high time-resolution (HTR) transcriptome during the activation of human Tregs/CD4+ T-effector cells. We show that a predicted top-ranked new key gene PLAU (the plasminogen activator urokinase) is important for the suppressor function of both human and murine Tregs. Further analysis unveils that PLAU is particularly important for memory Tregs and that PLAU mediates Treg suppressor function via STAT5 and ERK signaling pathways. Our study demonstrates the potential for identifying novel key genes for complex dynamic biological processes using a network strategy based on HTR data, and reveals a critical role for PLAU in Treg suppressor function. PMID:23169000
Kolb, Hubert; Lückemeyer, Kathrin; Heise, Tim; Herder, Christian; Schloot, Nanette C; Koenig, Wolfgang; Heinemann, Lutz; Martin, Stephan
2013-01-01
The hypothesis was tested that the systemic immune milieu in recent-onset type 1 diabetes is associated with residual beta cell function and other metabolic patient characteristics. All patients (n = 89, 40% female) of the Diabetes and Atorvastatin (DIATOR) Trial were analyzed at recruitment, i.e. prior to receiving the study medication. Inclusion criteria were insulin dependent diabetes for 2 weeks to 3 months, age range 18-39 years, and islet cell autoantibodies. Blood samples were analyzed for 14 immune mediators by standard methods. Concentrations of all mediators correlated with at least one other mediator (p<0.05, Spearman correlation) giving rise to a network. Interleukin 1 receptor antagonist (IL1-RA) held a central position and was associated with both pro- and anti-inflammatory mediators. Further central elements were the pro-inflammatory mediators CRP and IL-6, the soluble adhesion molecules sICAM-1 and E-selectin, and MCP-4 which held a central position in the chemokine network. The two Th1-associated mediators IFNγ and IP-10 remained outside the network but correlated with each other. All correlations were positive (r = 0.25-0.72), i.e., high levels of pro-inflammatory mediators were accompanied by increased levels of anti-inflammatory mediators. IL-1RA was the only mediator associated with fasting and liquid mixed meal stimulated C-peptide concentrations (r = 0.31 and 0.24, p = 0.003 and 0.025, after adjustment for age, sex, BMI). There were associations between the immune mediator network and BMI (IL-1RA, CRP, IL-6, MCP-4, MIP-1ß) but few or no associations with HbA1c, insulin dose, lipid parameters, age or sex. In patients with recent onset type 1 diabetes, systemic acute phase proteins, cytokines, chemokines and soluble adhesion molecules form a network. Among the few central elements IL-1RA has a dominant role. IL-1RA is associated with all other groups of mediators and is the only mediator which correlates (positively) with residual beta cell function. ClinicalTrials.gov registration number: NCT00974740.
Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission
Rehklau, Katharina; Hoffmann, Lena; Gurniak, Christine B; Ott, Martin; Witke, Walter; Scorrano, Luca; Culmsee, Carsten; Rust, Marco B
2017-01-01
Mitochondria form highly dynamic networks in which organelles constantly fuse and divide. The relevance of mitochondrial dynamics is evident from its implication in various human pathologies, including cancer or neurodegenerative, endocrine and cardiovascular diseases. Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission that oligomerizes at the mitochondrial outer membrane and hydrolyzes GTP to drive mitochondrial fragmentation. Previous studies demonstrated that DRP1 recruitment and mitochondrial fission is promoted by actin polymerization at the mitochondrial surface, controlled by the actin regulatory proteins inverted formin 2 (INF2) and Spire1C. These studies suggested the requirement of additional actin regulatory activities to control DRP1-mediated mitochondrial fission. Here we show that the actin-depolymerizing protein cofilin1, but not its close homolog actin-depolymerizing factor (ADF), is required to maintain mitochondrial morphology. Deletion of cofilin1 caused mitochondrial DRP1 accumulation and fragmentation, without altering mitochondrial function or other organelles’ morphology. Mitochondrial morphology in cofilin1-deficient cells was restored upon (i) re-expression of wild-type cofilin1 or a constitutively active mutant, but not of an actin-binding-deficient mutant, (ii) pharmacological destabilization of actin filaments and (iii) genetic depletion of DRP1. Our work unraveled a novel function for cofilin1-dependent actin dynamics in mitochondrial fission, and identified cofilin1 as a negative regulator of mitochondrial DRP1 activity. We conclude that cofilin1 is required for local actin dynamics at mitochondria, where it may balance INF2/Spire1C-induced actin polymerization. PMID:28981113
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688
Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions
Shipston‐Sharman, Oliver; Solanka, Lukas
2016-01-01
Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120
GABA receptors and T-type Ca2+ channels crosstalk in thalamic networks.
Leresche, Nathalie; Lambert, Régis C
2017-06-07
Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca 2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABA A/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
Klinke, David J.; Horvath, Nicholas; Cuppett, Vanessa; Wu, Yueting; Deng, Wentao; Kanj, Rania
2015-01-01
The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein–protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin–induced gene expression. PMID:26224311
Formation of raiding parties for intergroup violence is mediated by social network structure
Glowacki, Luke; Isakov, Alexander; Wrangham, Richard W.; McDermott, Rose; Fowler, James H.; Christakis, Nicholas A.
2016-01-01
Intergroup violence is common among humans worldwide. To assess how within-group social dynamics contribute to risky, between-group conflict, we conducted a 3-y longitudinal study of the formation of raiding parties among the Nyangatom, a group of East African nomadic pastoralists currently engaged in small-scale warfare. We also mapped the social network structure of potential male raiders. Here, we show that the initiation of raids depends on the presence of specific leaders who tend to participate in many raids, to have more friends, and to occupy more central positions in the network. However, despite the different structural position of raid leaders, raid participants are recruited from the whole population, not just from the direct friends of leaders. An individual’s decision to participate in a raid is strongly associated with the individual’s social network position in relation to other participants. Moreover, nonleaders have a larger total impact on raid participation than leaders, despite leaders’ greater connectivity. Thus, we find that leaders matter more for raid initiation than participant mobilization. Social networks may play a role in supporting risky collective action, amplify the emergence of raiding parties, and hence facilitate intergroup violence in small-scale societies. PMID:27790996
Zhan, Chendi; Qi, Ruxi; Wei, Guanghong; Guven-Maiorov, Emine; Nussinov, Ruth; Ma, Buyong
2016-01-01
MyD88 is an essential adaptor protein, which mediates the signaling of the toll-like and interleukin-1 receptors’ superfamily. The MyD88 L252P (L265P) mutation has been identified in diffuse large B-cell lymphoma. The identification of this mutation has been a major advance in the diagnosis of patients with aldenstrom macroglobulinemia and related lymphoid neoplasms. Here we used computational methods to characterize the conformational effects of the mutation. Our molecular dynamics simulations revealed that the mutation allosterically quenched the global conformational dynamics of the toll/IL-1R (TIR) domain, and readjusted its salt bridges and dynamic community network. Specifically, the mutation changed the orientation and reduced the fluctuation of α-helix 3, possibly through eliminating/weakening ~8 salt bridges and enhancing the salt bridge D225-K258. Using the energy landscape of the TIR domains of MyD88, we identified two dynamic conformational basins, which correspond to the binding sites used in homo- and hetero-oligomerization, respectively. Our results indicate that the mutation stabilizes the core of the homo-dimer interface of the MyD88-TIR domain, and increases the population of homo-dimer-compatible conformational states in MyD88 family proteins. However, the dampened motion restricts its ability to heterodimerize with other TIR domains, thereby curtailing physiological signaling. In conclusion, the L252P both shifts the landscape toward homo-dimerization and restrains the dynamics of the MyD88-TIR domain, which disfavors its hetero-dimerization with other TIR domains. We further put these observations within the framework of MyD88-mediated cell signaling. PMID:27503954
Kwag, Jeehyun; Paulsen, Ole
2009-08-26
Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.
Dunn, Kathryn M; Hill-Eubanks, David C; Liedtke, Wolfgang B; Nelson, Mark T
2013-04-09
In the CNS, astrocytes are sensory and regulatory hubs that play important roles in cerebral homeostatic processes, including matching local cerebral blood flow to neuronal metabolism (neurovascular coupling). These cells possess a highly branched network of processes that project from the soma to neuronal synapses as well as to arterioles and capillaries, where they terminate in "endfeet" that encase the blood vessels. Ca(2+) signaling within the endfoot mediates neurovascular coupling; thus, these functional microdomains control vascular tone and local perfusion in the brain. Transient receptor potential vanilloid 4 (TRPV4) channels--nonselective cation channels with considerable Ca(2+) conductance--have been identified in astrocytes, but their function is largely unknown. We sought to characterize the influence of TRPV4 channels on Ca(2+) dynamics in the astrocytic endfoot microdomain and assess their role in neurovascular coupling. We identified local TRPV4-mediated Ca(2+) oscillations in endfeet and further found that TRPV4 Ca(2+) signals are amplified and propagated by Ca(2+)-induced Ca(2+) release from inositol trisphosphate receptors (IP3Rs). Moreover, TRPV4-mediated Ca(2+) influx contributes to the endfoot Ca(2+) response to neuronal activation, enhancing the accompanying vasodilation. Our results identify a dynamic synergy between TRPV4 channels and IP3Rs in astrocyte endfeet and demonstrate that TRPV4 channels are engaged in and contribute to neurovascular coupling.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
NASA Astrophysics Data System (ADS)
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics.
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
DSGRN: Examining the Dynamics of Families of Logical Models.
Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin
2018-01-01
We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.
DAWN: Dynamic Ad-hoc Wireless Network
2016-06-19
DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
Coyle, Scott M; Lim, Wendell A
2016-01-01
The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565
Mediation Effects of Internet Addiction on Shame and Social Networking
ERIC Educational Resources Information Center
Dogan, Ugur; Kaya, Sinem
2016-01-01
A survey of 488 college students was conducted in Turkey to investigate the relationship between social network usage, shame and Internet addiction. It was hypothesized that a relationship between shame and social network usage was mediated by Internet addiction. First of all, according to simple regression analysis, it was found that shame…
Modeling cellular compartmentation in one-carbon metabolism
Scotti, Marco; Stella, Lorenzo; Shearer, Emily J.; Stover, Patrick J.
2015-01-01
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable. PMID:23408533
Actin-mediated bacterial propulsion: comet profile, velocity pulsations.
Benza, V G
2008-05-23
The propulsion of bacteria under the action of an actin gel network is examined in terms of gel concentration dynamics. The model includes the elasticity of the network, the gel-bacterium interaction, the bulk and interface polymerization. A formula for the cruise velocity is obtained where the contributions to bacterial motility arising from elasticity and polymerization are made explicit. Higher velocities correspond to lower concentration peaks and longer tails, in agreement with experimental results. The condition for the onset of motion is explicitly given. The behavior of the system is explored by varying the growth rates and the gel elasticity. At steady state two regimes are found, respectively, of constant and pulsating velocity; in the latter case, the velocity undergoes sudden accelerations and subsequent recoveries. The transition to the pulsating regime is obtained by increasing the elastic response of the gel.
Aberrant Network Activity in Schizophrenia.
Hunt, Mark J; Kopell, Nancy J; Traub, Roger D; Whittington, Miles A
2017-06-01
Brain dynamic changes associated with schizophrenia are largely equivocal, with interpretation complicated by many factors, such as the presence of therapeutic agents and the complex nature of the syndrome itself. Evidence for a brain-wide change in individual network oscillations, shared by all patients, is largely equivocal, but stronger for lower (delta) than for higher (gamma) bands. However, region-specific changes in rhythms across multiple, interdependent, nested frequencies may correlate better with pathology. Changes in synaptic excitation and inhibition in schizophrenia disrupt delta rhythm-mediated cortico-cortical communication, while enhancing thalamocortical communication in this frequency band. The contrasting relationships between delta and higher frequencies in thalamus and cortex generate frequency mismatches in inter-regional connectivity, leading to a disruption in temporal communication between higher-order brain regions associated with mental time travel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nochomovitz, Yigal D; Li, Hao
2006-03-14
Deciphering the design principles for regulatory networks is fundamental to an understanding of biological systems. We have explored the mapping from the space of network topologies to the space of dynamical phenotypes for small networks. Using exhaustive enumeration of a simple model of three- and four-node networks, we demonstrate that certain dynamical phenotypes can be generated by an atypically broad spectrum of network topologies. Such dynamical outputs are highly designable, much like certain protein structures can be designed by an unusually broad spectrum of sequences. The network topologies that encode a highly designable dynamical phenotype possess two classes of connections: a fully conserved core of dedicated connections that encodes the stable dynamical phenotype and a partially conserved set of variable connections that controls the transient dynamical flow. By comparing the topologies and dynamics of the three- and four-node network ensembles, we observe a large number of instances of the phenomenon of "mutational buffering," whereby addition of a fourth node suppresses phenotypic variation amongst a set of three-node networks.
Karunarathne, W. K. Ajith; Giri, Lopamudra; Patel, Anilkumar K.; Venkatesh, Kareenhalli V.; Gautam, N.
2013-01-01
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein–coupled receptor network control of other cell behaviors. PMID:23569254
Karunarathne, W K Ajith; Giri, Lopamudra; Patel, Anilkumar K; Venkatesh, Kareenhalli V; Gautam, N
2013-04-23
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.
Social Networks and Health Among Older Adults in Lebanon: The Mediating Role of Support and Trust
Antonucci, Toni C.; Ajrouch, Kristine J.; Abdulrahim, Sawsan
2015-01-01
Objectives. Despite a growing body of literature documenting the influence of social networks on health, less is known in other parts of the world. The current study investigates this link by clustering characteristics of network members nominated by older adults in Lebanon. We then identify the degree to which various types of people exist within the networks. This study further examines how network composition as measured by the proportion of each type (i.e., type proportions) is related to health; and the mediating role of positive support and trust in this process. Method. Data are from the Family Ties and Aging Study (2009). Respondents aged ≥60 were selected (N = 195) for analysis. Results. Three types of people within the networks were identified: Geographically Distant Male Youth, Geographically Close/Emotionally Distant Family, and Close Family. Having more Geographically Distant Male Youth in one’s network was associated with health limitations, whereas more Close Family was associated with no health limitations. Positive support mediated the link between type proportions and health limitations, whereas trust mediated the link between type proportions and depressive symptoms. Discussion. Results document links between the social networks and health of older adults in Lebanon within the context of ongoing demographic transitions. PMID:25324295
Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.
Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K
2013-10-01
Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.
Global Efficiency of Structural Networks Mediates Cognitive Control in Mild Cognitive Impairment
Berlot, Rok; Metzler-Baddeley, Claudia; Ikram, M. Arfan; Jones, Derek K.; O’Sullivan, Michael J.
2016-01-01
Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localized white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI). Materials and Methods: Twenty-five patients with MCI and 20 age, sex, and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI). Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusion: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive control but not for episodic memory. Interventions to improve cognitive control will need to address both dysfunction of local circuitry and global network architecture to be maximally effective. PMID:28018208
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
An adaptive molecular timer in p53-meidated cell fate decision
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei
The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).
Löffler, Michael; Simen, Joana Danica; Müller, Jan; Jäger, Günter; Laghrami, Salaheddine; Schäferhoff, Karin; Freund, Andreas; Takors, Ralf
2017-09-20
Transcriptional control under nitrogen and carbon-limitation conditions have been well analyzed for Escherichia coli. However, the transcriptional dynamics that underlie the shift in regulatory programs from nitrogen to carbon limitation is not well studied. In the present study, cells were cultivated at steady state under nitrogen (ammonia)-limited conditions then shifted to carbon (glucose) limitation to monitor changes in transcriptional dynamics. Nitrogen limitation was found to be dominated by sigma 54 (RpoN) and sigma 38 (RpoS), whereas the "housekeeping" sigma factor 70 (RpoD) and sigma 38 regulate cellular status under glucose limitation. During the transition, nitrogen-mediated control was rapidly redeemed and mRNAs that encode active uptake systems, such as ptsG and manXYZ, were quickly amplified. Next, genes encoding facilitators such as lamB were overexpressed, followed by high affinity uptake systems such as mglABC and non-specific porins such as ompF. These regulatory programs are complex and require well-equilibrated and superior control. At the metabolome level, 2-oxoglutarate is the likely component that links carbon- and nitrogen-mediated regulation by interacting with major regulatory elements. In the case of dual glucose and ammonia limitation, sigma 24 (RpoE) appears to play a key role in orchestrating these complex regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.
Advanced Polymer Network Structures
2016-02-01
double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Dynamic Trust Management for Mobile Networks and Its Applications
ERIC Educational Resources Information Center
Bao, Fenye
2013-01-01
Trust management in mobile networks is challenging due to dynamically changing network environments and the lack of a centralized trusted authority. In this dissertation research, we "design" and "validate" a class of dynamic trust management protocols for mobile networks, and demonstrate the utility of dynamic trust management…
Grey-matter network disintegration as predictor of cognitive and motor function with aging.
Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold
2018-06-01
Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.
Cheng, Sheung-Tak; Leung, Edward M F; Chan, Trista Wai Sze
2014-06-01
This study examined the associations between social network types and peak expiratory flow (PEF), and whether these associations were mediated by social and physical activities and mood. Nine hundred twenty-four community-dwelling Chinese older adults, who were classified into five network types (diverse, friend-focused, family-focused, distant family, and restricted), provided data on demographics, social and physical activities, mood, smoking, chronic diseases, and instrumental activities of daily living. PEF and biological covariates, including blood lipids and glucose, blood pressure, and height and weight, were assessed. Two measures of PEF were analyzed: the raw reading in L/min and the reading expressed as percentage of predicted normal value on the basis of age, sex, and height. Diverse, friend-focused, and distant family networks were hypothesized to have better PEF values compared with restricted networks, through higher physical and/or social activities. No relative advantage was predicted for family-focused networks because such networks tend to be associated with lower physical activity. Older adults with diverse, friend-focused, and distant family networks had significantly better PEF measures than those with restricted networks. The associations between diverse network and PEF measures were partially mediated by physical exercise and socializing activity. The associations between friend-focused network and PEF measures were partially mediated by socializing activity. No significant PEF differences between family-focused and restricted networks were found. Findings suggest that social network types are associated with PEF in older adults, and that network-type differences in physical and socializing activity is partly responsible for this relationship. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Munn, Lance
2009-11-01
``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure and function, provides a tool for identifying the structural and functional determinants of tumor vessel normalization.
Detailed analysis of routing protocols with different network limitations
NASA Astrophysics Data System (ADS)
Masood, Mohsin; Abuhelala, Mohamed; Glesk, Ivan
2016-12-01
In network communication field, routing protocols have got a significant role which are not only used in networks to handle the user data but also to monitor the different network environments. Dynamic routing protocols such as OSPF, EIGRP and RIP are used for forwarding user data to its destination by instantly detecting the dynamic changes across the network. The dynamic changes in the network can be in the form of topological changes, congestions, links failure etc. Therefore, it becomes a challenge to develop and implement dynamic routing protocols that fulfills the network requirements. Hence, each routing protocol has its own characteristics such as convergence activity, routing metric, routing table etc. and will perform differently in various network environments. This paper presents a comprehensive study of static and dynamic routing, along with dynamic routing protocols. Experiments that are conducted under various network limitations are presented using the OPNET tool. The performance of each of dynamic routing protocols are monitored and explained in the form of simulated results using network parameters. The results are analyzed, in order to provide a clear understanding of each protocol performance for the selection of the proper protocol for a given network environment.
Kolb, Hubert; Lückemeyer, Kathrin; Heise, Tim; Herder, Christian; Schloot, Nanette C.; Koenig, Wolfgang; Heinemann, Lutz; Martin, Stephan
2013-01-01
Background The hypothesis was tested that the systemic immune milieu in recent-onset type 1 diabetes is associated with residual beta cell function and other metabolic patient characteristics. Methods and Findings All patients (n = 89, 40% female) of the Diabetes and Atorvastatin (DIATOR) Trial were analyzed at recruitment, i.e. prior to receiving the study medication. Inclusion criteria were insulin dependent diabetes for 2 weeks to 3 months, age range 18–39 years, and islet cell autoantibodies. Blood samples were analyzed for 14 immune mediators by standard methods. Concentrations of all mediators correlated with at least one other mediator (p<0.05, Spearman correlation) giving rise to a network. Interleukin 1 receptor antagonist (IL1-RA) held a central position and was associated with both pro- and anti-inflammatory mediators. Further central elements were the pro-inflammatory mediators CRP and IL-6, the soluble adhesion molecules sICAM-1 and E-selectin, and MCP-4 which held a central position in the chemokine network. The two Th1-associated mediators IFNγ and IP-10 remained outside the network but correlated with each other. All correlations were positive (r = 0.25–0.72), i.e., high levels of pro-inflammatory mediators were accompanied by increased levels of anti-inflammatory mediators. IL-1RA was the only mediator associated with fasting and liquid mixed meal stimulated C-peptide concentrations (r = 0.31 and 0.24, p = 0.003 and 0.025, after adjustment for age, sex, BMI). There were associations between the immune mediator network and BMI (IL-1RA, CRP, IL-6, MCP-4, MIP-1ß) but few or no associations with HbA1c, insulin dose, lipid parameters, age or sex. Conclusions In patients with recent onset type 1 diabetes, systemic acute phase proteins, cytokines, chemokines and soluble adhesion molecules form a network. Among the few central elements IL-1RA has a dominant role. IL-1RA is associated with all other groups of mediators and is the only mediator which correlates (positively) with residual beta cell function. Trial registration ClinicalTrials.gov registration number: NCT00974740 PMID:23991111
Serotonin increases synaptic activity in olfactory bulb glomeruli
Brill, Julia; Shao, Zuoyi; Puche, Adam C.; Wachowiak, Matt
2016-01-01
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. PMID:26655822
Serotonin increases synaptic activity in olfactory bulb glomeruli.
Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T
2016-03-01
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. Copyright © 2016 the American Physiological Society.
Communication efficiency and congestion of signal traffic in large-scale brain networks.
Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R
2014-01-01
The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.
Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks
Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R.
2014-01-01
The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a “rich club” of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication. PMID:24415931
ERIC Educational Resources Information Center
Enriquez, Judith Guevarra
2010-01-01
In this article, centrality is explored as a measure of computer-mediated communication (CMC) in networked learning. Centrality measure is quite common in performing social network analysis (SNA) and in analysing social cohesion, strength of ties and influence in CMC, and computer-supported collaborative learning research. It argues that measuring…
Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach
Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.
2016-01-01
Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671
Mohsenizadeh, Daniel N; Dehghannasiri, Roozbeh; Dougherty, Edward R
2018-01-01
In systems biology, network models are often used to study interactions among cellular components, a salient aim being to develop drugs and therapeutic mechanisms to change the dynamical behavior of the network to avoid undesirable phenotypes. Owing to limited knowledge, model uncertainty is commonplace and network dynamics can be updated in different ways, thereby giving multiple dynamic trajectories, that is, dynamics uncertainty. In this manuscript, we propose an experimental design method that can effectively reduce the dynamics uncertainty and improve performance in an interaction-based network. Both dynamics uncertainty and experimental error are quantified with respect to the modeling objective, herein, therapeutic intervention. The aim of experimental design is to select among a set of candidate experiments the experiment whose outcome, when applied to the network model, maximally reduces the dynamics uncertainty pertinent to the intervention objective.
Lee, Jong-Sun; Jeong, Bumseok
2014-05-05
Easy access to the internet has spawned a wealth of research to investigate the effects of its use on depression. However, one limitation of many previous studies is that they disregard the interactive mechanisms of risk and protective factors. The aim of the present study was to investigate a resilience model in the relationship between worry, daily internet video game playing, daily sleep duration, mentors, social networks and depression, using a moderated mediation analysis. 6068 Korean undergraduate and graduate students participated in this study. The participants completed a web-based mental health screening questionnaire including the Beck Depression Inventory (BDI) and information about number of worries, number of mentors, number of campus social networks, daily sleep duration, daily amount of internet video game playing and daily amount of internet searching on computer or smartphone. A moderated mediation analysis was carried out using the PROCESS macro which allowed the inclusion of mediators and moderator in the same model. The results showed that the daily amount of internet video game playing and daily sleep duration partially mediated the association between the number of worries and the severity of depression. In addition, the mediating effect of the daily amount of internet video game playing was moderated by both the number of mentors and the number of campus social networks. The current findings indicate that the negative impact of worry on depression through internet video game playing can be buffered when students seek to have a number of mentors and campus social networks. Interventions should therefore target individuals who have higher number of worries but seek only a few mentors or campus social networks. Social support via campus mentorship and social networks ameliorate the severity of depression in university students.
"You've got a friend in me": can social networks mediate the relationship between mood and MCI?
Yates, Jennifer A; Clare, Linda; Woods, Robert T
2017-07-13
Social networks can change with age, for reasons that are adaptive or unwanted. Social engagement is beneficial to both mental health and cognition, and represents a potentially modifiable factor. Consequently this study explored this association and assessed whether the relationship between mild cognitive impairment (MCI) and mood problems was mediated by social networks. This study includes an analysis of data from the Cognitive Function and Ageing Study Wales (CFAS Wales). CFAS Wales Phase 1 data were collected from 2010 to 2013 by conducting structured interviews with older people aged over 65 years of age living in urban and rural areas of Wales, and included questions that assessed cognitive functioning, mood, and social networks. Regression analyses were used to investigate the associations between individual variables and the mediating role of social networks. Having richer social networks was beneficial to both mood and cognition. Participants in the MCI category had weaker social networks than participants without cognitive impairment, whereas stronger social networks were associated with a decrease in the odds of experiencing mood problems, suggesting that they may offer a protective effect against anxiety and depression. Regression analyses revealed that social networks are a significant mediator of the relationship between MCI and mood problems. These findings are important, as mood problems are a risk factor for progression from MCI to dementia, so interventions that increase and strengthen social networks may have beneficial effects on slowing the progression of cognitive decline.
Organization of excitable dynamics in hierarchical biological networks.
Müller-Linow, Mark; Hilgetag, Claus C; Hütt, Marc-Thorsten
2008-09-26
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.
ERIC Educational Resources Information Center
Mital, Monika; Israel, D.; Agarwal, Shailja
2010-01-01
Purpose: The purpose of this paper is to examine the mediating effect of trust on the relationship between the type of information exchange (IE) and information disclosure (ID) on social networking web sites (SNWs). Design/methodology/approach: Constructs were developed for type of IE and trust. To understand the mediating role of trust a…
NASA Astrophysics Data System (ADS)
Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.
2015-12-01
To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.
AP-1 subunits: quarrel and harmony among siblings.
Hess, Jochen; Angel, Peter; Schorpp-Kistner, Marina
2004-12-01
The AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer. However, emerging evidence indicates that the contribution of AP-1 to determination of cell fates critically depends on the relative abundance of AP-1 subunits, the composition of AP-1 dimers, the quality of stimulus, the cell type and the cellular environment. Therefore, AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.
Roles of small RNAs in plant disease resistance.
Yang, Li; Huang, Hai
2014-10-01
The interaction between plants and pathogens represents a dynamic competition between a robust immune system and efficient infectious strategies. Plant innate immunity is composed of complex and highly regulated molecular networks, which can be triggered by the perception of either conserved or race-specific pathogenic molecular signatures. Small RNAs are emerging as versatile regulators of plant development, growth and response to biotic and abiotic stresses. They act in different tiers of plant immunity, including the pathogen-associated molecular pattern-triggered and the effector-triggered immunity. On the other hand, pathogens have evolved effector molecules to suppress or hijack the host small RNA pathways. This leads to an arms race between plants and pathogens at the level of small RNA-mediated defense. Here, we review recent advances in small RNA-mediated defense responses and discuss the challenging questions in this area. © 2014 Institute of Botany, Chinese Academy of Sciences.
Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.
Alshawaqfeh, Mustafa; Serpedin, Erchin; Younes, Ahmad Bani
2017-03-27
Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies. Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main drawbacks of these models include the fact that these models only consider the measurement noise without taking into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation techniques are needed to address these challenges. This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN. Performance analysis demonstrates that the proposed SgLV-EKF algorithm represents a powerful and reliable tool to infer MINs and track their dynamics.
Wang, Wei Bu; Liang, Yu; Zhang, Jing; Wu, Yi Dong; Du, Jian Jun; Li, Qi Ming; Zhu, Jian Zhuo; Su, Ji Guo
2018-06-22
Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.
Richmond, Jonathan Q.; Backlin, Adam R.; Galst-Cavalcante, Carey; O'Brien, John W.; Fisher, Robert N.
2018-01-01
Life history adaptations and spatial configuration of metapopulation networks allow certain species to persist in extreme fluctuating environments, yet long-term stability within these systems relies on the maintenance of linkage habitat. Degradation of such linkages in urban riverscapes can disrupt this dynamic in aquatic species, leading to increased extinction debt in local populations experiencing environment-related demographic flux. We used microsatellites and mtDNA to examine the effects of collapsed network structure in the endemic Santa Ana sucker Catostomus santaanae of southern California, a threatened species affected by natural flood-drought cycles, ‘boom-and-bust’ demography, hybridization, and presumed artificial transplantation. Our results show a predominance of drift-mediated processes in shaping population structure, and that reverse mechanisms for counterbalancing the genetic effects of these phenomena have dissipated with the collapse of dendritic connectivity. We use approximate Bayesian models to support two cases of artificial transplantation, and provide evidence that one of the invaded systems better represents the historic processes that maintained genetic variation within watersheds than any remaining drainages where C. santaanae is considered native. We further show that a stable dry gap in the northern range is preventing genetic dilution of pure C. santaanae persisting upstream of a hybrid assemblage involving a non-native sucker, and that local accumulation of genetic variation in the same drainage is influenced by position within the network. This work has important implications for declining species that have historically relied on dendritic metapopulation networks to maintain source-sink dynamics in phasic environments, but no longer possess this capacity in urban-converted landscapes.
Springer, Andrea; Kappeler, Peter M; Nunn, Charles L
2017-05-01
Social networks provide an established tool to implement heterogeneous contact structures in epidemiological models. Dynamic temporal changes in contact structure and ranging behaviour of wildlife may impact disease dynamics. A consensus has yet to emerge, however, concerning the conditions in which network dynamics impact model outcomes, as compared to static approximations that average contact rates over longer time periods. Furthermore, as many pathogens can be transmitted both environmentally and via close contact, it is important to investigate the relative influence of both transmission routes in real-world populations. Here, we use empirically derived networks from a population of wild primates, Verreaux's sifakas (Propithecus verreauxi), and simulated networks to investigate pathogen spread in dynamic vs. static social networks. First, we constructed a susceptible-exposed-infected-recovered model of Cryptosporidium spread in wild Verreaux's sifakas. We incorporated social and environmental transmission routes and parameterized the model for two different climatic seasons. Second, we used simulated networks and greater variation in epidemiological parameters to investigate the conditions in which dynamic networks produce larger outbreak sizes than static networks. We found that average outbreak size of Cryptosporidium infections in sifakas was larger when the disease was introduced in the dry season than in the wet season, driven by an increase in home range overlap towards the end of the dry season. Regardless of season, dynamic networks always produced larger average outbreak sizes than static networks. Larger outbreaks in dynamic models based on simulated networks occurred especially when the probability of transmission and recovery were low. Variation in tie strength in the dynamic networks also had a major impact on outbreak size, while network modularity had a weaker influence than epidemiological parameters that determine transmission and recovery. Our study adds to emerging evidence that dynamic networks can change predictions of disease dynamics, especially if the disease shows low transmissibility and a long infectious period, and when environmental conditions lead to enhanced between-group contact after an infectious agent has been introduced. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
In silico reconstitution of Listeria propulsion exhibits nano-saltation.
Alberts, Jonathan B; Odell, Garrett M
2004-12-01
To understand how the actin-polymerization-mediated movements in cells emerge from myriad individual protein-protein interactions, we developed a computational model of Listeria monocytogenes propulsion that explicitly simulates a large number of monomer-scale biochemical and mechanical interactions. The literature on actin networks and L. monocytogenes motility provides the foundation for a realistic mathematical/computer simulation, because most of the key rate constants governing actin network dynamics have been measured. We use a cluster of 80 Linux processors and our own suite of simulation and analysis software to characterize salient features of bacterial motion. Our "in silico reconstitution" produces qualitatively realistic bacterial motion with regard to speed and persistence of motion and actin tail morphology. The model also produces smaller scale emergent behavior; we demonstrate how the observed nano-saltatory motion of L. monocytogenes,in which runs punctuate pauses, can emerge from a cooperative binding and breaking of attachments between actin filaments and the bacterium. We describe our modeling methodology in detail, as it is likely to be useful for understanding any subcellular system in which the dynamics of many simple interactions lead to complex emergent behavior, e.g., lamellipodia and filopodia extension, cellular organization, and cytokinesis.
Social networks and health among older adults in Lebanon: the mediating role of support and trust.
Webster, Noah J; Antonucci, Toni C; Ajrouch, Kristine J; Abdulrahim, Sawsan
2015-01-01
Despite a growing body of literature documenting the influence of social networks on health, less is known in other parts of the world. The current study investigates this link by clustering characteristics of network members nominated by older adults in Lebanon. We then identify the degree to which various types of people exist within the networks. This study further examines how network composition as measured by the proportion of each type (i.e., type proportions) is related to health; and the mediating role of positive support and trust in this process. Data are from the Family Ties and Aging Study (2009). Respondents aged ≥60 were selected (N = 195) for analysis. Three types of people within the networks were identified: Geographically Distant Male Youth, Geographically Close/Emotionally Distant Family, and Close Family. Having more Geographically Distant Male Youth in one's network was associated with health limitations, whereas more Close Family was associated with no health limitations. Positive support mediated the link between type proportions and health limitations, whereas trust mediated the link between type proportions and depressive symptoms. Results document links between the social networks and health of older adults in Lebanon within the context of ongoing demographic transitions. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators
Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee
2017-01-01
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale. PMID:28598426
A lateral signalling pathway coordinates shape volatility during cell migration
Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.
2016-01-01
Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243
Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1
Chang, Chuang-Rung; Blackstone, Craig
2017-01-01
Mitochondria in cells comprise a tubulovesicular network shaped continuously by complementary fission and fusion events. The mammalian Drp1 protein plays a key role in fission, while Mfn1, Mfn2, and OPA1 are required for fusion. Shifts in the balance between these opposing processes can occur rapidly, indicating that modifications to these proteins may regulate mitochondrial membrane dynamics. We highlight posttranslational modifications of the mitochondrial fission protein Drp1, for which these regulatory mechanisms are best characterized. This dynamin-related GTPase undergoes a number of steps to mediate mitochondrial fission, including translocation from cytoplasm to the mitochondrial outer membrane, higher-order assembly into spirals, GTP hydrolysis associated with a conformational change and membrane deformation, and ultimately disassembly. Many of these steps may be influenced by covalent modification of Drp1. We discuss the dynamic nature of Drp1 modifications and how they contribute not only to the normal regulation of mitochondrial division, but also to neuropathologic processes. PMID:20649536
Research on dynamic routing mechanisms in wireless sensor networks.
Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y
2014-01-01
WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.
Joshi, Amit U.; Kornfeld, Opher S.; Mochly-Rosen, Daria
2016-01-01
Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca2+ transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases. PMID:27212603
Contreras-Hernández, E; Chávez, D; Rudomin, P
2015-01-01
Previous studies on the correlation between spontaneous cord dorsum potentials recorded in the lumbar spinal segments of anaesthetized cats suggested the operation of a population of dorsal horn neurones that modulates, in a differential manner, transmission along pathways mediating Ib non-reciprocal postsynaptic inhibition and pathways mediating primary afferent depolarization and presynaptic inhibition. In order to gain further insight into the possible neuronal mechanisms that underlie this process, we have measured changes in the correlation between the spontaneous activity of individual dorsal horn neurones and the cord dorsum potentials associated with intermittent activation of these inhibitory pathways. We found that high levels of neuronal synchronization within the dorsal horn are associated with states of incremented activity along the pathways mediating presynaptic inhibition relative to pathways mediating Ib postsynaptic inhibition. It is suggested that ongoing changes in the patterns of functional connectivity within a distributed ensemble of dorsal horn neurones play a relevant role in the state-dependent modulation of impulse transmission along inhibitory pathways, among them those involved in the central control of sensory information. This feature would allow the same neuronal network to be involved in different functional tasks. Key points We have examined, in the spinal cord of the anaesthetized cat, the relationship between ongoing correlated fluctuations of dorsal horn neuronal activity and state-dependent activation of inhibitory reflex pathways. We found that high levels of synchronization between the spontaneous activity of dorsal horn neurones occur in association with the preferential activation of spinal pathways leading to primary afferent depolarization and presynaptic inhibition relative to activation of pathways mediating Ib postsynaptic inhibition. It is suggested that changes in synchronization of ongoing activity within a distributed network of dorsal horn neurones play a relevant role in the configuration of structured (non-random) patterns of functional connectivity that shape the interaction of sensory inputs with spinal reflex pathways subserving different functional tasks. PMID:25653206
Reconstruction of network topology using status-time-series data
NASA Astrophysics Data System (ADS)
Pandey, Pradumn Kumar; Badarla, Venkataramana
2018-01-01
Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.
Graph fibrations and symmetries of network dynamics
NASA Astrophysics Data System (ADS)
Nijholt, Eddie; Rink, Bob; Sanders, Jan
2016-11-01
Dynamical systems with a network structure can display remarkable phenomena such as synchronisation and anomalous synchrony breaking. A methodology for classifying patterns of synchrony in networks was developed by Golubitsky and Stewart. They showed that the robustly synchronous dynamics of a network is determined by its quotient networks. This result was recently reformulated by DeVille and Lerman, who pointed out that the reduction from a network to a quotient is an example of a graph fibration. The current paper exploits this observation and demonstrates the importance of self-fibrations of network graphs. Self-fibrations give rise to symmetries in the dynamics of a network. We show that every network admits a lift with a semigroup or semigroupoid of self-fibrations. The resulting symmetries impact the global dynamics of the network and can therefore be used to explain and predict generic scenarios for synchrony breaking. Also, when the network has a trivial symmetry groupoid, then every robust synchrony in the lift is determined by symmetry. We finish this paper with a discussion of networks with interior symmetries and nonhomogeneous networks.
Asynchronous networks: modularization of dynamics theorem
NASA Astrophysics Data System (ADS)
Bick, Christian; Field, Michael
2017-02-01
Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.
Yang, Cui; Latkin, Carl; Muth, Stephen Q.; Rudolph, Abby
2014-01-01
The purpose of this analysis was to examine the effect of social network cohesiveness on drug economy involvement, and to test whether this relationship is mediated by drug support network size in a sample of active injection drug users. Involvement in the drug economy was defined by self-report of participation in at least one of the following activities: selling drugs, holding drugs or money for drugs, providing street security for drug sellers, cutting/packaging/cooking drugs, selling or renting drug paraphernalia (e.g., pipes, tools, rigs), and injecting drugs in others’ veins. The sample consists of 273 active injection drug users in Baltimore, Maryland who reported having injected drugs in the last 6 months and were recruited through either street outreach or by their network members. Egocentric drug support networks were assessed through a social network inventory at baseline. Sociometric networks were built upon the linkages by selected matching characteristics, and k-plex rank was used to characterize the level of cohesiveness of the individual to others in the social network. Although no direct effect was observed, structural equation modeling indicated k-plex rank was indirectly associated with drug economy involvement through drug support network size. These findings suggest the effects of large-scale sociometric networks on injectors’ drug economy involvement may occur through their immediate egocentric networks. Future harm reduction programs for injection drug users (IDUs) should consider providing programs coupled with economic opportunities to those drug users within a cohesive network subgroup. Moreover, individuals with a high connectivity to others in their network may be optimal individuals to train for diffusing HIV prevention messages. PMID:25309015
Information dynamics shape the sexual networks of Internet-mediated prostitution
Rocha, Luis E. C.; Liljeros, Fredrik; Holme, Petter
2010-01-01
Like many other social phenomena, prostitution is increasingly coordinated over the Internet. The online behavior affects the offline activity; the reverse is also true. We investigated the reported sexual contacts between 6,624 anonymous escorts and 10,106 sex buyers extracted from an online community from its beginning and six years on. These sexual encounters were also graded and categorized (in terms of the type of sexual activities performed) by the buyers. From the temporal, bipartite network of posts, we found a full feedback loop in which high grades on previous posts affect the future commercial success of the sex worker, and vice versa. We also found a peculiar growth pattern in which the turnover of community members and sex workers causes a sublinear preferential attachment. There is, moreover, a strong geographic influence on network structure—the network is geographically clustered but still close to connected, the contacts consistent with the inverse-square law observed in trading patterns. We also found that the number of sellers scales sublinearly with city size, so this type of prostitution does not, comparatively speaking, benefit much from an increasing concentration of people. PMID:20231480
Spatial Learning and Action Planning in a Prefrontal Cortical Network Model
Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo
2011-01-01
The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates. PMID:21625569
Radeck, Jara; Fritz, Georg; Mascher, Thorsten
2017-02-01
The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.
Progression of Diabetic Capillary Occlusion: A Model
Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.
2016-01-01
An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722
Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak
2018-07-01
The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.
Aartsen, Marja; Veenstra, Marijke; Hansen, Thomas
2017-12-01
Good health is one of the key qualities of life, but opportunities to be and remain healthy are unequally distributed across socio-economic groups. The beneficial health effects of the social network are well known. However, research on the social network as potential mediator in the pathway from socio-economic position (SEP) to health is scarce, while there are good reasons to expect a socio-economical patterning of networks. We aim to contribute to our understanding of socio-economic inequalities in health by examining the mediating role of structural and functional characteristics of the social network in the SEP-health relationship. Data were from the second wave of the Norwegian study on the life course, aging and generation study (NorLAG) and comprised 4534 men and 4690 women aged between 40 and 81. We applied multiple mediation models to evaluate the relative importance of each network characteristic, and multiple group analysis to examine differences between middle-aged and older men and women. Our results indicated a clear socio-economical patterning of the social network for men and women. People with higher SEP had social networks that better protect against loneliness, which in turn lead to better health outcomes. The explained variance in health in older people by the social network and SEP was only half of the explained variance observed in middle-aged people, suggesting that other factors than SEP were more important for health when people age. We conclude that it is the function of the network, rather than the structure, that counts for health.
Sajjadi, H; Jorjoran Shushtari, Z; Mahboubi, S; Rafiey, H; Salimi, Y
2018-04-01
Understanding pathways that influence substance use potential (SUP) can help with effective substance use prevention interventions among adolescents. The aim of the present study is to contribute to a better understanding of the SUP of adolescents by examining the mediating role of social network quality in the SUP of Iranian adolescents. A cross-sectional study. Structural equation modeling was conducted to assess the hypothesized model that social network quality would mediate the association of family socio-economic status, a mental health disorder, and family smoking with addiction potential. The model shows a good fit to the data. Social network quality mediated the effect of family smoking on the SUP for boys. A mental health disorder had a positive significant direct effect on addiction potential for both girls and boys. Social network quality mediates the effect of family smoking on boys' addiction potential in the context of Iran. Educational programs based on local societal ways and cultural norms are recommended to change tobacco smoking behavior among family members. In addition, to prevent subsequent substance use among adolescents, more effort is needed to improve their mental health. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Dynamic reconfiguration of frontal brain networks during executive cognition in humans
Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.
2015-01-01
The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898
Intercellular and systemic spread of RNA and RNAi in plants.
Nazim Uddin, Mohammad; Kim, Jae-Yean
2013-01-01
Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Adams, J.; Fantner, G. E.; Fisher, L. W.; Hansma, P. K.
2008-09-01
The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.
A disynaptic feedback network activated by experience promotes the integration of new granule cells.
Alvarez, Diego D; Giacomini, Damiana; Yang, Sung Min; Trinchero, Mariela F; Temprana, Silvio G; Büttner, Karina A; Beltramone, Natalia; Schinder, Alejandro F
2016-10-28
Experience shapes the development and connectivity of adult-born granule cells (GCs) through mechanisms that are poorly understood. We examined the remodeling of dentate gyrus microcircuits in mice in an enriched environment (EE). Short exposure to EE during early development of new GCs accelerated their functional integration. This effect was mimicked by in vivo chemogenetic activation of a limited population of mature GCs. Slice recordings showed that mature GCs recruit parvalbumin γ-aminobutyric acid-releasing interneurons (PV-INs) that feed back onto developing GCs. Accordingly, chemogenetic stimulation of PV-INs or direct depolarization of developing GCs accelerated GC integration, whereas inactivation of PV-INs prevented the effects of EE. Our results reveal a mechanism for dynamic remodeling in which experience activates dentate networks that "prime" young GCs through a disynaptic feedback loop mediated by PV-INs. Copyright © 2016, American Association for the Advancement of Science.
Liang, Yingkai; Kiick, Kristi L
2016-02-08
Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.
Self-organization of complex networks as a dynamical system
NASA Astrophysics Data System (ADS)
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Dynamic information routing in complex networks
Kirst, Christoph; Timme, Marc; Battaglia, Demian
2016-01-01
Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257
Self-organization of complex networks as a dynamical system.
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Dynamics of Intersubject Brain Networks during Anxious Anticipation
Najafi, Mahshid; Kinnison, Joshua; Pessoa, Luiz
2017-01-01
How do large-scale brain networks reorganize during the waxing and waning of anxious anticipation? Here, threat was dynamically modulated during human functional MRI as two circles slowly meandered on the screen; if they touched, an unpleasant shock was delivered. We employed intersubject correlation analysis, which allowed the investigation of network-level functional connectivity across brains, and sought to determine how network connectivity changed during periods of approach (circles moving closer) and periods of retreat (circles moving apart). Analysis of positive connection weights revealed that dynamic threat altered connectivity within and between the salience, executive, and task-negative networks. For example, dynamic functional connectivity increased within the salience network during approach and decreased during retreat. The opposite pattern was found for the functional connectivity between the salience and task-negative networks: decreases during approach and increases during approach. Functional connections between subcortical regions and the salience network also changed dynamically during approach and retreat periods. Subcortical regions exhibiting such changes included the putative periaqueductal gray, putative habenula, and putative bed nucleus of the stria terminalis. Additional analysis of negative functional connections revealed dynamic changes, too. For example, negative weights within the salience network decreased during approach and increased during retreat, opposite what was found for positive weights. Together, our findings unraveled dynamic features of functional connectivity of large-scale networks and subcortical regions across participants while threat levels varied continuously, and demonstrate the potential of characterizing emotional processing at the level of dynamic networks. PMID:29209184
Minimal Increase Network Coding for Dynamic Networks.
Zhang, Guoyin; Fan, Xu; Wu, Yanxia
2016-01-01
Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery.
Minimal Increase Network Coding for Dynamic Networks
Wu, Yanxia
2016-01-01
Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery. PMID:26867211
Yang, Xiaozhao Y; Kelly, Brian C; Yang, Tingzhong
2014-09-01
The decision to initiate, maintain, or quit cigarette smoking is structured by both social networks and health beliefs. Self-exempting beliefs affect people's decisions in favor of a behavior even when they recognize the harm associated with it. This study incorporated the literatures on social networks and self-exempting beliefs to study the problem of daily smoking by exploring their mediatory relationships and the mechanisms of how smoking behavior is developed and maintained. Specifically, this article hypothesizes that social networks affect daily smoking directly as well as indirectly by facilitating the formation of self-exempting beliefs. The sample comes from urban male residents in Hangzhou, China randomly selected and interviewed through multistage sampling in 2011. Using binary mediation analysis with logistic regression to test the hypotheses, the authors found that (a) daily smoking is associated with having smokers in several social network arenas and (b) self-exempting beliefs about smoking mediate the association between coworker network and daily smoking, but not for family network and friend network. The role of social network at work place in the creation and maintenance of self-exempting beliefs should be considered by policymakers, prevention experts, and interventionists.
Subsurface and terrain controls on runoff generation in deep soil landscapes
NASA Astrophysics Data System (ADS)
Mallard, John; McGlynn, Brian; Richter, Daniel
2017-04-01
Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete despite the prevalence of this setting worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA. The Piedmont region of the United States extends east of the Appalachians from Maryland to Alabama, and is home to some of the most rapid population growth in the country. Regional and local relief is modest, although the landscape is highly dissected and local slope can be quite variable. The region's soils are ancient, deeply weathered, and characterized by sharp changes in hydrologic properties due to concentration of clay in the Bt horizon. Despite a mild climate and consistent precipitation, seasonally variable energy availability and deciduous tree cover create a strong evapotranspiration mediated seasonal hydrologic dynamic: while moist soils and extended stream networks are typical of the late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. To elucidate the control of the complex vertical and planform structure of this region, as well as the strongly seasonal subsurface hydrology, on runoff generation, we installed a network of nested, shallow groundwater wells across an ephemeral to first-order watershed to continuously measure internal water levels. We also recorded local precipitation and discharge at the outlet of this watershed, a similar adjacent watershed, and in the second to third order downstream watershed. Subsurface water dynamics varied spatially, vertically, and seasonally. Shallow depths and landscape positions with minimal contributing area exhibited flashier dynamics comparable to the stream hydrographs while positions with more contributing area exhibited relatively muted dynamics. Most well positions showed minimal response to precipitation throughout the summer, and even occasionally observed response rarely co-occurred with streamflow generation. Our initial findings suggest that characterizing the terrain of a watershed must be coupled with the subsurface soil hydrology in order to understand spatiotemporal patterns of streamflow generation in regions possessing both complex vertical structure and terrain.
Major component analysis of dynamic networks of physiologic organ interactions
NASA Astrophysics Data System (ADS)
Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch
2015-09-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.
Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter
2017-07-11
The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The HDAC complex and cytoskeleton.
Kovacs, Jeffery J; Hubbert, Charlotte; Yao, Tso-Pang
2004-01-01
HDAC6 is a cytoplasmic deacetylase that dynamically associates with the microtubule and actin cytoskeletons. HDAC6 regulates growth factor-induced chemotaxis by its unique deacetylase activity towards microtubules or other substrates. Here we describe a non-catalytic structural domain that is essential for HDAC6 function and places HDAC6 as a critical mediator linking the acetylation and ubiquitination network. This evolutionarily conserved motif, termed the BUZ domain, has features of a zinc finger and binds both mono- and polyubiquitinated proteins. Furthermore, the BUZ domain promotes HDAC6 mono-ubiquitination. These results establish the BUZ domain, in addition to the UIM and CUE domains, as a novel motif that both binds ubiquitin and mediates mono-ubiquitination. Importantly, the BUZ domain is essential for HDAC6 to promote chemotaxis, indicating that communication with the ubiquitin network is critical for proper HDAC6 function. The unique presence of the UIM and CUE domains in proteins involved in endocytic trafficking suggests that HDAC6 might also regulate vesicle transport and protein degradation. Indeed, we have found that HDAC6 is actively transported and concentrated in vesicular compartments. We propose that an integration of reversible acetylation and ubiquitination by HDAC6 may be a novel component in regulating the cytoskeleton, vesicle transport and protein degradation.
Inner membrane fusion mediates spatial distribution of axonal mitochondria
Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge
2016-01-01
In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817
Intracellular Mannose Binding Lectin Mediates Subcellular Trafficking of HIV-1 gp120 in Neurons
Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, CL; Kaul, M; Singh, KK
2014-01-01
Human immunodeficiency virus -1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. PMID:24825317
Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons.
Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, C L; Kaul, M; Singh, K K
2014-09-01
Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. Published by Elsevier Inc.
Resilience and Controllability of Dynamic Collective Behaviors
Komareji, Mohammad; Bouffanais, Roland
2013-01-01
The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics. PMID:24358209
On the number of different dynamics in Boolean networks with deterministic update schedules.
Aracena, J; Demongeot, J; Fanchon, E; Montalva, M
2013-04-01
Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Power, M. E.; Limm, M.; Finlay, J. C.; Welter, J.; Furey, P.; Lowe, R.; Hondzo, M.; Dietrich, W. E.; Bode, C. A.; National CenterEarth Surface Dynamics
2011-12-01
Riverine biota live within several networks. Organisms are embedded in food webs, whose structure and dynamics respond to environmental changes down river drainages. In sunlit rivers, food webs are fueled by attached algae. Primary producer biomass in the Eel River of Northwestern California, as in many sunlit, temperate rivers worldwide, is dominated by the macroalga Cladophora, which grows as a hierarchical, branched network. Cladophora proliferations vastly amplify the ecological surface area and the diversity microhabitats available to microbes. Environmental conditions (light, substrate age or stability, flow, redox gradients) change in partially predictable ways along both Cladophora fronds and river drainage networks, from the frond tips (or headwaters) to their base (or river mouth). We are interested in the ecological and biogeochemical consequences, at the catchment scale, of cross-scale interactions of microbial food webs on Cladophora with macro-organismal food webs, as these change down river drainages. We are beginning to explore how seasonal, hydrologic and macro-consumer control over the production and fate of Cladophora and its epiphytes could mediate ecosystem linkages of the river, its watershed, and nearshore marine ecosystems. Of the four interacting networks we consider, the web of microbial interactions is the most poorly known, and possibly the least hierarchical due to the prevalence of metabolic processing chains (waste products of some members become resources for others) and mutualisms.
Entropy of dynamical social networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Marton; Bianconi, Ginestra
2012-02-01
Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.
Virtue, Shannon Myers; Manne, Sharon; Mee, Laura; Bartell, Abraham; Sands, Stephen; Ohman-Strickland, Pamela; Gajda, Tina Marie
2014-09-01
The current study examined whether cognitive and social processing variables mediated the relationship between fear network and depression among parents of children undergoing hematopoietic stem cell transplant (HSCT). Parents whose children were initiating HSCT (N = 179) completed survey measures including fear network, Beck Depression Inventory, cognitive processing variables (positive reappraisal and self-blame) and social processing variables (emotional support and holding back from sharing concerns). Fear network was positively correlated with depression (p < .001). Self-blame and holding back emerged as individual partial mediators in the relationship between fear network and depression. Together they accounted for 34.3% of the variance in the relationship between fear network and depression. Positive reappraisal and emotional support did not have significant mediating effects. Social and cognitive processes, specifically self-blame and holding back from sharing concerns, play a negative role in parents' psychological adaptation to fears surrounding a child's HSCT.
Virtue, Shannon Myers; Manne, Sharon; Mee, Laura; Bartell, Abraham; Sands, Stephen; Ohman-Strickland, Pamela; Gajda, Tina Marie
2014-01-01
The current study examined whether cognitive and social processing variables mediated the relationship between fear network and depression among parents of children undergoing hematopoietic stem cell transplant (HSCT). Parents whose children were initiating HSCT (N = 179) completed survey measures including fear network, Beck Depression Inventory (BDI), cognitive processing variables (positive reappraisal and self-blame) and social processing variables (emotional support and holding back from sharing concerns). Fear network was positively correlated with depression (p < .001). Self-blame and holding back emerged as individual partial mediators in the relationship between fear network and depression. Together they accounted for 34.3% of the variance in the relationship between fear network and depression. Positive reappraisal and emotional support did not have significant mediating effects. Social and cognitive processes, specifically self-blame and holding back from sharing concerns, play a negative role in parents’ psychological adaptation to fears surrounding a child’s HSCT. PMID:25081956
Greenberg, Anastasia; Dickson, Clayton T
2013-12-01
The neocortical slow oscillation (SO; ~1Hz) of non-REM sleep and anesthesia reflects synchronized network activity composed of alternating active and silent (ON/OFF) phases at the local network and cellular level. The SO itself shows self-organized spatiotemporal dynamics as it appears to originate at unique foci on each cycle and then propagates across the cortical surface. During sleep, this rhythm is relevant for neuroplastic processes mediating memory consolidation especially since its enhancement by slow, rhythmic electrical fields improves subsequent recall. However, the neurobiological mechanism by which spontaneous or enhanced SO activity might operate on memory traces is unknown. Here we show a series of original results, using cycle to cycle tracking across multiple neocortical sites in urethane anesthetized rats: The spontaneous spatiotemporal dynamics of the SO are complex, showing interfering propagation patterns in the anterior-to-posterior plane. These patterns compete for expression and tend to alternate following phase resets that take place during the silent OFF phase of the SO. Applying sinusoidal electrical field stimulation to the anterior pole of the cerebral cortex progressively entrained local field, gamma, and multi-unit activity at all sites, while disrupting the coordination of endogenous SO activity. Field stimulation also biased propagation in the anterior-to-posterior direction and more notably, enhanced the long-range gamma synchrony between cortical regions. These results are the first to show that changes to slow wave dynamics cause enhancements in high frequency cortico-cortical communication and provide mechanistic clues into how the SO is relevant for sleep-dependent memory consolidation. © 2013.
Gérard, Claude; Novák, Béla
2013-01-01
microRNAs (miRNAs) are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF) for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs) network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a “Goodwin-like” oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks. PMID:24376695
Predicting the evolution of complex networks via similarity dynamics
NASA Astrophysics Data System (ADS)
Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping
2017-01-01
Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.
Alignment of dynamic networks.
Vijayan, V; Critchlow, D; Milenkovic, T
2017-07-15
Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Vijayan, V.; Critchlow, D.; Milenković, T.
2017-01-01
Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980
Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses
NASA Astrophysics Data System (ADS)
Batista, C. A. S.; Viana, R. L.; Lopes, S. R.; Batista, A. M.
2014-09-01
According to Stevens' law the relationship between stimulus and response is a power-law within an interval called the dynamic range. The dynamic range of sensory organs is found to be larger than that of a single neuron, suggesting that the network structure plays a key role in the behavior of both the scaling exponent and the dynamic range of neuron assemblies. In order to verify computationally the relationships between stimulus and response for spiking neurons, we investigate small-world networks of neurons described by the Hodgkin-Huxley equations connected by chemical synapses. We found that the dynamic range increases with the network size, suggesting that the enhancement of the dynamic range observed in sensory organs, with respect to single neurons, is an emergent property of complex network dynamics.
2013-01-01
Objectives. This study conceptualized loneliness as a mediator in the relation between social engagement and depressive symptoms and explored gender differences in the mediation model. Various indices of social engagement were considered including living arrangement, social network, and activity participation. Method. Using data from 674 community-dwelling Korean American older adults, we first examined the mediation effect of loneliness in the relation between each of 3 indices of social engagement (not living alone, social network, and activity participation) and depressive symptoms. Subsequently, gender differences in the mediation model were examined. Results. As hypothesized, loneliness was found to mediate the relation between each of the indices of social engagement and depressive symptoms in both men and women. We also observed gender differences in the strength of mediating effects; the effect of living alone was more likely to be mediated by loneliness among men, whereas women showed greater levels of mediation in the models with social network and activity participation. Discussion. Our findings suggest that loneliness may explain the mechanism by which deficits in social engagement exerts its effect on depressive symptoms and that gender differences should be considered in interventions targeting social engagement for mental health promotion. PMID:22929386
Coevolution of dynamical states and interactions in dynamic networks
NASA Astrophysics Data System (ADS)
Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi
2004-06-01
We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.
Boolean dynamics of genetic regulatory networks inferred from microarray time series data
Martin, Shawn; Zhang, Zhaoduo; Martino, Anthony; ...
2007-01-31
Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this paper we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our methodmore » first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation–inhibition networks to match the discretized data. In conclusion, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.« less
Mean-field equations for neuronal networks with arbitrary degree distributions.
Nykamp, Duane Q; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex
2017-04-01
The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.
Mean-field equations for neuronal networks with arbitrary degree distributions
NASA Astrophysics Data System (ADS)
Nykamp, Duane Q.; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex
2017-04-01
The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.
Weak social networks and restless sleep interrelate through depressed mood among elderly.
Cheng, Grand H-L; Malhotra, Rahul; Chan, Angelique; Østbye, Truls; Lo, June C
2018-06-04
Sleep disturbance is common in late life. While social interaction is a basic human concern, few studies have explored the linkage between interpersonal relationships and sleep disturbance. The present study examines the reciprocal associations between weak social networks outside the household and sleep disturbance in elderly, as well as the underlying mechanisms. We utilized data from a nationally representative longitudinal survey of community-dwelling elderly in Singapore (n = 1417; ≥ 60 years). Participants were assessed three times over 6 years (2009, 2011, 2015). Measures included strength of social networks outside the household, restless sleep (sleep disturbance), and the mediating variables of depressed mood, chronic diseases, and cognitive impairment. A cross-lagged mediation analysis was conducted. Bootstrapping results showed that weaker social networks were related to more restless sleep via more depressed mood. Also, restless sleep was negatively associated with social networks through depressed mood. The other mediators examined were not significant. Weak social networks and restless sleep reciprocally influence each other through depressed mood. Recognition of this interplay can inform efforts in improving elderly's sleep quality, social networks, and psychological well-being.
Dynamic Evolution Model Based on Social Network Services
NASA Astrophysics Data System (ADS)
Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen
2013-11-01
Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.
Jong, KwangHyok; Grisanti, Luca; Hassanali, Ali
2017-07-24
We have studied the conformational landscape of the C-terminal fragment of the amyloid protein Aβ 30-35 in water using well-tempered metadynamics simulations and found that it resembles an intrinsically disordered protein. The conformational fluctuations of the protein are facilitated by a collective reorganization of both protein and water hydrogen bond networks, combined with electrostatic interactions between termini as well as hydrophobic interactions of the side chains. The stabilization of hydrophobic interactions in one of the conformers involves a collective collapse of the side chains along with a squeeze-out of water sandwiched between them. The charged N- and C-termini play a critical role in stabilizing different types of protein conformations, including those involving contact-ion salt bridges as well as solvent-mediated interactions of the termini and the amide backbone. We have examined this by probing the distribution of directed water wires forming the hydrogen bond network enveloping the polypeptide. Water wires and their fluctuations form an integral part of structural signature of the protein conformation.
Signal Propagation in Proteins and Relation to Equilibrium Fluctuations
Chennubhotla, Chakra; Bahar, Ivet
2007-01-01
Elastic network (EN) models have been widely used in recent years for describing protein dynamics, based on the premise that the motions naturally accessible to native structures are relevant to biological function. We posit that equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of residues. We measure the communication abilities of residue pairs in terms of hit and commute times, i.e., the number of steps it takes on an average to send and receive signals. Functionally active residues are found to possess enhanced communication propensities, evidenced by their short hit times. Furthermore, secondary structural elements emerge as efficient mediators of communication. The present findings provide us with insights on the topological basis of communication in proteins and design principles for efficient signal transduction. While hit/commute times are information-theoretic concepts, a central contribution of this work is to rigorously show that they have physical origins directly relevant to the equilibrium fluctuations of residues predicted by EN models. PMID:17892319
Diminished neural network dynamics after moderate and severe traumatic brain injury.
Gilbert, Nicholas; Bernier, Rachel A; Calhoun, Vincent D; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M; Hillary, Frank G
2018-01-01
Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain's subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network "states" that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics.
Diminished neural network dynamics after moderate and severe traumatic brain injury
Gilbert, Nicholas; Bernier, Rachel A.; Calhoun, Vincent D.; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M.
2018-01-01
Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain’s subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network “states” that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics. PMID:29883447
Jacob, Yael; Gilam, Gadi; Lin, Tamar; Raz, Gal; Hendler, Talma
2018-01-01
Emotion regulation is hypothesized to be mediated by the interactions between emotional reactivity and regulation networks during the dynamic unfolding of the emotional episode. Yet, it remains unclear how to delineate the effective relationships between these networks. In this study, we examined the aforementioned networks’ information flow hierarchy during viewing of an anger provoking movie excerpt. Anger regulation is particularly essential for averting individuals from aggression and violence, thus improving prosocial behavior. Using subjective ratings of anger intensity we differentiated between low and high anger periods of the film. We then applied the Dependency Network Analysis (DEPNA), a newly developed graph theory method to quantify networks’ node importance during the two anger periods. The DEPNA analysis revealed that the impact of the ventromedial prefrontal cortex (vmPFC) was higher in the high anger condition, particularly within the regulation network and on the connections between the reactivity and regulation networks. We further showed that higher levels of vmPFC impact on the regulation network were associated with lower subjective anger intensity during the high-anger cinematic period, and lower trait anger levels. Supporting and replicating previous findings, these results emphasize the previously acknowledged central role of vmPFC in modulating negative affect. We further show that the impact of the vmPFC relies on its correlational influence on the connectivity between reactivity and regulation networks. More importantly, the hierarchy network analysis revealed a link between connectivity patterns of the vmPFC and individual differences in anger reactivity and trait, suggesting its potential therapeutic role. PMID:29681803
Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique
2015-11-01
The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lewis, Brian A
2010-01-15
The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.
Bader, Benjamin M; Steder, Anne; Klein, Anders Bue; Frølund, Bente; Schroeder, Olaf H U; Jensen, Anders A
2017-01-01
The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels of various GABAAR subunits were investigated by western blotting and RT-qPCR. In the MEA recordings, the pan-GABAAR agonist muscimol and the GABABR agonist baclofen were observed to mediate phenotypically distinct changes in cortical network activity. Selective augmentation of αβγ GABAAR signaling by diazepam and of δ-containing GABAAR (δ-GABAAR) signaling by DS1 produced pronounced changes in the majority of the activity parameters, both drugs mediating similar patterns of activity changes as muscimol. The apparent importance of δ-GABAAR signaling for network activity was largely corroborated by the effects induced by the functionally selective δ-GABAAR agonists THIP and Thio-THIP, whereas the δ-GABAAR selective potentiator DS2 only mediated modest effects on network activity, even when co-applied with low THIP concentrations. Interestingly, diazepam exhibited dramatically right-shifted concentration-response relationships at many of the activity parameters when co-applied with a trace concentration of DS1 compared to when applied alone. In contrast, the potencies and efficacies displayed by DS1 at the networks were not substantially altered by the concomitant presence of diazepam. In conclusion, the holistic nature of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons.
2014-01-01
Background Easy access to the internet has spawned a wealth of research to investigate the effects of its use on depression. However, one limitation of many previous studies is that they disregard the interactive mechanisms of risk and protective factors. The aim of the present study was to investigate a resilience model in the relationship between worry, daily internet video game playing, daily sleep duration, mentors, social networks and depression, using a moderated mediation analysis. Methods 6068 Korean undergraduate and graduate students participated in this study. The participants completed a web-based mental health screening questionnaire including the Beck Depression Inventory (BDI) and information about number of worries, number of mentors, number of campus social networks, daily sleep duration, daily amount of internet video game playing and daily amount of internet searching on computer or smartphone. A moderated mediation analysis was carried out using the PROCESS macro which allowed the inclusion of mediators and moderator in the same model. Results The results showed that the daily amount of internet video game playing and daily sleep duration partially mediated the association between the number of worries and the severity of depression. In addition, the mediating effect of the daily amount of internet video game playing was moderated by both the number of mentors and the number of campus social networks. Conclusions The current findings indicate that the negative impact of worry on depression through internet video game playing can be buffered when students seek to have a number of mentors and campus social networks. Interventions should therefore target individuals who have higher number of worries but seek only a few mentors or campus social networks. Social support via campus mentorship and social networks ameliorate the severity of depression in university students. PMID:24884864
Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia
2018-07-14
In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Functional connectivity with the retrosplenial cortex predicts cognitive aging in rats.
Ash, Jessica A; Lu, Hanbing; Taxier, Lisa R; Long, Jeffrey M; Yang, Yihong; Stein, Elliot A; Rapp, Peter R
2016-10-25
Changes in the functional connectivity (FC) of large-scale brain networks are a prominent feature of brain aging, but defining their relationship to variability along the continuum of normal and pathological cognitive outcomes has proved challenging. Here we took advantage of a well-characterized rat model that displays substantial individual differences in hippocampal memory during aging, uncontaminated by slowly progressive, spontaneous neurodegenerative disease. By this approach, we aimed to interrogate the underlying neural network substrates that mediate aging as a uniquely permissive condition and the primary risk for neurodegeneration. Using resting state (rs) blood oxygenation level-dependent fMRI and a restrosplenial/posterior cingulate cortex seed, aged rats demonstrated a large-scale network that had a spatial distribution similar to the default mode network (DMN) in humans, consistent with earlier findings in younger animals. Between-group whole brain contrasts revealed that aged subjects with documented deficits in memory (aged impaired) displayed widespread reductions in cortical FC, prominently including many areas outside the DMN, relative to both young adults (Y) and aged rats with preserved memory (aged unimpaired, AU). Whereas functional connectivity was relatively preserved in AU rats, they exhibited a qualitatively distinct network signature, comprising the loss of an anticorrelated network observed in Y adults. Together the findings demonstrate that changes in rs-FC are specifically coupled to variability in the cognitive outcome of aging, and that successful neurocognitive aging is associated with adaptive remodeling, not simply the persistence of youthful network dynamics.
Rodríguez-Correa, Hernando; Oyama, Ken; Quesada, Mauricio; Fuchs, Eric J; González-Rodríguez, Antonio
2018-03-02
Lower Central America is an important area to study recent population history and diversification of Neotropical species due to its complex and dynamic geology and climate. Phylogeographic studies in this region are few in comparison with other regions and even less for tree species. The aim of the present study was to characterize the phylogeographic structure in two partially co-distributed endemic oak species (Quercus costaricensis and Q. bumelioides) of the Costa Rican mountains using chloroplast short sequence repeats (cpSSRs), and to test for the effect of geological and palaeoclimatic processes on their population history. Genetic diversity and structure, haplotype networks, patterns of seed-mediated gene flow and historical demography were estimated for both species. Results suggested contrasting patterns. Quercus costaricensis exhibited high values of genetic diversity, a marked phylogeographic structure, a north-to-south genetic diversity gradient and evidence of a demographic expansion during the Quaternary. Quercus bumelioides did not show significant genetic structure and the haplotype network and historical demography estimates suggested a recent population expansion probably during the Pleistocene-Holocene transition. Phylogeographic structure of Q. costaricensis seems to be related to Pleistocene altitudinal migration due to its higher altitudinal distribution. Meanwhile, historical seed-mediated gene flow through the lower altitudinal distribution of Q. bumelioides may have promoted the homogenization of genetic variation. Population expansion and stable availability of suitable climatic areas in both species probably indicate that palaeoclimatic changes promoted downwards altitudinal migration and formation of continuous forests allowing oak species to expand their distribution into the Panamanian mountains during glacial stages.
Zhuang, Xiaowei; Walsh, Ryan R; Sreenivasan, Karthik; Yang, Zhengshi; Mishra, Virendra; Cordes, Dietmar
2018-05-15
The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD. Copyright © 2018 Elsevier Inc. All rights reserved.
A general stochastic model for studying time evolution of transition networks
NASA Astrophysics Data System (ADS)
Zhan, Choujun; Tse, Chi K.; Small, Michael
2016-12-01
We consider a class of complex networks whose nodes assume one of several possible states at any time and may change their states from time to time. Such networks represent practical networks of rumor spreading, disease spreading, language evolution, and so on. Here, we derive a model describing the dynamics of this kind of network and a simulation algorithm for studying the network evolutionary behavior. This model, derived at a microscopic level, can reveal the transition dynamics of every node. A numerical simulation is taken as an ;experiment; or ;realization; of the model. We use this model to study the disease propagation dynamics in four different prototypical networks, namely, the regular nearest-neighbor (RN) network, the classical Erdös-Renyí (ER) random graph, the Watts-Strogátz small-world (SW) network, and the Barabási-Albert (BA) scalefree network. We find that the disease propagation dynamics in these four networks generally have different properties but they do share some common features. Furthermore, we utilize the transition network model to predict user growth in the Facebook network. Simulation shows that our model agrees with the historical data. The study can provide a useful tool for a more thorough understanding of the dynamics networks.
Revealing networks from dynamics: an introduction
NASA Astrophysics Data System (ADS)
Timme, Marc; Casadiego, Jose
2014-08-01
What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.
Miconi, Thomas
2017-01-01
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528
Miconi, Thomas
2017-02-23
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.
Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.
Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L
2017-10-11
Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.
Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo
El-Boustani, Sami; Sur, Mriganka
2014-01-01
In the visual cortex, inhibitory neurons alter the computations performed by target cells via combination of two fundamental operations, division and subtraction. The origins of these operations have been variously ascribed to differences in neuron classes, synapse location or receptor conductances. Here, by utilizing specific visual stimuli and single optogenetic probe pulses, we show that the function of parvalbumin-expressing and somatostatin-expressing neurons in mice in vivo is governed by the overlap of response timing between these neurons and their targets. In particular, somatostatin-expressing neurons respond at longer latencies to small visual stimuli compared with their target neurons and provide subtractive inhibition. With large visual stimuli, however, they respond at short latencies coincident with their target cells and switch to provide divisive inhibition. These results indicate that inhibition mediated by these neurons is a dynamic property of cortical circuits rather than an immutable property of neuronal classes. PMID:25504329
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te
2016-10-01
Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.
Giuseppone, Nicolas; Schmitt, Jean-Louis; Schwartz, Evan; Lehn, Jean-Marie
2005-04-20
Sc(OTf)(3) efficiently catalyzes the self-sufficient transimination reaction between various types of C=N bonds in organic solvents, with turnover frequencies up to 3600 h(-)(1) and rate accelerations up to 6 x 10(5). The mechanism of the crossover reaction in mixtures of amines and imines is studied, comparing parallel individual reactions with coupled equilibria. The intrinsic kinetic parameters for isolated reactions cannot simply be added up when several components are mixed, and the behavior of the system agrees with the presence of a unique mediator that constitutes the core of a network of competing reactions. In mixed systems, every single amine or imine competes for the same central hub, in accordance with their binding affinity for the catalyst metal ion center. More generally, the study extends the basic principles of constitutional dynamic chemistry to interconnected chemical transformations and provides a step toward dynamic systems of increasing complexity.
Disease dynamics and costly punishment can foster socially imposed monogamy.
Bauch, Chris T; McElreath, Richard
2016-04-05
Socially imposed monogamy in humans is an evolutionary puzzle because it requires costly punishment by those who impose the norm. Moreover, most societies were--and are--polygynous; yet many larger human societies transitioned from polygyny to socially imposed monogamy beginning with the advent of agriculture and larger residential groups. We use a simulation model to explore how interactions between group size, sexually transmitted infection (STI) dynamics and social norms can explain the timing and emergence of socially imposed monogamy. Polygyny dominates when groups are too small to sustain STIs. However, in larger groups, STIs become endemic (especially in concurrent polygynist networks) and have an impact on fertility, thereby mediating multilevel selection. Punishment of polygynists improves monogamist fitness within groups by reducing their STI exposure, and between groups by enabling punishing monogamist groups to outcompete polygynists. This suggests pathways for the emergence of socially imposed monogamy, and enriches our understanding of costly punishment evolution.
Disease dynamics and costly punishment can foster socially imposed monogamy
Bauch, Chris T.; McElreath, Richard
2016-01-01
Socially imposed monogamy in humans is an evolutionary puzzle because it requires costly punishment by those who impose the norm. Moreover, most societies were—and are—polygynous; yet many larger human societies transitioned from polygyny to socially imposed monogamy beginning with the advent of agriculture and larger residential groups. We use a simulation model to explore how interactions between group size, sexually transmitted infection (STI) dynamics and social norms can explain the timing and emergence of socially imposed monogamy. Polygyny dominates when groups are too small to sustain STIs. However, in larger groups, STIs become endemic (especially in concurrent polygynist networks) and have an impact on fertility, thereby mediating multilevel selection. Punishment of polygynists improves monogamist fitness within groups by reducing their STI exposure, and between groups by enabling punishing monogamist groups to outcompete polygynists. This suggests pathways for the emergence of socially imposed monogamy, and enriches our understanding of costly punishment evolution. PMID:27044573
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS
Almquist, Zack W.; Butts, Carter T.
2015-01-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Almquist, Zack W; Butts, Carter T
2014-08-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.
Smet, Dajo; Žádníková, Petra; Vandenbussche, Filip; Benková, Eva; Van Der Straeten, Dominique
2014-06-01
Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
The neural dynamics of song syntax in songbirds
NASA Astrophysics Data System (ADS)
Jin, Dezhe
2010-03-01
Songbird is ``the hydrogen atom'' of the neuroscience of complex, learned vocalizations such as human speech. Songs of Bengalese finch consist of sequences of syllables. While syllables are temporally stereotypical, syllable sequences can vary and follow complex, probabilistic syntactic rules, which are rudimentarily similar to grammars in human language. Songbird brain is accessible to experimental probes, and is understood well enough to construct biologically constrained, predictive computational models. In this talk, I will discuss the structure and dynamics of neural networks underlying the stereotypy of the birdsong syllables and the flexibility of syllable sequences. Recent experiments and computational models suggest that a syllable is encoded in a chain network of projection neurons in premotor nucleus HVC (proper name). Precisely timed spikes propagate along the chain, driving vocalization of the syllable through downstream nuclei. Through a computational model, I show that that variable syllable sequences can be generated through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneurons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the inhibition and noise. The model predicts that the syllable sequences statistically follow partially observable Markov models. Experimental results supporting this and other predictions of the model will be presented. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of HVC projection neurons.
Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle
Gérard, Claude; Goldbeter, Albert
2009-01-01
We propose an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, and protein synthesis or degradation. Growth factors (GFs) trigger the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4–6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. The model accounts for the following major properties of the mammalian cell cycle: (i) repetitive cell cycling in the presence of suprathreshold amounts of GF; (ii) control of cell-cycle progression by the balance between antagonistic effects of the tumor suppressor retinoblastoma protein (pRB) and the transcription factor E2F; and (iii) existence of a restriction point in G1, beyond which completion of the cell cycle becomes independent of GF. The model also accounts for endoreplication. Incorporating the DNA replication checkpoint mediated by kinases ATR and Chk1 slows down the dynamics of the cell cycle without altering its oscillatory nature and leads to better separation of the S and M phases. The model for the mammalian cell cycle shows how the regulatory structure of the Cdk network results in its temporal self-organization, leading to the repetitive, sequential activation of the four Cdk modules that brings about the orderly progression along cell-cycle phases. PMID:20007375
Richmond, Jonathan Q; Backlin, Adam R; Galst-Cavalcante, Carey; O'Brien, John W; Fisher, Robert N
2018-01-01
Life history adaptations and spatial configuration of metapopulation networks allow certain species to persist in extreme fluctuating environments, yet long-term stability within these systems relies on the maintenance of linkage habitat. Degradation of such linkages in urban riverscapes can disrupt this dynamic in aquatic species, leading to increased extinction debt in local populations experiencing environment-related demographic flux. We used microsatellites and mtDNA to examine the effects of collapsed network structure in the endemic Santa Ana sucker Catostomus santaanae of southern California, a threatened species affected by natural flood-drought cycles, "boom-and-bust" demography, hybridization and presumed artificial transplantation. Our results show a predominance of drift-mediated processes in shaping population structure and that reverse mechanisms for counterbalancing the genetic effects of these phenomena have dissipated with the collapse of dendritic connectivity. We use approximate Bayesian models to support two cases of artificial transplantation and provide evidence that one of the invaded systems better represents the historic processes that maintained genetic variation within watersheds than any remaining drainages where C. santaanae is considered native. We further show that a stable dry gap in the northern range is preventing genetic dilution of pure C. santaanae persisting upstream of a hybrid assemblage involving a non-native sucker and that local accumulation of genetic variation in the same drainage is influenced by position within the network. This work has important implications for declining species that have historically relied on dendritic metapopulation networks to maintain source-sink dynamics in phasic environments, but no longer possess this capacity in urban-converted landscapes. © 2017 John Wiley & Sons Ltd.
Studies on the population dynamics of a rumor-spreading model in online social networks
NASA Astrophysics Data System (ADS)
Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang
2018-02-01
This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.
Temporal node centrality in complex networks
NASA Astrophysics Data System (ADS)
Kim, Hyoungshick; Anderson, Ross
2012-02-01
Many networks are dynamic in that their topology changes rapidly—on the same time scale as the communications of interest between network nodes. Examples are the human contact networks involved in the transmission of disease, ad hoc radio networks between moving vehicles, and the transactions between principals in a market. While we have good models of static networks, so far these have been lacking for the dynamic case. In this paper we present a simple but powerful model, the time-ordered graph, which reduces a dynamic network to a static network with directed flows. This enables us to extend network properties such as vertex degree, closeness, and betweenness centrality metrics in a very natural way to the dynamic case. We then demonstrate how our model applies to a number of interesting edge cases, such as where the network connectivity depends on a small number of highly mobile vertices or edges, and show that our centrality definition allows us to track the evolution of connectivity. Finally we apply our model and techniques to two real-world dynamic graphs of human contact networks and then discuss the implication of temporal centrality metrics in the real world.
Creative-Dynamics Approach To Neural Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail A.
1992-01-01
Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.
Rothkegel, Alexander; Lehnertz, Klaus
2009-03-01
We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.
Noise-induced relations between network connectivity and dynamics
NASA Astrophysics Data System (ADS)
Ching, Emily Sc
Many biological systems of interest can be represented as networks of many nodes that are interacting with one another. Often these systems are subject to external influence or noise. One of the central issues is to understand the relation between dynamics and the interaction pattern of the system or the connectivity structure of the network. In particular, a challenging problem is to infer the network connectivity structure from the dynamics. In this talk, we show that for stochastic dynamical systems subjected to noise, the presence of noise gives rise to mathematical relations between the network connectivity structure and quantities that can be calculated using solely the time-series measurements of the dynamics of the nodes. We present these relations for both undirected networks with bidirectional coupling and directed networks with directional coupling and discuss how such relations can be utilized to infer the network connectivity structure of the systems. Work supported by the Hong Kong Research Grants Council under Grant No. CUHK 14300914.
Active influence in dynamical models of structural balance in social networks
NASA Astrophysics Data System (ADS)
Summers, Tyler H.; Shames, Iman
2013-07-01
We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.
Conflict and convention in dynamic networks.
Foley, Michael; Forber, Patrick; Smead, Rory; Riedl, Christoph
2018-03-01
An important way to resolve games of conflict (snowdrift, hawk-dove, chicken) involves adopting a convention: a correlated equilibrium that avoids any conflict between aggressive strategies. Dynamic networks allow individuals to resolve conflict via their network connections rather than changing their strategy. Exploring how behavioural strategies coevolve with social networks reveals new dynamics that can help explain the origins and robustness of conventions. Here, we model the emergence of conventions as correlated equilibria in dynamic networks. Our results show that networks have the tendency to break the symmetry between the two conventional solutions in a strongly biased way. Rather than the correlated equilibrium associated with ownership norms (play aggressive at home, not away), we usually see the opposite host-guest norm (play aggressive away, not at home) evolve on dynamic networks, a phenomenon common to human interaction. We also show that learning to avoid conflict can produce realistic network structures in a way different than preferential attachment models. © 2017 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbet Jr., Thomas F; Beyeler, Walter E; Vanwestrienen, Dirk
NetFlow Dynamics is a web-accessible analysis environment for simulating dynamic flows of materials on model networks. Performing a simulation requires both the NetFlow Dynamics application and a network model which is a description of the structure of the nodes and edges of a network including the flow capacity of each edge and the storage capacity of each node, and the sources and sinks of the material flowing on the network. NetFlow Dynamics consists of databases for storing network models, algorithms to calculate flows on networks, and a GIS-based graphical interface for performing simulations and viewing simulation results. Simulated flows aremore » dynamic in the sense that flows on each edge of the network and inventories at each node change with time and can be out of equilibrium with boundary conditions. Any number of network models could be simulated using Net Flow Dynamics. To date, the models simulated have been models of petroleum infrastructure. The main model has been the National Transportation Fuels Model (NTFM), a network of U.S. oil fields, transmission pipelines, rail lines, refineries, tank farms, and distribution terminals. NetFlow Dynamics supports two different flow algorithms, the Gradient Flow algorithm and the Inventory Control algorithm, that were developed specifically for the NetFlow Dynamics application. The intent is to add additional algorithms in the future as needed. The ability to select from multiple algorithms is desirable because a single algorithm never covers all analysis needs. The current algorithms use a demand-driven capacity-constrained formulation which means that the algorithms strive to use all available capacity and stored inventory to meet desired flows to sinks, subject to the capacity constraints of each network component. The current flow algorithms are best suited for problems in which a material flows on a capacity-constrained network representing a supply chain in which the material supplied can be stored at each node of the network. In the petroleum models, the flowing materials are crude oil and refined products that can be stored at tank farms, refineries, or terminals (i.e. the nodes of the network). Examples of other network models that could be simulated are currency flowing in a financial network, agricultural products moving to market, or natural gas flowing on a pipeline network.« less
Complex networks repair strategies: Dynamic models
NASA Astrophysics Data System (ADS)
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.
Dynamic reconfiguration of human brain functional networks through neurofeedback.
Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri
2013-11-01
Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Hyun Mo
2015-12-01
Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.
Emergence, evolution and scaling of online social networks.
Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng
2014-01-01
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
A geometrical approach to control and controllability of nonlinear dynamical networks
Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng
2016-01-01
In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273
Systematic parameter estimation in data-rich environments for cell signalling dynamics
Nim, Tri Hieu; Luo, Le; Clément, Marie-Véronique; White, Jacob K.; Tucker-Kellogg, Lisa
2013-01-01
Motivation: Computational models of biological signalling networks, based on ordinary differential equations (ODEs), have generated many insights into cellular dynamics, but the model-building process typically requires estimating rate parameters based on experimentally observed concentrations. New proteomic methods can measure concentrations for all molecular species in a pathway; this creates a new opportunity to decompose the optimization of rate parameters. Results: In contrast with conventional parameter estimation methods that minimize the disagreement between simulated and observed concentrations, the SPEDRE method fits spline curves through observed concentration points, estimates derivatives and then matches the derivatives to the production and consumption of each species. This reformulation of the problem permits an extreme decomposition of the high-dimensional optimization into a product of low-dimensional factors, each factor enforcing the equality of one ODE at one time slice. Coarsely discretized solutions to the factors can be computed systematically. Then the discrete solutions are combined using loopy belief propagation, and refined using local optimization. SPEDRE has unique asymptotic behaviour with runtime polynomial in the number of molecules and timepoints, but exponential in the degree of the biochemical network. SPEDRE performance is comparatively evaluated on a novel model of Akt activation dynamics including redox-mediated inactivation of PTEN (phosphatase and tensin homologue). Availability and implementation: Web service, software and supplementary information are available at www.LtkLab.org/SPEDRE Supplementary information: Supplementary data are available at Bioinformatics online. Contact: LisaTK@nus.edu.sg PMID:23426255
Tol, Marc J; van der Lienden, Martijn J C; Gabriel, Tanit L; Hagen, Jacob J; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E; Verhoeven, Arthur J; Overkleeft, Hermen; Aerts, Johannes M; Argmann, Carmen A; van Eijk, Marco
2018-01-01
In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of "master lysosomal regulators". Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members-TFEB, TFE3 and MITF-from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.
Risk assessment by dynamic representation of vulnerability, exploitation, and impact
NASA Astrophysics Data System (ADS)
Cam, Hasan
2015-05-01
Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.
Counting and classifying attractors in high dimensional dynamical systems.
Bagley, R J; Glass, L
1996-12-07
Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.
Representing perturbed dynamics in biological network models
NASA Astrophysics Data System (ADS)
Stoll, Gautier; Rougemont, Jacques; Naef, Felix
2007-07-01
We study the dynamics of gene activities in relatively small size biological networks (up to a few tens of nodes), e.g., the activities of cell-cycle proteins during the mitotic cell-cycle progression. Using the framework of deterministic discrete dynamical models, we characterize the dynamical modifications in response to structural perturbations in the network connectivities. In particular, we focus on how perturbations affect the set of fixed points and sizes of the basins of attraction. Our approach uses two analytical measures: the basin entropy H and the perturbation size Δ , a quantity that reflects the distance between the set of fixed points of the perturbed network and that of the unperturbed network. Applying our approach to the yeast-cell-cycle network introduced by Li [Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004)] provides a low-dimensional and informative fingerprint of network behavior under large classes of perturbations. We identify interactions that are crucial for proper network function, and also pinpoint functionally redundant network connections. Selected perturbations exemplify the breadth of dynamical responses in this cell-cycle model.
Strogatz, S H
2001-03-08
The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.
NASA Astrophysics Data System (ADS)
Guo, Shu-Juan; Fu, Xin-Chu
2010-07-01
In this paper, by applying Lasalle's invariance principle and some results about the trace of a matrix, we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamical evolution of the network. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, two examples, including a Hénon map and a central network, are illustrated to verify the theoretical results.
Neural Networks for Rapid Design and Analysis
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Maghami, Peiman G.
1998-01-01
Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.
Framework based on communicability and flow to analyze complex network dynamics
NASA Astrophysics Data System (ADS)
Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.
2018-05-01
Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.
Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki
2017-09-08
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks
NASA Astrophysics Data System (ADS)
Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki
2017-09-01
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.
2017-01-01
ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. PMID:28476769
Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D
2017-07-15
Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Holme, Petter; Saramäki, Jari
2012-10-01
A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.
Temporal efficiency evaluation and small-worldness characterization in temporal networks
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-01-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314
Temporal efficiency evaluation and small-worldness characterization in temporal networks
NASA Astrophysics Data System (ADS)
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-09-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.
Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type.
Zhou, Douglas; Sun, Yi; Rangan, Aaditya V; Cai, David
2010-04-01
We discuss how to characterize long-time dynamics of non-smooth dynamical systems, such as integrate-and-fire (I&F) like neuronal network, using Lyapunov exponents and present a stable numerical method for the accurate evaluation of the spectrum of Lyapunov exponents for this large class of dynamics. These dynamics contain (i) jump conditions as in the firing-reset dynamics and (ii) degeneracy such as in the refractory period in which voltage-like variables of the network collapse to a single constant value. Using the networks of linear I&F neurons, exponential I&F neurons, and I&F neurons with adaptive threshold, we illustrate our method and discuss the rich dynamics of these networks.
Hamiltonian dynamics for complex food webs
NASA Astrophysics Data System (ADS)
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaoran, E-mail: sxr0806@gmail.com; School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009; Small, Michael, E-mail: michael.small@uwa.edu.au
In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the timemore » series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.« less
Propagation, cascades, and agreement dynamics in complex communication and social networks
NASA Astrophysics Data System (ADS)
Lu, Qiming
Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.
Lanucara, Francesco; Lam, Connie; Mann, Jelena; Monie, Tom P; Colombo, Stefano A P; Holman, Stephen W; Boyd, James; Dange, Manohar C; Mann, Derek A; White, Michael R H; Eyers, Claire E
2016-07-01
The NF-κB signalling module controls transcription through a network of protein kinases such as the IKKs, as well as inhibitory proteins (IκBs) and transcription factors including RelA/p65. Phosphorylation of the NF-κB subunits is critical for dictating system dynamics. Using both non-targeted discovery and quantitative selected reaction monitoring-targeted proteomics, we show that the cytokine TNFα induces dynamic multisite phosphorylation of RelA at a number of previously unidentified residues. Putative roles for many of these phosphorylation sites on RelA were predicted by modelling of various crystal structures. Stoichiometry of phosphorylation determination of Ser45 and Ser42 revealed preferential early phosphorylation of Ser45 in response to TNFα. Quantitative analyses subsequently confirmed differential roles for pSer42 and pSer45 in promoter-specific DNA binding and a role for both of these phosphosites in regulating transcription from the IL-6 promoter. These temporal dynamics suggest that RelA-mediated transcription is likely to be controlled by functionally distinct NF-κB proteoforms carrying different combinations of modifications, rather than a simple 'one modification, one effect' system. © 2016 The Authors.
Highly dynamic animal contact network and implications on disease transmission
Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina
2014-01-01
Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241
Linking dynamics of the inhibitory network to the input structure
Komarov, Maxim
2017-01-01
Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865
Czemeres, Josh; Buse, Kurt
2017-01-01
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding. PMID:29267381
Dynamics of social balance on networks
NASA Astrophysics Data System (ADS)
Antal, T.; Krapivsky, P. L.; Redner, S.
2005-09-01
We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad—a triangular loop with one or three unfriendly links—is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to “paradise”—all links are friendly—as the propensity p for friendly links in an update event passes through 1/2 . A finite network always falls into a socially balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network not increase in an update is imposed, then the network quickly reaches a balanced final state.
Bellman Ford algorithm - in Routing Information Protocol (RIP)
NASA Astrophysics Data System (ADS)
Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah
2018-04-01
In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.
NASA Astrophysics Data System (ADS)
Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-04-01
One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.
Dynamic model of time-dependent complex networks.
Hill, Scott A; Braha, Dan
2010-10-01
The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.
Application of dynamic recurrent neural networks in nonlinear system identification
NASA Astrophysics Data System (ADS)
Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang
2006-11-01
An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.
Recovery time after localized perturbations in complex dynamical networks
NASA Astrophysics Data System (ADS)
Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed concept.
Models, Entropy and Information of Temporal Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Márton; Bianconi, Ginestra
Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio
2018-05-30
Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.
Detecting event-related changes of multivariate phase coupling in dynamic brain networks.
Canolty, Ryan T; Cadieu, Charles F; Koepsell, Kilian; Ganguly, Karunesh; Knight, Robert T; Carmena, Jose M
2012-04-01
Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.
Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S
2015-01-10
An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Córdova-Palomera, Aldo; Kaufmann, Tobias; Persson, Karin; Alnæs, Dag; Doan, Nhat Trung; Moberget, Torgeir; Lund, Martina Jonette; Barca, Maria Lage; Engvig, Andreas; Brækhus, Anne; Engedal, Knut; Andreassen, Ole A.; Selbæk, Geir; Westlye, Lars T.
2017-01-01
As findings on the neuropathological and behavioral components of Alzheimer’s disease (AD) continue to accrue, converging evidence suggests that macroscale brain functional disruptions may mediate their association. Recent developments on theoretical neuroscience indicate that instantaneous patterns of brain connectivity and metastability may be a key mechanism in neural communication underlying cognitive performance. However, the potential significance of these patterns across the AD spectrum remains virtually unexplored. We assessed the clinical sensitivity of static and dynamic functional brain disruptions across the AD spectrum using resting-state fMRI in a sample consisting of AD patients (n = 80) and subjects with either mild (n = 44) or subjective (n = 26) cognitive impairment (MCI, SCI). Spatial maps constituting the nodes in the functional brain network and their associated time-series were estimated using spatial group independent component analysis and dual regression, and whole-brain oscillatory activity was analyzed both globally (metastability) and locally (static and dynamic connectivity). Instantaneous phase metrics showed functional coupling alterations in AD compared to MCI and SCI, both static (putamen, dorsal and default-mode) and dynamic (temporal, frontal-superior and default-mode), along with decreased global metastability. The results suggest that brains of AD patients display altered oscillatory patterns, in agreement with theoretical premises on cognitive dynamics.
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-01-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879
Exploring the dynamics of research collaborations by mapping social networks in invasion science.
Abrahams, B; Sitas, N; Esler, K J
2018-06-19
Moving towards more integrative approaches within the invasion sciences has been recognized as a means of improving linkages between science, policy, and practice. Yet despite the recognition that biological invasions pose complex social-ecological challenges, the invasion literature poorly covers social-ecological or distinctly integrative research. Various initiatives and investments have been made towards building research capacity and conducting more integrative research aimed at improving the management of biological invasions. Using a combination of social network and thematic analysis approaches, and the South African Working for Water (WfW) program as a case study for the management of invasive species, we identify and explore the roles of core authors in shaping collaboration networks and research outputs, based on bibliographic records. We found that research produced under the auspices of WfW is authored by a handful of core authors, conducting primarily ecologically-focused research, with social research significantly underrepresented. Core authors identified in this study play an essential role in mediating relationships between researchers, in addition to potentially controlling access to those seeking to form collaborations, maintaining network cohesion and connectivity across institutional and disciplinary boundaries. Research projects should be designed to span disciplines and institutions if they are to adequately address complex challenges. Copyright © 2018 Elsevier Ltd. All rights reserved.
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
NASA Astrophysics Data System (ADS)
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-06-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.
Hoshino, Osamu
2006-12-01
Although details of cortical interneurons in anatomy and physiology have been well understood, little is known about how they contribute to ongoing spontaneous neuronal activity that could have a great impact on subsequent neuronal information processing. Simulating a cortical neural network model of an early sensory area, we investigated whether and how two distinct types of inhibitory interneurons, or fast-spiking interneurons with narrow axonal arbors and slow-spiking interneurons with wide axonal arbors, have a spatiotemporal influence on the ongoing activity of principal cells and subsequent cognitive information processing. In the model, dynamic cell assemblies, or population activation of principal cells, expressed information about specific sensory features. Within cell assemblies, fast-spiking interneurons give a feedback inhibitory effect on principal cells. Between cell assemblies, slow-spiking interneurons give a lateral inhibitory effect on principal cells. Here, we show that these interneurons keep the network at a subthreshold level for action potential generation under the ongoing state, by which the reaction time of principal cells to sensory stimulation could be accelerated. We suggest that the best timing of inhibition mediated by fast-spiking interneurons and slow-spiking interneurons allows the network to remain near threshold for rapid responses to input.
Controllability of flow-conservation networks
NASA Astrophysics Data System (ADS)
Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu
2017-07-01
The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.
Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S
2015-10-30
Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.
Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies. PMID:22511861
Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.
Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene
2017-01-01
Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.
Subjective well-being associated with size of social network and social support of elderly.
Wang, Xingmin
2016-06-01
The current study examined the impact of size of social network on subjective well-being of elderly, mainly focused on confirmation of the mediator role of perceived social support. The results revealed that both size of social network and perceived social support were significantly correlated with subjective well-being. Structural equation modeling indicated that perceived social support partially mediated size of social network to subjective well-being. The final model also revealed significant both paths from size of social network to subjective well-being through perceived social support. The findings extended prior researches and provided valuable evidence on how to promote mental health of the elderly. © The Author(s) 2014.
Exploring the structure and function of temporal networks with dynamic graphlets
Hulovatyy, Y.; Chen, H.; Milenković, T.
2015-01-01
Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/∼cone/DG. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072480
Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models
Snijders, Tom A.B.; Steglich, Christian E.G.
2014-01-01
Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of generalized linear statistical models they aim to be realistic detailed representations of network dynamics in empirical data sets. Statistical parallels to micro-macro considerations can be found in the estimation of parameters determining local actor behavior from empirical data, and the assessment of goodness of fit from the correspondence with network-level descriptives. This article studies several network-level consequences of dynamic actor-based models applied to represent cross-sectional network data. Two examples illustrate how network-level characteristics can be obtained as emergent features implied by micro-specifications of actor-based models. PMID:25960578
Using Network Dynamical Influence to Drive Consensus
NASA Astrophysics Data System (ADS)
Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.
2016-05-01
Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.
Dynamic defense and network randomization for computer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.
The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissancemore » stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.« less
Metabolic interactions and dynamics in microbial communities
NASA Astrophysics Data System (ADS)
Segre', Daniel
Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.
Self-Induced Switchings between Multiple Space-Time Patterns on Complex Networks of Excitable Units
NASA Astrophysics Data System (ADS)
Ansmann, Gerrit; Lehnertz, Klaus; Feudel, Ulrike
2016-01-01
We report on self-induced switchings between multiple distinct space-time patterns in the dynamics of a spatially extended excitable system. These switchings between low-amplitude oscillations, nonlinear waves, and extreme events strongly resemble a random process, although the system is deterministic. We show that a chaotic saddle—which contains all the patterns as well as channel-like structures that mediate the transitions between them—is the backbone of such a pattern-switching dynamics. Our analyses indicate that essential ingredients for the observed phenomena are that the system behaves like an inhomogeneous oscillatory medium that is capable of self-generating spatially localized excitations and that is dominated by short-range connections but also features long-range connections. With our findings, we present an alternative to the well-known ways to obtain self-induced pattern switching, namely, noise-induced attractor hopping, heteroclinic orbits, and adaptation to an external signal. This alternative way can be expected to improve our understanding of pattern switchings in spatially extended natural dynamical systems like the brain and the heart.
Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao
2018-06-01
Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
Markov State Models of gene regulatory networks.
Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L
2017-02-06
Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.
Fujita, Naonobu; Huang, Wilson; Lin, Tzu-Han; Groulx, Jean-Francois; Jean, Steve; Nguyen, Jen; Kuchitsu, Yoshihiko; Koyama-Honda, Ikuko; Mizushima, Noboru; Fukuda, Mitsunori; Kiger, Amy A
2017-01-07
Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms.
2018-01-01
Abstract Synaptic activity in vivo can potentially alter the integration properties of neurons. Using recordings in awake mice, we targeted somatosensory layer 2/3 pyramidal neurons and compared neuronal properties with those from slices. Pyramidal cells in vivo had lower resistance and gain values, as well as broader spikes and increased spike frequency adaptation compared to the same cells in slices. Increasing conductance in neurons using dynamic clamp to levels observed in vivo, however, did not lessen the differences between in vivo and slice conditions. Further, local application of tetrodotoxin (TTX) in vivo blocked synaptic-mediated membrane voltage fluctuations but had little impact on pyramidal cell membrane input resistance and time constant values. Differences in electrophysiological properties of layer 2/3 neurons in mouse somatosensory cortex, therefore, stem from intrinsic sources separate from synaptic-mediated membrane voltage fluctuations. PMID:29662946
Connexin-Dependent Neuroglial Networking as a New Therapeutic Target.
Charvériat, Mathieu; Naus, Christian C; Leybaert, Luc; Sáez, Juan C; Giaume, Christian
2017-01-01
Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the "tripartite synapse" with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders.
Disease dynamics in a dynamic social network
NASA Astrophysics Data System (ADS)
Christensen, Claire; Albert, István; Grenfell, Bryan; Albert, Réka
2010-07-01
We develop a framework for simulating a realistic, evolving social network (a city) into which a disease is introduced. We compare our results to prevaccine era measles data for England and Wales, and find that they capture the quantitative and qualitative features of epidemics in populations spanning two orders of magnitude. Our results provide unique insight into how and why the social topology of the contact network influences the propagation of the disease through the population. We argue that network simulation is suitable for concurrently probing contact network dynamics and disease dynamics in ways that prior modeling approaches cannot and it can be extended to the study of less well-documented diseases.
Near real-time traffic routing
NASA Technical Reports Server (NTRS)
Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)
2012-01-01
A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.
Embedding dynamical networks into distributed models
NASA Astrophysics Data System (ADS)
Innocenti, Giacomo; Paoletti, Paolo
2015-07-01
Large networks of interacting dynamical systems are well-known for the complex behaviours they are able to display, even when each node features a quite simple dynamics. Despite examples of such networks being widespread both in nature and in technological applications, the interplay between the local and the macroscopic behaviour, through the interconnection topology, is still not completely understood. Moreover, traditional analytical methods for dynamical response analysis fail because of the intrinsically large dimension of the phase space of the network which makes the general problem intractable. Therefore, in this paper we develop an approach aiming to condense all the information in a compact description based on partial differential equations. By focusing on propagative phenomena, rigorous conditions under which the original network dynamical properties can be successfully analysed within the proposed framework are derived as well. A network of Fitzhugh-Nagumo systems is finally used to illustrate the effectiveness of the proposed method.
Clustering promotes switching dynamics in networks of noisy neurons
NASA Astrophysics Data System (ADS)
Franović, Igor; Klinshov, Vladimir
2018-02-01
Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.
Care networking: a study of technical mediations in a home telecare service.
Correa, Gonzalo; Domènech, Miquel
2013-07-22
This article examines the processes of technical mediation within familial care networks based on a study of home telecare targeted at older people. Supported by contributions from the actor-network theory as part of the social psychology of science and technology, these processes of technical mediation are analyzed using a qualitative approach. The data were gathered through six focus groups and four in-depth interviews; the participants in the study included users, relatives and formal carers. Thematic analysis techniques encompassing the information were used, revealing the effects on the patterns of caring relationships. The results show the interplay between presence-absence made possible by the devices; the two-way direction of care between the older people and the artifacts; and the process of sustaining care using the technology. We conclude that care should be seen as a socio-technical network where technology plays an active role in sustaining family relationships.
Care Networking: A Study of Technical Mediations in a Home Telecare Service
Correa, Gonzalo; Domènech, Miquel
2013-01-01
This article examines the processes of technical mediation within familial care networks based on a study of home telecare targeted at older people. Supported by contributions from the actor—network theory as part of the social psychology of science and technology, these processes of technical mediation are analyzed using a qualitative approach. The data were gathered through six focus groups and four in-depth interviews; the participants in the study included users, relatives and formal carers. Thematic analysis techniques encompassing the information were used, revealing the effects on the patterns of caring relationships. The results show the interplay between presence-absence made possible by the devices; the two-way direction of care between the older people and the artifacts; and the process of sustaining care using the technology. We conclude that care should be seen as a socio-technical network where technology plays an active role in sustaining family relationships. PMID:23880730
Collective relaxation dynamics of small-world networks
NASA Astrophysics Data System (ADS)
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k , and topological randomness q . We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q , including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
Collective relaxation dynamics of small-world networks.
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k, and topological randomness q. We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
On-line training of recurrent neural networks with continuous topology adaptation.
Obradovic, D
1996-01-01
This paper presents an online procedure for training dynamic neural networks with input-output recurrences whose topology is continuously adjusted to the complexity of the target system dynamics. This is accomplished by changing the number of the elements of the network hidden layer whenever the existing topology cannot capture the dynamics presented by the new data. The training mechanism is based on the suitably altered extended Kalman filter (EKF) algorithm which is simultaneously used for the network parameter adjustment and for its state estimation. The network consists of a single hidden layer with Gaussian radial basis functions (GRBF), and a linear output layer. The choice of the GRBF is induced by the requirements of the online learning. The latter implies the network architecture which permits only local influence of the new data point in order not to forget the previously learned dynamics. The continuous topology adaptation is implemented in our algorithm to avoid memory and computational problems of using a regular grid of GRBF'S which covers the network input space. Furthermore, we show that the resulting parameter increase can be handled "smoothly" without interfering with the already acquired information. If the target system dynamics are changing over time, we show that a suitable forgetting factor can be used to "unlearn" the no longer-relevant dynamics. The quality of the recurrent network training algorithm is demonstrated on the identification of nonlinear dynamic systems.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
Rea, Matthew; Gripshover, Tyler; Fondufe-Mittendorf, Yvonne
2017-01-01
Methylation at cytosine (5mC) is a fundamental epigenetic DNA modification recently associated with iAs-mediated carcinogenesis. In contrast, the role of 5-hydroxymethylcytosine (5hmC), the oxidation product of 5mC in iAs-mediated carcinogenesis is unknown. Here we assess the hydroxymethylome in iAs-transformed cells, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks. Moreover, this pathologic iAs-mediated carcinogenesis is characterized by a shift toward a higher hydroxymethylation pattern genome-wide. At specific promoters, hydroxymethylation correlated with increased gene expression. Furthermore, this increase in hydroxymethylation occurs concurrently with an upregulation of ten-eleven translocation (TET) enzymes that oxidize 5-methylcytosine (5mC) in DNA. To gain an understanding into how iAs might impact TET expression, we found that iAs inhibits the binding of CTCF at the proximal, weak CTCF binding sites of the TET1 and TET2 gene promoters and enhances CTCF binding at the stronger distal binding site. Further analyses suggest that this distal site acts as an enhancer, thus high CTCF occupancy at the enhancer region of TET1 and TET2 possibly drives their high expression in iAs-transformed cells. These results have major implications in understanding the impact of differential CTCF binding, genome architecture and its consequences in iAs-mediated pathogenesis. PMID:29175454
Flory-Stockmayer analysis on reprocessable polymer networks
NASA Astrophysics Data System (ADS)
Li, Lingqiao; Chen, Xi; Jin, Kailong; Torkelson, John
Reprocessable polymer networks can undergo structure rearrangement through dynamic chemistries under proper conditions, making them a promising candidate for recyclable crosslinked materials, e.g. tires. This research field has been focusing on various chemistries. However, there has been lacking of an essential physical theory explaining the relationship between abundancy of dynamic linkages and reprocessability. Based on the classical Flory-Stockmayer analysis on network gelation, we developed a similar analysis on reprocessable polymer networks to quantitatively predict the critical condition for reprocessability. Our theory indicates that it is unnecessary for all bonds to be dynamic to make the resulting network reprocessable. As long as there is no percolated permanent network in the system, the material can fully rearrange. To experimentally validate our theory, we used a thiol-epoxy network model system with various dynamic linkage compositions. The stress relaxation behavior of resulting materials supports our theoretical prediction: only 50 % of linkages between crosslinks need to be dynamic for a tri-arm network to be reprocessable. Therefore, this analysis provides the first fundamental theoretical platform for designing and evaluating reprocessable polymer networks. We thank McCormick Research Catalyst Award Fund and ISEN cluster fellowship (L. L.) for funding support.
Complete characterization of the stability of cluster synchronization in complex dynamical networks.
Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi
2016-04-01
Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.
Random Evolution of Idiotypic Networks: Dynamics and Architecture
NASA Astrophysics Data System (ADS)
Brede, Markus; Behn, Ulrich
The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.
Resumption of dynamism in damaged networks of coupled oscillators
NASA Astrophysics Data System (ADS)
Kundu, Srilena; Majhi, Soumen; Ghosh, Dibakar
2018-05-01
Deterioration in dynamical activities may come up naturally or due to environmental influences in a massive portion of biological and physical systems. Such dynamical degradation may have outright effect on the substantive network performance. This requires us to provide some proper prescriptions to overcome undesired circumstances. In this paper, we present a scheme based on external feedback that can efficiently revive dynamism in damaged networks of active and inactive oscillators and thus enhance the network survivability. Both numerical and analytical investigations are performed in order to verify our claim. We also provide a comparative study on the effectiveness of this mechanism for feedbacks to the inactive group or to the active group only. Most importantly, resurrection of dynamical activity is realized even in time-delayed damaged networks, which are considered to be less persistent against deterioration in the form of inactivity in the oscillators. Furthermore, prominence in our approach is substantiated by providing evidence of enhanced network persistence in complex network topologies taking small-world and scale-free architectures, which makes the proposed remedy quite general. Besides the study in the network of Stuart-Landau oscillators, affirmative influence of external feedback has been justified in the network of chaotic Rössler systems as well.
Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind
2016-01-01
Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008
Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind
2016-05-23
Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.
Dynamics of subway networks based on vehicles operation timetable
NASA Astrophysics Data System (ADS)
Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui
2017-05-01
In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Generalized priority-queue network dynamics: Impact of team and hierarchy
NASA Astrophysics Data System (ADS)
Cho, Won-Kuk; Min, Byungjoon; Goh, K.-I.; Kim, I.-M.
2010-06-01
We study the effect of team and hierarchy on the waiting-time dynamics of priority-queue networks. To this end, we introduce generalized priority-queue network models incorporating interaction rules based on team-execution and hierarchy in decision making, respectively. It is numerically found that the waiting-time distribution exhibits a power law for long waiting times in both cases, yet with different exponents depending on the team size and the position of queue nodes in the hierarchy, respectively. The observed power-law behaviors have in many cases a corresponding single or pairwise-interacting queue dynamics, suggesting that the pairwise interaction may constitute a major dynamic consequence in the priority-queue networks. It is also found that the reciprocity of influence is a relevant factor for the priority-queue network dynamics.
Dynamics of comb-of-comb-network polymers in random layered flows
NASA Astrophysics Data System (ADS)
Katyal, Divya; Kant, Rama
2016-12-01
We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
NASA Astrophysics Data System (ADS)
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Hydrodynamically induced oscillations and traffic dynamics in 1D microfludic networks
NASA Astrophysics Data System (ADS)
Bartolo, Denis; Jeanneret, Raphael
2011-03-01
We report on the traffic dynamics of particles driven through a minimal microfluidic network. Even in the minimal network consisting in a single loop, the traffic dynamics has proven to yield complex temporal patterns, including periodic, multi-periodic or chaotic sequences. This complex dynamics arises from the strongly nonlinear hydrodynamic interactions between the particles, that takes place at a junction. To better understand the consequences of this nontrivial coupling, we combined theoretical, numerical and experimental efforts and solved the 3-body problem in a 1D loop network. This apparently simple dynamical system revealed a rich and unexpected dynamics, including coherent spontaneous oscillations along closed orbits. Striking similarities between Hamiltonian systems and this driven dissipative system will be explained.
Rohleder, Cathrin; Wiedermann, Dirk; Neumaier, Bernd; Drzezga, Alexander; Timmermann, Lars; Graf, Rudolf; Leweke, F Markus; Endepols, Heike
2016-01-01
Prepulse inhibition (PPI) is a neuropsychological process during which a weak sensory stimulus ("prepulse") attenuates the motor response ("startle reaction") to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: (i) startle mediation, (ii) PPI mediation, and (iii) modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood. We therefore combined [(18)F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET) with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN) active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e., associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing. Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.
A dynamic network model for interbank market
NASA Astrophysics Data System (ADS)
Xu, Tao; He, Jianmin; Li, Shouwei
2016-12-01
In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.
Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.
Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun
2017-12-21
Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.
Counting motifs in dynamic networks.
Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer
2018-04-11
A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.
Dynamics and control of state-dependent networks for probing genomic organization
Rajapakse, Indika; Groudine, Mark; Mesbahi, Mehran
2011-01-01
A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we examine various aspects of a genomic state-dependent dynamic network. In particular, we elaborate on one of the important ramifications of viewing genomic networks as being state-dependent, namely, their controllability during processes of genomic reorganization such as in cell differentiation. PMID:21911407
Simakov, Nikolay; Leonard, David A.; Smith, Jeremy C.; ...
2016-09-26
Widespread antibiotic resistance, particularly when mediated by broad-spectrum β-lactamases, has major implications for public health. Substitutions in the active site often allow broad-spectrum enzymes to accommodate diverse types of β-lactams. Substitutions observed outside the active site are thought to compensate for the loss of thermal stability. The OXA-1 clade of class D β-lactamases contains a pair of conserved cysteines located outside the active site that forms a disulfide bond in the periplasm. In this paper, the effect of the distal disulfide bond on the structure and dynamics of OXA-1 was investigated via 4 μs molecular dynamics simulations. The results revealmore » that the disulfide promotes the preorganized orientation of the catalytic residues and affects the conformation of the functionally important Ω loop. Furthermore, principal component analysis reveals differences in the global dynamics between the oxidized and reduced forms, especially in the motions involving the Ω loop. A dynamical network analysis indicates that, in the oxidized form, in addition to its role in ligand binding, the KTG family motif is a central hub of the global dynamics. Finally, as activity of OXA-1 has been measured only in the reduced form, we suggest that accurate assessment of its functional profile would require oxidative conditions mimicking periplasm.« less
Dynamic burstiness of word-occurrence and network modularity in textbook systems
NASA Astrophysics Data System (ADS)
Cui, Xue-Mei; Yoon, Chang No; Youn, Hyejin; Lee, Sang Hoon; Jung, Jean S.; Han, Seung Kee
2017-12-01
We show that the dynamic burstiness of word occurrence in textbook systems is attributed to the modularity of the word association networks. At first, a measure of dynamic burstiness is introduced to quantify burstiness of word occurrence in a textbook. The advantage of this measure is that the dynamic burstiness is decomposable into two contributions: one coming from the inter-event variance and the other from the memory effects. Comparing network structures of physics textbook systems with those of surrogate random textbooks without the memory or variance effects are absent, we show that the network modularity increases systematically with the dynamic burstiness. The intra-connectivity of individual word representing the strength of a tie with which a node is bound to a module accordingly increases with the dynamic burstiness, suggesting individual words with high burstiness are strongly bound to one module. Based on the frequency and dynamic burstiness, physics terminology is classified into four categories: fundamental words, topical words, special words, and common words. In addition, we test the correlation between the dynamic burstiness of word occurrence and network modularity using a two-state model of burst generation.
Hamby, Mary E.; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H.; Khakh, Baljit S.; Sofroniew, Michael V.
2012-01-01
Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2y1, Gnao1, Gng7), but some up (for example, P2y14, P2y6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs. PMID:23077035
A Mathematical Model to study the Dynamics of Epithelial Cellular Networks
Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D.; Tomlin, Claire J.
2013-01-01
Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction). PMID:23221083
Mathematical modeling of gonadotropin-releasing hormone signaling.
Pratap, Amitesh; Garner, Kathryn L; Voliotis, Margaritis; Tsaneva-Atanasova, Krasimira; McArdle, Craig A
2017-07-05
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are G q -coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Erfani, Shiva Seyed; Nikbin, Sareh
2015-01-01
Dynamic assessment originates in the Zone of Proximal Development (ZPD). Practicing dynamic assessment necessarily requires the development of ZPD. This study aimed to investigate the effect of peer-assisted mediation vs. tutor-intervention within dynamic assessment framework on writing development and the attitude of Iranian intermediate EFL…
Raz, Gal; Touroutoglou, Alexandra; Wilson-Mendenhall, Christine; Gilam, Gadi; Lin, Tamar; Gonen, Tal; Jacob, Yael; Atzil, Shir; Admon, Roee; Bleich-Cohen, Maya; Maron-Katz, Adi; Hendler, Talma; Barrett, Lisa Feldman
2016-08-01
Recent theoretical and empirical work has highlighted the role of domain-general, large-scale brain networks in generating emotional experiences. These networks are hypothesized to process aspects of emotional experiences that are not unique to a specific emotional category (e.g., "sadness," "happiness"), but rather that generalize across categories. In this article, we examined the dynamic interactions (i.e., changing cohesiveness) between specific domain-general networks across time while participants experienced various instances of sadness, fear, and anger. We used a novel method for probing the network connectivity dynamics between two salience networks and three amygdala-based networks. We hypothesized, and found, that the functional connectivity between these networks covaried with the intensity of different emotional experiences. Stronger connectivity between the dorsal salience network and the medial amygdala network was associated with more intense ratings of emotional experience across six different instances of the three emotion categories examined. Also, stronger connectivity between the dorsal salience network and the ventrolateral amygdala network was associated with more intense ratings of emotional experience across five out of the six different instances. Our findings demonstrate that a variety of emotional experiences are associated with dynamic interactions of domain-general neural systems.
Predicting the Lifetime of Dynamic Networks Experiencing Persistent Random Attacks.
Podobnik, Boris; Lipic, Tomislav; Horvatic, Davor; Majdandzic, Antonio; Bishop, Steven R; Eugene Stanley, H
2015-09-21
Estimating the critical points at which complex systems abruptly flip from one state to another is one of the remaining challenges in network science. Due to lack of knowledge about the underlying stochastic processes controlling critical transitions, it is widely considered difficult to determine the location of critical points for real-world networks, and it is even more difficult to predict the time at which these potentially catastrophic failures occur. We analyse a class of decaying dynamic networks experiencing persistent failures in which the magnitude of the overall failure is quantified by the probability that a potentially permanent internal failure will occur. When the fraction of active neighbours is reduced to a critical threshold, cascading failures can trigger a total network failure. For this class of network we find that the time to network failure, which is equivalent to network lifetime, is inversely dependent upon the magnitude of the failure and logarithmically dependent on the threshold. We analyse how permanent failures affect network robustness using network lifetime as a measure. These findings provide new methodological insight into system dynamics and, in particular, of the dynamic processes of networks. We illustrate the network model by selected examples from biology, and social science.
Structurally Dynamic Spin Market Networks
NASA Astrophysics Data System (ADS)
Horváth, Denis; Kuscsik, Zoltán
The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.
Improving resolution of dynamic communities in human brain networks through targeted node removal
Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.
2017-01-01
Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662
Linking Behavior in the Physics Education Research Coauthorship Network
ERIC Educational Resources Information Center
Anderson, Katharine A.; Crespi, Matthew; Sayre, Eleanor C.
2017-01-01
There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real…
Impact analysis of two kinds of failure strategies in Beijing road transportation network
NASA Astrophysics Data System (ADS)
Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan
The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
Heterogeneous delivering capability promotes traffic efficiency in complex networks
NASA Astrophysics Data System (ADS)
Zhu, Yan-Bo; Guan, Xiang-Min; Zhang, Xue-Jun
2015-12-01
Traffic is one of the most fundamental dynamical processes in networked systems. With the homogeneous delivery capability of nodes, the global dynamic routing strategy proposed by Ling et al. [Phys. Rev. E81, 016113 (2010)] adequately uses the dynamic information during the process and thus it can reach a quite high network capacity. In this paper, based on the global dynamic routing strategy, we proposed a heterogeneous delivery allocation strategy of nodes on scale-free networks with consideration of nodes degree. It is found that the network capacity as well as some other indexes reflecting transportation efficiency are further improved. Our work may be useful for the design of more efficient routing strategies in communication or transportation systems.
Dynamics of Bacterial Gene Regulatory Networks.
Shis, David L; Bennett, Matthew R; Igoshin, Oleg A
2018-05-20
The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.
Dynamic properties of epidemic spreading on finite size complex networks
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Common neural correlates of intertemporal choices and intelligence in adolescents.
Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N
2015-02-01
Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.
Scaffolding Young Children: The Utility of Mediation in a Classification Test
ERIC Educational Resources Information Center
Mata, Sara; van Geert, Paul; van der Aalsvoort, Geerdina
2017-01-01
Introduction: Studies of Dynamic Assessment of cognitive abilities reveal that young children profit from assistance while carrying out tasks that elicit cognitive effort. Dynamic assessment refers to a test format of a pretest-mediation-posttest in which the mediation phase includes scaffolding to assist the child to grasp the purpose of the…
Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosey, Chris A.; Ho, Chris; Long, Winnie Z.
Apoptosis-inducing factor (AIF) is critical for mitochondrial respiratory complex biogenesis and for mediating necroptotic parthanatos; these functions are seemingly regulated by enigmatic allosteric switching driven by NADH charge-transfer complex (CTC) formation. In this paper, we define molecular pathways linking AIF's active site to allosteric switching regions by characterizing dimer-permissive mutants using small-angle X-ray scattering (SAXS) and crystallography and by probing AIF-CTC communication networks using molecular dynamics simulations. Collective results identify two pathways propagating allostery from the CTC active site: (1) active-site H454 links to S480 of AIF's central β-strand to modulate a hydrophobic border at the dimerization interface, and (2)more » an interaction network links AIF's FAD cofactor, central β-strand, and Cβ-clasp whereby R529 reorientation initiates C-loop release during CTC formation. Finally, this knowledge of AIF allostery and its flavoswitch mechanism provides a foundation for biologically understanding and biomedically controlling its participation in mitochondrial homeostasis and cell death.« less
Fowler, Tristan W.; Acevedo, Claire; Mazur, Courtney M.; ...
2017-03-22
Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. We find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causingmore » degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Therefore, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Tristan W.; Acevedo, Claire; Mazur, Courtney M.
Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. We find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causingmore » degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Therefore, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis.« less
Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.
Jiu, Yaming; Lehtimäki, Jaakko; Tojkander, Sari; Cheng, Fang; Jäälinoja, Harri; Liu, Xiaonan; Varjosalo, Markku; Eriksson, John E; Lappalainen, Pekka
2015-06-16
The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Temporal shaping of quantum states released from a superconducting cavity memory
NASA Astrophysics Data System (ADS)
Burkhart, L.; Axline, C.; Pfaff, W.; Zou, C.; Zhang, M.; Narla, A.; Frunzio, L.; Devoret, M. H.; Jiang, L.; Schoelkopf, R. J.
State transfer and entanglement distribution are essential primitives in network-based quantum information processing. We have previously demonstrated an interface between a quantum memory and propagating light fields in the microwave domain: by parametric conversion in a single Josephson junction, we have coherently released quantum states from a superconducting cavity resonator into a transmission line. Protocols for state transfer mediated by propagating fields typically rely on temporal mode-matching of couplings at both sender and receiver. However, parametric driving on a single junction results in dynamic frequency shifts, raising the question of whether the pumps alone provide enough control for achieving this mode-matching. We show, in theory and experiment, that phase and amplitude shaping of the parametric drives allows arbitrary control over the propagating field, limited only by the drives bandwidth and amplitude constraints. This temporal mode shaping technique allows for release and capture of quantum states, providing a credible route towards state transfer and entanglement generation in quantum networks in which quantum states are stored and processed in cavities.
Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor
Brosey, Chris A.; Ho, Chris; Long, Winnie Z.; ...
2016-11-03
Apoptosis-inducing factor (AIF) is critical for mitochondrial respiratory complex biogenesis and for mediating necroptotic parthanatos; these functions are seemingly regulated by enigmatic allosteric switching driven by NADH charge-transfer complex (CTC) formation. In this paper, we define molecular pathways linking AIF's active site to allosteric switching regions by characterizing dimer-permissive mutants using small-angle X-ray scattering (SAXS) and crystallography and by probing AIF-CTC communication networks using molecular dynamics simulations. Collective results identify two pathways propagating allostery from the CTC active site: (1) active-site H454 links to S480 of AIF's central β-strand to modulate a hydrophobic border at the dimerization interface, and (2)more » an interaction network links AIF's FAD cofactor, central β-strand, and Cβ-clasp whereby R529 reorientation initiates C-loop release during CTC formation. Finally, this knowledge of AIF allostery and its flavoswitch mechanism provides a foundation for biologically understanding and biomedically controlling its participation in mitochondrial homeostasis and cell death.« less
Thin Film Mediated Phase Change Phenomena: Crystallization, Evaporation and Wetting
NASA Technical Reports Server (NTRS)
Wettlaufer, John S.
1998-01-01
We focus on two distinct materials science problems that arise in two distinct microgravity environments: In space and within the space of a polymeric network. In the former environment, we consider a near eutectic alloy film in contact with its vapor which, when evaporating on earth, will experience compositionally induced buoyancy driven convection. The latter will significantly influence the morphology of the crystallized end member. In the absence of gravity, the morphology will be dominated by molecular diffusion and Marangoni driven viscous flow, and we study these phenomena theoretically and experimentally. The second microgravity environment exists in liquids, gels, and other soft materials where the small mass of individual molecules makes the effect of gravity negligible next to the relatively strong forces of intermolecular collisions. In such materials, an essential question concerns how to relate the molecular dynamics to the bulk rheological behavior. Here, we observe experimentally the diffusive motion of a single molecule in a single polymer filament, embedded within a polymer network and find anomalous diffusive behavior.
Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks.
Yeung, Enoch; Dy, Aaron J; Martin, Kyle B; Ng, Andrew H; Del Vecchio, Domitilla; Beck, James L; Collins, James J; Murray, Richard M
2017-07-26
Synthetic gene expression is highly sensitive to intragenic compositional context (promoter structure, spacing regions between promoter and coding sequences, and ribosome binding sites). However, much less is known about the effects of intergenic compositional context (spatial arrangement and orientation of entire genes on DNA) on expression levels in synthetic gene networks. We compare expression of induced genes arranged in convergent, divergent, or tandem orientations. Induction of convergent genes yielded up to 400% higher expression, greater ultrasensitivity, and dynamic range than divergent- or tandem-oriented genes. Orientation affects gene expression whether one or both genes are induced. We postulate that transcriptional interference in divergent and tandem genes, mediated by supercoiling, can explain differences in expression and validate this hypothesis through modeling and in vitro supercoiling relaxation experiments. Treatment with gyrase abrogated intergenic context effects, bringing expression levels within 30% of each other. We rebuilt the toggle switch with convergent genes, taking advantage of supercoiling effects to improve threshold detection and switch stability. Copyright © 2017 Elsevier Inc. All rights reserved.
Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J
2016-06-14
Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wegener, Pam; Covino, Tim; Wohl, Ellen
2017-06-01
River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.
A Network Optimization Approach for Improving Organizational Design
2004-01-01
functions, Dynamic Network Analysis, Social Network Analysis Abstract Organizations are frequently designed and redesigned, often in...links between sites on the web. Hence a change in any one of the four networks in which people are involved can potentially result in a cascade of...in terms of a set of networks that open the possibility of using all networks (both social and dynamic network measures) as indicators of potential
Experiences of women with breast cancer: exchanging social support over the CHESS computer network.
Shaw, B R; McTavish, F; Hawkins, R; Gustafson, D H; Pingree, S
2000-01-01
Using an existential-phenomenological approach, this paper describes how women with breast cancer experience the giving and receiving of social support in a computer-mediated context. Women viewed their experiences with the computer-mediated support group as an additional and unique source of support in facing their illness. Anonymity within the support group fostered equalized participation and allowed women to communicate in ways that would have been more difficult in a face-to-face context. The asynchronous communication was a frustration to some participants, but some indicated that the format allowed for more thoughtful interaction. Motivations for seeking social support appeared to be a dynamic process, with a consistent progression from a position of receiving support to that of giving support. The primary benefits women received from participation in the group were communicating with other people who shared similar problems and helping others, which allowed them to change their focus from a preoccupation with their own sickness to thinking of others. Consistent with past research is the finding that women in this study expressed that social support is a multidimensional phenomenon and that their computer-mediated support group provided abundant emotional support, encouragement, and informational support. Excerpts from the phenomenological interviews are used to review and highlight key theoretical concepts from the research literatures on computer-mediated communication, social support, and the psychosocial needs of women with breast cancer.
Reconstructing networks from dynamics with correlated noise
NASA Astrophysics Data System (ADS)
Tam, H. C.; Ching, Emily S. C.; Lai, Pik-Yin
2018-07-01
Reconstructing the structure of complex networks from measurements of the nodes is a challenge in many branches of science. External influences are always present and act as a noise to the networks of interest. In this paper, we present a method for reconstructing networks from measured dynamics of the nodes subjected to correlated noise that cannot be approximated by a white noise. This method can reconstruct the links of both bidirectional and directed networks, the correlation time and strength of the noise, and also the relative coupling strength of the links when the coupling functions have certain properties. Our method is built upon theoretical relations between network structure and measurable quantities from the dynamics that we have derived for systems that have fixed point dynamics in the noise-free limit. Using these theoretical results, we can further explain the shortcomings of two common practices of inferring links for bidirectional networks using the Pearson correlation coefficient and the partial correlation coefficient.
On investigating social dynamics in tactical opportunistic mobile networks
NASA Astrophysics Data System (ADS)
Gao, Wei; Li, Yong
2014-06-01
The efficiency of military mobile network operations at the tactical edge is challenging due to the practical Disconnected, Intermittent, and Limited (DIL) environments at the tactical edge which make it hard to maintain persistent end-to-end wireless network connectivity. Opportunistic mobile networks are hence devised to depict such tactical networking scenarios. Social relations among warfighters in tactical opportunistic mobile networks are implicitly represented by their opportunistic contacts via short-range radios, but were inappropriately considered as stationary over time by the conventional wisdom. In this paper, we develop analytical models to probabilistically investigate the temporal dynamics of this social relationship, which is critical to efficient mobile communication in the battlespace. We propose to formulate such dynamics by developing various sociological metrics, including centrality and community, with respect to the opportunistic mobile network contexts. These metrics investigate social dynamics based on the experimentally validated skewness of users' transient contact distributions over time.
Design and implementation of dynamic hybrid Honeypot network
NASA Astrophysics Data System (ADS)
Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang
2013-05-01
The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.
Salience network dynamics underlying successful resistance of temptation
Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q
2017-01-01
Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582
A Healthy Brain in a Healthy Body: Brain Network Correlates of Physical and Mental Fitness
Douw, Linda; Nieboer, Dagmar; van Dijk, Bob W.; Stam, Cornelis J.; Twisk, Jos W. R.
2014-01-01
A healthy lifestyle is an important focus in today's society. The physical benefits of regular exercise are abundantly clear, but physical fitness is also associated with better cognitive performance. How these two factors together relate to characteristics of the brain is still incompletely understood. By applying mathematical concepts from ‘network theory’, insights in the organization and dynamics of brain functioning can be obtained. We test the hypothesis that neural network organization mediates the association between cardio respiratory fitness (i.e. VO2 max) and cognitive functioning. A healthy cohort was studied (n = 219, 113 women, age range 41–44 years). Subjects underwent resting-state eyes-closed magneto-encephalography (MEG). Five artifact-free epochs were analyzed and averaged in six frequency bands (delta-gamma). The phase lag index (PLI) was used as a measure of functional connectivity between all sensors. Modularity analysis was performed, and both within and between-module connectivity of each sensor was calculated. Subjects underwent a maximum oxygen uptake (VO2 max) measurement as an indicator of cardio respiratory fitness. All subjects were tested with a commonly used Dutch intelligence test. Intelligence quotient (IQ) was related to VO2 max. In addition, VO2 max was negatively associated with upper alpha and beta band modularity. Particularly increased intermodular connectivity in the beta band was associated with higher VO2 max and IQ, further indicating a benefit of more global network integration as opposed to local connections. Within-module connectivity showed a spatially varied pattern of correlation, while average connectivity did not show significant results. Mediation analysis was not significant. The occurrence of less modularity in the resting-state is associated with better cardio respiratory fitness, while having increased intermodular connectivity, as opposed to within-module connections, is related to better physical and mental fitness. PMID:24498438
Contagion of Cooperation in Static and Fluid Social Networks.
Jordan, Jillian J; Rand, David G; Arbesman, Samuel; Fowler, James H; Christakis, Nicholas A
2013-01-01
Cooperation is essential for successful human societies. Thus, understanding how cooperative and selfish behaviors spread from person to person is a topic of theoretical and practical importance. Previous laboratory experiments provide clear evidence of social contagion in the domain of cooperation, both in fixed networks and in randomly shuffled networks, but leave open the possibility of asymmetries in the spread of cooperative and selfish behaviors. Additionally, many real human interaction structures are dynamic: we often have control over whom we interact with. Dynamic networks may differ importantly in the goals and strategic considerations they promote, and thus the question of how cooperative and selfish behaviors spread in dynamic networks remains open. Here, we address these questions with data from a social dilemma laboratory experiment. We measure the contagion of both cooperative and selfish behavior over time across three different network structures that vary in the extent to which they afford individuals control over their network ties. We find that in relatively fixed networks, both cooperative and selfish behaviors are contagious. In contrast, in more dynamic networks, selfish behavior is contagious, but cooperative behavior is not: subjects are fairly likely to switch to cooperation regardless of the behavior of their neighbors. We hypothesize that this insensitivity to the behavior of neighbors in dynamic networks is the result of subjects' desire to attract new cooperative partners: even if many of one's current neighbors are defectors, it may still make sense to switch to cooperation. We further hypothesize that selfishness remains contagious in dynamic networks because of the well-documented willingness of cooperators to retaliate against selfishness, even when doing so is costly. These results shed light on the contagion of cooperative behavior in fixed and fluid networks, and have implications for influence-based interventions aiming at increasing cooperative behavior.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644
Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.
Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael
2010-07-01
The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.
Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks
Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul
2013-01-01
Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
A discrete mathematical model of the dynamic evolution of a transportation network
NASA Astrophysics Data System (ADS)
Malinetskii, G. G.; Stepantsov, M. E.
2009-09-01
A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.
A coevolving model based on preferential triadic closure for social media networks
Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng
2013-01-01
The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061